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 1. Introduction. In [2, Theorem 9] Kaplansky proves that each deriva-

 tion of a type I von Neumann algebra is inner. Establishing a conjecture

 of Kaplansky, Sakai shows [5] that each derivation of a C*-algebra is

 bounded. Using these results Miles [3] notes that each derivation of a C*-

 algebra is induced by an operator in the weak closure of some faithful

 representation of the algebra (a direct sum of irreducible representations

 from each equivalence class). Again using [2] and [5], it is shown in

 [1, Theorem 4] that each derivation of a concretely represented C*-algebra

 is spatial (i.e., has the form A->BA -AB for some bounded operator B).

 It is also shown in [1, Theorem 7] that each derivation of a hyperfinite von

 Neumann algebra is inner; that under various assumptions on B the deriva-

 tion is inner and that the question of whether all derivations of a semifinite

 von Neumann algebra are inner is equivalent to the question of whether all

 derivations of a finite von Neumann algebra are inner.

 The main result of this paper is:

 THEOREM 1. 1. Each derivation of the von Neumann algebra generated

 by the regular representation of a discrete group is inner.

 This result coupled with those of [1] makes it seem very likely that all

 derivations of von Neumann algebras are inner. It implies, in particular

 that certain non-hyperfinite factors [4, Lemma 6. 3. 1] have only inner deriva-

 tions. We establish it in a sequence of seven lemmas in Section 2, deferring

 to the last section a Tauberian result which is at the heart of the proof.

 This Tauberian result, as we need it for the derivation theorem, states that a

 function on a space acted upon by a transitive permutation group which

 differs from each of its transforms under the group by a function from a

 fixed ball in 12 is itself an 12 function plus a constant. In the final section,

 we prove the more general form of this fact corresponding to the action of

 arbitrary permutation groups. Its application is to the action of a group

 on a right coset homogeneous space by right translation.
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 We review some facts about operator group algebras and establish some

 notation. Let G be a (discrete) group, La the unitary operator on 12(G)
 defined by Laf(g) = f(a-1g) and Ra the unitary operator defined by Raf(g)
 = f (ga). The mappings a -> La and a -> Ra are unitary representations of
 G, the left and right regular representations of G, respectively. The weak
 closures of finite linear combinations of La's and Ra's are von Neumann
 algebras, the left and right von Neumann group algebras, YC and X, respec-

 tively. From [4, Lemma 5.3.4], 2 = YC' (the commutant of Y,).

 We shall show that each derivation of Se (equivalently, from [1, Lemma

 5], of 2 ) is inner. To this end, we consider the basis {Xa: a in G} for 12(G)
 defined by x0 (h) -hg, and determine the properties which the matrix
 representation of an operator on 12(G) must have in order that it lie in Y,

 in X, in Y, + 2 or in D(SC) ( D(2)), the set of bounded operators
 on 12 (G) which induce derivations of C. From [1, Theorem 4], we need
 establish only that D (S,) = Y, + 2 in order to prove that all derivations
 'of St (and 2 ) are inner. Assume that A lies in D(?C).

 For T a bounded operator on 12(G), let T(a, b) = (TXb, Xa) and note
 that Lc*TLc (a, b) =T (ca, cb) while Rc*TRc (a, b) T (ac-1, bc-1). Thus T
 lies in Y, if and only if T (ac, bc) = T (a, b) and T lies in 2 if and only if
 T(ca, cb) = T(a, b), for each a, b, c in G (this under the assumption that
 (T(a, b)) is the matrix of a bounded operator T). It follows from these
 considerations that y n 2 consists of scalar multiples of the identity operator
 I (we say that Y, and 2 are factors) if and only if for each a in G other
 than the identity e the set (a) of conjugates of a is infinite. Since

 T Lc*TLc =Lc* (LcT-TLC), T lies in D(?C) if and only if T Lc*TL,
 lies in Y, for each c in G (equivalently, if and only if T - Rc*TR, lies in 2
 for each c in G). Thus T lies in D(SC) if and only if

 (1) T(a, b)- T(ca, cb) T(ag, bg)-T(cag, cbg)

 for each a, b, c and g in G. In words rather than formulas, T lies in D (SC),
 if and only if the difference of two left translates of a matrix coefficient
 of T is right invariant.

 We are grateful to H. Sah for discussions of group theoretic constructs
 which led us to consider the Tauberian result (Theorem 3. 8) in the setting
 of a permutation group acting on a set.

