PURE STATES AND APPROXIMATE IDENTITIES!
JOHAN F. AARNES AND RICHARD V. KADISON

1. Introduction. In this note we show that each norm separable
C*-algebra has an increasing abelian approximate identity and that,
if the algebra has an identity, each pure state is multiplicative on
some maximal abelian subalgebra.

Let A be a C*-algebra without an identity element. A net {u.} el
C A, where I is a directed index set, is called an approximate identity
for 4 if ||| <1 for all i€1, and |lux—x||—>0; ||xu:—x||—0 for all
xCA. We say that {u;}cs is increasing if ;=0 and i <j=u,;<u, for
all 7, j&I. With u; selfadjoint, if one of the limits exists, so does the
other. Each C*-algebra has an increasing approximate identity
[2, 1.7.2]. An approximate identity {u,} ser is countable if I is count-
able. It is abelian if u; and »; commute for all ¢, j& 1.

An element xE 4 is said to be strictly positive if p(x) >0 for each
nonzero positive linear functional p on 4. A strictly positive element
is positive [2, 2.6.2].

We use the following notation: If M is a collection of vectors in a
Hilbert space H, and F is a family of bounded linear operators on H,
then [§M] is the closed linear span of the set { Ft: FEF, t€ M}.

2. Results.

LemMMA 1. If x €A is strictly positive, and 7 is a nondegenerale repre-
sentation of A on a Hilbert space H, then [w(x)H]|=H.

ProOOF. Suppose 0#£€ [r(x)H]*. Since 7 is nondegenerate there
is an element a €4 such that w(a)£5%0. Let p=w; o m, where w; is the
positive linear functional y—(y£, £). Then p(a*a) = (w(axa)t, &)
=||1r(a)5“2#0, S0 p is a positive, nonzero linear functional on 4. But
p(x)=(w(x)é, £)=0 which contradicts the assumption that x is
strictly positive. Hence [r(x)H]*=(0) and the lemma follows.

THEOREM 1. A C*-algebra A has a countable increasing abelian
approximate identity if and only if A contains a strictly positive element.
Proor. If x¢&EA4 is strictly positive, we may take xo with norm
equal to 1. Let u;=x4", and observe that u;>0, ||u.” =1;12j=u;=2u;
and #%; and #; commute for all 7, j&EI. We want to show that for any
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xE A, ||xu;—x||—0. It is sufficient to do this for x = 0. (Using Theorem
5.1 of Akemann [1], the present proof could be somewhat shortened,
but we prefer to give a complete argument.)

Let x>0, and let ¥ be the unique positive square root of x. Let 4
be the C*-algebra obtained by adjoining an identity e to A. Then
u;Zeforall 4, so that 0 Syu,y Syey=x, and yu;y < yu;y if 1 <j. Hence,
if z;=x—yuy, {z;} becomes a monotone decreasing sequence of posi-
tive elements in 4. We claim that Iz,- l—>0. Let

S={p€ a*:p 20 = 1}.

S is compact in the w*-topology [2, 2.5.5]. We may regard each z; as
a continuous function on .S by the evaluation map. Since 2;=0, H z,~”
=sup{p(z): pES} [2, 2.7.3]; so that it suffices to show that z; con-
verges uniformly to 0 on S. As the sequence 2; is monotone, this will
follow from Dini’s theorem once we know that p(z;)—0 for each p&ES.

Let 7 be a nondegenerate representation of 4 on a Hilbert space H.
() =m (%)) =7 (x0) V%, which by spectral theory converges strongly
to the range projection of 7 (xy). Since x, is strictly positive it follows
by Lemma 1 that w(u;)—I strongly on H, where I is the identity
operator on H.

Let p##0 be an arbitrary element of S and w, be the associated
representation of 4 on the Hilbert space H,. Then 7, is nondegenerate
with a cyclic vector £, and

P(Zi) = (Wp(zi)gm gp)
= ((m(x) — m(yuiy))s, &)
= (m(y)& — Wp(“i)wp(y)gm mo(9)&)

which converges to zero since ,(u;)—1 strongly. Hence ||z{|—0.

