AUTOMORPHISMS OF OPERATOR ALGEBRAS

BY RICHARD V. KADISON¹ AND JOHN R. RINGROSE

Communicated by P. R. Halmos, June 29, 1966

1. Introduction. We describe certain results concerning the structure of the group $\alpha(\mathfrak{A})$ of automorphisms of a C^* -algebra \mathfrak{A} . They will appear, together with their proofs, in Communications in Mathematical Physics.

All mappings of \mathfrak{A} we consider preserve the * structure. With ϕ a faithful representation of \mathfrak{A} on the Hilbert space \mathfrak{K} , we say that an automorphism β of $\phi(\mathfrak{A})$ is weakly-inner when there is a unitary operator U in the strong-operator closure $\phi(\mathfrak{A})^-$ of $\phi(\mathfrak{A})$ such that $\beta(A) = UA U^*$ for all A in $\phi(\mathfrak{A})$. We denote by $\iota_{\phi}(\mathfrak{A})$ the subgroup of $\alpha(\mathfrak{A})$ consisting of those α for which $\phi \alpha \phi^{-1}$ is weakly-inner, by $\epsilon_{\phi}(\mathfrak{A})$ those α such that $\phi \alpha \phi^{-1}$ extends to an automorphism of $\phi(\mathfrak{A})^-$, by $\sigma_{\phi}(\mathfrak{A})$ those α such that there is some unitary operator U on \mathfrak{K} for which $\phi \alpha \phi^{-1}(A) = UA U^{-1}$ when A lies in $\phi(\mathfrak{A})$ and by $\pi(\mathfrak{A})$ the intersection of all $\iota_{\phi}(\mathfrak{A})$. We refer to the elements of $\sigma_{\phi}(\mathfrak{A})$, $\epsilon_{\phi}(\mathfrak{A})$ and $\pi(\mathfrak{A})$ as the *spatial, extendable, permanently weakly* (for brevity, $\pi -)$ *inner* automorphisms, respectively, (of $\phi(\mathfrak{A})$ in the first two instances and \mathfrak{A} in the last). We denote by $\iota_0(\mathfrak{A})$ the group of inner automorphisms of \mathfrak{A} .

The group $\alpha(\mathfrak{A})$ consists of operators on the Banach space \mathfrak{A} each of which is isometric so that $\alpha(\mathfrak{A})$ acquires a norm (or metric) topology as a subset of the bounded operators on \mathfrak{A} . We consider $\alpha(\mathfrak{A})$ and the various subgroups defined as provided with this topology. We denote by $\gamma(\mathfrak{A})$ the connected component of the identity element ι of $\alpha(\mathfrak{A})$.

2. The automorphism group. It has been proved recently [3], [4], [5] that each derivation δ of a C*-algebra \mathfrak{A} acting on the Hilbert space \mathfrak{K} is weakly inner—that is, there is a B in \mathfrak{A}^- such that $\delta(A) = BA - AB$ for all A in \mathfrak{A} . Combining this result with those of Nagumo-Yosida and some series computations, we have:

LEMMA 1. Each norm-continuous one-parameter subgroup of $\alpha(\mathfrak{A})$ lies in $\pi(\mathfrak{A})$.

Spectral theory and von Neumann algebra considerations yield:

LEMMA 2. If α is an inner automorphism of a von Neumann algebra

¹ Completed with the partial support of NSF and ONR.

R such that $||\alpha - \iota|| < 2$; then there is a unitary operator U in R with spectrum $\sigma(U)$ in the half-plane $\{z: \operatorname{Re} z \ge \frac{1}{2}(4 - ||\alpha - \iota||^2)^{1/2}\}$ such that $\alpha(A) = UAU^*$ for all A in R.