 2. The main result. If we knew that A = B + C with B in Y, and
 C in D?, then A(g,ag)-B(g,ag) +C(g,ag) B (e,a) C(e,g-lag); so
 that as g ranges through distinct representatives of the cosets Zag in G/Za,
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 (7 (e, g-lag) ranges through distinct matrix coefficients in the e row of

 (C(a, b)). In particular we should have that A, is a function on G/Z,

 where Za is the centralizer of a and A,,(Zag) =A(g,ag). Since (C(a,b))
 is to be the matrix of a bounded operator, each of its rows is in 12(G), and

 we should have Aa tends to the limit B (e, a) at so on G/ZIL if (a) is infinite.

 If (A (a, b)) satisfies the condition:

 (2) A(ca,cb) A(a,b), for each c in G when (ba'1) is finite

 then B(e,ghg'1) A(g,gh)- C(e,h) - A(e,h)- C(e,h) =B(e,h) for
 each g in G when (h) is finite, i.e., g->B(e,g) is constant on (h) and it

 turns out that we may choose 0 as this constant value. The sequence of

 lemmas which follows establishes that Aa is a function on G/Za which has a

 limit at so, that A can be replaced by an operator whose matrix satisfies (2)

 and that, after this replacement is made, B (e, a) as described is the e row

 of a matrix corresponding to an operator B in Y, such that A - B (= C)
 lies in 2.

 We adopt the usual terminology that the point added in forming the

 one point compactification of a locally compact space is the point so and

 that the behavior of a function on the locally compact space at so is the

 behavior of the function on the one-point compactification in the neighbor-

 hood of so. In particular we may speak of limf and lim f at 0o, as well as
 lim f at so (if this limit exists). We make use of Lemma 3. 7, in the

 following lemma and Lemma 3. 1 in the proof of Lemma 2. 7, deferring until

 the final section the proofs of Lemmas 3. 1 and 3. 7.

 LEMMA 2. 1. Aa is single-valued and has a limit at so on G/Za.

 Proof. We wish to show that A (bg, abg) A (g, ag), when ba =ab.
 Since A (bg, abg) =A (bg, bag), we have, from (1)

 x-A(g,ag) A(bg,bag)=- A(e,a) A(b,ba)= A(b,ab)- A(b2,bab)

 A (b, ba) -A (b 2, b2a)- *== *--A (bn-',, bn-la) -A (bn, bna).

 Thus na= A(e,a) -A(bn,bna) and ic i 2 11 A 11 for each n. ilence
 cO0.

 Note that

 Y, I Aa (Zag) - Aa (Zagh) 1 2|A (gn, agn) - A (gnh, agnh ) 2
 G/Za n

 = I A (e, gn-lagn) -A (h, gn-1agnh) 12?_ 4 11 A 112
 n

 where {gn} is a complete set of representatives of the cosets in GIZa. This
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 inequality results from the fact that {A (e, g'-agn) } and {A (h, g"'agrh) }
 are distinct elements of the e and h rows for the matrix for A and the

 known relation of the 12-norm of such rows to the bound of the operator.

 Since G acts as a transitive permutation group on G/Za by right multi-

 plication, Lemma 3. 7 applies and Aa has a limit at co.

 LEMMA 2. 2. If (A (a, b)) satisfies (2) and C(a, b) =A(a, b) -B(e, ba-c),

 where B(e,h) =0 if (h) is finite and B(e,h) =limooAh if (h) is infinite,
 then C(ca, cb) C(a, b), for each a, b and c in G.

 Proof. If (ba'1) is finite,

 C (ca, cb) =-A (ca, cb) -B (e, cba-lc')

 A (ca, cb) - A (a, b) A (a, b) -B(e, bac1) =C(a, b),

 from (2).

 Suppose that (ba'1) is infinite. We wish to show:

 (3) A(ca,cb)- A(a,b) B(e,cbalc-1) -B(e,ba-1), for each c in G.

 If (gn} is a complete set of representatives for the cosets in G/Zba-1, then

 {cgnc-1j, hence (cgJ,n are complete sets of representatives for the cosets in
 G/ZCba-1c-1. Thus, with positive E assigned, for suitable n,

 E> I B (e, ba-1) -A (gn, ba-lgn) + I A (cg,, cba-1g,) -B (e, cba-rc--) I

 B (e, ba-1) -B (e, cba-lc-1) - [A (gngn-la, ba-1g,g-r1a)

 -A (cgngn1a, cba-9gng9-1a) J ,
 from which (3) follows.

