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$1. INTRODUCTION 

Two BASIC constituents of a physical system are its family 2I of observable attributes and 

the family S of states in which the system can be found. In classical (particle) mechanics, 

the observables are algebraic combinations of the (canonical) coordinates and (conjugate) 

momenta. Each state is described by an assignment of numbers to these observables-the 

values certain to be found by measuring these observables in the given state. The totality 

of numbers associated with a given observable is its spectrum. In this view of classical statics, 

the observables 21 are represented as functions on the space S of states-they form an 

algebra (necessarily commutative) relative to pointwise operations. The dynamics (or law 

of motion) of this system describes the way the states evolve in time (i.e. specifies trajectories 

through states in S). 

The experiments involving atomic and sub-atomic phenomena made it clear that this 

Newtonian view of mechanics would not suffice for their basic theory. Speculation on the 

meaning of these experimental results eventually led to the conclusion that the only physic- 

ally meaningful description of a state was in terms of an assignment of probability measures 

to the spectra of the observables (a measurement of the observable with the system in a given 

state will produce a value in a given portion of the spectrum with a specific probability). 

Moreover, it was necessary to assume, in this physical realm, that a state which assigns 

a “definite” value to one observable (position) assigns a dispersed measure to the spectrum 

of some other observable (momentum)--the amount of dispersion involving the experimen- 

tally reappearing Planck’s constant (The Uncertainty Principle). Further analysis shows 

that this entails the non-commutativity of the algebra of observables. 

The search for a mathematical model which could mirror the structural features of this 

system and in which computations in accord with experimental results could be made pro- 

duced the (possibly unbounded) self-adjoint operators on a Hilbert space as the observables 

and the unit vectors (up to a complex multiple of modulus 1) as corresponding to the states. 

This correspondence between vectors and states is made as follows: if A is a (bounded) 

self-adjoint operator and a(A) is its spectrum, the state corresponding to the unit vector x 

t This paper was completed in part while the author was an Alfred P. Sloan Fellow and in part during 
the tenure of an NSF grant. 
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assigns the measure to o(A) which has as “nth moment” (A”x, x). The dynamics of such a 

system is assumed to be given by a (strongly-continuous) one-parameter unitary group 

t -+ UI, (the integrated form of the Schrodinger Wave Equation-the system initially in the 

state corresponding to x will evolve at time t into the state U,x). From the mathematical 

viewpoint, the description of the trajectories t + U_,A U, of observables also determines 

the dynamics, for the probability measure assigned to the spectrum of U_ tA U, by the state 

corresponding to x is the same as that assigned by U,x to the spectrum of A. The view of 

dynamics as states transforming in time is sometimes called “the Schrodinger Picture” 

and that of the “moving observables”, “the Heisenberg Picture”. 

The structure discernible in the physics of early quantum mechanics did not “force” 

this mathematical model (i.e. no representation theorem involving operators on Hilbert 

space was proved)-and later investigation showed that no such theorem is possible on the 

basis of this general structure (cf. [16, 221 for a discussion of this). This model is the simplest 

compatible with the additional structure needed. More recent studies have indicated that 

all self-adjoint operators may not be adequate as the model for the algebra of observables of 

every physical system. The C* algebras are a long step from this special model, but still not 

into the chaos of abstract structures consistent with the general features of physical systems. 

(See $2 for definitions.) 

Proceeding from the (ad hoc but considerably weakened) assumption that the (bounded) 

observables of a physical system are the self-adjoint elements of a C* algebra and some 

plausible (general) physical assumptions about the way states evolve in time, we shall 

derive as much of the usual formulation of (quantum) dynamics as seems possible. Under 

general assumptions, we derive something close to the Heisenberg Picture from the Schrb- 

dinger picture (Theorem 3.3). (Even if the dynamics is given by a one-parameter unitary 

group t -+ U, it is not a priori clear that the automorphism of all bounded operators induced 

by U, will map the algebra of bounded observables into itself, if this algebra is not all 

bounded operators.) Adding conditions (on the algebra of observables and on the dynami- 

cal group), by steps, we derive a full analogue of the Schrodinger Picture (Theorem 3.4) 

and, then, the description of the dynamics in terms of a one-parameter unitary group (or 

Hamiltonian-Theorem 3.8). We note that deductive treatments of quantum dynamics 

(with all self-adjoint operators as model for the observables) are to be found in lecture notes 

of E. P. Wigner (we are told by A. S. Wightman) and in [16]. The dynamics (motions) of 

systems (with a C* algebra as model) is considered in [23 ; Section 51 from the point of view 

of the Heisenberg Picture, for the purpose of analyzing their stationary states. 

The (physical) scope of this paper is broader than the deductive derivation of (non- 

relativistic) quantum dynamics which we have chosen as unifying descriptive theme; since 

the groups whose representations by transformations of families of states we consider 

include such classes as the simply-connected, semi-simple Lie groups (cf. Theorem 4.13). 

In $2, we list some preliminary definitions and results. A review of the universal 

representation of a C* algebra, its relation to the second dual of the algebra, and its use in 

completing the description of (Jordan) C* homomorphisms of C* algebras given in [8; 
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Theorem lo] are included in this section. Section 3 contains the statements of the main 

results in terms of dynamical systems along with accompanying discussion and definitions. 

Their proofs as well as more general auxiliary results are contained in $4. 