Working in 4 (as Akemann does in [1]), let »; be the positive
square root of e—u;. Then ||y,]|2=||yv.0i5]| =|ly(e—u)y|| =[x —yusy||
—0, and hence [lwus—x|| =[|y%fl| <[ly]-[lyvill - [loill <[51] - |y04]| 0.
Thus {u:} is an approximate identity.

Conversely, suppose (#;{ is an increasing abelian approximate
identity, and let x = D_2_; 2="u,. If p is a nonzero positive linear func-
tional on 4, we know that p(x.)—||p|| [2, 2.1.5]. Hence p(x,) >0 for
some 7, 50 p(x) = X oy 27"p(u,) >0. This shows that x is strictly
positive, and the proof is complete.

Observe that if 4 is separable, then 4 has a strictly positive ele-
ment. Indeed, if {y,,} is dense in A4, then {x,.=y:‘y,,} is dense in
At= {xEA : ng} .Clearly x= > 2, (2"”x,.”)‘1x,. is strictly positive
in 4.
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COROLLARY 1. Any separable C*-algebra has a countable increasing
abelian approximate identity.

REMARK. Let X be a locally compact Hausdorff space, 4 =@%(X),
the C*-algebra of all continuous complex functions on X vanishing at
infinity. It is easily verified that 4 contains a function f which is
everywhere positive if and only if X is o-compact. Since each state
on A may be represented by a Borel measure on X, we see that such
a function f is a strictly positive element of 4. Evidently X may be
g-compact without having a countable base for its topology, so 4
may have a strictly positive element without being separable. Need-
less to say, 4 will not always have strictly positive elements. An
example is C°(R), when R is given the discrete topology.

A positive linear functional p on a C*-algebra 4 is a state if ”p” =1,
If 4 has an identity e, this is equivalent to the condition p(e) =1. We
say p is pure if p=0 and each positive, linear functional v on 4 such
that 0 <y =<p, is of the form y=ap; 0<a =1.

THEOREM 2. Let A be a separable C*-algebra with identity. If p is a
pure state on A, then there is a maximal abelian C*-subalgebra B of A
such that p| B is multiplicative.

Proor. Let N, be {xEA:p(x*x)=0} and A4, be N,f\N:. Ayisa
C*-subalgebra of A and is therefore separable. Hence 4, contains a
strictly positive element x,. Let By be a maximal abelian C*-sub-
algebra of 4, containing xo and B be B¢+ C-e. Then B is an abelian
C*-subalgebra of 4. Since p vanishes on B,, pl B is multiplicative of
norm 1. To show that B is a maximal abelian C*-subalgebra of 4, it
suffices to show that if a selfadjoint x in 4 commutes with B, then
xEB. Now, x&B if and only if x —p(x)e € B; so we may assume that
p(x) =0. Let m, be the irreducible representation of 4 associated with
p on the Hilbert space H,, with cyclic vector £, [2, 2.5.4]. Let H,
=[£,]*. We claim that [r,(4¢)H,]=H, Indeed, if yE4, then
“WP(y)EI'”z= (m,(y*)&,, E,) =p(y*y) =0; so that (m,(y)7,(x)&, &)=0
for all x in 4. On the other hand, let £ in H, be arbitrary. By the
transitivity theorem [2, 2.8.3] there is a selfadjoint element yE A4
such that 7,(y)£,=0 and =,(y)£=£. But then yE4, and the claim
follows. Hence 1r,,| A, is a nondegenerate representation on Hy. Let E
be the orthogonal projection of H, onto Ho. By Lemma 1, [m,(x0) H,]
=H,. Now x, and x commute; so that E and 7,(x) commute. Hence
Hyand [§,] are invariant under ,(x). This means that £, is an eigen-
vector for w,(x); so w,(x)¢,=af, for some real a. Now 0=p(x)
=(r,(x)&,, £,) =a(t,, &) =a. Hence 7,(x)€,=0 so xEA4,. Since B, is
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maximal abelian in 4, it follows that x&€B,C B. The proof is com-
plete.
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