 LEMMA 2. 3. If Ba (Zag) =B (e, g-lag) and Ca (Zag) )C (e, g-lag), then
 with (a) infinite Ba and Ca vanish at oo on G/Za.

 Proof. From Lemma 2.2, we have A(g,ag) =B(e,a) +JC(e,g-lag).
 Since A a (Zag) =A (g, ag) and B (e, a) is lim, A a on G/Za, Ca vanishes at oo

 on G/Za. But A'a defined on G/Za by

 A'a(Zag) A (e, g'lag) ( B(e, g-lag) + C(e, g-lag) ==Ba(Zag) + Ca(Zag))
 vanishes at oo, since the e row of (A (a, b)) lies in 12(G). Since Ca vanishes

 at oo on G/Za, Ba (= A'a Ca) does.

 LEMMA 2.4. If bhg-lb-1 ahg-la-I then A (bg, bh) = A (ag, ah).

 Proof. Since (ag) -1 (ahg-la-1 ) ag = (bg) -1 ( bhg-lb- ) bg and ahg-la-

 bhg-lb-1, we have A (ag, ah) A (ag, (ahg-la-1) ag) A (bg, (bhg-lb-1) bg)
 and only if that induced by A is. Tf ba-' lies in S, then Als(ca, cb) - AIS(a, b);
 =A(bg,bh), from Lemma 2.1.
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 For each finite (h), we choose a set al, *, a,, of elements in G which
 give rise to all (distinct) permutations of (h) induced by inner automorphisms

 of G; and we denote by Alh the operator - (Lai*ALai ?* + La,,*ALa,)
 n

 (we write A Ih1h2 for (Alhl) Ih2).

 LEMMA 2. 5. If (hj) is finite for j = 1, , m, then lIAIhl Ihm Ih_ A 1,
 Alhi Ihm induces the same derivation of De as A does and

 AIh. Ihm (ca, cb) = Ahlh.. Ihm (a, b)

 for each c in G when ba-1 hj for some j.

 Proof. Since each Lg is a unitary operator in S, if T induces a derivation

 of Se, Lg*TLg induces the same derivation of R? as T does (cf. [1, Lemma 5]),
 and 1I Lg*TLg 11j1- T 11.

 The first and second assertions follow from this and the definition of Tlh.

 With Tlhj 1 (Laj*TLaj +* + La,*TLa), we have
 n

 Tlhf (ca, cb) = I fIT (ajca, ajcb ) -E, T (aja, ajb ) -- Tl h (a, b ),

 from Lemma 2. 4, since aj,ba-laj,- = ajcba-lc-la;1 for some permutation j - j'
 of {1, n}, by choice of a1, , a-,. Hence

 Lg*TIhjLg(ca, cb) TIlh (gca, gcb) = TK13 (a, b)

 for each g in G; so that

 Tlhj Ihi+1(ca,cb) ~ Tlh Illi+1(a,b) and TIhj ..m(ca,cb) Tlh. I hn(a,b).

 Replacing T by AIh. Ih-1 completes the proof.

 For each finite subset S of G0, the subgroup of G consisting of elements

 h with (h) finite, we assign a linear order h1, h2, hm to its members and

 denote A ihi... Ihm by A IS.

 LEMMA 2. 6. Relative to the family & of finite subsets of Go directed

 by inclusion, the net {AIS} has a (cofinal) subnet weak-operator convergent
 to an operator A, satisfying A,(ca,cb) =A,(a,b) for each c in G and each
 a, b in G such that (ba-1) is finite. A, induces a derivation of Y, which is
 inner if and only if that induced by A is.

 Proof. Since 11 AIS 11 _ 11 A 11, the ball of radius 11 A 11 is weak-operator
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 compact, and AIS induces the same derivation of 2 as A does, the net {A1S)

 has a subnet convergent to AO, and A, induces the same derivation of D? as

 A does. From [1, Lemma 5], A, induces a derivation of Se which is inner if
 and only if that induced by A is. If ba-1 lies in S, then AIS(ca, cb) -A Is(a, b);
 so that Ao(ca,cb) =AO(a,b), for each c in G, from Lemma 2.5 and the fact

 that Ao is the limit of a (cofinal) subnet of {AIS}.
 We may assume, henceforth, that A satisfies (2) (replacing A by AO).