We must thank colleagues too numerous to name for helpful discussions. Special 

thanks go to G. Mackey, I. Segal, D. Shale and A. Wightman for valuable comments on the 

physical background, E. Effros for the reference [4], G. Mackey for the reference to his 

paper [17] ; and to S. Eilenberg, 0. Goldman and S. MacLane for help with the cohomology 

of groups. 

52. NOTATION AND PRELIMINARY RESULTS 

We deal with complex Hilbert spaces 2, denoting by (x, y) the inner product of two 

vectors x, y in 2, and by llx/\ the norm (or length) of x. Our operators are bounded unless 

otherwise noted; and the norm (or bound) of an operator A is denoted by /A I/. We denote 

by a’(X) the set of all operators on 2, and refer to the metric topology induced on it by 

the norm as the norm topology. A self-adjoint family of operators is one which contains A*, 

the adjoint of A, if it contains A ; and a * algebra of operators is a self-adjoint family which 

is an algebra relative to the usual operations on operators. A C* algebra is a Banach 

algebra with a distinguished, conjugate-linear, anti-automorphic involution (* operation) 

which is * isomorphic (and isometric) with a norm-closed * algebra of operators (a C* 

algebra of operators). In essence, the result of [6] says that a Banach algebra with such an 

involution which satisfies (jA*AII = I(A* I/ . jlA (/ is a C* algebra. For the most part, our 

algebras contain an identity. 

We shall also be concerned with the weak and strong operator topologies on a(&‘) 

(the weakest topologies on g(s) such that the mappings A --f (Ax, x) and A --f Ax are 

continuous, respectively, for each x in X), and with the * algebras of operators called ~011 

Neumann algebras, closed in these topologies (closure in either implies closure in the other). 

For their theory, we make general reference to [3]. The case of von Neumann algebras whose 

centers consist of scalar multiples of the identity operator Z, called factors [18] and abelian 

von Neumann algebras are of special interest. Those abelian von Neumann algebras which 

are generated by their minimal projections (equivalently, whose identity is the sum of their 

minimal projections), we call totally atomic. We denote the weak closure of a family 9 of 

operators by F-, and the set of operators in g(X) which commute with it (its commutant) 

by P-‘. 

A * homomorphism 4 of a C* algebra21 into B(X) is called a representation of 91 (on X). 

The image $(cLI) of such a representation is norm closed (a C* algebra of operators) [20]. 

The representation obtained by composing 4 with restriction of the operators in &PI) to a 

(closed) invariant subspace is called a subrepresentation of 4. We use subsyace to mean 

closed linear manifold; and adopt the convention of identifying terminology and notation 

for a subspace and the orthogonal projection operator having it as range (where no confusion 

can arise). With 9 a family of operators and I/ a set of vectors, we denote by [FV’V] the 

subspace spanned by {Ax : A in 9 and x in V}. A separating projection E for a * algebra of 

operators is one such that AE = 0 implies A = 0, if A is in the algebra. A C* homomorphism 
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(or C* representation) 4 of a C* algebra ‘5B is a linear * preserving mapping of ‘?I into 

B’(Z) such that &A’) = (p(A)2, for each A in ‘8 (equivalently, $(AB + BA) = &4)4(B) + 

4(%4(4). 

A state p of a C* algebra ‘8 is a linear functional such that p(Z) = 1 and p(A) 2 0 if 

A 2 0 (i.e. p is a normalized, positive, linear functional on 5X). The value, p(A), is the 

expectation of the observable A in the state p when these mathematical entities are assigned 

their physical interpretation. This view of states (as functionals) makes use of the familiar 

identification of a measure with its associated integration process. We define the linear 

functional w,,~ on B(X) by w._(A) = (Ax, y), and denote those functionals for which 

y = x by 0,. With x a unit vector, o, is a state of L’@(Z). Its restriction, w,]cU, to Cu (in 

general, we denote the restriction of a mapping 4 to K by $]K) is called a wctor state of 91. 

Each state of Cu has norm 1; and, so, lies in the continuous dual Q of Cu. We shall make use 

of the w* topology on a, the weakest topology relative to which the mappings p -+ p(A) 

are continuous for each A in Iu, and its associated w* uniform structure whose neighbor- 

hood entourages are given by a positive E and a finite set of elements A,, . . . , A, of 5!I as 

N ~,A,,...,A,(Po) = {PI IP(Aj) - P,(Aj)l < s2.i = 1, ... > n, p in a}. The set of all states of $8 will 

be denoted by S(2I). It is convex and compact in the w* topology. From the Krein-Milman 

theorem, S(Z) is the closed convex hull of its extreme points-the pure states of ‘Ql. In 

general, a mapping 4 of a convex subset K of a vector space into another vector space will 

be said to be an affine mapping when 4(ak + (1 - a&‘) = a4(k) + (1 - a)&k’), where 

OlUll. 

For the purpose of distinguishing the spectra of the elements of a C* algebra %?I, we shall 

deal with special convex subsets of S(a). 

DEFINITION (2.1). A full family of states S, of 91 is a concex subset of S(‘2I) such that 

A r 0 if p(A) 2 O.for all p in S,. 

THEOREM (2.2). A comex subset S, of the state space S((u) of a C* algebra ‘21 is full if 

and only ifit is w* dense in S(a). 

