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The notes which follow present a survey of the initial portions
of the theory of self-adjoint operator algebras (especially, C*
algebras). This survey is incomplete though sufficiently repre-
sentative and detailed, we feel, to give some idea of the subject
and its techniques. The material discussed is, to a large extent,
contained in the first few chapters of Les C* algébres et leurs repré-
sentations, J. Dixmier, Paris, Gauthier-Villars 1964, and the first
chapter of Introduction to Hilbert Space, P. Halmos, New York,
Chelsea 1951. We let these books and their bibliographies suffice
for our reference list.

There are some small contributions to the state of the subject in
these notes. To the best of our knowledge the remark that extreme
points not only exist but generate compact convex sets in the more
general case where one assumes only that a separating family of
continuous linear functionals exists has not previously been made.
The proof that a functional of norm 1 assuming its norm at the
identity is a state is more streamlined than usual. Our transitivity
theorem for irreducible C* algebras is proved here with the addi-
tional information that the operator in the algebra having desired
action on the given finite set of vectors can be chosen so that its
norm is as small as any operator having the same effect on these
vectors.

I. Fundamentals of Hilbert Space and Bounded Operators
1. Review of the Geometry of Hilbert Space

We denote by 5 a Hilbert space and by (x,y) the inner (or dot

or scalar) product of two vectors x and y in 5#. To recall, 5 is a
41
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linear space over the complex numbers C together with a positive-
definite, conjugate-bilinear form x,y — (z,y) (so that (x,x)= |||
>0 unless =0, (ax+¥,2)=a(x,2)+(y,2), and (z,y)=(y,z)); and
is complete relative to the norm x — ||z|| associated with this form
(that is, if |lx, —2,|| — 0 as », m — o, we say (z,) is Cauchy con-
vergent in this case, then there is an = in J such that |z, — | - 0
asn — o).
We recall the Cauchy-Schwarz inequality

[, 9)| < [l llyll,

which is proved by considering the coefficients of (z+Ay,z +Ay) as
a quadratic polynomial in A and exploiting the fact that it is real
and non-negative for each value of A. Note especially that it is
valid without the assumption that x,y — (z,y) is definite (that is,
we could allow (x,z)=0 for non-zero x) and that 5# is complete.
The fact that equality holds if and only if  and y are linearly
dependent does, however, require the definiteness of the inner
product. The “triangle inequality ”’, |lz +y|| <|iz|| + |ly||, follows by
squaring both the sides and using the Schwarz inequality. This
together with the fact that [ex| = |«|-|lz|| and that ||z] > 0 if  #0
shows that x — zis a “norm” on J# (we say that the pair 52, || ||
is a “normed space”’). Having assumed that 5# is complete relative
to|| |[|,itisin particular a “Banach space’ (i.e. a complete normed
space). One checks, from the definition, that the norm on our
Hilbert space # satisfies the ‘“parallelogram law” |z+y]®
=2(|l%|2 + [ly|?) (in fact this equality characterizes those norms on
a Banach space which are associated with a Hilbert space inner
product).

If A is a closed subspace of 5 (i.e. if x and y are in A4 then ax +y
isin .4, and if ||z, —x|| - 0 as » — o with x, in .# then x is in .#)
and y is a vector in J#, let d be the distance from y to .# (i.e.
d=infimum {|ly—=z||: z in .#} and choose z, in .# such that
lly —x,|| = d. Using the parallelogram law, one shows that (x,) is
Cauchy convergent; so that (z,) has a limit .#(y) (in .#, since .#
is closed) from the completeness of 5. Of course, |ly — A (y)||=d.
With x a unit vector in .#,
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(Y~ AY)+ox,y— MA(y) +ex)
= d*+2Rea(x,y— M (y))+ || > d2

for each « in C; so that (v,y—#(y))=0 and y— .#(y) is ““ortho-
gonal” to .#. For z in .4 distinct from #(y), |ly—=z|®
=|ly— A (Y)|*+|z— A(y)|* (by orthogonality of y—.#(y) and
z—.M(y)); so that .#(y) is the unique vector in .# with the norm
minimizing (or the orthogonality) property. We call .#(y) ‘“the
orthogonal projection of y on .#”.

If ¢ is continuous linear functional on J# (i.e. ¢ is a mapping of
# into C such that ¢(ax +y) = ad(z) + $(y) and |(z,) —$(x)| = 0
if [z, — || — 0 as n — =) and .# is the null space of ¢ (i.e. the set
of x in S such that ¢(x)=0), then .# is a closed subspace of .
If ¢ #0 there is a unit vector y in /# not in . ; so that y — .#(y) #0.
The continuous linear functional x — (x,y — .#(y)) is non-zero and,
has .# in its null space. Thus ¢ is a scalar multiple of this functional.
From this we conclude the so-called Riesz Representation theorem
for linear functionals (continuous) on a Hilbert space, viz.—for
each such ¢ there is a (unique) vector z in J# such that ¢(x) = (,2)
for each z in 7.

An orthonormal set {z,} of vectors in 5 is one such that
(%, 2,)=0 if @, #z, and (z,,x,)=1. Zorn’s lemma permits us to
assert the existence of a maximal such orthonormal set (one
contained properly in no larger one). If {z,} is such a maximal
orthonormal set and .# is the smallest closed subspace of 5#
containing it (we say .# is the closed subspace generated by {x,}),
then # =2#, for if y in # is not in 4, y—.#(y) is a non-zero
vector orthogonal to each x,, contradicting the maximality of {,}.
Conversely if {x,} is an orthonormal set generating # then any
vector orthogonal to each z, is orthogonal to all of 5, hence to
itself, and is therefore 0; so that {xy} is a maximal orthonormal set
in this case. There is no difficulty now in proving the Bessel in-
equality: |iz||*> Z,|(x,,)|* for each orthonormal set {x,}, or the
Parseval equality: |j#*=2,|(x,2,)|> when {z,} is a maximal
orthonormal set. The expansion formula = % (,,) %, also follows
when {z,} is a maximal orthonormal set (where the summation is
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understood to mean that for each € > 0 there is a finite set Fy of y’s
such that if F is a finite set of y’s containing Fy, [t — 21, #(z,2,) 2, ||
<e¢), in view of which {z,} is referred to as an orthonormal basis
for s# (it is easy to establish the uniqueness of this expansion,
z=2, a,x, implies a, = (z,z,) for all y). Two orthonormal bases for
S have the same number of elements (i.e. their elements can be
put into one to one correspondence). In case one of the bases has
a finite number of elements, this basic fact follows from the
existence of a non trivial solution to a finite number of simul-
taneous linear equations in more unknowns than equations. For
infinite bases {x,} and {ys}, this follows from the fact that a sum
of positive numbers can converge only if it has at most a countable
number of terms (for otherwise some infinite subset of them exceed
1/n for some positive integer n) and the fact that N,- N =8 for
each infinite cardinal N (where N, is the cardinality of the set of
integers). From the first of these facts and the Parseval equality
it follows that the set S, of &’s with (z,,y;) #0 is countable (has
cardinality not exceeding N,); and, since no y;s is orthogonal to
each element of the basis {z,}, each & lies in some S,,. Thus the set,
of &’s is contained in U, S, which has cardinality not exceeding
No'N (=N), where N is the cardinality of the set of 4’s. By sym-
metry the set of ’s has cardinality not exceeding that of the set
of &s; and {z,}, {ys} have the same number of elements. This
cardinal number common to all bases in 5# is called ‘‘ the dimension
of 7.

Two Hilbert spaces 5, and 5#, which have the same dimension
admit (orthonormal) bases {z,}, {y,}, respectively, which can be
indexed by the same set. Each element of 5#; has the form X, a, =,
with Z, |a,|? <, and each such sum represents an element of ;.
The mapping U carrying 2a, z, in #; onto Za, y, in 5, is linear
(i.e. Ulex+y)=aUx+ Uy) and (Ux,Uz')= (z,x’) for each x,z’ in
H1; moreover U maps 5, onto 5, in a one to one manner. We
say U is a unitary transformation of 5#; onto 5, (it is a structure-
preserving isomorphism of #; onto 5#,). Thus Hilbert spaces are
characterized by a single cardinal number, their dimension—two
such are isomorphic if and only if they have the same dimension.
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The case where the basis has cardinality N, (so-called ‘separable
Hilbert space’’) is of special interest. It can also be characterized
as not being finite dimensional but having a countable dense subset
(i.e. a countable set whose closure is 5#). Separable Hilbert space
can be represented in several (apparently distinct) ways: 1,, the
space of square summable sequences (a,) with the inner product

((@n), (b,)) = > a,5,; Lo([0,1]), L,(R), and Ly(R3)—the spaces of
n=1

(classes) of square integrable functions relative to Lebesgue
measures on [0,1], the real line R, and Euclidean 3-space R?®,
respectively, each provided with inner product [ f(z)g(x)dz = (f,g)
integration being taken over the space relative to the indicated
measure on it). A given mathematical or physical question may
call for more than just the Hilbert space structure, in which case,
the distinct representations of separable Hilbert space may play
essentially different réles. In any event, one representation may be
more convenient than another for dealing with a particular problem.

2. Linear Transformations and Operators

A linear transformation 7 from one normed space 5, to another
5, will be continuous (||7'z, —Tz|| — 0 when |z, — | — 0) if and
only if sup {||Tx||: |x]| =1,  in £} (=|/T||) is finite. In this case we
say that 7' is bounded. We denote by %#(5#°;, £ ,) the family of all
such transformations. Note that with 7 bounded, ||Tz,—Tx||
< |||+ ||, — || sO that ||[Tx, —Tx|| — 0 if ||z, — || — 0. On the other
hand, if 7' is not bounded, there are unit vectors z, with n <||Tz
so that |y,|| — 0 while |T'y,||=1, for all n, where y,=x,/||Tx,|.
Provided with the usual addition and multiplication by scalar
operations for linear transformations ((T;+7s)(x)=T12z+T sz
and («7') (x) = a(Tx)) #B(H# 1,5 5) becomes a complex linear space.
It is not difficult to check that 7' — ||7|| is a norm on Z(H#, H# 5)
and that #(#,,5¢,) is complete relative to this norm (i.e. is a
Banach space) if and only if 5, is complete.

The unitary transformations discussed in the preceding section
are a special class of bounded linear transformations, as are the
orthogonal projections on a closed subspace. In this last case, we

nll
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are dealing with bounded linear transformations from a space 5#
into itself. We call these (bounded) operators on 5# and denote the
(Banach) space of such by Z(5#). The standard product of operators
(T T,)(x)=T,(T,x)) provides #(s#) with the structure of an
algebra; and the norm satisfies the inequality ||T17"|| < 174/ |T"2l-
1t follows that the product of operators is jointly continuous; so
that #() is a Banach algebra (an slgebra with a norm in which
it is a Banach space and for which multiplication is jointly
continuous).