 LEMMA 2.7. Taking B(a,b) as B(e,ba-1), (B(a,b)) is the matrix of

 a (bounded) operator B in h.

 Proof. Let a be the family of finite subsets of U G/Za directed
 (a) infinite

 by inclusion. From Lemma 3. 1, we can choose an element as-1 in G, for

 each S in f, which lies in none of the cosets in S. The net {A - La,*ALas}
 lies in the weak-operator compact ball of radius 2 11 A i( in Se and therefore
 has a (cofinal) subnet weak-operator convergent to some T in this ball.

 We show that T(a,b) =T(e,ba-1) =B(a,b) =B(e,ba-1). Note that

 (A Laa*ALas) (e, h)

 -A (e, h) -A (as, ash) =B (e, h)- B (e, ashas-1)

 B(e, h) -Bh(Zhas-1),

 by Lemma 2. 2. Now Bh tends to 0 at oo on G/Zh, for (A (a, b)) satisfies

 (2) so that Bh(Zha-1) =B(e, aha-1) =0, with (h) finite; and with (h)

 infinite Lemma 2. 3 applies. Thus B(e, h) -Bh(Zhas-1) tends to B(e, h)

 over 5, for if S contains a suitable finite subset of G/Zh, I Bh (Zhas-1) I is small
 since Zhas-1 is not in this subset by choice of as. Hence T(e, h) = B (e, h)

 for each h; so that (B (a, b)) is the matrix for T.

 Proof of Theorem 1.1. Since C(a, b) =A(a, b)- B(a, b), (C(a, b))

 is the matrix of a bounded operator C. Since C(ca, cb) = C(a, b) (Lemma

 2. 2), C lies in 2. Since A B + C with B in S and C in DC, the deriva-

 tion of S induced by A is inner.

 3. A Tauberian result. We now prove the results, concerning groups

 and in particular permutation groups, which were assumed in the previous

 section. The first of these is the following.

 LEMMA 3. 1. A group G cannot be expressed as the union of a finite

 number of right (left) cosets of subgroups with infinite index.

 Proof. Suppose the contrary, and that H1i, . *,Hn is a miinimal set
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 of subgroups of G, each with infinite index in G, such that G can be expressed

 as the union of a finite number of (right) cosets of H<, * * *, HF. Let

 H,g,, - -IIH,,gk be the cosets of H1 which appear in some such expression
 for G, and let HAg be a coset distinct from each H1gj (j = 1, *, k). Then

 Hig C G-Hig, U * - * U Higk,

 and since the right hand side is contained in a finite union of cosets of

 H, ***, Hn, the same is true of H1g and therefore, also, of each H1gj
 (j=1, k ,k). It follows that G can be expressed as a finite union of

 cosets of H2, * * *, HE, contrary to the minimal nature of the set H1, H*,.

 This contradiction proves the lemma.

 COROLLARY 3.2. Let H be a group of permutations of a set X, and

 let S be a finite subset of X such that, for each x in S, the orbit {fr(X) Xr C ll}
 is infinite. Then there exists ir in II such that the sets S. and 7r(S) are
 mutually disjoint.

 Proof. Given x and y in X, let H.,, = {ir: 7r H H and ir(y) = x}. Then
 H., is a subgroup of II, and H,,,,, is either empty or a right coset of H,,.
 If x C S then H-,, has infinite index in II, since H.,, runs through an infinity
 of distinct cosets of H.,, as y runs through the (infinite) orbit of x. By
 Lemma 3. 1 there exists 7r in II such that 7r s H (x, y C 5); and the sets S
 and 7r (S) are then mutually disjoint.

 Before proving the second result which was assumed in Section 2 (Lemma

 3. 7), we require the following definition and two auxiliary lemmas.

 Definition 3. 3. Let H be a group of permutations of an infinite set X,
 and let Y and Z be mutually disjoint infinite subsets of 2. We say that Y

 "Cpenetrates" Z, and write "Y *- Z" if, given any positive integer n, there

 exists 7r in H such that 7r(Y) n z contains at least n members. If Y does
 not penetrate Z, we write "Y -->Z."