Proof. If S, is w* dense in S(%), and p(A) 2 0 for each p in So; then, since p -p(A) 

is w* continuous on S(%), p(A) 2 0 for each p in S(%). Thus A r 0, and S, is full. 

If S, is full and L is the representing function system of ‘u on S(%) [9; p. 3121, the 

restriction mapping of L into functions on S, is a linear isomorphism; for, if p(A) = 0 for 

all p in S,,, then A and -A are positive, so that A = 0. It is also an order isomorphism by 

virtue of the assumption that S, is full. The argument of [9; p. 3281 now yields that the w* 

closure of S,, a convex set, contains all pure states of ‘%I; and the Krein-Milman theorem 

shows that this w* closure is then S(2I). 

If $ is a representation of the C* algebra 58 on the Hilbert space 2, we denote by S, 

the convex hull (not its closure) of the set cf states (0~4 : x a unit vector in Z} of 2l. If 4 

is faithful, +(A) r 0 if and only if A 2 0; so that S, is full. The weakly continuous states of 

$(%!I) have the form (a,o,, + .‘. + a,~,)]&%), where 0 5 aj I 1, xi is a unit vector in 

P”, and a, + -.. + a, = 1. The normal states, those weakly continuous on the unit ball 

of 4(5X), have the form 
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and each xj is a unit vector in .# [3, Theoreme 1, p. 541. Thus, each normal state o of 4($X) 

is a norm limit of weakly continuous states. (In the presence of a separating vector for 

$(2l- each normal state is a vector state.) We refer to the state 04 of 81 as a normal state 

of 4. 

We shall make frequent use of a certain canonical faithful representation of a C* 

algebra ?I which we refer to as the uniz;ersal representation of Cu. It has a “universal” prop- 

erty for extension of cyclic representations of ‘21 which we describe in the following out- 

line along with its other main properties. Let 4 be the direct sum of all representations of 

‘21 corresponding to states of !!I [21] (’ i.e. of all cyclic representations of 21); and let z@ be the 

Hilbert space on which d(91) acts. In effect, 4 is the representation used in [6] to prove that 

an abstract C* algebra has a concrete representation. Since each cyclic representation $ of 

21 is (unitarily equivalent to) a direct summand of 4, there is a cyclic projection E’ in 

4(m)’ such that $ is (unitarily equivalent to) the representation A -+ $(A)E’ of 2l on E’(X). 

Of course, B --+ BE’ is a strongly (and weakly)-continuous representation of $(2l)-, mapping 

the weak (and strong) closure of 4(9I) onto cj(2I-E’. Thus, if we identify 2I with +(‘%!I), 

we may say that each cyclic representation $ of ‘% has a strongly (and weakly)-continuous 

extension to a representation of %- onto $(9I-. (Note that 4(%)-E is a von Neumann 

algebra [3 ; Prop. 1, p. 181.) Moreover, each state p of 5!I has a weakly continuous extension 

to ‘%I- (unique, since 91 is weakly dense in ?l-) which, in fact, corresponds to a unit vector. 

(If $,, is the representation arising from p, and x,, its generating unit vector, ($,(A)x,, xp) = 

p(A). But +,, is unitarily equivalent to A + AE’ for some cyclic projection E’ in ‘$I’; so that 

there is a unit vector x in E’(2) such that p = o,I 2L) With ye a bounded linear functional on 2I, 

let q*(A) be u(A*). Then y = y1 + iu],, where Q = (y + y*)/2 = VT and Q = (q - y*)/2i = y:; 

and rl = V: - Y;, q2 = YZ - q;, with II:, y;, ye:, y; positive linear functionals on 

91. Thus q has a weakly continuous extension to %-. If r] = alp, + ... + a,,p,,, with 

pl, . . , p,, distinct states of ‘?I and a,, ... , a, complex scalars; then pj = wXj, with xj a unit 

vector in 3cp and [41xj], j = 1, . . . , II, orthogonal subspaces of 8. Thus, with x = alxl + 

a-. +a,x,andy=x,+...+x,,y(A)=(Ax,y)=o _JA), for each A in 2I. If z is a positive 

linear mapping of ‘11 into the algebra of bounded operators on some Hilbert space X then 

r is norm continuous on ‘u, since - \IA I]2(1) 5 z(A) 5 IJA 117(Z), f or each self-adjoint operator 

A in ‘%. Thus with y, z in X, A + (z(A)y, z) has a weakly continuous extension to rU_. It 

follows [9; Remark 2.2.31 that z is weakly continuous on ‘QI and has a weakly-continuous 

extension to ‘21”- which is, again, positive linear. By weak continuity of this extension 

(which we denote, again, by z), z(%-) _c r(81)-. If ~(21) is again a C* algebra, then z(2l) is 

norm closed; so that z is an open mapping (Closed Graph Theorem); and, with 6 the 

(norm) closed unit ball in 21, ~((5) contains 6,, the (norm) closed ball of radius r > 0 about 

0 in z(2l). Now 6- is weakly compact, so that ~((5~) is weakly compact, weakly closed, 
and contains G;. But with z(2l) a self-adjoint algebra, Gi is the closed ball of radius r in 

z(a)-, by Kaplansky’s Density Theorem [12, and 3; p. 461. Thus z(%?l-) contains (rcU)-; 

and z(%-) = r(‘Ql-. We have shown: 
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LEMMA (2.3). Each linear mapping T of a linear space of operators ‘% onto a C* algebra 

which is norm continuous and which has a weakly (or ultra weakly)-continuous extension to 

Cu- maps Cu- onto z(‘u)-. 