With 5#, and £, Hilbert spaces and 7' in B(A#,,#,), the
mapping x -> (T'z,y) is a continuous linear functional on #, for
each y in J#,, whence, by the Riesz representation theorem for
such functionals there is a vector 7*y in #'; (and this vector is
unique) such that (Tx,y) = (x,7*y). One checks easily that 7* is a
linear transformation of 5, into 4, that ||T*| = ||T||; so that T*
lies in #(#», # ;). The transformation 7'* is called the adjoint of T.
Concerning the adjoint operation 7' —T*, one notes that
(T +To)*=aTF + T3 (we say, * is conjugate linear), (T*)* =T (*is
involutory), and (ToT,)*=TFTF where T, is in #(# 1, 5) and
T, in B(H y,H#;) (in particular, when 7', and 7', are in Z(#)).
Moreover [|[7*T||=||T*||- ||

We say that T in Z(F) is self-adjoint when T =T* and note that
for an arbitrary bounded operator 4 cn #, (4 +A4*) and
(1/2¢) (A — 4*) are self-adjoint; so that each such A has the
decomposition (4 + 4*)+i(4 — A*)/2i. Note that, for a unitary
transformation U, we have U* U is the identity operator I on 5#,,
while UU* is the identity operator on ¢, (we use the same symbol
I for the identity operator on different Hilbert spaces, when no
confusion can arise). We note also that an orthogonal projection
operator E is self-adjoint and idempotent (E?=E) and that these
two properties characterize such operators. In fact, if E projects
onto .# and .4 - is its orthogonal complement (the closed subspace
of 2# consisting of vectors orthogonal to all vectors in .#), then,
since each vector is the sum of its orthogonal projection onto .#
and onto .# ., this last orthogonal projection operator is I — K. Thus
(Ez,y)=(Ex,Ey+ (I — E)y)= (Ex,Ey)=(x,Ey). It follows that
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(Bz,x)= (E*z,x) = (Ex, Ex) > 0 for each x in #. Operators T' with
this property ((T'z,x) > 0 for all x in 5#) are said to be positive.

A useful extension of the Riesz representation theorem for linear
functionals on a Hilbert space describes bounded conjugate
bilinear forms on 5#;, 5 5 in terms of bounded linear transforma-
tions. Such a form is a mapping %,y — B(zx,y) from # x 5,
to € such that B(ar;+2s,y)=aB(x;,y)+B®s,y), B(®,ay;+ys)
— &B(x,y1) + B(x,ys) and sup{|B(x,y)|: ]| = lyl|= 1} (=a) is finite.
The result in question states that there is a linear transformation
T from 5#, to %, such that (T'z,y) = B(z,y), for each z in 5, and
y in 3, and ||T|=a. Moreover, if ##,=5#, and B is Hermitean
(i.e. B(z,y)=B(y,x)), then T is self-adjoint. If B is positive (with
H =1, B(x,z) > 0 for each x in 5#°;) then T is positive. The proof
proceeds by noting that x — B(z,y) is a continuous linear func-
tional on J#; so that there is a T*y in 5, with (2,T*y)= B(z,y)
for all xin 5#,. That T, the adjoint of 7'*, has the desired properties
follows easily from the successive hypotheses.

3. The Spectral Theorem. Heuristics

A particularly natural class of operators on 5# consists of those
operators 4 for which there is an orthonormal basis {,} (depending
on A) such that 4z, =«,z,, for each n. With «,, real, 4 is a super-
position of “real stretches’ in the orthogonal directions z,. If
sup, «, (=«) is finite, then A4 is bounded, and ||4|=«. In rough
form, the essence of the spectral theorem is a characterization of
the set of self-adjoint operators as being precisely the norm limits
of such real stretch operators (i.e. 4 is a bounded self-adjoint
operator if and only if there is a sequence of real stretch operators
(4,) such that ||[4—A4,|| - 0). The norm limits of the stretch
operators allowing complex stretches (e, possibly complex) are the
normal operators—those operators A such that A*4A=44% We
recall that a unitary operator U on J# satisfies U*U=UU*=1;
so that U is, in particular, normal. The unitary operators are norm
limits of stretch operators corresponding to complex stretches of
modulus 1. Projections are themselves stretch operators corre-
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sponding to (at most) the stretches 0 and 1. Grouping together
those basis elements corresponding to the same stretch, we can
express each stretch operator as a linear combination of projections;
so that each self-adjoint operator is a norm limit of such combina-
tions. More strongly, it suffices to deal with stretch operators
having at most a finite number of stretches; so that each self-
adjoint operator is a norm limit of finite linear combinations of
mutually orthogonal projections.

It is natural to inquire as to whether or not the norm limits of
stretch operators have themselves ‘““stretches’ (or eigenvalues as
they are technically termed) apparent in their action. In general
these norm limits will not have eigenvalues; but there will be
“generalized stretches”, the so-called spectral values apparent.
These are the complex numbers A corresponding to the operator 4
such that 4 —AI does not have a two-sided inverse in #(5¢°). The
set of such A, denoted by o(4), is called the spectrum of A. This
same definition of spectrum applies to arbitrary (complex) Banach
algebras (with a unit element) as well as to Z(5#°) ; and it is generally
valid that the spectrum of an element in such an algebra is a
non-void, bounded closed (i.e. compact) subset of C. In fact o(4)
is contained in the closed disk of radius ||4| with center 0; for if
A> ||4] then ||B|| <1, where B=A4/A, so that I — B has the inverse

C= 020] B" which converges to an element of the Banach algebra
n=0

by virtue of completeness and the inequality ||B*||<|(B|*. Thus
A — X has the inverse —A~!C and A is not in ¢(4). This argument
shows that the open ball of radius 1 with the center at I consist of
invertible elements; and, since multiplication by an invertible
element is a bicontinuous transformation of the algebra onto itself,
each invertible element is contained in an open ball consisting of
invertible elements. Thus the non-invertible (singular) elements
form a closed subset of the algebra, and o(A) is a closed set. If o(4)
were void, then for each x and y in ¢, ((4 —AI)"'x,y) would be a
bounded entire function which tends to 0 as A — «, hence is 0.
But then (4~ 'z,y) would be 0 for each z,y in #; and 4~ would
be 0, an impossibility. Thus o(4) is not void.
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There are numerous important results relating the spectrum of
an operator to the operator’s structure. We conclude this chapter
by noting one such—the spectral radius formula: (r(4d)=)
sup{|A|:Ain o(4)}= lim [|4™[Y" (which asserts, in particular, the

n—> o

existence of this limit). The existence of the limit follows by
establishing that lim || 4"|[/* <r(4) <lim [|4”|[/* (so that lim || 47|/
=1lim [|4"|[Y*), which proves the formula at the same time. We
note that if A is in o(4) then A" is in o(4"), which we have seen
implies [A"| <||4"||. Hence |A| <lim ||4"|*™", and r(4) <lim |47,
Now (I —zA)~! is an analytic, Banach-algebra-valued function of
the complex variable z where defined, and, as we noted, this
inverse exists for |z4|| < 1. Thus, for small z, (I —24)~! is defined

and represented by the power series Y, 2" A"; so that this series
n=0

represents it in its circle of convergence. As in standard complex
variable theory this circle is seen to have radius (lim ||4"([/*)~1.
Hence if r <lim | 4”|['/* there is a A with < |A| such that I—A4/A
(and, so, 4 —AI) does not have a two-sided inverse, i.e. with A in
o(A). Thus r(A4) exceeds each r smaller than lim| 4", and the
formula follows.

Il. The General Theory of Operator Algebras

1. C* Algebras and States

We noted in the preceding chapter that %#(s#) is a Banach
algebra with an adjoint operation satisfying (1) (axd +B)*
=aA*+B* (2) A**=A4 (3) (AB)*=B*A4A* and (4) [(|A*4]|
= 14*]-|4]| (as well as (5) [L4*]| = |4]).

Definition 2.1.1. The pair consisting of a Banach algebra % and
a mapping 4 — A* of A onto itself satisfying (1)-(4) is called a
B* algebra. Those norm closed subalgebras of %#(s#) stable under
the adjoint operation (i.e. containing A* when they contain A4)
are called C* algebras (so that each C* algebra is a B* algebra).

The fundamental general problem of the subject is the classifica-
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tion of these algebras—first algebraically and then with regard to
their action on the underlying Hilbert space (in the case of C*
algebras). In more detail, one would like to associate with each
such algebra (or with those in a special class) a family of invariants
such that two algebras are * isomorphic (i.e. algebraically iso-
morphic under a mapping ¢ for which ¢(A4*)=¢(4)*) if and only
if they have the same invariants. With regard to the action on the
underlying space, we would want the invariants to determine
when there is an isomorphism (unitary transformation) of the
underlying Hilbert space carrying one algebra onto another. More
generally, it is desirable to have invariants which determine when
* representations of B* algebras are unitarily equivalent.

Definition 2.1.2. A * representation of a B* algebra % is an
algebraic homomorphism ¢ of A into H(5#) such that H(4*)
=¢(A4)*. Two * representations ¢ and ¢ of A into H(H#°;) and
HB(H 5) are said to be unitarily equivalent when there is a unitary
transformation U of 5#; onto #, such that ¢(4)=U"14(4) U for
each 4 in .

More ambitiously one could ask for ‘“canonical forms” for the
B* algebras with regard to their algebraic structure and spatial
action (i.e. canonically constructed representatives, one from each
of the algebraic isomorphism or unitary equivalence classes). Of
course other types of questions about operator algebras are of
importance and are studied ; though, in principle, if the * canonical
form problem” has been completely settled {say for a special class
of B* algebras), all other questions should be referred to the
canonical forms and become special questions in some other
subject. For example, we shall note that the study of commutative
B* algebras is precisely the same as the study of the algebra C(X) of
continuous complex-valued functions (under the operations of
pointwise multiplication, addition, and multiplication by scalars)
on the various compact-Hausdorff spaces (these are the topo-
logical spaces for which each family of open sets with union the
whole space has a finite sub-family with this same union-compact-
ness, and each pair of distinct points is contained in a pair of
disjoint open sets—the Hausdorff property). Thus the question of
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whether a commutative C* algebra contains a projection different
from 0 and I becomes the question of whether C(X) contains an
element not 0 or 1 equal to its own square. This is equivalent to X
being disconnected, so that a C* algebra associated with the unit
interval [0,1] (in the usual metric topology) will not contain a
projection different from 0 and 1.

The precise statement of the theorem asserting the existence of
the isomorphism between a commutative C* algebra and C(X) and
its proof are the subject of the next section. It is profitable for us
to note here that the principal formal problem of describing the
points of X, the proposed compact-Hausdorff space, is effectively
dealt with by observing that the linear functional on C(X) corre-
sponding to a given point p in X (viz. f — f(p)) has very special
properties, and then working with the class of functionals on the
commutative C* algebra having analogous properties in place of X.
Again, to analyze * representations of C* algebras, we shall want
to develop techniques for constructing such representations. As we
shall see in §3, the use of special classes of functionals on a C*
algebra provides us with such a technique. In both these instances
where linear functionals are used, the functionals involved have
special properties with respect to the order and linear structure of
the C* algebra in question. Denoting by U, the set of self-adjoint
operators in a family U of operators, if % is a C* algebra, A, is a
real linear space in which the set & of positive operators forms a
“cone” (i.e. (1) Aand — A in Zimply 4=0(2) Ain Z and « >0
imply a4 is in & and (3) if 4 and B lie in & so does 4 + B). The
pair consisting of a real linear space and the partial ordering
induced by such a cone (4> B when 4 — B lies in &) is called a
partially ordered linear space. Moreover, I is an order unit for
{U,, 2} (i.e. for each A in A, there is a positive « such that
—al <A<al); for —||A|I<A<|A|1, since |(dx,z)| <|d4||(x,)
by virtue of the Schwarz inequality.

Definition 2.1.3. A state of a partially ordered linear space with
order unit is a linear functional on the space, 1 at the order unit,
and taking non-negative values on the cone of positive elements.
A pure state is a state which is not a proper convex combination of
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two distinct states (i.e. if p=a7 +(1 —a)y with 0 <a < 1 and p pure
then r=1).