 Remark 3.4. Let Y and Z be mutually disjoint infinite subsets of X,
 and let R be a finite subset of 2. Since, for each 7r in H,

 card(ir(Y) n Z} = card{Yf n7r- (z)}

 card{ir(Y) f Z} > card{ir(Y-R) n (Z U R)}-card{R}

 (where "card" denotes the cardinal of the set in question), it is apparent

 that Y * Z if and only if Z <-Y, and that Y <-Z if Y-R Z U R.
 Furthermore, if Y1, . . *, Y,, Z1, . , Zq are pairwise disjoint infinite subsets
 of X, then
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 Yl U Y2 U ... U Yp *Z1 U Z2 U ... U Zq

 if and only if there exist j and k such that Yj *- Zk; for

 card{ir( U Yi) n U Zk) } = card{ 7r (Y) n Zk},
 i k I,k

 and the right hand side of this equation is unbounded, as 7r runs through II,

 if and only if at least one of the summands card{7r (YK) n Zk} is unbounded.

 LEMMA 3. 5. Let II be a transitive group of permutations of an infinite

 set X. Let Y1, *, Y. and Z1, * *, Zn be infinite subsets of X such that

 (i) Y1 C Y2 C ** * CYn, Z1C Z2C.. C&n

 (ii) Ym>X -Ym+, and Zm. *X -Zm+. (m 1, n

 (iii) Y,, and Zn are mutually disjoint.

 Then there exists rr in II such that 7r(Y,) n Z. contains at least n elements.

 Proof. We shall prove by induction on m that, for m 1, * ,n, the
 following statement [m] holds: [m] there exist a sequence (Q1, Q2, ) of
 pairwise disjoint subsets of Y1., each containing just m elements, and a
 sequence (pl,p2, * ) of members of II, such that (p1(Q1),p2(Q2), * ) is a
 sequence of pairwise disjoint subsets of Zm. It is clear that the statement
 [n] implies the conclusion of the lemma.

 Since Y1 and Z1 are infinite sets, the assertion [1] follows at once from
 the transitivity of II. Suppose that [m] has been established for some m
 satisfying 1 ? m < n, and that Qj and pj (j 1, 2, ) have been chosen
 in accordance with [m]. We shall prove [m + 1] in the following form:
 [m + 1] there exist a sequence (R1, R2 . ) of pairwise disjoint subsets of

 Ym+1, each containing just m + 1 elements, and a sequence (Ol, u2, ) of
 members of II, such that (or (R1), 2 (R2), . ) is a sequence of pairwise
 disjoint subsets of Zm+,.

 Suppose that k is a positive integer, and that suitable aj and Rj have
 been chosen for j (if any) such that 1 ? j < k. We shall prove the existence
 of suitable Uk and Rk.

 We begin by noting that there exists x in Ym such that, for an infinity of

 values of r, pr-' (x) C Ym+, R, where R is the finite set R, U R2 U * U Rk1.
 For suppose that no such x exists. Then, given any finite subset Q of Y, R-
 we have pr1 (Q) C (X -Ym+,) U R for all sufficiently large r. It follows

 that Ym -R < > (X - Ym+i) U R, and hence that Ym (- X - Ym+ly contrary to
 hypothesis. This proves the existence of x in Y,n with the stated property.
 If we replace (Pr), and correspondingly (Qr), by suitable subsequences, we
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 may suppose that pr-1(x) C Ym+i- R (r 1,2, ). Since pr(Qr) CZ.
 CX- Ym, while pr(pv-1(X) ) ==xC Y , it follows that pr'-(x) < Qr. By

 recalling the definition of R, we now obtain

 (4) pr' (x) C Ym+1 - R1 U R2 U * * * U Rk_,, prl (X) Qr.

 Since II acts transitively on X, there exists 7r in II such that

 (5) 7,r (x) E Zm+l - a (R,) U Ur2 (R2) U . . . U Sk-l (Rk-, )

 We assert that only a finite number of the sets (7rpl) (Q1),(7rp2) (Q2), . .

 meet (X -Zm+,) U R', where

 R' o1 (R1) U U2 (R2) U U Sk-1 (Rk1)

 For suppose this assertion is false. Then since pl(Q), P 2)( Q are pairwise
 disjoint subsets of Z., and an infinity of their images (7rpi)(Q,), (7rp2)(Q2), . .
 under 7r meet (X - Zm+i) U R', it follows that -r maps an infinite subset of

 Z, into (X- Zm+i) U Y'. Since R' is finite, 7r maps an infinite subset of Zm
 into X- Zm+, and so Zm> X- Zm+i, contrary to hypothesis. This proves

 the assertion made in the first sentence of this paragraph. Furthermore, si-nce

 Ql, Q2, * * are pairwise disjoint, only a finite number of them meet the finite
 set Rl U R2 U . . . U Rk-1. It follows that, by avoiding a finite set of values,
 we may choose r such that

 (6) QrC Y-R,U R2 U . . . URk-1,

 (7) (7rpr) (Qr) C Zm+l -a (R,) U cr2 (R2) U . . . U rk-l (Rk1).