With regard to the universal representation, we shall also need: 

LEMMA (2.4). If ‘% acting on .X is the universal representation of the C* algebra ‘8 and 4 

is a C* homomorphism of a, the weakly continuous extension of 4 to rU_ is a C* homomorphism. 

If 4 is a representation of % so is its extension. 

Proof. Employing the decomposition of an operator as the sum of a self-adjoint and 

skew-adjoint operator, it will suffice to show that $(A2) = &4)2, with A = A*, llAl\ I 1 and 

A in a-, in order to prove that the extension of 4 to Cu- (which we denote, again, by Cp) is 

a C* homomorphism; and that &AB) = +(A)&@, withA = A*, B = B*, ljAl( d 1, l]B\j < 1, 

A and Bin ‘u-, in order to show that (b is a representation. By virtue of Kaplansky’s Density 

Theorem, the joint continuity of multiplication on the unit ball relative to the strong 

topology, and the fact that 4 satisfies the corresponding identity on Ql, it suffices to establish 

the strong continuity of 4 on the set of self-adjoint operators in the closed unit ball of Cu-. 

Since the strong topology induces a topological linear, and hence, uniform structure on 

(X0 and 4 is linear, it suffices to prove the strong continuity of 4 at 0 on the closed unit ball 

6 in the space ‘u, of self-adjoint operators in 2l in order to establish the existence of a 

strongly continuous extension &, of (p from 6 to G-, the closed unit ball in the space of 

self-adjoint elements in CUP [12]. Since strong convergence implies weak convergence and 

the weak topology on &a)- is Hausdorff, &, and 4 agree on G- ; and $I is strongly con- 

tinuous on G-. 

To prove the strong continuity of #J at 0 on 6, let a vector x in the Hilbert space on 

which 4(a) acts be given. If A in 6 is sufficiently close to 0 in the strong topology, A2 is 

sufficiently close to 0 in the strong and, hence, weak topology; so that (4(A2)x, x) = 

(&4)2~, x) = I]$(A)xll’ I 1, by weak continuity of +-from which the strong continuity of 

f$ at 0 on 6 follows. 

For completeness, we include a proof of the fact that the second dual of %I is canonically 

isometric with Iu-. This was first noted in [25]. A discussion along the lines indicated 

[25] is to be found in [28] and an independent proof in [3 ; p. 49 prob. 6a, p. 64 prob. 51. 

Let f be a bounded linear functional on the dual % of ‘%. For each pair of vectors x, y in 

ti”, o,,J(u is in ‘?I; and {x, y> -f(o,,,l%) is a conjugate bilinear functional on &’ with 

bound not exceeding )I f I/. From the Riesz representation of such functionals, there is a 

(unique) bounded operator B on Z? such that f(o,,,l2I) = (Bx, y), for all x, y in Z; 

and liB\\ 5 \lfli. Moreover, the mapping f + B is linear. If A’ E %‘, then (BA’x, y) = 

fb)d'x,y IQ0 =f(%,A’*y 1%) = (A’Bx, y). Thus, B is in 2l” (= ‘UP). As noted, each element 4 

of % has a unique weakly-continuous extension to ‘$-; and this extension has the same 

norm as v], since the unit ball of 2l is weakly dense in that of 2II- [12]. Thus, each B in 

21L- induces a linear functional f on 9 with I/f 11 I \1Bll, and a is isometric with %I- via 

the mapping described, 
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The closed ideals of 2t (left, right and two-sided) have a description in terms of the uni- 

versal representation (cf. [29]) as the intersection with 2I of principal ideals in ‘%!I- generated 

by (self-adjoint) idempotents. 

THEOREM (2.5). With 21 acting on the Hilbert space .Y? the universal representa- 

tion of the C* algebra 2l and 9 a (norm) closed left (right) ideal in 21, we have 9 = 2I n 

21-E (2l n Eat-), with E a projection in %I-. If 9 is two-sided, E may be chosen to be 

a central projection in !I-. In either case, Y- = 2-E (or E2I-, when 9 is a right ideal). 

Proqc In [IO; Theorem 21, it is shown that X is the intersection of the left kernels of 

the (pure) states of $?I which annihilate it (for states, alone, the essence of this fact is con- 

tained in [20]). Each state of 2t has the form w,/2I, with x a unit vector in A?. Now, A in 

21 is in the left kernel of o,I$U, if and only if 0 = o,(A*A) = ilAxjl*. Thus, Y is the annihi- 

lator in 2l of the subspace of 2 it annihilates. Let I - E be the orthogonal projection on 

this subspace. Then 9 = $3 n 21-E. Since E is the intersection of projections on null 

spaces of operators in 2t, E is in BI- (as defined, E is clearly invariant under 2I’, hence in 

2I” = ‘2-). With 9 a closed right ideal in 2l, Y* is a closed left ideal; whence 4 = Cu n E2lI-, 

for some projection E in ‘21 , - in this case. If 9 is a closed two-sided ideal in 21, the subspace 

it annihilates is invariant under both 21 and 21’. Thus 9 = 21 n 2I -E, with E in the center 

of 2I-. 