If 9 is a O* algebra, we shall also refer to a linear functional
whose restrictions to U, is a state as a state of A (and one whose
restriction is a pure state as a pure state of A). We shall note in the
next section that the pure states of a commutative C* algebra
provide us with the points of the associated compact-Hausdorff
space and in §3 that, for general C'* algebras they give rise to the
important class of * representations having the ‘“‘irreducibility”
property. We conclude this section with some basic information
about states.

If A is a partially-ordered linear space with order unit I, and
A, is a linear subspace of U containing I, then A, N 2 is a positive
cone in Ay; and each state py, of W, (relative to this cone %) has
an extension to a state ¢ of A. This is established by noting that
if 4 in U is not in Ay, po can be extended to be a state of the linear
space generated by %, and 4 (define the extension at 4 to be any
value between inf{py(B):B in A, and B> A4} and sup {po(C):C in
A, and C < A}—this inf and sup being finite by the assumption
that %, contains an order unit for %A ; and extend linearly to the
space generated by %, and 4) and then using Zorn’s lemma to
select a maximal extension p of p, which, by virtue of the ability
to extend just noted and its maximality, will be state of U. This
argument indicates that the extension of p, to a state of % is not
unique in general (4 can be assigned any value between sup and
inf). A moment’s further reflection shows that the equality of
“inf”” and “‘sup’’ for each A not in A, is a necessary and sufficient
criterion for the state extension of p, from U, to A to be unique.
If py is a pure state of U, then its set of state extensions & is a
convex set each extreme point p of which (i.e. point of & which is
not a proper convex combination of two distinet points of &) is a
pure state of A. If p=ap,+ (1 —a)p, with p; and p, states of A
and 0<a<1, then the same relation holds for the restrictions
p|%o, p1|Ag and po|W, of p, p; and p, to Ay But p|Ag=p, and
both p,|%, and p,|UA, are states of Ay; so that p;|Wg=p.|Ay=po,
since p, is a pure state of Ay. Thus p; and p, areiné’;and p; =py=p,
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since p is an extreme point of &. It remains to note that & has
extreme points; and this follows from two important general
principles in functional analysis.

If V is a vector space over the reals or complex numbers, we can
provide the space V of linear functionals on V, its dual space, with
a special topology called, variously, the weak V topology, the weak
predual (or preconjugate) topology, the point-open topology or the
w* topology (we employ this last). It is the topology in which
convergence of (p,) in ¥ to p means (p,(v)) converges to (p(v)) for
each v in V. More precisely, the w* topology in V is given by taking
as the open sets all unions of sets of the form {p:p in V,
[(p—po) ;)| <1, vy, ..., v, in V and p, in V}. If A, is a partially
ordered linear space with order unit I and positive cone £, and
&, is the set of elements in & < I, the set X of all functions on &,
to the unit interval [0, 1] topologized with the point-open topology
(the open sets in X are unions of sets of the form {f:f in X,
[f(4;)—fo(4;)] <€, 4y, ..., 4, in Py, fy in X, and > 0}—this is
the so-called product topology on X, the “‘cartesian product” of
copies of [0,1] indexed by elements of &) is compact (a con-
sequence of a basic theorem in general topology known as
“Tychonoff’s theorem ). The mapping taking a state of %A, onto
its restriction to &, is a one-to-one mapping of the set of states
into X which is trivially seen to be a homomorphism of the state
space of A, in its w* topology into X in its product topology (from
the definitions of these topologies). There is no difficulty in seeing
that the image is closed and hence compact in X ; so that the set
& (U,) of states of A, form a compact convex subset of the dual
of U, in its w* topology. A slight modification of this argument
yields the Alaoglu-Bourbaki theorem : The unit ball of the dual of
a normed space (i.e. those functionals with bound not exceeding 1)
is compact in the w* topology.

The dual ¥ of a linear space V (over the reals or complex numbers)
is such that addition and multiplication by scalars are both jointly
continuous operations in their variables relative to the w* topology.
We say that the pair consisting of a linear space and a topology on
it for which this is true is a topological linear space. Moreover ¥ in
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its w* topology has a separating family of continuous linear
functionals (i.e. any two elements of ¥ which have the same value
at each such functional must coincide), namely the functionals
arising from evaluation of elements (functionals) in ¥ at elements
of V (the w* topology on V is chosen precisely so that the func-
tionals ¢ — #(v) on ¥V are continuous). The final fact we need, to
establish that the set of extensions & of ¢ has an extreme point so
that a pure state of 2, has a pure state extension to ¥, is the
Krein-Milman theorem: A compact convex subset K of a topo-
logical linear space ¥ which possesses a separating family of
continuous linear functionals is the closed convex hull of (i.e.
smallest closed convex set containing) its extreme points. Note
that & is a w* closed set of states, hence w* compact. For the
demonstration, we may assume that K is non-null and define a
face of K to be a subset F' which contains ax + (1 —a)y for all a in
[0,1] if it contains ax + (1 —a)y for one @ in (0,1) when x and y lie
in K (geometrically, I contains each line segment in K which meets
F in an interior point of the segment). One notes that a face F of K
is convex and that each face of ¥ is a face of K. Using the facts that
intersections of faces are faces and that if a family of compact sets
is such that each finite subfamily has a non-null intersection then
the full family has a non-null intersection (called the finite inter-
section property) in conjunction with Zorn’s lemma (recalling that
K is assumed to be compact and is a face of itself), we conclude
the existence of a minimal non-null compact face F, of K contained
in any given face F of K. Since each continuous function on a
non-null compact set attains its maximum on that set and since
each continuous linear functional attains its maximum on a convex
set at a set of points which form a face of it, each such functional
on V attains its maximum on F, at each point of F, (by minimality
of F'y), hence is constant on F,. These functionals form a separating
family for V, so that F consists of a single point. But one-point
faces are extreme points. For the remainder of the proof of the
Krein-Milman theorem, we draw on the basic ““separation theorem”
for topological linear spaces: if N is a convex set containing a
non-null open subset of V and K, is a non-null convex set having
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null intersection with the interior of N (the union of all the open
sets in V) then there is a non-zero continuous linear functional ¢
on ¥V and a constant « such that ¢ is not less than « on N and not
greater than « on K. Suppose, now, that K, is the closed convex
hull of the extreme points of K (hence, non-null, from the foregoing)
and that 2 is a point of K not in K,. For each z, in K, we can find
a continuous linear functional ¢ on V such that ¢(x) > ¢(z,). With
B strictly between ¢(x) and ¢(z,) the sets N, and M,, at which ¢
are, respectively, greater and less than 8 are open, disjoint, convex
subsets of V containing x and x,. The sets {M, :x, in K,} form
an open covering of K, from which we can select the finite sub-
covering M, , ..., M, , since K, being a closed subset of the
compact set X, is itself compact. The intersection N of N, ..., N,
is an open convex set containing z and disjoint from the union
of M,,, ..., M,,, hence from K,. With ¢ and « as in the separation
theorem just noted, we can choose v in V such that ¢(v) #0 and,
by multiplication by a suitably small scalar, so small that z+o
and z —v are in N.Thus ¢(x) + ¢(v) > o; and since ¢(v) # 0, () > a.
The set F' at which ¢ attains its maximum on K does not, therefore,
meet K, since ¢ is not greater than « on K,. Yet F is a closed face
of K and contains an extreme point of K, contradicting the fact that
K, contains all the extreme points of K. Thus K,=K, and K is
the closed convex hull of its extreme points.

Returning to states p of a C* algebra, we have noted earlier that
-4l € A <||4||I for each self-adjoint 4 in A, so that —||A|l p(I)
<p(4) <||A|lp(I) and |p(4)| <||4]| for such A. For arbitrary B
in %, we have |p(B)|=|p(I*B)| <p(B*B)2p(I* I)!/2 = p(B*B)!
< ||B* B||V%2 = ||B||, from the Schwarzine quality applied to the posi-
tive semi-definite inner product 7',8§ — p(S*T') defined by p on .
(We shall have much use for this inner product in constructing *
representations of C'* algebras from states.) It follows that each
state p of a C* algebra has norm 1 and assumes its norm at I. A
(partial) converse of this fact is also valid, viz. a functional p of
norm 1 on a C* algebra A such that p(I)=1 is a state of A. To
prove this one must show that p(4)>0 for each positive 4 in .
Since the restriction of p to the (commutative) C* subalgebra U,
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of A generated by A and I satisfies the same hypotheses as does
p on A, we may assume that U is commutative. When we establish
as we shall in the next section, that a commutative C* algebra is
algebraically, order and norm isomorphic to a complex function
algebra C(X), the problem will be reduced to showing that a norm
1 functional p on C(X) which is 1 at the constant function 1 is real
and non-negative on positive functions. Assuming the contrary,
p(f)=a, with 0&a, 0<f<1 and fin C(X). In this case, the open
half-plane containing 0 determined by the perpendicular bisector
of the segment joining it to @ intersects the half-plane Rez> 1.
With b in this intersection, |b—f|<|b|<|b—a|=|b—p(f)|
= |p(be —f)| <||b —f|—a contradiction.

ra
K/)
b
As an immediate consequence of the Krein-Milman theorem,
we observe that the state space () of a C*-algebra U is the
closed convex hull of its extreme points, the pure states of U; so

that the pure states of U form a separating family of functionals
for A once we show that & (A) does.

2. Commutative C* Algebras and the Spectral Theorem

The algebraic content of the spectral theorem is contained in
the following result.

Theorem 2.2.1. If A is a commutative B* algebra, there is a
compact-Hausdorff space X (the set of non-zero multiplicative
linear functionals on U in the w* topology) and an isomorphism ¢
defined by ¢(A4) (p)=p(A4) of the algebra U onto the algebra of
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complex-valued continuous functions on X such that ¢(4*)=(4),
1411 = 1$(A)[| (=sup {|(A) (p)| :pin X}), 4 > 0if and only if $(4) =0
(i.e. #(4)(p) > 0 for each p in X), and o(A4) is the range of $(4). If A
is generated by a single self-adjoint element A (i.e. is the norm
closure of polynomials in 4) then X can be taken as o(4) in its
usual metric topology; and, with » a polynomial, ¢(p(4)) is the
restriction of p to o(4).

Before discussing the proof of this theorem, we note its relation
to the heuristic discussion of “stretch’’ operators in §3 of chapter I.
We commented that if A is a self-adjoint operator it is a norm
limit of stretch operators. With 9 the (commutative) C* algebra
generated by 4 and I, each unit eigenvector x of A corresponds to
a pure state of A defined by B — (Bz,z), Bin U (we shall see shortly
that such functionals—obviously states of q—are pure states on
the assumption that z is an eigenvector for 4). The other pure
states of A correspond to the case when no actual stretch is present
(and, so, correspond to the ‘“generalized stretches™).

For the proof of the theorem, we denote by X the set of non-zero
multiplicative linear functionals on A. With p in X, p(I%) =p(I)% #£0
so that p(I)=1. Hence p(4) is in o(4), for each 4 in %; since
p(B(4 —p(4)I))=0 for each B in U, so that B(4 —p(4)I) is not I.
Thus [p(4)|<| 4|, and |jp]|<1. It follows from the Alaoglu-
Bourbaki theorem that X, being w* closed in the dual of 9, is w*
compact. With 4 a self-adjoint element of A (i.e. A=4*) and
pin X, if p(Ad)=a+iB, « and B real; then p(B-+iyl)=1i(B+y),
where B(=A4 —al) is also self-adjoint. Thus #(8+y) is in
o(B+1iyl) and —i(B+y) is in o((B+14yl)*), since * is a conjugate-
linear, (anti-) automorphism of A. Now |(B+y)%| =B%+2By +*
<|IB+iyl||*|(B+iy])*|| = |(B+iyI)(B—iyI)|I< | B +v* forall real
y of the same sign as 8. It follows that 8=0 and p(4) is real. Since,
for arbitrary T in U, p(T') =p(T'1) +ip(T'5) with p(7';) and p(T',) real,
where T'y (= (T'+T%)/2) and T, (= (T — T*)/21) are self-adjoint, and
T*=T,—iTy; p(T*)=p(T).