 If we now define

 Rk Qr U {pr1 (X) } Uk 7rpr

 then it follows at once from (4), * , (7) that Rk consists of just M + 1
 elements of Ym+, and does not meet any of the sets R,, *< , R4-1, while rk (Rk)
 is a subset of Zm+l which does not meet any of the set a,(R,), * * k-I (Rk,_).

 This inductive construction for R7k and luk proves the statement [m + 1],
 and so completes the proof of Lemma 3. 5.

 LEMMA 3. 6. Let II be a transitive group of permutations of an infinite

 set X. Then

 (i) if X = Y U Z, where Y and Z are mutually disjoint infinite subsets-
 of X, then Y*->Z;

 2n

 (ii) if, for each n = 2, 3, , X is expressed in the form X = U Xj(n),.
 j=1



 DERIVATIONS OF OPERATOR GROUP ALGEBRAS. 571

 where the sets Xj(n) (j =, * *,2n) are infinite and pairwise disjoint, and

 (8) Xj(n) X2 (n+l) U X2j(n+l) (j 1, . . . , 2n; n =2, 3, * *)

 then there exist integers n, j, kc such that n> 2 1 _j < j< + 2 _ c_< 2n, and
 *-i(n) >X(n).

 Proof. (i) Suppose that Y *-+->Z. Given any positive integer n, define

 Ym =- Y, Zm, Z (m = 1,. , n). The hypotheses of Lemma 3. 5 are satisfied,
 so there exists r in II such that 7r(Y) n z contains at least n elements. Hence,

 despite our assumption to the contrary, Y<-> Z.

 (ii) Suppose that there are no integers n, j, kc with the stated properties.

 Given any n (?2), we define Ym and Zm (mf 1 , 1 * 2n-2) by

 m n

 (9) Ymn U X(n) Zm = U X2n+lr(n).
 r=l r=1

 Since
 2n 2n

 X - Ym+1 U Xr('n), X - Zm+= U X2n+l-r (n)
 r=m+2 r=m+2

 our assumption that Xj(n) *- i-> X7(n) when k ? j + 2 implies that

 Ym< 1>X - Ym+i and Zm *+- X - Zm+1

 (cf. Remark 3. 4). Hence the conditions of Lemma 3. 5 are satisfied (with

 n replaced by 2n-2), so there exists 7r in II such that

 7T (y2n-2) n Z2n-2

 contains at least 2n-2 elements. Since, by virtue of (8) and (9),

 Y2n-2 Xl (2) Z2_-2 - X4(2),

 we have shown that, given any integer n (> 2), there exists 7r in II such

 that 7r(X1(2)) n X4(2) contains at least 2n-2 members. Thus X1(2) <-Y X4(2) and,

 despite our assumption to the contrary, the conclusions of part (ii) of the

 lemma are satisfied when n = 2, j = 1, Ic =4. This contradiction implies

 the existence of some n, j, kc with the desired properties.

 The following result will be subsumed in Theorem 3. 8, but is needed

 during its proof.

 LEMMA 3. 7. Let II be a group of permutations of a set X, let M be

 a positive real number, and let u be a complex valued function which is

 defined on X and satisfies
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 (10) E I U (X) _U (7r(X) ) 12 ':: M2 (r e II)

 Let Z be an infinite orbit. Then lime, u exists on Z.

 Proof. Let u' =u I Z, II'= {7r I Z: 7rE II}. Then II' is a transitive
 group of permutations of Z, and u' satisfies the same hypotheses relative to Z

 and II' as does u relative to X and II. We have to show that lim. u' exists

 on Z. Hence it is sufficient to consider the case in which II acts transitively

 on X. Furthermore, we may assume without loss of generality that u is a

 real valued function.