Since 9 annihilates (I - E&F’, Y- does. Moreover, since (I - E)z& is the null space of 

4, the closure of the range of $* is ES (that is, [9*X] = ET?‘, from the general fact that 

[F%“] is the orthogonal complement of the null space of P*, for an arbitrary family of 

operators S). Now, the closure of the ranges of A and AA* are the same (A* and AA* 

have the same null space); and P is a right ideal. Thus ES@’ is the closure of the span of 

ranges of the positive operators in $*-each of which lies in Y. The projection on the clo- 

sure of the range of a self-adjoint operator is, by spectral theory, the strong limit of poly- 

nomials without constant terms in the operator. Thus, the range projection of each positive 

operator in 3 lies in Ya-, as does their union, E. From strong continuity of left multiplica- 

tion by an operator, AT c 4-, with A in ‘u, since A4 E 9. By strong continuity of 

right multiplication by an operator, 21-B G 3-, since CUB E .Y-, with B in Y-. Thus, 

9- is a left ideal in PI- containing Eand annihilating@ - E)%‘. It follows that 9- = (LI-E. 

The following application of the universal representation extends [8; Theorem lo] to a 

complete description of the C* homomorphisms of one C* algebra onto another. 

THEOREM (2.6). A linear, adjoint-preserving mapping LY of a C* algebra 2l onto a C* 

algebra of operators &? acting on the Hilbert space X is a C* homomorphism if and only if 

there is a projection P in the center of _4’- such that cr(A)cc(B)P = a(AB)P and a(AB)(Z - P) = 

cr(B)cr(A)(Z - P),fbr all A and B in 2l. 

Proof. If such a P exists, then, even without the assumption that CI is onto, we can 

conclude that it is a C* homomorphism. 

Suppose, now, that t( is a C* homomorphism, that 21 acting on the Hilbert space #is the 

universal representation of QI, and that the weakly-continuous, C* homomorphic extension of 
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CI mapping au- onto &?- (whose existence is guaranteed by Lemmas (2.3), (2.4) and the dis- 

cussion preceding them) is denoted, again, by c(. If A is self-adjoint and cc(A) = 0, then 

c&l’) = 0; so that 0 = (a(AB)x, x) = (@A) x, x ) f or each x in .X and B in Cu- (by applying 

the Cauchy-Schwarz Inequality to the positive semi-definite inner product [C, D] = 

(a(D*C)x, x)). Thus 0 = c((AB) = cx(BA); and the kernel 9 of c( is a weakly-closed, two- 

sided ideal in VI-. From Theorem (2.9, 9 = ‘%-(I - R), with R a central projection in 

‘%-. Thus a is a C* isomorphism of ‘9-R onto .%-. According to [8; Theorem IO], there is a 

central projection Q in 2X-R (hence, in X-) such that CI is a * isomorphism on ‘?I-Q and a 

* anti-isomorphism on ‘W(R - Q) (h ence, a * anti-homomorphism on ‘?I-(Z - Q)). 

Taking P to be a(Q), the proof is complete. 

Remark (2.7). The union of a family of central projections each of whose members has 

the same property as P in Theorem (2.6) has this property; so that there is a maximal such 

projection in &?-. We call this maximal projection the homomorphic carrier of c(. 

Remark (2.8). With the notation of the statement of Theorem (2.6), we note that the 

subspace E of Y defined by {x : (CD - DC)x = 0 for all C, D in 99’> is invariant under $7 

and .@; for (CD - DC)Bx = B(CD - DC)x = 0, with B in &9. Thus, E is a projection in 

the center of %?-. Now, u(AB)E = a(A) + cc(B)cc(A)(I - P)E = a(A)c((B)EP + 

a(A)cc(B)E(I - P) = cc(A)cc(B)E. By maximality, E is contained in the homomorphic 

carrier of a. 

53. THE BASIC FORMULATION 

We assume that the bounded observables of the physical system under study are (iden- 

tified with) the self-adjoint operators in a C* algebra Cu and that the physically meaningful 

states of this system form a full family S,. 

DEFINITION (3.1). A physical system is a pair (!?I, S,) consisting of a C* algebra 2X and a 

full family S, of states of 9l. 

Despite the fact that causality in the fully classical sense does not hold for a general 

physical system (a phenomenon referred to as “indeterminacy” in quantum mechanics), 

that aspect of causality which relates to the evolution of (undisturbed) systems in time 

remains valid. Namely, at time t units after a given time, a system initially in the state p 

will be in some specific state v,(p) ; so that v, is a mapping of the family of (physically 

meaningful) states into itself. This aspect of causality (which may also be expressed by 

saying that the system obeys a “law of motion”) entails also v,v,, = v,+,,. We assume, 

further, about the dynamics of our system a type of (theoretical) reversibility-specifically, 

for each interval of time t and each q in S,, there is precisely one state p from which the 

system will evolve into the state q after the time interval t (i.e. v,(p) = $). This assumption 

that each v, is a l-l mapping of S, onto itself amounts, roughly, to our considering systems 
whose laws of motion satisfy a certain non-singularity condition. If we denote the mapping 

inverse to vt by v_ f, it is easily verified that t + vy is a one-parameter group of l-l trans- 

formations of S, onto itself (e.g. with t’ > t 2 0, v,v,,_~ = I!(, = v~v_~v,,, so that v,,_, = 

v- $J,,). 
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We shall also need some plausible (physical) continuity assumptions about the way the 

states of the system evolve in time. The first of these requires that, for a given interval of 

time t, if two states in S, are suitably close, the states into which they evolve after time t are 

close-where closeness of two states is measured by the closeness of the expectations of a 

given observable in these states. In precise mathematical form, we assume that each Y, is a 

unimorphism of S, onto itself relative to the w* uniform structure (formally, given B in 