If Aisin o(A) then (4 —AI) A is a proper ideal in A and, by Zorn’s
lemma, is contained in a maximal ideal .# of 2. Since the norm
closure of .# is again an ideal of % and proper (for [[I —B|| > 1 for
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each Bin .#, otherwise I — (I — B)= B has the inverse i (I—B)"),
n=0

# must be closed (by maximality). Now the quotient algebra
A/ A (ie. the set of classes {B+.#:B in A} with the sum
A+ #4+B+.# is (A+By+.# and product (A+.#)(B+.4)
=AB+.#) provided with the norm inf{|4+B|:B in .#} for
|4 + 4| is again Banach algebra. Moreover, each element of /.4
other than 0 has an inverse (since .# is a maximal ideal and ¥ is
commutative). But since each A+ .# has non-void spectrum,
A+ A — (M +.#) must be 0 for some scalar A, so that 4 — Al is in
M. (We have just observed that each Banach field over the
complex numbers coincides with the complex numbers.) The
mapping p of A into C defined by 4 —p(4)I is in .4 is then multi-
plicative; and since 4 —p(4)I—(4—A) (= —(p(4)—=A)I) is in
#, a proper ideal in U, p(A4)=A.

The mapping 4 — ¢(4) of Ainto C(X) defined by $(4) (p) =p(4),
for each p in X (that ¢(A) is continuous on X is an immediate
consequence of the definition of the w* topology) is an isometric
{(norm-preserving) algebraic isomorphism of % into C(X) such that
#(A*)=¢(A4) for each 4 in UA. For this, it remains to note that,
with B self-adjoint in U, ||B®*||=||B|?>" (from the assumption that
|l4*A||=||A*||]-]|4]|| for each A in A); so that {|B]|| is the spectral
radius of B (see §3 of chapter I). From the foregoing, thereisa pin X
with (A% 4] =[l4* ]| = |o(A*4)| = [o(4%)] - |o(4)] < | 4*]-|4].
Since |p(4*)| <|lA*| and |p(4)| <[|4]l, we must have equality in
both cases; so that ||4||=sup{|¢(4)(p)|:p in X} (=|$(4)|)). The
image ¢(U) of A in C(X) is closed, since A is complete and ¢ is an
isometry. Moreover, $(4) (=¢(4*)) is in (), for each $(4) in
d(MW), 1 (=4(I)) is in $(A), and H(A) separates points of X (i.e. with
p1 and p, distinet in X there is an A4 in %A such that p,(A4)=¢(4)(p,)
#P(A) (ps) =ps(4)). These are the conditions under which the
Stone-Weierstrass theorem tells us that ¢(%)=C(X).

Suppose now that U is generated by the set of elements {4,}.
With Y the Cartesian product of the sets o(A4,) taken in the product
topology (i.e. coordinate-wise convergence), the mapping which
assigns to each point p in X the point of ¥ with a-coordinate p(4,)
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is continuous, since each coordinate function ¢(4,) of this mapping
is continuous on X. If p, and p, map into the same point of ¥ then
p1 and p, agree on all polynomials in the 4,, a norm dense subset
of %, and, by norm continuity of p; and p,, they agree on %, i.e.
p1=p2. Since the mapping is one-one, continuous, X is compact,
and Y is Hausdorff, it is a homeomorphism of X with a compact
subset of Y of Y. In particular, if % is generated by a single self-
adjoint element A4, X is homeomorphic with the compact subset
o(A) of the reals. In general the homeomorphism induces an
isomorphism of C(X) and, hence, A onto C(Y,) which maps 4,
onto the a-coordinate function of Y restricted to Y,; and, with
the single generator 4, p(4) is mapped onto the restriction of the
polynomial p to a(4).

We have noted that A is in o(4) if and only if there isa p in X
such that p(4)=A; so that o(4) is the range of ¢(4). Since ¢ is an
isomorphism and ¢(4*)=4(4), we have A self-adjoint if and
only if ¢(A) is a real-valued function. Moreover, 4 is positive (i.e.
self-adjoint with non-negative spectrum) if and only if ¢(4)>0.
In case A is a C* algebra acting on the Hilbert space 5, the
functional 4 — (4x,x) with x a unit vector in 5 maps, under ¢,
onto a functional of norm 1 which is 1 at ¢(I) (=1); so that this
functional is a state of C(X). Thus if 4 is self-adjoint with positive
spectrum (Ax,z)>0 for all x in 5. For each self-adjoint B in
A, $(B)=$(B)* —$(B)~ where $(B)*(p)=max{$(B)(p),0} and
$(B)" (p) = —min {($(B) (p), 0}. Now $(B)" (= (|$(B)| +4(B))/2) and
#(B)~ (=(|$(B)|—¢(B))/2) are positive functions in C(X) such
that ¢(B)* ¢(B)~ = 0and, therefore, correspond to positive operators
B*, B~ in % such that B=B*— B~ and B* B~=0. If (Ax,x) is real
for each z in S, A is self-adjoint since (A4z,y) is expressible as a
linear combination of numbers of the form (4z,xz) (= (z,4x)) so
that (4z,y) = (2, Ay). Thus if (4z,z) >0 for each x in 5, 4 is self-
adjoint and A =A% — A~ with A*4-=0 and A%, 4~ self-adjoint
with positive spectrum. Since (47)? is self-adjoint with positive
spectrum, ((47)%x,z) >0 for each z in . But —(47)*=A4(47)?,
and (A(A™)2x,x)=(AA"x,A"x)>0. Thus ((47)%z,z)=0 for each
xzin #, (A7)®=0, and A~ =0. Thus 4 is self-adjoint with positive
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spectrum if and only if (4x,z) > 0 for each x in #"—identifying the
two apparently distinct notions of ““positivity ”’ for operators.

If A is a Banach algebra and %, a closed subalgebra, one should
make clear whether the spectrum of an element A4 in %, is being
discussed relative to %, or to A. After all, the question of whether
Ais in the spectrum of A4 relative to %, is one of the existence of an
inverse to A —AI in A, which may be quite different from its
existence in 2. In general, oy(A4) <oy, (4), with the obvious nota-
tion. In case Wis a B* algebra and %A, a B* subalgebra this distinc-
tion disappears (i.e. oy(4)=oy,(4) in this case). This amounts to
showing that if 4 in U, has an inverse in U this inverse lies U,
(equivalently, that 4 has an inverse in ;). If A is self-adjoint
with inverse A~ in U, then A~ is self-adjoint and commutes with
A. Let U, be the (commutative B*) subalgebra of U generated by
A, A~1and I. Say U, is isomorphic to C(X) with ¢ the isomorphism.
Then ¢(A4) is an invertible, continuous, real-valued function on the
compact space X; so that its range § is a compact subset of the
reals bounded away from 0. Thus A — A~! is continuous on 8§
and, therefore (from the Weierstrass polynomial approximation
theorem) the uniform limit of a sequence of restrictions of poly-
nomials p, to S. Since S is bounded away from 0, we may choose
P, without constant term. But then p,($(4))=¢(p,(4)) tends in
norm to ¢(4)7!; so that, since ¢ is an isometry, p,(4) tends in
norm to 41. Thus 47! lies in the B* algebra generated by 4. If
we replace A — A~1 in the preceding argument by an arbitrary
continuous function f defined on the range of ¢(4) (i.e. on o(4)),
we see that there is an element, the norm limit of p,(4), of the
B* algebra generated by 4 and I (we cannot assume, in general,
that p, is without constant term) corresponding to f(¢$(4)) in
C(X). We denote this element by f(A), so that ¢(f(4))=f($(4)).
What we have observed is that the process of taking a continuous
function f of a self-adjoint element A of a B* algebra % is indepen-
dent of the commutative B* algebra containing 4 which is used
and always results in an element f(A4) in the B* algebra generated
by 4 and I.

Suppose, now, that B is an arbitrary element of %, having an
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inverse, B~!, in UA. Then B* B is a positive, self-adjoint, invertible
element of %U,. From the foregoing, (B*B)"? lies in A, as does
(B*B)™'2, its inverse. Thus B(B*B)™2 (=U) lies in %, as does
U*(=(B*B)™'2B*). But UU*=U*U=1, and (B*B)"12U* is an
inverse to B in %,. Thus B~1=(B*B)"Y/2U*; and B! lies in U,

By virtue of our theorem, to identify the pure states of U, a
commutative B* algebra (relative to the cone of positive elements),
amounts to describing the pure states of C(X) (order isomorphic
with % under the algebraic isomorphism ¢). Note that each
multiplicative linear functional on C(X) (hence on ) is a state for
it has the norm 1 and takes the value 1 at 1 (see the preceding
section). With p multiplicative on U, A self-adjoint, and
p=3%(p1+p2), we have

p(A%) = }(p1(4%) +p2(4%)) = p(4)® = }pi(4) +ps(4))*;
so that
0 = [po(A%) —p1(4)*1+ [p2(A%) — pa(A)*] +p1(4%) -
—2p1(4) pa(4) +ps(47)
> [pa(4)—pa(4)]

(for p1(A2%) > p1(4)? and py(A2) > py(A4)? by applying the Schwarz
inequality to the positive semi-definite inner products induced on
A by the states p; and p,). Thus p(4)=p,(4)=p.(4) for each self-
adjoint 4 in %A; and p is a pure state of A. On the other hand, if p
is a pure state of A and A is a positive self-adjoint element of A
less than I such that 0#p(4)#1 then p, and p, defined by
p1(B)=p(AB)|p(A) and py(B)=p((I—A)B)|p(I— A) are states of
A (for, with B positive, $(AB)=¢(A)¢(B) is a positive function in
C(X) so that AB>0). Since p=p(A)p;+p{I—A4)p, and p is pure,
p=p1; and p(4)p(B)=p(AB) for the given A and all B in U. If
A>0and p(A4)=0 then

lo(4B)| = |p(A"* A" B)| < p(A)"2p(B* AB)'? = 0,

so that 0=p(AB)=p(4)p(B). If A <Iand p(4)=1thenp(I—-4)=0
and I—-A4>0; so that p((I—A)B)=p(I — A)p(B), for all B in A
and p(AB)=p(A) p(B). Thus p(AB)=p(4) p(B) for each Bin A and
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each A with 7> A >0 in A. The same now holds for all 4 >0, all
A <0 and, finally all A (=|4||—(}|4]|I—A4)). Thus the pure
states of a commutative B* algebra 9 are precisely the non-zero
multiplicative linear functionals on U. The basic question—which
compact-Hausdorff spaces arise as the pure state space of some
commutative B* algebra?—has the simple answer—All. We note
several useful facts and constructions preliminary to establishing
this. We note first that each * representation or * antirepresenta-
tion ¢ (i.e. $(AB)=¢(B)$H(A)) of a B* algebra U preserves order,
for A is positive if and only if 4 = B® with B a self-adjoint element
of A; so that ¢(4)=¢(B)>>0 (this holds more generally for maps
¢ which preserve squares or, equivalently, the Jordan product
$(AB+ BA)). It follows that such maps ¢ are norm decreasing, for
—lAIlI <A< A|1;s0that —|lA|lI <$(4) < |41 and |(4)]| <4l
for self-adjoint 4, from the function algebra representation of
commutative B* algebras. For more general B in %, we have
lBI|*=|1BB¥|| > |$(BB*)|| = lI$(B)||*, using the fact that ||B||=|B*|
in a B* algebra which we know in C* algebras and which is true—
though somewhat complicated to prove in B* algebras. In addition,
if ¢ is a * isomorphism or anti-isomorphism of the B* algebra %,
into the B* algebra U, then ¢ is an order isomorphism (for, if
¢(A4)> 0 then

HET) - o [T

sothat, asabove |¢(4)|| =4[], 4 self-adjoint in A;, and [|$(B)||=||B|,
for each B in U,. Since U, is complete its image in A, under ¢ is
complete, hence, closed, and, therefore, a B* subalgebra of U,.

