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MAPPINGS OF OPERATOR ALGEBRAS 

by Richard V. KADISON * 

Let #e be a Hilbert space over the complex numbers and (&(BC) the family 
of bounded (continuous) linear operators on #6. Then u3(#6) is an algebra under 
the usual operations of addition and multiplication of transformations ; and the 
adjoint (*) operation A -* A* is an involutory anti-automorphism of (&(&£), 
With the norm of an operator A in Gh(BZ) defined as its bound ||>4||,tf3 (#6) 
becomes a Banach space and the * operation is an isometry. The weak-operator 
topology, defined as the weakest topology on (&(&£) in which the functional 
A -* (Ax, y) are continuous, will be needed along with the norm topology asso
ciated with the operator-bound norm. 

The subalgebras of o3 (#6) stable under the * operation and closed in the 
norm topology — the C*-algebras, as well as their special subclass consisting 
of those closed in the weak-operator topology, the von Neumann algebras, are 
the principal objects of attention in this report. The main purpose of this ex
position is to describe the developments which have occurred over the past 
five years in the study of special classes of mappings of such algebras. The primary 
concern is with the (*) automorphisms and derivations ; but, as an outgrowth 
of these considerations, the recent work on cohomology of these algebras will 
be discussed. 

A (*) automorphism a of a C*-algebra U is an algebraic automorphism of K 
such that <x(A*) = OL(A)*. If U is a unitary operator in U, A -» UAU* is an au
tomorphism of U- Such automorphisms are said to be inner. Automorphisms 
tend to be outer (i.e., not inner). If 6 is the compact operators on #6 and U 
is the C*-algebra generated by 6 and / , each U in(R(B€.) induces an automorphism 
of 11, though many unitary operators are not the sum of a scalar and a compact 
operator. These last automorphisms are spatial — induced by a unitary opera
tor infà(Be)-

In general automorphisms of C*-algebras will not be spatial. Homeomorphisms 
of locally compact measure spaces which don't preserve null sets of the measure 
produce automorphisms of the C*-algebra of multiplication operators by con
tinuous functions which are not spatial. Automorphisms of von Neumann algebras, 
on the other hand, tend to be spatial - provided that their action on the center 
respects certain elementary numerical invariants. In the case of the factors-thc 
von Neumann algebras with center consisting of scalars — automorphisms will 
be spatial (with a possible exception [14] in the case of a factor of type Hoc 
with IIj commutant). 

Though spatial, in general, automorphisms of von Neumann algebras tend 
not to be inner. If G is a countable (discrete) group with conjugate classes infinite 
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and BC is the Hilbert space of complex-valued, square-integrable functions on 
G, then the weak-operator closed algebra generated by the unitary operators 
Ua defined by (Uaf)(g) = f(a~l g) is a factor CT£ (of type II1). Each automor
phism of G induces a spatial automorphism of dît. If G is the free group on 
two generators a and b, the automorphism interchanging a and b will be outer 
[2 : Ex. 15, p. 288]. If G is the group of those permutations of the integers 
which move at most a finite set then each locally compact group with a coun
table base has a (faithful, strong-operator-continuous) representation on BC by 
unitary operators which (with the exception of I) induce outer automorphisms 
of 0TC[1]. 

An automorphism a of a C*-algebra is an isometry ; for A and ct(A) have 
the same spectrum. Thus ||a04)|| = ||^4|| when A is self-adjoint. For arbitrary 
T in the algebra, ||7ïla = \\T*T\\ = \\OL(T*T)\\ = | | a (mi 2 . Hence a is, in par
ticular, a bounded operator on Tt (as a Banach subspace of (R>(BC)) ; and ||a|| = 1. 
If t denotes the identity automorphism of the von Neumann algebra ft, ||a — i|| < 2. 
While outer automorphisms of von Neumann algebras abound, if ||a — t\\ < 2 
then a. is inner [11 : Theorem 7] . This theorem is established by C*-and von 
Neumann algebra techniques combined with analytic methods. The proof is 
directed toward showing that a. lies on a oneparameter group of automorphisms 
of the form exp(rfi), where ô is a bounded linear operator on ft. Because the 
mappings exp(ffi) are automorphisms, ô is a derivation of ft 

(i.e. 8 (AB) = 8(A)B + AßlAih. . 