 Suppose therefore that H is a transitive group of permutations on an

 infinite set X, and that u is a real valued function which is defined on X and

 satisfies (10). Given x and y in X, there exists 7r in II such that y ==r (x),

 and it follows from (10) that I u(x) -u(y) ? < M. Hence u is bounded on
 X, and therefore has finite lower and upper limits. We define

 (11) a =lim,, u, b lim"', u.

 We shall assume the non-existence of lim iu, so that a < b; in due course

 we shall obtain a contradiction.

 We begin by proving the existence of real numbers c and d satisfying

 a < c < d < b and such that, if

 (12) Q={x: xCX,u(x) <c}, R ==x: xCX,u(x) ?d},

 then Q <->R. We deal separately with two cases.

 Case 1. The closutre of the set {u(x): xE X} does not contain the

 whole of the compact interval [a, b]. In this case we may choose c and d so

 that a< c < d < b and u(x) [c,d] (xc X). The sets Q and R defined

 by (12) are infinite (by (11)) and mutually disjoint, and Q U R tX. By

 Lemma 3.6 (i), Q*->R.

 Case 2. The closure of {u(x): x C X} contains [a, b]. Given any

 integer n (? 2), let dnh= 2-n (b-a), and define Xj(n) (j l<, - 2n) by
 Xj(n) ={X: x EX,a+ (j-1 )d?-u (x) < a?+ jd} (j = 2, . 2n_ 1.)

 X,(n)-{X x E X, u (x) <a+dn} and X,.n()-={x: X Xu (x) b-dn}.
 The hypotheses of Lemma 3. 6 (ii) are satisfied, so there exist integers n, j, k

 such that n > 2, 1 < j < j + 2 < k l<!2n and X/(n) <_> Xk(7). If we now take
 c =a+ jdn, d=a+ (kl-1)d,, and define Q andR by (12), then Xj(n)CQ
 and Xk(n) C R, so Q <-> R.

 In both cases, we have proved the existence of real numbers c and d



 DERIVATIONS OF OPERATOR GROUP ALGEBRAS. 573

 with the stated properties. Suppose now that n is any positive integer. Since

 Q *-> R, we may find 7r in 11 and a set S consisting of n members of Q, such

 that -r(S) CR. From (10) and (12) it follows that

 M2~> 2 IU(X)_Uq(7r(X))J2~>n(d- c)2.
 ,E S

 If n is sufficiently large, we have a contradiction, so the lemma is proved.

 THEOREM 3. 8. Let 11 be a group of per?mutations of a set X, let M be
 a positive real number, and let u be a complex valued function which is defined

 on X and satisfies

 (13 ) 2 I u (x) _ u (,7r (x) ) I12 C 11I2 (7r CE)
 xcEX

 Then u can be expressed (uniquely) in the form ul + u2, where ul and u2

 are complex valued functions defined on X, u2 is constant on each orbit and
 is bounded if u is bounded, while

 (14) I IU,(X) 12 1A<
 vEX

 and u1 satisfies the following condition: if Y is the union of a finite family
 of finite orbits, and 11' {7r j Y: 7r E }, then

 (15) u 1(7t'(y) )0 (y E Y).

 Proof. Let x E X. If the orbit II(x) of x is finite, we define u2 (x)

 to be the mean value of u on H1(x). If 11(x) is infinite, we define u2(x)

 to be lim, u on 11(x); the existence of the limit follows from Lemma 3. 7.
 The function u2 defined in this way is constant on each orbit, and is bounded

 if u is bounded. Let ul = U - u2. Then ul has mean value zero on each
 finite orbit, and has limit zero on each infinite orbit. Furthermore, since

 U22(X) =U2(ir(X)) whenever xE X and r E 11, it follows that u1 satisfies (13).

 Let Y be the union of a finite family of finite orbits, and let II'= {r I Y:
 7rE]II}. If yEY and p,rE 11', then p(y)- = (y) if and only if p and a
 belong to the same left coset of the subgroup (7rt': t'C 1H', t'r(y) =y} of II';
 so, if n is the order of this subgroup, and z C 11(y), then there are just n

 elements 7r' in 11' such that 7r'(y) = z. Since ul has mean value zero on 11(y),

 I U (7r, (y) ) n E u tt(z) O
 7r' P IE ; H t Z( H (V)