If {5#,} is a family of Hilbert spaces, we define the direct sum
Z@s#, as the subset of elements {z,} of the Cartesian product of
the family {s#,} for which Z,|z,||? is finite, this set being provided
with coordinatewise addition, multiplication by scalars and the
inner product ({z,},{¥.})=Z.(*, ¥,). One verifies that TP,
with the described structure is again a Hilbert space (the essential
points involve use of the special form the Schwarz inequality takes
in 1, and the completeness of X@H#, which follows closely the
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proof of the completeness of 1,). If ¢, is a * representation (or anti-
representation) of the B* algebra U in #(#,), we define the
direct sum X'@Pd¢, of {¢,} to be the mapping of A into Z(XPH#,)
which assigns to each element 4 in A the operator 2P, (A4)
defined by: (2@¢,(4))({x,})={$.(4)x,}. From our preceding
remarks X \by(A) .|| < Z,ll¢.(A)|I*[eyl® < |4[1* Z,ll,[?, which is
finite for {r,} in 2Ps#,. It is routine to check that ZPdg, is a
* representation (or antirepresentation) of U (into Z(XPs#,)).
Returning to the function algebra C(X), we note that each
point p of X gives rise to a * representation on the one-dimensional
Hilbert 5#, by means of the mapping which assigns to the function
fin C(X) the scalar operator f(p)I on 5#°,. The direct sum of these
representations is a faithful * representation (i.e. a * isomorphism)
of O(X) into #(X,Ds,) and hence onto a (commutative) C*
algebra (from preceding remarks). The associated question of
which function algebras C(X) are * isomorphic to the same com-
mutative C* algebra is simply answered by: C(X) and C(Y) are
isomorphic if and only if X and Y are homeomorphic (by means of
a homeomorphism giving rise to the given isomorphism). A homeo-
morphism 7 between X and Y gives rise to the * isomorphism
f — fon of C(X) onto C(Y). On the other hand, if ¢ is an iso-
morphism of C(X) onto C(Y), ¢ preserves spectrum ; and, since the
real functions are precisely the elements with real spectrum, ¢ is
a * isomorphism. As noted more generally, ¢ is an order * iso-
morphism of C(X) onto C(Y), and therefore effects a w* homeo-
morphism of the pure state space of C(X) onto that of C(Y). The
identification of the pure states with the points of the underlying
space gives rise, now, to a homeomorphism between X and Y
which induces ¢. To establish this identification, note that there
is a * isomorphism ¢ of C(X) with C(X,), where each multiplicative
linear functional on C(X) has the form f — ¢(f)(p,), for some p,
in X,; since ¢(X) is a commutative C* algebra. As points of X,
separate C'(X,), there is just one p, with this property. With pin X,
let »(p) be the point of X, such that f(p)=¢(f)[n(p)] for all f in
C(X). Then fon~l=¢(f). It is readily checked that 7 is a homeo-
morphism of X onto X, since ¢ is an isomorphism of C(X) onto
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C(X,) (using the complete regularity of X: there is a function in
C(X,) which is 1 at a given point of an open subset of X, and
vanishes outside that subset). Thus 7 identifies the points of X
with the multiplicative linear functionals on C(X), and, from an
earlier discussion, with the pure states of C(X).

3. Representations from States

The basic technique for constructing * representations of a C*
algebra is described in the proof of:

Theorem 2.3.1. To each state p of a C* algebra U there corre-
sponds a * representation ¢ of % on a Hilbert space # and a unit
vector x, in .9’/ such that {#(4)xy:4 in A} (= {$(A)x,}) is dense
in S and p(4)=($(A4)xo,20) (=w,, $(4)) for each 4 in A Any
other * representatlon for which such a vector exists is unitarily
equivalent to ¢.

The principal tools and concepts necessary for the proof of this
theorem have already been developed—the commutative spectral
theorem, the inner product on U associated with p and the pro-
perties of states. Set [4,B]=p(B*A). Since p is a state [ , ]is
a positive semi-definite inner product on A. The Schwarz inequality
for this inner product tells us that [4,B]=0if [4,4]=0; so that
the set £ of A in A such that [4,A4]=0 (the null vectors of the
inner product) form a linear space. Moreover ¢ is a left ideal in
A (the so-called left kernel of p) since [CA,B]=[A4,C*B]. The
quotient linear space U/ (i.e. the set of classes 4 + " with the
quotient linear space structure) has, induced on it, an inner product
CA+ A ,B+Ay=p(B*A) which is positive definite. The com-
pletion 5# of A/ relative to this inner product is the Hilbert
space of our representation. With ¢o(d4) defined by ¢o(4)(B+H)
=AB+ X, one verifies that ¢g(xd +B =apo(A4) +do(B), $o(AB)
=o(4)$o(B) and

(bo(4*) (B+2H),C+H ) =(B+H ,$o(4) (C+H)).

Now

{o(A) (B+A'), ¢o(A) (B+A)) = p(B* A* AB)
|A* A|[p(B* B)

I
41 p(B* B),

s
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since A*4 <||4*A||I (so that B*A* AB< B*||A*A||IB) and p is
order preserving. Thus ¢y(A4), being defined on the dense subset
A/ A of A and being bounded there by || 4|, has a (unique) bounded
linear extension ¢(4) defined on 5; and ||$(4)|| <||4|. The pro-
perties noted for ¢, and simple limiting arguments now yield that
¢ is a * representation-action of A. Moreover, taking x,to be I + ¢,
{$(A)xo} is A/ which is dense in 52, and ($(4)xg,zo) =p(4).

Suppose that ¢, is a * representation of % on 5#, and z, is a
unit vector in 5#; such that {¢,(%)x;} is dense in 5, for which
w,,($1(4))=p(4), for each A in A. Then |p(d)xy|>=p(4d*4)
=||$1(4)x,]|*; and the mapping taking ¢(4)z, onto ¢(A4)x;, for
each 4 in A is an isometric linear mapping of the dense subset
{$p(A)zo} of S onto the dense subset {p;(A)x,;} of ;. It has a
unique extension to a unitary transformation U of J# onto 5,
which, one can show, implements a unitary equivalence of ¢ and
é1 (i.e. $1(A)=Ugh(A) U1, for each 4 in A).

A vector such as z, for which {¢(%)z,} is dense in # is said to
be cyclic for ¢(A) and ¢ is said to be a cyclic representation of A.
An immediate corollary of the result just established is the fact
that each cyclic * representation of a C* algebra U is unitarily
equivalent to one arising from a state of U; for if z, is a cyclic
unit vector for the * representation ¢ then p defined by p(4)
= (p(A)zq, o) gives rise to a * representation of A unitarily equi-
valent to ¢ from the last assertion of the theorem.

Certain states give rise to representations with special properties.
In particular:

Theorem 2.3.2. The representation ¢ associated with a state p
of the C* algebra U is irreducible if and only if p is a pure state
of .

We say that a subset .# of S is stable under the action of a
family & of operators when Ax is in .# for each 4 in % and z in
M. We say that & acts ¢rreducibly on 5 when it has no stable
closed linear subspaces other than (0) and S#. A representation ¢
of A on H# is said to be irreducible when () acts irreducibly on
. An easy computation establishes that the orthogonal projection

on a closed subspace commutes with each operator in a self-adjoint
3
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family of bounded operators (i.e. 4 is in the family if and only if
A* is) if and only if the subspace is stable under the family. For
the proof of the theorem just stated we need:

Lemma 2.3.3. The self-adjoint family & acts irreducibly on #
if and only if its commutant Z” (i.e. the set of all bounded operators
on ¢ commuting with each operator in %) consists of scalars.

If &#' consists of scalars then no orthogonal projection other
than 0 and I commutes with % and no closed subspace other then
(0) and ## is stable under &, i.e. # acts irreducibly. If we assume,
now, that & acts irreducibly, &' is self-adjoint since & is. Thus,
to show 4 in F' is a scalar, it will suffice to show that (4 + 4*)/2
and —i(4 —A*)/2 are scalars; so that we may assume that A4 is
self-adjoint. Using the commutative spectral theorem, we represent
the (commutative) C* algebra generated by 4 and I as C(a(4)).
If o(A) has two distinct points A; and A, we can find positive
continuous functions f; and f, such that fifo=0, fi(A;)=1=F5(2,)
with f; and f, defined on R. Then f,(A4)f5(A4) =0but f1(4) #0 £f5(4).
Since 4 commutes with &, limits of polynomials in 4 lie in Z#';
so that f,(4) and f,(4) lie in &". It follows that the closure of the
ranges of f;(A4) and f,(4) are stable under &. But neither of these
ranges is (0) since neither of f,(4) nor f,(4) is 0; and neither of
their closures is 5# since fy(4)f:(4)=0. This contradicts the
irreducibility of &#. Thus ¢(4) consists of a single point and 4 is
a scalar again from the representation of A as C(a(4)).

To prove the theorem, suppose first that ¢ is irreducible. If
p=(p1+p2)/2 with p; and p, states of A and, with z, a cyclic vector
for ¢(A) such that p(4)=(¢(A)xo,x,) for each A in A, define
[$(A)xg, p(B)xo] to be py(B*A4). Then[ , ]isa bounded bilinear
form on {$(A)x,} and extends to a unique bounded bilinear form
on S#. From the remarks at the end of I (2), there is a bounded
operator 7' such that

(T'd(A)xo, $(B) o) = [$(A) 2o, $(B)xo] (= py(B* 4))
for all 4 and B in . It follows that
(T$(C) $(A) 2o, $(B) %o) = p1(B*CA) = ($(C)T$(A4)xo, $(B) o)
for each C in A; and T is in ¢(A)’. Since ¢ is irreducible, T'=al
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for some scalar «, from the preceding lemma. Taking 4 and B to
be I,above, we see that a=1;s0 that p;(4) = (¢(4)xe, 7o) =p(4) for
each A4 in A. Thus p, =p and p is a pure state of A.

Suppose now thatp is pure and that ¥ is a projection commuting
with ¢(%). Note that if 5 is a linear functional on U such that it
and p — are positive (we write 0 <7 <p in this case) then n=7(I)p
—in fact this is equivalent to p being pure. To see this note that if
7(I)=0 then =0 (since »>0) and n=7()p. If 7(I)=1 then
(p—m)(I)=0 and p=n (since p—75=>0). If 0<yn(l)<1 then from
p=n(D)n/nI)+ (L —7(I))(p—n)/(1—n(I)) and the fact that p is
pure, we have y=7(I) p. On the other hand, assuming this property
for the state p of U, if p=an + (1 —a)r with 0 <a <1 and =, = states
of A then 0<an<p so that ap=an and n=p-from which, p is
pure. Returning to our proof, with n defined by n(A4) = (¢(4) Exo, xo),
we have 0<7<p; so that n=n(Il)p, that is (4(4)Exq,x,)
= (Bxg,x0)(d(A)2q,2,). Since z, is cyclic for ¢(A) and (H(4) Exg, xo)
= (¢(4) o, Ex,), taking 4 in A so that ¢(A4)z, is near Exy, we have
(Bxo,%0)% = (Bxg,Exo) = (Exg,20). Thus (Exg,x,) (=|Ez|?) is 0 or
1. In the first case 0 = Bz = ¢(A) (Exo) = EH(A)z, and E=0; in the
second, ((I — E)zy,z,)=0 and by the same argument I =K. Thus
#(A) acts irreducibly.