Geometrically, $\sigma(U)$ is contained in the arc of the unit circle containing 1 with endpoints midway between 1 and the points of the circle at distance $||\alpha - \iota||$ from 1. Employing the automorphism β of the factor of type II₁ associated with the free group on three generators arising from a cyclic permutation of these generators, we see that the conclusion of the lemma fails in this case $(||\beta - \iota|| = 2)$.

Disjoint representation together with von Neumann algebra methods permit us to prove:

LEMMA 3. If α is an automorphism of the C*-algebra \mathfrak{A} acting on \mathfrak{K} such that $||\alpha - \iota|| < 2$, then α extends to an automorphism $\overline{\alpha}$ of \mathfrak{A}^- such that $||\overline{\alpha} - \iota|| = ||\alpha - \iota|| < 2$.

Techniques of the theory of operator-valued analytic functions combined with Banach algebra methods (much like those of [2], or directly, using [2; Corollary 3]) give:

LEMMA 4. If \mathfrak{A} is a C*-algebra and U a unitary operator acting on 3C such that $\alpha(A) = UAU^*$ lies in \mathfrak{A} for all A in \mathfrak{A} and $\operatorname{Re} \lambda > 0$ for each λ in $\sigma(U)$ then α lies on a norm-continuous one-parameter subgroup of $\alpha(\mathfrak{A})$ and is π -inner.

The outer automorphism of the II₁ factor associated with the free group on two generators and the unitary operator (multiplied by $(-1)^{1/2}$) arising from interchanging those generators illustrate the fact that the conclusion of the above lemma need not hold if the hypothesis is weakened to allow $\sigma(U)$ to lie in the *closed* right halfplane. Note that Lemmas 2 and 4 allow us to conclude that Lemma 2 holds with "inner" deleted and \mathfrak{R} a C*-algebra (replacing the second occurrence of \mathfrak{R} by \mathfrak{R}^-).

The preceding results and some representation theory for C^* -algebras allow us to conclude:

THEOREM 5. If α is an automorphism of a C*-algebra \mathfrak{A} and $||\alpha - \iota|| < 2$ then α lies on a norm-continuous one-parameter subgroup of $\alpha(\mathfrak{A})$. Such subgroups generate $\gamma(\mathfrak{A})$ (as a group); and $\gamma(\mathfrak{A})$ is an open subgroup of $\alpha(\mathfrak{A})$, each element of $\gamma(\mathfrak{A})$ being π -inner. Since

 $\gamma(\mathfrak{A}) \subseteq \pi(\mathfrak{A}) \subseteq \iota_{\phi}(\mathfrak{A}) \subseteq \sigma_{\phi}(\mathfrak{A}) \subseteq \epsilon_{\phi}(\mathfrak{A}) \subseteq \alpha(\mathfrak{A}),$

all these subgroups are open as well as closed in $\alpha(\mathfrak{A})$. Moreover, $\gamma(\mathfrak{A})$, $\pi(\mathfrak{A})$ and $\iota_0(\mathfrak{A})$ are normal subgroups of $\alpha(\mathfrak{A})$; while $\iota_{\phi}(\mathfrak{A})$, $\sigma_{\phi}(\mathfrak{A})$ and

1060

 $\epsilon_{\phi}(\mathfrak{A})$ need not be. In addition $\iota_{\phi}(\mathfrak{A})$ is a normal subgroup of $\epsilon_{\phi}(\mathfrak{A})$, though $\sigma_{\phi}(\mathfrak{A})$ need not be.

As an immediate consequence, we have:

1966]

COROLLARY 6. Each (norm) continuous representation of a connected topological group in $\alpha(\mathfrak{A})$ has range consisting of π -inner automorphisms of \mathfrak{A} .

COROLLARY 7. If \mathfrak{A} has a faithful representation ϕ as a von Neumann algebra then $\iota_0(\mathfrak{A}) = \gamma(\mathfrak{A}) = \pi(\mathfrak{A}) = \iota_{\phi}(\mathfrak{A})$; and each element of $\gamma(\mathfrak{A})$ lies on some norm-continuous one-parameter subgroup of $\alpha(\mathfrak{A})$.