 Apart from the (straightforward) question of the uniqueness of ul and
 U2, it remains only to prove (14). For this, it is sufficient to show that, if
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 Q is any finite subset of X and e is any positive real number, then there exist

 complex numbers a(x) and b (x) (x E Q) such that

 (16) la(x) I <,e, {b(x) I <,e (xE Q)
 and

 (17) Eu(x) -a(x) 1 2 + |u (x) -b (x) 12 _ M2.
 x EQ x EQ

 Suppose that we are given such Q and E. We define

 (18) R =={x: xE Q and I(x) is finite}, Y= U II(x),
 $ER

 (19) S =={x: x EQ and II(x) is infinite}, Z=-U II(x).
 XES

 Then Y is the union of a finite family of finite orbits. Let II'-{r Y: X l E I},

 let Ic be the order of II', and choose pli , pk in II such that II' {pj Y
 j I, . .,kc}.

 Since u1 has limit zero on each infinite orbit, while Z is the union of a

 finite family of infinite orbits, it follows that u1 has limit zero on Z. Hence

 the sets Si and S2, defined by

 S S U {x: x C Z and I u1(x) c
 (20)S2=SUQS)U

 S2 Sl U pl (Si) U . . . U pk (Si),

 are finite subsets of Z. By Corollary 3. 2, there exists 7v in II such that the

 sets S2 and 7r(S2) are mutually disjoint. In particular, for each j ( 1, * * *, k),
 the sets S1 and (7rpj) (S1) are mutually disjoint. Since (7r Y) E II,
 l' (7r I Y)' {{7rpj I Y: j= ,1y *,k1}. Let 7rj=7p3 (j= =1 * k), so
 that

 (21) ]['= {rjl Y:j=l<

 Furthermore, for each j, the sets S1 and rj(S1) are mutually disjoint, whence

 so are 7rj-1 (S1) and Si.
 If x E S then, by (19), (20) and the stated properties of 7rj, it follows

 that 7rj(x) and 7rj-'(x) lie in Z-5S1; thus, again by (20),

 (22) lU,('7rj (X)) <e f |Ul (7rj-l (X)) < e (x ES;j I **,)

 By (21) and (15),

 'Y E Ui(Y)U1(7j(Y)) U1(y) E U1(7'(Y))
 j=1 y EY y EY Ell'

 0,



 DERIVATIONS OF OPERATOR GROUP ALGEBRAS. 575

 so there is at least one value of j such that

 Rl Ul u(y) Ul (7j (y)) 0 .
 VE Y

 With this value of j,

 E I U1 (y) Ui (irj(y) ) 12.
 VE Y

 = E {I Ul((y) 2+ IUl(rj(y) ) 12 2Rl[Ul(y)UlGj(Y) )j ] }
 lIE Y

 ' { {I Ul (y) 2+I Ul (,rj (y) ) 12},
 VE Y

 and since 7rj (Y) = Y,

 (23) i Iui(y) ui(,rj(y))j 2 ? Iu (y)12.
 hEY VEY

 Since S C S1, the sets S and 7rj-1 (S) are mutually disjoint, and it is clear
 from (18) and (19) that neither of them meets Y. From (23), since R C Y,

 and since u1 satisfies (13),

 U2 Iu(y) 2+ U I u(X) _U (7rj (X)) 12
 VER XES

 + E I Ut (X)_ U (rj- (X) ) 12
 (24) XES

 -C E ~~I U, (X) _U, (7rj (X) ) I12
 W, YOSUrj-'(S)

 ?M2.

 Since Q RU S, we may define a(x) and b(x) (xc Q) by

 a (x) ul (7rj (x) ), b(x) ul (7rj-1 (x))(xC E)

 and a(y)=-b(y) O=0 (yER). It follows from (22) and (24) that (16)

 and (17) are satisfied. This completes the proof of (14).

 It is apparent that u1 is determined to within an additive constant on

 each orbit Z. That u1 is uniquely determined (on each orbit, and hence

 throughout X) now follows, from the condition E I u1 (x) 2 < if Z is

 infinite, and from the fact (deduced from (15) ) that u1 has mean value zero

 on Z if Z is finite. This completes the proof of Theorem 3. 8.

 Remark 3. 9. If, in Theorem 3. 8, the inequalities (13) and (14) are

 replaced by

 E I u(x)-u(7r(X) ) 12 < X (,7 E )
 XvEX

 and

 E uE (x)<o $vEX
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 respectively, then the statement so obtained is false. Simple counter-examples

 occur, for instance, when X is an arbitrary infinite set and II consists of those

 permutations of X each of which moves only a finite number of elements.
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