PURE STATES AND APPROXIMATE IDENTITIES¹

JOHAN F. AARNES AND RICHARD V. KADISON

1. Introduction. In this note we show that each norm separable C^* -algebra has an increasing abelian approximate identity and that, if the algebra has an identity, each pure state is multiplicative on some maximal abelian subalgebra.

Let A be a C*-algebra without an identity element. A net $\{u_i\}_{i\in I} \subseteq A$, where I is a directed index set, is called an *approximate identity* for A if $||u_i|| \leq 1$ for all $i \in I$, and $||u_ix - x|| \to 0$; $||xu_i - x|| \to 0$ for all $x \in A$. We say that $\{u_i\}_{i\in I}$ is *increasing* if $u_i \geq 0$ and $i \leq j \Rightarrow u_i \leq u_j$ for all $i, j \in I$. With u_i selfadjoint, if one of the limits exists, so does the other. Each C*-algebra has an increasing approximate identity [2, 1.7.2]. An approximate identity $\{u_i\}_{i\in I}$ is *countable* if I is countable. It is *abelian* if u_i and u_j commute for all $i, j \in I$.

An element $x \in A$ is said to be *strictly positive* if $\rho(x) > 0$ for each nonzero positive linear functional ρ on A. A strictly positive element is positive [2, 2.6.2].

We use the following notation: If M is a collection of vectors in a Hilbert space H, and \mathfrak{F} is a family of bounded linear operators on H, then $[\mathfrak{F}M]$ is the closed linear span of the set $\{F\xi: F \in \mathfrak{F}, \xi \in M\}$.

2. Results.

LEMMA 1. If $x \in A$ is strictly positive, and π is a nondegenerate representation of A on a Hilbert space H, then $[\pi(x)H] = H$.

PROOF. Suppose $0 \neq \xi \in [\pi(x)H]^{\perp}$. Since π is nondegenerate there is an element $a \in A$ such that $\pi(a)\xi \neq 0$. Let $\rho = \omega_{\xi} \circ \pi$, where ω_{ξ} is the positive linear functional $y \rightarrow (y\xi, \xi)$. Then $\rho(a*a) = (\pi(a*a)\xi, \xi)$ $= ||\pi(a)\xi||^2 \neq 0$, so ρ is a positive, nonzero linear functional on A. But $\rho(x) = (\pi(x)\xi, \xi) = 0$ which contradicts the assumption that x is strictly positive. Hence $[\pi(x)H]^{\perp} = (0)$ and the lemma follows.

THEOREM 1. A C*-algebra A has a countable increasing abelian approximate identity if and only if A contains a strictly positive element.

PROOF. If $x_0 \in A$ is strictly positive, we may take x_0 with norm equal to 1. Let $u_i = x_0^{1/i}$, and observe that $u_i \ge 0$, $||u_i|| = 1$; $i \ge j \Rightarrow u_i \ge u_j$ and u_i and u_j commute for all $i, j \in I$. We want to show that for any

Received by the editors July 18, 1968.

¹ Research supported in part by NSF GP-7683.

 $x \in A$, $||xu_i - x|| \to 0$. It is sufficient to do this for $x \ge 0$. (Using Theorem 5.1 of Akemann [1], the present proof could be somewhat shortened, but we prefer to give a complete argument.)

Let $x \ge 0$, and let y be the unique positive square root of x. Let \tilde{A} be the C^* -algebra obtained by adjoining an identity e to A. Then $u_i \le e$ for all i, so that $0 \le yu_i y \le yey = x$, and $yu_i y \le yu_j y$ if $i \le j$. Hence, if $z_i = x - yu_i y$, $\{z_i\}$ becomes a monotone decreasing sequence of positive elements in A. We claim that $||z_i|| \rightarrow 0$. Let

$$S = \{ \rho \in A^* \colon \rho \ge 0; \|\rho\| \le 1 \}.$$

S is compact in the w*-topology [2, 2.5.5]. We may regard each z_i as a continuous function on S by the evaluation map. Since $z_i \ge 0$, $||z_i||$ $= \sup \{\rho(z_i): \rho \in S\}$ [2, 2.7.3]; so that it suffices to show that z_i converges uniformly to 0 on S. As the sequence z_i is monotone, this will follow from Dini's theorem once we know that $\rho(z_i) \rightarrow 0$ for each $\rho \in S$.

Let π be a nondegenerate representation of A on a Hilbert space H. $\pi(u_i) = \pi(x_0^{1/i}) = \pi(x_0)^{1/i}$, which by spectral theory converges strongly to the range projection of $\pi(x_0)$. Since x_0 is strictly positive it follows by Lemma 1 that $\pi(u_i) \rightarrow I$ strongly on H, where I is the identity operator on H.

Let $\rho \neq 0$ be an arbitrary element of S and π_{ρ} be the associated representation of A on the Hilbert space H_{ρ} . Then π_{ρ} is nondegenerate with a cyclic vector ξ_{ρ} and

$$\begin{split} \rho(z_i) &= (\pi_{\rho}(z_i)\xi_{\rho}, \,\xi_{\rho}) \\ &= ((\pi_{\rho}(x) \,-\, \pi_{\rho}(yu_iy))\xi_{\rho}, \,\xi_{\rho}) \\ &= (\pi_{\rho}(y)\xi_{\rho} \,-\, \pi_{\rho}(u_i)\pi_{\rho}(y)\xi_{\rho}, \,\pi_{\rho}(y)\xi_{\rho}) \end{split}$$

which converges to zero since $\pi_{\rho}(u_i) \rightarrow I$ strongly. Hence $||z_i|| \rightarrow 0$.