21 and t, there are A,, . . . , A, in 2l such that if Ip(Aj) - z(Aj)l < 1,j = 1, . . . , n,withp and 

r in S,, then Ib,(p)l@) - [v,(z)l(B)I < 1). Th e second continuity assumption involves the 

trajectory of a given state and requires that in a short enough interval of time the state into 

which the given state evolves will be close to the given state (again, measured by the expec- 

tation of an assigned observable). More precisely, we assume that t --f [v,(p)](A) is continuous 

for each p in S, and A in 2I; and we refer to this as weak continuity of the mapping t + v,. 

Our final assumption is that mixtures of states are preserved by the dynamics of a physi- 

cal system-formally, v,[ap + (1 - a)r] = av,(p) + (1 - a)v,(z), with p and r in S, and 

0 < a I 1. In particular, states which cannot be expressed as non-trivial mixtures of other 

states (pure states) evolve as such states under the action of the “dynamical group”. This 

is the quantum theory analogue of the deterministic evolution of classical mechanical 

systems (states of such systems being described by an assignment of definite numerical 

values to the canonical coordinates and conjugate momenta are pure and evolve, according 

to their laws of motion, into such states). The formalism of mixing states in quantum 

mechanics replaces the deterministic description of states in classical mechanics. The 

assumption just made is that this formalism remains intact under the dynamical evolution 

of the system (by analogy with the preservation of the deterministic nature of classical 

mechanical systems under dynamical evolution). 

Our assumptions about the dynamics of a physical system may be summed up by saying 

that they conform to a “dynamical group” as in: 

DEFINITION (3.2). A dynamicalgroup ofaphysical system (2r, SO) is a (weakly) continuous, 

one-parameter group t + v, qf afine w* unimorphisms v, of S,,. The triple (2X, S,, t + vJ 

will be called a dynamical system. 

The description of the dynamics in terms of a dynamical group corresponds to the 

Schriidinger Picture. Our first main result deduces the possibility of describing the 

dynamics in terms of a (modified) Heisenberg Picture. 

THEOREM (3.3). If (2I, SO) is a physical system, t --, vt is a dynamical group of it tf and 

only tf there is a weakly-continuous, one-parameter group t + a, of C* automorphisms of % 

such that p(a,(A)) = [v,(p)](A), for each p in SO, A in 2I and real t. 

While the Jordan algebraic structure of the self-adjoint operators in 2I is all we should 

expect to have preserved by the mappings LX,, in certain circumstances we can assert that 

each a, is a * automorphism. 

THEOREM (3.4). If (2l, S,, t -+ v,) is a dynamical system, there is a weakly-continuous, 

one-parameter group t + cc, of * automorphisms of ‘LI such that p(cc,(A)) = [v,(p)](A), for each 

p in SO, A in 2X and real t, provided SO satisfies any one of the following: 
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(a) S, = S(a). 

(b) S, contains the vector states of some separating family of irreducible representa- 

tions of 3. 

(c) S, contains the vector states of some separating family offactor representations of ‘%. 

This result and those to follow indicate the desirability of formalizing a concept of 

representation of a physical system and of a dynamical system. 

DEFINITION (3.5). Zf (rU, SO) and (‘3, SO, t +vJ are a physical system and associated 
dynamical system, respectively, a representation 4 of 2X by operators on the Hilbert space 

2 is said to be a representation of (cL1, S,,) when ox4 lies in S, for each unit vector x in A?. 

rfw$ lies in SO, for each normal state w of 4(2l), we say that 4 is a complete representation of 

(2I, S,). If, for each t and unit vector x, v,(w,$) is w,$ for some unit vector y in 2, we say 

that 4 is a representation of (‘3, S,, t + vJ. 

We shall make free use of all the standard terminology appertaining to representations 

of operator algebras in the context of representations of physical and dynamical systems 

without further explanation-for example, we will speak of faithful or factor representations 

of physical systems when the corresponding representation of the associated operator algebra 

is a faithful or factor representation, respectively. 

Since we are emphasizing considering an abstract physical system as independent of its 

specific representations, it seems appropriate to comment on the physical significance we 

ascribe to a representation of the system. Mathematically, a representation of (2X, Se) 

selects a certain “coherent” family of states from among the states of S, and, at the same 

time, “coalesces” some of the algebraic structure of ‘%. This is the effect of introducing 

the system into an inhibiting physical environment (compatible with it)-e.g. placing 

interferometers, spectrometers, polarimeters about the system, or enclosing the system 

within reflecting walls (placing such a wall between two rigidly linked particles would 

violate the algebraic relations between the position observables of these particles and not be 

compatible with the system). A representation corresponding to enclosing a system in a 

box has in its kernel each position observable with spectrum “outside the box”. At the same 

time, this representation selects states which assign a 0 probability distribution to the spectra 

of such observables (though, annihilating the kernel, alone, does not characterize the 

vector states or even the normal states of the representation). For such an enclosure to 

yield a representation of a dynamical system associated with this physical system, no such 

state must evolve under the given dynamical group into one which is not compatible with 

the representation. Passing from a representation of (2l, S,) to a subrepresentation corres- 

ponds to introducing further (or more restrictive) compatible constraints-e.g. making the 

enclosure smaller. These more restrictive constraints make themselves evident in a higher 

concentration of probability distribution corresponding to the states of this subrepresenta- 

tion over the spectra of the observables-contracting the enclosure, for example, “concen- 

trates position”. So to speak, passing to a subrepresentation makes the states “purer”. 