An important technical addition to our information about
constructing * representations of C* algebras is the fact that the
image of such a representation is automatically a C* algebra, i.e.
norm closed as well as being a self-adjoint algebra of operators.
To demonstrate this we note first two special cases. If ¢ is a *
isomorphism (or anti-isomorphism) of the C* algebra 2% we have
noted in the proof of the commutative spectral theorem that ¢ is
isometric so that ¢() is norm closed. If A acts on the Hilbert
space S and E is a projectionin U’, A — AE is a * representation
of A (acting on E(5#°)). We show that UE is norm closed in Z(E(#)).
Of course A — AE is norm-continuous so that £, the two sided
ideal of zeros of this mapping is closed. With 7 the quotient map-
ping of U as a linear space onto U/.#, » is both continuous and
open; moreover T defined by 7(4 +.#) =¢(A) is an isomorphism of
A/ S onto UK. If O is an open set in AE, 77(0) =(¢1(0)), which
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is open in A/S (provided with its quotient Banach space norm).
Thus 7 is continuous. If we can prove that 7! is continuous then
AE with its operator norm is topologically linear isomorphic with
the Banach space %A/ so that AKX is complete—hence closed in
B(E(s#)). That v~ is continuous will follow if we can show that
|AE| > |4 +#| for each self-adjoint 4 in A. With A, the com-
mutative C* algebra generated by 4 and I, and £, the kernel of
B — BE in Y%, we have .#; contained in .# so that |4+ .7
=inf{|4+B|:B in S}>inf{|d+B|:B in S}=(4+F|. We
complete the proof that AE is closed by showing that ||[4 + 5|
=||AE|. Now %, is isomorphic and isometric with C(c(4)), £,
corresponds to the set of functions vanishing on a closed set S in
a(A4) and Ay/F is isomorphic and isometric with C(S). Thus 7 on
A, corresponds to an isomorphism of C(S) onto W,E. Since *
isomorphisms of C* algebras are isometries, |4 + || =|4E)||.

To complete the proof, let 4 be « D¢, a * isomorphism of U,
where ¢ is the identity mapping of %A onto U (acting on 5#). From
the foregoing, () is a C* algebra commuting with E, the ortho-
gonal projection of # @, onto 5#,, the Hilbert space on which
#(A) acts; and (W) £ =H(A) acting on 57, is a C* algebra.

At the end of II(1), we noted that if we can show that the
states of a C* algebra U are plentiful (form a separating family)
then so are the pure states of . We show that for each self-adjoint
A in A and each ) in o(A4) there is a state p of A such that p(4) =A.
Let %, be the (commutative) C* algebra generated by 4 and I.
Then %, is isomorphic with C(c(4)) and A4 corresponds to the
identity mapping of ¢(4) onto itself (i.e. to the ““polynomial z’).
Under this isomorphism the mapping which assigns to a function
in C(o(A))its value at A corresponds to a state py of g and po(A4) =A.
From II(1), we know that p, has an extension p which is a state
of A.

4. Further Information about States and Representations

In describing “irreducible’’ representations of C* algebras, we
imposed the condition that no closed subspace of the representation
space other than (0) and this space itself be stable under the image.
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By so doing we have singled out the topologically irreducible repre-
sentations. There remain the algebraically irreducible representa-
tions—those for which no linear manifold (closed or otherwise) is
stable under the image except for (0) and the representation space.
For C* algebras it is a fact that these classes of * representations
coincide (that is to say, each topologically irreducible representa-
tion of a C* algebra is an algebraically irreducible). More is true:

Theorem 2.4.1. If the C* algebra % acts irreducibly on 5# and
Zy, ..., &, are linearly independent vectorsin 5 then, with y,, ..., ¥,,
n arbitrary vectors in ¢, there is an operator B in % such that
Bx;=y;,j=1,...,n. If y;=Ax;, j=1, ..., n for some self-adjoint or
unitary 4 in #(5#), we can choose B in U so that B is self-adjoint
or unitary, respectively. In any case, if y; = Ax;, with A self-adjoint
or not, the B chosen can be taken also satisfying || B]| <[4

The proof of this result makes use of two ‘density’’ theorems
the discussion of which we defer until later. The first, the von
Neumann density theorem, states that a self-adjoint operator
algebra U is strong-operator dense in A" (its second commutant).
The second, the Kaplansky density theorem, states that if .# is a
self-adjoint subalgebra of the self-adjoint operator algebra .4~ then
A is strong-operator dense in .4 if and only if the unit ball of .#
is strong-operator dense in the unit ball of A4". From the first of
these and lemma 2.3.3, we deduce another criterion for irreduci-
bility of a self-adjoint operator algebra U. The irreducibility of A
acting on ¢ is equivalent to U being strong-operator dense in
%(#°)—which from the Kaplansky density theorem is equivalent
to the unit ball of U being strong-operator dense in the unit ball
of #(F).

To prove the theorem, a successive approximation scheme is
employed. There is, of course, an operator 4 in #(#°) such that
Azx;=y,;. Moreover, if all the y; are suitably small, 4 can be chosen
with small norm. Now B in % can be chosen with norm not exceed-
ing that of 4 such that (4 — B;)«; is small forall j=1, ..., n. Thus
we can find 4, in #(s#°) with small norm so that 4,2;=(4 — B;)x;,
j=1,...,nand hence B, in A with small norm such that (4, — B;)xz;
is quite small. Continuing in this way, we construct the sequence
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By, B, B, ... of operators in A such that ¥ B, converges in norm

j=1
to B in 9, since U is closed. By construction Bx;=Ax;=x;=y;,
j=1, ..., n. The degree of approximation is at our disposal from

the first stage, the choice of B,, so that we can arrange to find B
in A with || B|| <||4||+ 1/» for any given positive integer ». With 4
self-adjoint, the Kaplansky density theorem allows us to make
our successive approximations with self-adjoint operators B in U
so that the B we construct is self-adjoint. If E is the orthogonal
projection on the (finite-dimensional) space generated by z;, ..., z,,
Y15 ++ > Yn, then EAE is a self-adjoint operator acting on E(5#°) and
has a diagonalizing orthonormal basis z;, ..., 2, in E(5#). Any
operator on 5 which acts like FAF on z,, ..., z,, coincides with
EAE on E(5#) and, therefore, maps «; on y;, j=1, ..., n. Thus it
suffices to consider the case where {z;} is an orthonormal set and

Ax;=Nz;, j=1, ..., n. Now |N|<|l4|, j=1, ..., n. Having con-
structed B in A with B self-adjoint and Bx;=);x;, we have that

the vector states w,, restricted to %,, the commutative C* algebra
generated by B and I are multiplicative (hence pure). Now U, is
isomorphic to C(o(B)) and w,, transforms under this isomorphism
into ““evaluation at };”’ on C(a(B)). The function f on o(B) which
assigns A to A if — 4[| <A<||4]], —||4||to Aif A< —||4|| and || 4] to
Aif |[A|| < Ais continuous and corresponds to a self-adjoint operator
B, in U, (hence in A). Since ||f|| < ||4]| and f(A;)=A;, j=1, ..., n (for
] <1141); 1Boll < [14]} and w,,(Bo) =25, j=1, ..., n.

But z; is an eigenvector for each operator in U,; so that
Byx;=Nx;, j=1, ..., n. We conclude that if Az;=y; for some
self-adjoint A in #(5#) then there is a self-adjoint B in A with
Br;=y; and ||B| < |4].

From this same argument, if 4 is unitary, by choosing a
diagonalizing orthonormal basis for E(s#), it suffices, in order to
produce a unitary B in % with Bx;=y;, to deal with the case where
Zy, ..., &, is an orthonormal set and to find B unitary in % such
that Bx;=\x; where Ay, ..., A, is a prescribed set of complex
numbers of modulus 1. With \;=exp(i«;), «; real, there is, of
course, a bounded self-adjoint 4, such that 4ox;=o;,2;,5=1,...,%.
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From the foregoing, we can find B, self-adjoint in %A such that
Byx;=0;%;,j=1, ..., n. Then B=exp (iB,) is a unitary operator in
A and Bx; = );x;.

When we established, in the preceding section that an invertible
operator 4 in a C* algebra has its inverse in that algebra, we noted
that 4 could be written as a product U(4* 4)'/2, where U is a
unitary operator and (4* 4)"? is an (invertible) operator which is
positive (both operators lying in the C* algebra, in this case). This
decomposition is a special case of the so-called polar-decomposition
which expresses an arbitrary bounded operator (valid also for a
closed, densely-defined operator) 4 as a product V(A*A4)Y2,
where V is a unitary transformation of the range of (4* 4)!/2 onto
that of A. To effect the decomposition, one simply defines V as
mapping (A* A)2x onto Ax for each x in J# and notes that V is
isometric hence well-defined. Of course, V extends (uniquely) to
an isometric mapping of the closure of the range of (4* 4)!/% onto
that of 4; and to “complete” ¥ to an operator defined on all of
S in a canonical fashion we define it to be 0 on the orthogonal
complement of the closure of the range of (4* 4)!2 (extending it
linearly, now, to all of 5#°). We call V a partial isometry with initial
space the closure of the range (4* A)Y2 and final space that of 4.
If E is the orthogonal projection on the first closure and F on the
second, one can check, without difficulty, that V*V=E, VV*=F
and that these equalities characterize a partial isometry V with
initial space E(5#) and final space F(S#) (either equality alone
tells us that V is a partial isometry). This polar decomposition of
A is unique in the sense that if A = WH with H >0 and W a partial
isometry having the closure of the range of H as initial space, then
H=(A*A)"2and W="7V. In fact, with E the orthogonal projection
on this closure, A*A=HW*WH=HEH=H?;so that H=(A%*4)'2,
(Note that H commutes with 4* 4 and is a positive square root of
A* A, so that it is (4* 4)!2, using the fact, evident from the iso-
morphism of the commutative C* algebra generated by H with
C(o(H)), that there is just one positive square root of a positive
element in this algebra). Thus W(4*4)2z=Ax; and Wy=0if y
is orthogonal to the range of (4* 4)!/2, so that W=1V.
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Returning to the proof of our theorem, with A»;=y;and 4 =VH,
the polar decomposition of 4, we can find X~ self-adjoint in A
such that & "x;= Hx;, j=1,...,n and | K| <||H||. Since V is isometric
on the range of H, there is a unitary operator on # mapping Hz;
onto VHu;,j=1,...,n; hence, from the foregoing, there is a unitary
operator U in U such that UHx;= UKx;=VHx;=y;, j=1, ..., n.
But ||B||=||UK| < [|H||=]|4], where B=UK is in % and Bx;=y;
ji=1, ..., n

If p is a pure state of the C* algebra U and ¢ is the corresponding
representation of % on the Hilbert space £ with unit cyclic vector x,
such that w,,0¢=p then ¢(4)z,=0if and onlyif 0 = ($(4* 4A) x4, x,)
=p(A*A4), that is, if and only if 4 is in S, the left kernel of p.
If Ay is a left ideal in A containing " but distinct from A,
{$(H ) xo} is a linear manifold stable under ¢(A). With 4 in A not
in A"y, ¢(A)x, is not in this linear manifold (for otherwise ¢(4)z,
=¢(Aq)xowith Ayin H# ysothat 4 — 4, € " and 4 € X, contrary
to assumption). Since p is pure, ¢(U) is a C* algebra which acts
topologically irreducibly and, from the foregoing, algebraically
irreducibly. Thus {¢(# )2} reduces to (0), i.e. X o=A", and we
conclude that ¢ is a maximal left ideal. In addition {¢(U)xo}=A[H"
is .