Working in \tilde{A} (as Akemann does in [1]), let v_i be the positive square root of $e-u_i$. Then $||yv_i||^2 = ||yv_iv_iy|| = ||y(e-u_i)y|| = ||x-yu_iy|| \rightarrow 0$, and hence $||xu_i-x|| = ||y^2v_i^2|| \le ||y|| \cdot ||yv_i|| \cdot ||yv_i|| \rightarrow 0$. Thus $\{u_i\}$ is an approximate identity.

Conversely, suppose $\{u_i\}$ is an increasing abelian approximate identity, and let $x = \sum_{n=1}^{\infty} 2^{-n}u_n$. If ρ is a nonzero positive linear functional on A, we know that $\rho(u_n) \rightarrow ||\rho||$ [2, 2.1.5]. Hence $\rho(u_n) > 0$ for some n, so $\rho(x) = \sum_{n=1}^{\infty} 2^{-n}\rho(u_n) > 0$. This shows that x is strictly positive, and the proof is complete.

Observe that if A is separable, then A has a strictly positive element. Indeed, if $\{y_n\}$ is dense in A, then $\{x_n = y_n^* y_n\}$ is dense in $A^+ = \{x \in A : x \ge 0\}$. Clearly $x = \sum_{n=1}^{\infty} (2^n ||x_n||)^{-1} x_n$ is strictly positive in A.

1969]

COROLLARY 1. Any separable C*-algebra has a countable increasing abelian approximate identity.

REMARK. Let X be a locally compact Hausdorff space, $A = \mathbb{C}^{0}(X)$, the C^* -algebra of all continuous complex functions on X vanishing at infinity. It is easily verified that A contains a function f which is everywhere positive if and only if X is σ -compact. Since each state on A may be represented by a Borel measure on X, we see that such a function f is a strictly positive element of A. Evidently X may be σ -compact without having a countable base for its topology, so A may have a strictly positive element without being separable. Needless to say, A will not always have strictly positive elements. An example is $\mathcal{C}^{0}(\mathbf{R})$, when **R** is given the discrete topology.

A positive linear functional ρ on a C*-algebra A is a state if $\|\rho\| = 1$. If A has an identity e, this is equivalent to the condition $\rho(e) = 1$. We say ρ is *pure* if $\rho \neq 0$ and each positive, linear functional γ on A such that $0 \leq \gamma \leq \rho$, is of the form $\gamma = a\rho$; $0 \leq a \leq 1$.

THEOREM 2. Let A be a separable C^* -algebra with identity. If ρ is a pure state on A, then there is a maximal abelian C^* -subalgebra B of A such that $\rho \mid B$ is multiplicative.

PROOF. Let N_{ρ} be $\{x \in A : \rho(x * x) = 0\}$ and A_0 be $N_{\rho} \cap N_{\rho}^*$. A_0 is a C^* -subalgebra of A and is therefore separable. Hence A_0 contains a strictly positive element x_0 . Let B_0 be a maximal abelian C*-subalgebra of A_0 containing x_0 and B be $B_0 + C \cdot e$. Then B is an abelian C*-subalgebra of A. Since ρ vanishes on B_0 , $\rho \mid B$ is multiplicative of norm 1. To show that B is a maximal abelian C^* -subalgebra of A, it suffices to show that if a selfadjoint x in A commutes with B, then $x \in B$. Now, $x \in B$ if and only if $x - \rho(x)e \in B$; so we may assume that $\rho(x) = 0$. Let π_{ρ} be the irreducible representation of A associated with ρ on the Hilbert space H_{ρ} , with cyclic vector ξ_{ρ} [2, 2.5.4]. Let H_{0} $= [\xi_{\rho}]^{\perp}$. We claim that $[\pi_{\rho}(A_0)H_{\rho}] = H_0$. Indeed, if $y \in A_0$ then $\|\pi_{\rho}(y)\xi_{\rho}\|^{2} = (\pi_{\rho}(y*y)\xi_{\rho}, \xi_{\rho}) = \rho(y*y) = 0;$ so that $(\pi_{\rho}(y)\pi_{\rho}(x)\xi_{\rho}, \xi_{\rho}) = 0$ for all x in A. On the other hand, let ξ in H_0 be arbitrary. By the transitivity theorem [2, 2.8.3] there is a selfadjoint element $y \in A$ such that $\pi_{\rho}(y)\xi_{\rho}=0$ and $\pi_{\rho}(y)\xi=\xi$. But then $y \in A_0$ and the claim follows. Hence $\pi_{\rho} | A_0$ is a nondegenerate representation on H_0 . Let E be the orthogonal projection of H_{ρ} onto H_{0} . By Lemma 1, $[\pi_{\rho}(x_{0})H_{0}]$ = H_0 . Now x_0 and x commute; so that E and $\pi_p(x)$ commute. Hence H_0 and $[\xi_{\rho}]$ are invariant under $\pi_{\rho}(x)$. This means that ξ_{ρ} is an eigenvector for $\pi_{\rho}(x)$; so $\pi_{\rho}(x)\xi_{\rho} = a\xi_{\rho}$ for some real a. Now $0 = \rho(x)$ $=(\pi_{\rho}(x)\xi_{\rho}, \xi_{\rho})=a(\xi_{\rho}, \xi_{\rho})=a$. Hence $\pi_{\rho}(x)\xi_{\rho}=0$ so $x \in A_0$. Since B_0 is

751

maximal abelian in A_0 it follows that $x \in B_0 \subseteq B$. The proof is complete.

References

1. C. Akemann, Interpolation in W*-algebras, Duke Math. J. 35 (1968), 525-534.

2. J. Dixmier, Les C*-algebres et leurs representations, Gauthier-Villars, Paris, 1964.

University of Oslo and University of Pennsylvania