No attempt is made to list here physical interpretations for all the mathematical con- 

structs which play a role in this theory. The remarks above deal with some of the basic 
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constructs. It may be worth adding to these the comment that if the physical system is of 

the form (a, S(‘B)), the universal representation of VI is a representation of this system and 

corresponds physically to choosing an environment for the system which imposes no restric- 

tion on it. 

The following theorem is a step toward describing the dynamics of a system in terms of 

a one-parameter, unitary group (or, in differential form, by a Hamiltonian and Schrodinger 

Wave Equation). 

THEOREM (3.6). If $ is a complete (separable) faithful representation of a dynamical 

system (‘%, S,, t -+ v,) such that (2l, S,) has a separating family of factor representations, 

then there is a complete (separable),faithjid representation $ of (91, SO, t -+ VJ with the same 

normal states as C$ such that [v,(p)](A) = ~[I+!I-~(U,$(A)UT)], for each p in SO, A in 2I and all 

real t, where Ui, is a unitary operator on the representation space of $. 

Each U, of Theorem (3.6) may be multiplied by an arbitrary unitary operator in $(‘B)‘. 

The question of whether the U, can be chosen so that t --f U, is a group representation 

becomes, then, a problem in the cohomology of the additive group of reals with coefficients 

in the (non-commutative) group of unitary operators in $@I)‘. To arrive at a (strongly) 

continuous group representation involves cross section problems for such unitary groups 

modulo closed normal subgroups and the restriction to topological cohomology. In case 

the automorphisms induced by the dynamical group correspond to unitary operators in 

$(2l- (are “weakly”inner), the coefficients lie in the unitary group of the center of $(a)- ; 

so that the cohomology considerations become commutative. 

DEFINITION (3.7). If(2I, S,, t --f v,) and C#I satisfy the hypothesis of Theorem (3.6) and each 

U, of the conclusion of Theorem (3.6) can be chosen in t/1(91)- ; we say that t --) v, is an inner 

dynamical group relatice to 4. 

The representations with inner groups are those for which there is an “observable 

energy”. For the dynamics to be generated by a Hamiltonian, it is also necessary to intro- 

duce strengthened continuity conditions. In fact, if $ is a faithful representation of the 

dynamical system (‘%, S,, t --f VJ by operators on Z; and [v,(o,~)](A) = (&4)U,x, U,x), 

for each unit vector x in 2, A in ‘$I and all t, where t + U, is a strongly-continuous, 

one-parameter, unitary group on 9; then t -+ v,(w,$) is continuous, where S, has its 

norm topology. This follows from the strong continuity assumption and the fact that 

/I CD, - coy]1 5 2 I/x - y 11. If the dynamical group satisfies this type of continuity condition, 

we say that it is norm continuous relative to 4. 

Since we cannot expect this type of continuity to follow from weak continuity in the 

case of more general C* algebras of observables (though it does when 2l is assumed to be all 

bounded operators on some Hilbert space [16; p. 131]), we must assume it to conclude that 

the dynamics is given by a strongly-continuous, one-parameter, unitary group. The physical 

interpretation of this assumption is that the dynamics of the system is such that each 

observable with spectrum in a given interval has expectation in a state into which the 

given state evolves, after a suitably short time interval, close to its expectation in the given 

state. 
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THEOREM (3.8). If t ---, v, is a norm-continuous, inner dynamical group relative to the 

complete, faithful representation $ of the dynamical system (5X, S,, t -+ v,) by operators on a 

separable Hilbert space ~6, and the associated representation of 9I is a direct sum of factor 

representations; then there is a (complete)faithful, separable, representation $ of (PI, S,,, t + v,) 

with the same normal states as 4 and a strongly-continuous, one-parameter, unitary group 

t + U,, with U, in $(a)-, such that [v,(o$)](A) = o(U,$(A)UT), for each A in ‘2l, each normal 

state IJJ of $(9X), and all real t. 

94. THE PROOFS AND RELATED RESULTS 

The three lemmas which follow establish that an affine unimorphism of a full family of 

states has a w* continuous linear extension to the continuous dual. It then follows that 

such a mapping is induced by a C* automorphism. 

LEMMA (4.1). If &, is an afine mapping of a convex subset K of a vector space E which 

lies in no hyperplane into another vector space F, then there is a unique linear transformation 

I#J of E into F and a unique vector x0 in Fsuch that (T,,4)] K = @,,, where T,,(y) = y + x0 for 

y in F. 