Corollary 2.4.2. If p is a pure state its left kernel " is a maximal
left ideal in U and A/ is complete relative to the inner product
induced by p on /A",

Another characterization of pure states is given by:

Corollary 2.4.3. The null space 4~ of a state p of the C* algebra
A is A+ A"*, where " is the left kernel of p, if and only if p is a
pure state.

To see this note first that if p=(p; +p5)/2 and N =H"+ A '*,
with p; and p, states of %, then, with 4 in X", 0=p(4*A)=p,(4*4)

=ps(A*A), so that 0=p,(A4)=ps(A4). Thus p, and p, annihilate
A" ; so that p=p; =p, and p is a pure state.

On the other hand, if we assume that p is a pure state then ¢,
the representation corresponding to p on 52, is irreducible. With
Bin A, B+ and I+ X are orthogonal vectors in 5#. From our
theorem we can find a self-adjoint ¢(4) in $(A) (and, so, can choose



LECTURES ON OPERATOR ALGEBRAS 73

A self-adjoint in %) such that ¢(4) annihilates I +#" and leaves
B+ X fixed, i.e. 4 lies in ¢ and AB— B= —C, with C in . If
B=DB* then B=BA 4 C*, so that B lies in & + 2 *. Since A4 is
self-adjoint, A" is contained in A"+ #"*, As A" + A "* is contained
in A", we have A" ="+ 2 *, on the supposition that p is pure.

Theorem 2.4.4. The left kernel # of a state p of the O* algebra
A is a maximal left ideal if and only if p is pure. Each maximal left
ideal in % is the left kernel of a unique pure state of A. Each closed
left ideal in U is the intersection of the maximal left ideals contain-
ing it.

We show first that if 27" is a left ideal in U (possibly U itself)
containing the closed left ideal % of U, and each state of % which
annihilates . annihilates ¢, then " =.%. If A in X is positive
the set § of states at which A is not less than 1/n? is w* compact.
The hypothesis, compactness and the definition of the w* topology
guarantees the existence of a finite open covering {U;},i=1, ..., m,
of § and elements 4; in . such that 4; (and hence 4} 4;, by the
Schwarz inequality) does not vanish on U,. Some positive multiple
T2of A¥A,+...+ A% A, exceeds 4 on S. Since 4 is less than 1/n?
at states of A not in § and some state of A takes a value less than 0
at self-adjoint operators in % which are not positive, T2 + I/n?> 4.
With T, the positive square root of T2, it follows from the Weier-
strass approximation theorem that 7', is a uniform limit of poly-
nomials without constant term in 7'2; so that T, lies in .Z. Now

|AYA(T, + I[n) " T\ — A2 = [[(T+In)"t A(T,, + I n)Y|[n®
< T+ 1)~ (T7+1[n7)|[n?
< 1/n?.
Thus A2 (hence A4) lies in . With B an arbitrary element in J¢’,
B*B and (B* B)Y? lie in &, from the foregoing, while
|BL(B* By + I[n]™ (B* B} ~ B < 1/n,

as above, so that B lies in % and " = 2.

Choosing " to be U in the preceding argument, it follows that
if & is a proper left ideal the set & of states of % which annihilate
it is non-null. Since this set is convex and w* compact, it is the
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closed convex hull of its set & of extreme points. It is easily seen
that each point of & is a pure state and, from an earlier result,
has left kernel a maximal left ideal in . The intersection of these
maximal left ideals is a left ideal of W containing %, with the
property that each state in & hence in & annihilates it. Assuming
% is norm closed, the first part of this proof assures us, now, that
Z is the intersection of these maximal left ideals. It follows that
each closed left ideal in U is the intersection of the maximal left
ideals containing it. If .# is a maximal left ideal, we have just
noted that there is a pure state p which annihilates it and for which
it must be the left kernel (by maximality). Given that the left
kernel .# of a state n of % is maximal, there is a pure state p an-
nihilating .#, and for which .# +.#* is the null space, from the
preceding corollary. Since n annihilates .# + .#*, y=p. Thus if the
left kernel of a state p of U is a maximal left ideal, p is pure and is
the only state of U annihilating that ideal.

If p and 7 are states of the C* algebra U such that there is a
unitary operator U in U for which +(U*AU)=p(4), all 4 in U;
then with # and £ the left kernels of p and 7, respectively, the
mapping V of A/F onto A/ defined by V(A+F)=AU+ A is
an isometric mapping of a dense subset of the representation space
corresponding to p onto that for . Hence ¥ has an extension to a
unitary mapping of one representation space onto the other. This
extension implements a unitary equivalence of the representations
corresponding to p and 7.

The converse to this is not true; and each cyclic representation
of an abelian C* algebra on a space of dimension greater than one
affords a counter-example. For two states p and 7 of an abelian
C* algebra U to be unitarily equivalent in the sense just discussed
they must be identical (for 7(U* AU)=7(4)=p(4), for all 4 in A).
However, from theorem 2.3.1, each cyclic vector in a cyclic repre-
sentation gives rise to a state whose corresponding representation
is unitarily equivalent to the given cyclic representation. It remains
to note that if A acting on # with cyclic vector z, is such that s#
has dimension greater than one, then there are cyclic vectors which
give distinct states of U. Note that with z, cyclic for a self-adjoint
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family U of operators, z, is separating for its commutant A’, that
is, if A'2y=0 with 4’ in %', then 4’=0. In particular, if U is
abelian, U is contained in A’; so that each cyclic vector for an
abelian self-adjoint family of operators is separating for that
family. Note also that two unit vectors xy and y, in S give rise to
the same vector state of the self-adjoint algebra U of operators
on ¥ if and only if there is a partially isometric operator ¥ in U’
with Vizg=ys,, initial space [x,] and final space [Ay,]. The map-
ping taking Az, onto Ay, determines ¥, in case the vector states
coincide on A; and these states clearly coincide in case there is
such a V, since V* V==, Now, with U abelian, z, cyclic for A
in #, and S of dimension greater than one; choose 4 in U in-
vertible, and, using a suitable scalar multiple of 4, we arrange
that [|Az,||=1. Since {AAx,} contains {UA~1Ax,} (={Ux,e}), Az,
is a cyclic unit vector for A. If Az, and x, give rise to the same
vector state of U, we have, from the preceding remarks, that there
is a unitary operator U in "’ with Uxy= Ax,. Since z, is separating
for A, U=A, that is 4 is unitary. The isomorphism of ¥ with
C(X) shows at once that there are invertible operators in U which
are not scalar multiples of unitary operators (such multiples
correspond to functions on C(X) with constant modulus) if X has
more than one point, i.e. unless U consists just of scalars. With %A
cyclic on s#, this entails that % is one-dimensional contrary to
assumption. Hence there are cyclic vectors for % giving distinct
vector states of U. For a specific example, we use the diagonal
2 x 2 matrices acting on two-dimensional Hilbert space.

A partial converse to the fact that the representations corre-
sponding to p and 7 are unitarily equivalent if the states p and 7
are unitarily equivalent is valid. If p and = are pure states of U
with corresponding representations unitarily equivalent then p and
7 are unitarily equivalent. To demonstrate this, we need two
additional observations. If ¢ is a * representation of % and U is a
unitary operator in ¢(A) with o(U)#C; (the set of complex
numbers of modulus 1), then we can find U, in A such that
#(Uy)=U, with U, unitary. Since o(U) #C; we can find a con-
tinuous function f on €, such that f(U) is self-adjoint and
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exp [¢f (U)]=U. Now f(U) is in $(A) (a C* algebra), and, since F(U)
is self-adjoint, there is a self-adjoint 4 in % such that ¢(4)=7(U),
Then ¢(Uy)=U, where U,=exp(¢4) is a unitary operator in 9,
The second fact we need is a slight modification of the last statement,
in Theorem 2.4.1, to the effect that the unitary operator B can be
chosen with o(B) #C,. Re-examining the proof of Theorem 2.4.1,
we see that B arises as exp (¢B,), where B, is a self-adjoint operator
in % having a given finite set of orthogonal unit eigenvectors with
specified eigenvalues in [—m,]. Arranging that o(B,) is disjoint
from some subinterval of [—m,7], we have that exp(iB,) has
spectrum different from C;.

Suppose, now, that the representations ¢ and i corresponding to
the pure states p and 7, respectively, of % on J# and ¢ are unitarily
equivalent; and the unitary transformation U of 5 onto ¢
implements the equivalence. With x, and y, cyclic unit vectors
for ¢(A) and (), respectively, such that (¢(4)xy,x0)=p(4) and
($(4)yo0,y0) =7(A), for all A in A; we can find a unitary V in y(A)
such that o(V) #C; and VUx,=y,. Thus there is a unitary U, in
A such that J(U,) Uzg=1y,; so that 7(4)=p(UFAU,) for all 4
in 9A.

The proof of Theorem 2.4.1 relies on the Kaplansky and von
Neumann density theorems. The Kaplansky density theorem
follows from the fact that a continuous function on R to R which
vanishes outside a compact set is continuous on %#(#),, the
self-adjoint operators in #(s#’), taken in the strong-operator
topology. Suppose we are given this fact and that .4 is a * sub-
algebra of #(#’) with .# a strong-operator dense * subalgebra
of A". To show that .#,, the unit ball of .#, is strong-operator
dense in the unit ball A4"; of A", it suffices to deal with the case
where .# and 4" are norm closed (i.e. are C* algebras), for the unit
ball of .# (and of .#”) is norm dense, hence strong-operator dense,
in that of its norm closure. Let f be continuous on R with range in
[—1,1], vanish outside of [ —2,2] and be the identity mapping on
[—1,1]. Then f(M ) =M N M, <f(N y)=A N AN, since f has
rangein[—1,1]and f(4)=A, for each self-adjoint 4 with spectrum
in [—1,1]. Since B — B* is weak-operator continuous on %#(f)
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and .# is weak-operator dense in .4#” (being strong-operator dense
in A7), # , is weak-operator dense in ./;. Being convex, the weak
and strong operator closure of .#, coincide (as do those of .47%).
Thus .#, is strong-operator dense in #;. Having assumed that
f is strong-operator continuous on Z(#y), f(My)=M N M, is
strong-operator dense in f(Ay)= AN A";. With C an operator
in A", we consider the 2 x 2 matrix C'y with 0 entries on the diagonal
and C and C* off the diagonal in the C* algebra of 2 x 2 matrices
with entries in /" acting in the usual way on s @s#. The sub-
algebra consisting of those matrices with entries in .# is strong-
operator dense in the larger one; so that, from the foregoing, there
is a (self-adjoint) 2 x 2 matrix 4, with norm <1 strong-operator
close to Cy. The appropriate entry of 4, lies in .#; and is strong-
operator close to C. Hence .4, is strong-operator dense in 47;.
We note, from this argument, that .#,N .#, is strong-operator
dense in A", N A5 and that .#, N .#* is strong-operator dense in
AN 1N AT, where AT and A"t are the sets of positive operators in
A and A

It remains to establish the strong continuity of a function f
on R to R continuous and vanishing outside a compact set. We
note first that each continuous function on C to C is strong-
operator continuous on any bounded set S of normal operators.
Suppose ||4||<K for each 4 in 8, then since |(4B—A,Bj)z|
<4l [[(B—Bo)x| + (A — Ao)Box|, AB is strong-operator close
to A B, provided 4, B in 8 are strong-operator close to 4, and B,
respectively, in S. Since multiplication and addition are jointly
strong-operator continuous on §, polynomials are strong-operator
continuous on S. If f is continuous on the disk D with center 0
and radius K in € to C, then, from an extension of the Weierstrass
polynomial approximation theorem, there is a sequence (p,) of
polynomials in z and Z such that |f—p,||<1/n, n=1, 2, ..., where
|| || refers to the “supnorm” of functions taken over D. Since
o(A) is contained in D for each 4 in 8, [|f(4) —p.(4)|| < 1/n, for all
A in 8. Tt follows that f, being the uniform limit of strong-operator
continuous functions p, on 8, is strong-operator continuous
onS.