The theorem that derivations of von Neumann algebras are inner [7, 10, 15, 19] 
applies ; and there is an iH in ft such that fi04) = i(HA —AH) for each A in 
ft. Since a preserves adjoints, the same is true for ô ; and H may be chosen self-
adjoint. The automorphism a, with which we started, is induced by the unitary 
operator exp (iH) (in ft). 

The development leading up to the theorem that derivations of von Neumann 
algebras are inner began with the observation that this is true for type / von 
Neumann algebras [16]. The prototype of these algebras is (&(BC). There is a 
group 11 of unitary operators in u3 (BC ) whose linear span has norm closure a 
C*-algebra 11 with weak-operator closure u3 (BC) ; and 11 is the ascending union 
of finite groups. Choosing an orthonormal basis for BC, 11 can be taken as the 
group generated by those unitary operators which either permute or reflect 
through 0 a finite number of basis elements and fix the others. Since 11 is an 
ascending union of finite groups, H has a (two-sided, invariant) mean p. If <p is 
a bounded function from 11 into (Sh(BC), meaning U -> (<p(U)x, y), for each 
pair of vectors x, y in BC, leads to a bounded bilinear functional on BC and, 
thence, to an operator p(#) in6Ò(BC). If y(U) = U* 8(U), then 8(V) = VT - TV 
for V in lU, where T = p($). This follows from meaning \pv, where 

VV(U) = if(UV) = (UV)* 8(UV) = K* Ü* [U8(V) + 8(U) V] = 

= V*8(V) + V*U*8(U)V. 

From the properties of the mean, T= V* 8(V) + V*TV. By linearity and 
norm continuity 8(A) = AT — TA for each A in U. At this point, we can make 
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use of special (automatic) continuity properties of derivations [15 : Lemma 3], 
to conclude that 8(A) = AT — TA for all A in (ß(BC)- This continuity results 
from the observation that, if / > A > 0, then 8(A) = fi041'2 M 1 / 2 + A^28(All2) ; 
so that, if (Ax, x) (= \\A112 x\\2) is small, (8(A) x, x) is small. 

The same argument, slightly embellished, will prove that derivations of type 
I von Neumann algebras are inner. More general results can also be proved by 
this method. If ft is a von Neumann algebra, DTI is a two-sided (unital) ft -module 
which is the dual of a Banach space OH*, and if the bilinear mappings (A , m) -> Am 
and (A , m) -* mA are bounded and w* continuous in m, OTCis said to be a dual 
(Banach) ^-module. If these mappings are ultraweakly continuous in A (i.e. 
weak-operator continuous in A on bounded subsets of ft), OH is said to be normal. 
The argument just sketched will show that a derivation of a type I von Neumann 
algebra ft into a normal dual ft-module dtl (i.e. a linear mapping ô of ft into OH 
such that 8(AB) = 8(A)B + A8(B)), has the form A -• Am — mA, for some 
m in Oil [9 : Cor. 5.4]. In particular, if ô is a derivation of ft into (R(BC) there 
is a T in(ß(BC) such that 504) = AT- TA. 

This module formulation of derivation results lends itself, at once, to conside
rations of cohomology of C*-algebras with coefficients in a module [4,5]. With 
II a C*-algebra and OH a Banach 11 -module, let C£(tt,0Tl) be the linear space of 
bounded «-linear mappings of 11 into 3ÌZ. The coboundary operator À is defined 
[4] by : 