The situation described by the results of this section is sharply in contrast with that which prevails when $\alpha(\mathfrak{A})$ is provided with topologies weaker than its norm topology. In [1] Blattner shows that each locally compact group satisfying a countability axiom has a strongly-continuous unitary representation by operators inducing outer automorphisms of a factor of type II₁ (except for the unit element).

3. Examples. The examples which follow illustrate, for specific C^* -algebras, various automorphism phenomena not described by the results of §2.

(a) If \mathfrak{A} has a norm-dense subalgebra which is the ascending union of * subalgebras (with the unit of \mathfrak{A}) \mathfrak{M}_n isomorphic to the algebra of operators on 2^n -dimensional Hilbert space, the automorphism α of \mathfrak{A} which is (successive) transposition about both diagonals of each \mathfrak{M}_n is weakly-inner in some (irreducible) representation of \mathfrak{A} on $\mathfrak{L}_2(0, 1)$ provided with Lebesgue measure with [0, 1] partitioned by dyadic rationals while it is not extendable (and *a fortiori* not weakly-inner) in some (irreducible) representation of \mathfrak{A} on $\mathfrak{L}_2([0, 1), \mu)$, where $\mu(S)$ is the number of dyadic rationals in S and [0, 1) is partitioned by leftclosed, right-open dyadic rational subintervals. In this case, some $\iota_{\phi}(\mathfrak{A})$ is distinct from $\pi(\mathfrak{A})$. This can be used to show that $\iota_{\psi}(\mathfrak{A}_0)$ and $\epsilon_{\psi}(\mathfrak{A}_0)$ are not normal in $\alpha(\mathfrak{A}_0)$ for some faithful representation ψ of $\mathfrak{A}_0(=\mathfrak{A} \oplus \mathfrak{A})$.

(b) The sum of the scalars with the compact operators gives an example of a C^* -algebra with unit for which all automorphisms are weakly-inner (in the infinite-dimensional irreducible representation) but many are not inner. In this case, $\gamma(\mathfrak{A}) = \alpha(\mathfrak{A})$.

(c) With \mathfrak{M} a factor of type II₁ having coupling 1 acting on separable Hilbert space and \mathfrak{C} the compact operators, the linear span of \mathfrak{M} and \mathfrak{C} is a C^* -algebra \mathfrak{A} . Denoting the given representation of \mathfrak{A} by ϕ , we have $\iota_{\phi}(\mathfrak{A}) = \alpha(\mathfrak{A})$. Each nonscalar unitary operator U' in \mathfrak{M}' such that ||U'-I|| < 1 induces an automorphism α of \mathfrak{A} for which $||\alpha-\iota|| < 2$; so that α is π -inner, yet α is not inner.

(d) Denoting the algebra of $n \times n$ matrices by \mathfrak{M}_n and by C(X)the algebra, under pointwise operations, of complex-valued continuous functions on the compact-Hausdorff space X, provides us with a class of C^* -algebras $C(X) \otimes \mathfrak{M}_n(=\mathfrak{A})$ for which $\gamma(\mathfrak{A}) \subseteq \iota_0(\mathfrak{A}) \subseteq \pi(\mathfrak{A})$ $\subseteq \alpha(\mathfrak{A})$. The group of automorphisms of \mathfrak{A} which leave its center $C(X) \otimes \{\lambda I\}$ elementwise fixed coincides with $\pi(\mathfrak{A})$. Moreover $\pi(\mathfrak{A})$ is isomorphic to the group of continuous mappings of X into $\alpha(\mathfrak{M}_n)$ (which is $U(n)/T_1$, where U(n) is the *n*-dimensional unitary group and T_1 , its center, is the circle group). The group of mappings which "lift" from $U(n)/T_1$ to the bundle space U(n) coincides with $\iota_0(\mathfrak{A})$; and $\gamma(\mathfrak{A})$ is the subgroup consisting of those mappings into $U(n)/T_1$ homotopic to the constant mapping (onto the unit T_1). Thus $\pi(\mathfrak{A})/\gamma(\mathfrak{A})$ is the group of homotopy classes of mappings of X into $U(n)/T_1$ and $\iota_0(\mathfrak{A})/\gamma(\mathfrak{A})$ those classes which can be lifted to U(n).