78 CARGESE LECTURES IN THEORETICAL PHYSICS

With A4 self-adjoint, ||(4 +¢)~1|| <1, while

(A —iI) (A +3I) = (Ao—il) (Ao +iI)!
= 2(A +3I) (A — Ag) (Ag+il)Y;

so that the Cayley transform A — (4 —iI)(4 +¢I)7! is a strong-
operator continuous mapping of #(H#), into #(#),, the set of
unitary operators in #Z(s#). If U is a unitary operator with 1 not
in o(U), —i(U+1I)(U—1I)"'is a self-adjoint operator with Cayley
transform U. If & is a continuous function from R to R vanishing
at o, then defining f(z) for z in C; to be A[—i(z+1)(z—1)""] for
z#1 and 0 for z=1, f is continuous. Thus f is strong-operator
continuous on #(#),; and h(4)=f[(4 —iI)(4 +:I)"']. It follows
that A is strong-operator continuous on .93'(9? )«, being a com-
position of strong-operator continuous mappings.

Although the strong-operator continuity of continuous functions
on R to R vanishing outside compact sets (and even the broader
class of continuous functions vanishing at infinity has been dealt
with) is all that is needed to complete the proof of the Kaplansky
density theorem; it is worth noting that each bounded continuous
function 4 on R to R is strong-operator continuous on #(#°),, for
these continuity results are important and useful in themselves.
This is proved by decomposing % as (1 —A)p + hq, where p and g — 1
are continuous, vanish at « and p(4¢)=¢(4¢)=k(4,), and observing
that h(4)—h(do) =[1 - h(4)][p(4) — p(Ao)] +(A4)[g(4) — q(A4,)].

For the von Neumann density theorem, we suppose that A is a
self-adjoint algebra of operators containing I. Its strong closure
A~ certainly commutes with ', that is A~ contained in A”. Suppose
T lies in A" and z in ¢ is given. With 4 in U, A* is in A and [Ax]
is stable under 4 and 4*. Thus E, the orthogonal projection with
range [Ax], commutes with each 4 in U, liesin A’, hence, commutes
with 7'. It follows that [Ux] is stable under 7'; and, since z (=Ix)
lies in [Ax], that Tz lies in [Ax]. Hence, given € >0, there is an 4
in U such that ||(T — 4)x| <e. Now, let 2 be the direct sum of #
with itself n times, let %, be n xn matrices with entries in A’
(acting on the elements of s# expressed as column vectors in the
usual matrix fashion), let B be the n x n matrix with B at each
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diagonal entry and zeros at all others (B in Z(s#)), and let % be
{4:4 in A}. Then A’ =, and 7 lies in A”. From the foregoing,
given € >0 and & (=(zy,...,%,)) in S, there is an 4 in U such that
(T — A)&|| <€, from which (T —A)xj|<e, j=1, ..., n. Hence T
liesin A~, and A =A".

Aside from the use to which we have already put the von
Neumann density theorem, it is typically used in situations such
as the following. With 7' in () and # the strong-operator
closed algebra generated by 7' and T*, V and H lie in £, where
VH is the polar decomposition of 7'. Since H = (T*T)'2, H is even
in the C* algebra generated by 7* and 7' (i.e. is a norm limit of
polynomials in 7*7). With U’ a unitary operator in %',
T=U'TU'*=U'VU'*U'HU'*, and U'VU'*, U HU'* are a
partial isometry and positive operator, respectively, satisfying the
same conditions that ¥V and H do. Uniqueness of the polar
decomposition now gives V=U’VU’*; so that V commutes with
each unitary operator in #’'. The observation 4=3U,+U,),
where U, and U, are the unitary operators A +i(]—A42)* and
A —i(I - A%}, respectively, 0< A <1, establishes that each C*
algebra is generated (linearly) by its unitary operators. Thus V
lies in Z" (=2).

5. Special Cases

We apply the general theory developed in the preceding section
to study #(s) and its subalgebra €, the compact (completely
continuous) operators on infinite-dimensional separable Hilbert
space 5. We recall that € is the norm closure of %, the operators
on S with finite-dimensional range. Note that & is a proper two-
sided ideal in (the Banach algebra) #(s£); so that € is a proper,
norm-closed, two-sided ideal in Z(s#).

Theorem 2.5.1. The ideal % is the only proper two-sided, norm-
closed ideal in #(£).

If A is a proper left ideal (not necessarily closed) in #(3#), then
{A x} is stable under #() for each z in . Thus {#«} is either
(0) or 5. Since £ is not (0), there is a unit vector x, such that
Hxy=3¢. With T in A" such that Tz, ==z, and E the one-dimen-
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sional projection with z, in its range, T*E,T (= (HT)*(E,T)) is
a non-zero, self-adjoint operator in % with one-dimensional
range. Since a self-adjoint operator annihilates the orthogonal
complement of its range T*E,T is a (non-zero) multiple of the
one-dimensional projection with the same range. Thus J¢" contains
some one-dimensional projection, E. If F' is another one-dimen-
sional projection, there is a partial isometry V in #(#°) with
initial space £ and final space F'. Since V =V E, Visin 4 . Assuming,
now, that £ is a two-sided ideal, F is in J¢°, for F = VV*. Thus A~
contains all one-dimensional projections; and, hence, contains & .

If T is not in € then T*T is not in %'; for, otherwise, (T'*T')!/2,
a norm limit of polynomials in 7*7 without constant term, lies in
€ and T (=V(T'*T)"2) lies in %. Thus, if A" is a left ideal in
() not contained in ¥, there is some positive H in A not in €.
Now, the identity mapping on o(H) is a uniform limit of positive
functions in C(o(H)) vanishing outside intervals with positive
left endpoints. Some such function f vanishing outside [a,b] with
@ > 0 must correspond to a (positive) operator 4 in the C* algebra
generated by H and I which has infinite-dimensional range (other-
wise H lies in €). Since (A—a) f(A)>0 for all A, (H—al)A and
(H —al)A? are positive. Thus ((H —al) Az, Az) >0 for all x in .
With E the projection on the closure of the range of 4, it follows
that 0<((H —al)Ex,Ex)=((H—al)E?x,z)=((H —al)Ex,x); so
that HE=EH > aF. Passing to the C*-algebra generated by I,
EH and E and to its representation by functions, we see that Z is
a norm limit of polynomials in ZH (each of which lies in 5£"). Thus
¢ contains the infinite-dimensional projection E. Since ¢ is
separable, there is a partial isometry V with initial space E, so
that V (= VE) lies in &, and final space I. If 2¢" is assumed, now,
to be two-sided, I (=VV*) lies in £"; so that 4 =% (). Thus
each proper, two-sided ideal in Z(5#) contains & and is contained
in €. Our theorem follows.

Making use of this characterization of the compact operators,
one can now establish the other identifications of such operators:
T is compact if and only if the image of the closed unit ball in 4#
under 7' is compact (hence the name ‘“‘compact’ operator); and
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T is compact if and only if Tz,—-Ty — 0 if (z,—¥,2) — 0 as
n — o, foreach zin J# (i.e. T converts weakly convergent sequences
into norm convergent sequences).

With regard to pure states of #(#):

Theorem 2.5.2. Each pure state p of #(#) annihilates € or is a
vector state (i.e. p(4)=(4x,z) for all 4 in H(H)).

To see this, note that if p(%) #0, € is not the kernel of ¢, the *re-
presentation of # () arising from p. From Theorem 2.5.1, ¢ is a
* isomorphism in this case. Since the one-dimensional projections
E in () are characterized by the property EAE = oF for each
bounded A4 (and E #0), we have ¢(E)$(4)$(E)=ad(E). Strong-
operator continuity of multiplication in the unit ball yields
¢(E)B(E)=p¢(E) for each bounded operatorB on the representation
space. (Recall that (% () ) acts irreducibly since p is pure ; so that
it is strong-operator dense in all bounded operators.) Thus () is a
one-dimensional projection. With z, a unit vector such that
p(d)=(d(A)zq,x,), for each A in H(s#), strong-operator density
of ¢(#(s)) permits us to choose A, in #(#) such that ¢(4,)z
are unit vectors tending to z, (we could use Theorem 2.4.2 to
shorten the argument). Now ¢(A4,)$(Z) maps x onto ¢(4,)x, where
z is a unit vector in the range of ¢(X); and ¢(A,)¢(E) annihilates
the subspace orthogonal to x. Thus ¢(4,)d(H)[$(4,)H(E)]* is the
one-dimensional projection with ¢(4,) in its range. These projec-
tions tend in norm to ¢(#,) (in ¢(#(3))), the one-dimensional
projection with z, in its range. Note that ¥, is a projection, since
¢ is a * isomorphism and ¢(¥,) is a projection, and that E, is
minimal in #(5¢), hence, one-dimensional. Now

p(A) = ($(A)zo,20) = ($(E0o) p(A) p(E o) 0, 20) = ($(H o AE )20, %)
= ((Azo,20) P(Ho) 20, %o) = (A2z0,20),

where zg is a unit vector in the range of .

Of course, the pure states of #(5#°) corresponding to unit vectors
are all unitarily equivalent to one another (since each unit vector
is the image of any other under a unitary operator). Making use of
special knowledge about the pure state space of the (abelian)
algebra of bounded operators having some fixed orthonormal basis
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as eigenvectors—namely, that this space has 2° elements, where ¢
is the cardinal number of the continuum—together with the fact
that unitarily equivalent irreducible representations of a C*
algebra correspond to unitarily equivalent pure states (proved in
the preceding section) and the fact that there are only ¢ unitary
operator; we conclude (from cardinality arguments) that there are
2¢ unitarily inequivalent irreducible * representations of #(s#)
each with kernel € and all on a Hilbert space of dimension c.

Turning to the C* algebra %, generated by € and I:

Theorem 2.5.3. There are two unitary equivalence classes of
pure states of €, one containing just one pure state p, defined by
and corresponding to the one-dimensional irreducible representa-
tion AI+C — A, C in ¥, of ¥, and the other consisting of all
vector states and corresponding to the given (irreducible) repre-
sentation of €, on .

Note that the set of operators AI +C:Aa scalar C in % is a C*
algebra—obviously the smallest one containing € and I, since
adding a closed subspace and a finite-dimensional subspace of a
normed space results in a closed subspace. Moreover, the represent-
ation of an operator in %, as Al +C with C in % is unique since ¥
does not contain I. Thus p, is well-defined; and, being one-
dimensional is irreducible and a pure state. On the other hand, if p
is a pure state of €, not equal to p, then p does not annihilate %.
We know that p has a pure state extension to #(s#°) which, from
Theorem 2.5.2, is a vector state. Thus all pure states of €, other
than p, are vector states—all unitarily equivalent.
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