(Ap) 04j , . . . ,An+1) =A1p(A2 , . . . ,An+i) - p(AyA2 , A3 , . . . ,An+1) + 

+ . . . ±p04j , . ..,An_ltAnAn+1) T p(Ax , . ..,An)An + 1, 

for p in C"(U, OH). Such mappings p are the (bounded) n-cochains. Those p 
for which Ap = 0 are the (bounded) n-cocycles. They form a subspace Z"(U, Oil) 
of C"(U,0TC). Since AA = 0 ; the «-cochains of the form A J with £ an n-\-
cochain are cocycles. They are the n-coboundaries. The factor space of Z"(U , OH) 
by the space /?£ (11, OH) of (bounded) «-coboundaries is the n-th cohomology 
group H"(U , 01Z) of U with coefficients in OH. Note that the 1-cocycles are 
those linear mappings ô of U into 3T£ such that 

(AÔ)04,J?) =A8(B)- 8(AB) + 8(A)B = 0 

— that is to say, the derivations of U into dTC. When dît is U (with action given 
by the multiplication on 11) the 1-cocycles become the standard derivations of 
U into 11. The 0-cochains are the constant mappings - the elements of dît ; 
and the coboundary of m is Am — mA (at A). To say that a derivation ô of U 
into C1Z cobounds is to say, then, that, for some m in OTT, 8(A) = Am — mA, 
for each A in U. The theorem that the derivations of a von Neumann algebra 
ft (into itself) are inner is the assertion that Z/£(ft,ft) = 0. In this framework, 
it is known that //"(ft, OH) = 0 when ft is a type I von Neumann algebra and 
OH is a normal dual ft -module. The same is true for all hyperfinite von Neumann 
algebras ft [6,9, 12, 13]. 

If 11 is a C*-algebra and Ç is a (norm-closed) two-sided ideal in 11, then U/G 
is, again, a C*-algebra [3 : Prop. 1.8.2, p. 17]. The problem of "lifting" a deri
vation ô of 11/C to 11 leads to considerations of 2-cohomology of 11 with coeffi-
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cients in C. If £ is a (norm-continuous) linear mapping of U into U which lifts 
5 then A£(B) - $(AB) + $(A)B(= p(A , B)) is in £ for all A and B in U, 
Moreover Ap = 0 ; so that p is in Z*(11,£). If p = An with r\ in ÇÎOl ,^ ) , 
then £ — 1? lifts ô (as does £). As A(£ - 17) = p — p = 0 , Ç — r? is a derivation 
of U into 11. 

A new element of difficulty enters the higher cohomology arguments by 
virtue of the fact that higher order cocycles do not enjoy the automatic conti
nuity properties of derivations. Derivations of a C*-algebra are norm continuous 
[8, 18] and ultra weakly continuous [15]. If £ is a (norm) discontinuous linear 
mapping of ft into ft, Af is a 2-coboundary (hence, 2-cocycle) which is not norm 
continuous (in general). Similarly, starting with £ norm but not ultraweakly 
continuous, A£ must fail to be ultraweakly continuous. A Tauberian result to 
the effect that if the 2-coboundary A£ is ultraweakly continuous (in its first 
argument), then £ is ultraweakly continuous [9 : Lemma 4.7], governs this si
tuation. A sketch of the proof follows. 

It suffices [22] to show that ||CE2sj) = £(/) = E£(/Ç ) (ultraweak convergence), 
where {Ej} is a family of orthogonal projections in the von Neumann algebra 
ft. By ultraweak continuity of A -> (A£) 04 , B) = A£(B) - %(AB) + %(A)B, 
with E j for A and Ek for B, summing over / , we have 

W)Ek = (AÇ) ( / , Ek) = (A?) ÇLE,, Ek) = (ZEf) $(Ek) - !>(Ek) + 

As this holds for each Ek and XEk = I, 2%(Ej) = £ ( / ) . The same is not true 
for 3-cocycles ; for a (discontinuous) 2-coboundary can always be added to 
a 2-cochain without changing its coboundary. 

The evidence is every strong that //"(ft , ft) = 0 for a general von Neumann 
algebra ft, but this remains to be completed. Although derivations of C*-algebras 
are not inner, in general (the algebra generated by the compact operators and 
/ illustrates this), there are special instances in which they are. The most striking 
of these is the case of simple C*-algebras with a unit. For such algebras, all deri
vations are inner [17, 20, 21]. It may well be the case that all cohomology groups 
vanish for such algebras ; but this, too, awaits further study. 
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