Since $U(n)/T_1$ is isomorphic to $SU(n)/Z_n$, where Z_n , the center of SU(n), is the group of *n*th roots of unity, $\pi_1(U(n)/T_1) \approx Z_n$; and the bundle $\{U(n), p, U(n)/T_1, T_1, T_1\}$ (*p* the natural projection of U(n) onto $U(n)/T_1$) does not have a cross section (since $\pi_1(U(n)) \approx Z$). Taking X as $U(n)/T_1$, the identity mapping cannot be lifted so that $\iota_0(\mathfrak{A}) \neq \pi(\mathfrak{A})$. The mapping $UZ_n \rightarrow U^nT_1$ of $SU(n)/Z_n$ into $U(n)/T_1$ can be shown to be essential by using $\pi_3(U(n)) \approx Z$ and the exactness of the homtopy sequence of our bundle. Thus $\gamma(\mathfrak{A}) \neq \iota_0(\mathfrak{A})$.

With X taken as T_1 , each mapping of X into $U(n)/T_1$ can be lifted to U(n) since the fibre is arcwise connected; so that $\iota_0(\mathfrak{A}) = \pi(\mathfrak{A})$. Using a generator of $\pi_1(U(n)/T_1)$, we have an essential mapping of X into $U(n)/T_1$, so that $\gamma(\mathfrak{A}) \neq \iota_0(\mathfrak{A})$.

Taking X to be the 2-skeleton of a simplicial decomposition of $U(2)/T_1$ (homeomorphic to projective 3-space), we have $H^1(X, \mathbb{Z})$ is 0; so that each mapping of X into T_1 is inessential (as is each mapping of X into S^3). Thus each mapping of X into U(2) (homeomorphic to $T_1 \times S^3$) is inessential, and $\iota_0(\mathfrak{A}) = \gamma(\mathfrak{A})$. However, the identity mapping of X onto itself does not lift since $\pi_2(T_1) = 0$, and there would be no obstruction to extending this cross section over X to one over $U(2)/T_1$ (while we have seen that these bundles do not have cross sections).

Denoting by $\mathfrak{A}_{m,n}$ the C^* -algebra $C(S^m) \otimes \mathfrak{M}_n$, universal bundle techniques allow us to show that $\iota_0(\mathfrak{A}_{m,n}) = \pi(\mathfrak{A}_{m,n})$ for all $m, n = 1, 2, \cdots$; and Bott's periodicity theorem tells us that $\gamma(\mathfrak{A}_{m,n}) = \pi(\mathfrak{A}_{m,n})$ for even m < 2n while $\pi(\mathfrak{A}_{m,n})/\gamma(\mathfrak{A}_{m,n}) \approx \mathbb{Z}$ for odd $m \neq 1$ less than 2n.

Bibliography

1. R. Blattner, Automorphic group representations, Pacific J. Math. 8 (1958), 665-677.

2. L. Gardner, An invariance theorem for representations of Banach algebras, Proc. Amer. Math. Soc. 16 (1965), 983-986.

3. R. Kadison, Derivations of operator algebras, Ann. of Math. 83 (1966), 280-293.

4. R. Kadison and J. Ringrose, Derivations of operator group algebras, Amer. J. Math. 88 (1966), 562-576.

5. S. Sakai, Derivations of W*-algebras, Ann. of Math. 83 (1966), 273-279.

University of Pennsylvania and University of Newcastle, England