Proof With kin K, T_s,~&,Tk (= &) is an affine mapping of K - k onto &(K) - &(k), 

and 41(O) = 0. Since K lies in no hyperplane, K - k generates E. If we establish the exis- 

tence of a linear transformation 4 of E into F such that c#J](K - k) = C#Q, then 

&, = T40Ckjq5T-k] K = T+oo++Ckj~] K. To prove the existence of the asserted decomposition, 

it suffices to deal with the case in which K contains 0 with 4,,(O) = 0, and to show, in this 

case, that I& has a linear extension to E. For uniqueness, note that if T,$]K = T&]K, then 

T,_&K = c$]K. Since 4 is linear and Kspans E, T,_,tj = $. In particular, T,_.&(O) = 4(O), 

y - x = 0, and $ = 4. 

Assuming Kcontains 0 and &(O) = 0, define c$(b,k, + .+* + b,k,) to be b,&(k,) + 1.0 + 

b,&(k,,) for arbitrary real b,, . . . , b, and k,, . . . , k, in K. The proof that $ is well-defined 

and linear (clearly $]K = do) rests on showing that if clk, + ... + c,k, = 0, with cr, . . . , c, 

real, k,, . . . , k, in K, then c,&(k,) + +.. + c&,(k,) = 0. Note, first, that, if al, . . . , a,, are in 

[O,l],caj= l,andk, ,... , k, arein K; then cjO(a,kl + *.* + a,k,) = alc#ro(kl) + ..* + a&k,). 

This holds for just two terms k,, k,, by hypothesis on &,; and knowing it for n - 1, it follows 

that 

Suppose, now, that a,k, + ... + a,k,, - (b,k; + *.. + b,k:,) = 0, with a,, . . . , a,,; 

b 1, . . . . b, non-negative and k,, . . . , k,; k;, . . . , kl, in K. By convexity of K, we may write 

this equality as ak - bk’ = 0, with a, b non-negative and k, k’ in K. From the preceding 

remarks, it suffices to show that a&(k) - b&(k’) = 0 in order to show that al&(k,) + 

..* + a,&(k,,) - (bl&(k;) + ... + b,$,(kh)) = 0. If at least one of a, b is 0 the result is 

immediate, knowing that &,(O) = 0. If ab # 0, then ck - k’ = 0 and k - c’k’ = 0 where one 
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of c, c’ is not less than 1, say, c 2 1. Then ck, k, 0 are in K; and &,(k) = &,[~-~ck + 

(c - I)c-‘01 = c-&,(ck) -t (c - ~)c-~&(O) = c-‘&(ck). Thus &(k’) = c&(k). 

LEMMA (4.2). If K is a compact subset of the topological linear space E and q4 is a linear 

transformation of E into the topological linear space F such that 4]K is continuous then 4]C 

is continuous, where C = {ak : 0 I a 5 1, k in K), and 410 is continuous at 0, where 

D=(y-y’: yandy’inc}. 

Proof. Let y in C be given along with a neighborhood M of 0 in F. By compactness of 

[0, l] and joint continuity of scalar multiplication and addition in F, there is a neighborhood 

M’ of 0 in F such that aM’ + M’ E M, for each a in [0, I]. Since K is compact and $]K is 

continuous, it is uniformly continuous. Thus, there is a neighborhood N of 0 in E such that 

if k - k’ EN and k, k’ are in Kthen d(k) - &k’) E M’. Moreover, 4(K) is compact, whence 

by continuity of multiplication by scalars, there is an E > 0 such that cd(K) c M’, if Jc( < E. 

We assert the existence of a neighborhood N’ of 0 in E such that if y’ E (y + N’) n C 

then there exist a, a’ in [0, I] with ]a - a’( < E and k, k’ in K with k - k’ in N such that 

y = ak and y’ = a’k’. If no such neighborhood exists, then there is a net {yj} converging to 

y of elements yj in C such that if yj = a’k’ and y = ak with k, k’ in K and a, a’ in [0, I] then 

either ]a’ - a] 2 E or k - k’ 6 N. But, since yj E C, yj = ajkj with kj in K and 0 I aj 5 1. 

Now, K and [0, 11 are compact; so that there exists a subnet {yj,> with (aj,> convergent to 

a and (kjJ to k. Hence (yj,> converges to ak (= y). But, for appropriate r, ]a - ajr] < E and 

k - kjr E N; contrary to the choice of yj,. Thus N’ with the properties described exists. 

Suppose, now, that y’ E (y + N’) n C. Then, there are scalars a, a’ in [0, l] with 

ja - a’] < F and elements k, k’ in K with k - k’ in N, such that y = ak and y’ = a’k’. We 

have +(y) - #(y’) = a+(k - k’) + (a - a’)+(k’) !z aM’ + M’ G M. Thus 4]C is continuous. 

By compactness of C, +]C is uniformly continuous. Let a neighborhood M of 0 in F be 

assigned. Choose a neighborhood N of 0 in E such that d)(y) - $(y’) E M if y, y’ are in C 

and y- ~‘EN. Then with z in N n D, z = y - y’ where y, y’ are in C; so that 

$J(z) E M, and $10 is continuous at 0. 

LEMMA (4.3). If E is a Banach space, I? its continuous dual, K a convex compact subset oj 

I?, C = {ak : a in [0, 11, k in K} is contained in no hyperplane, D = {y - y’: y, y/in C} contains 

the unit ball s of E, and & is an afine mapping of C into the scalars which is w* continuous 

on K; then there is a vector x0 in E and a scalar a, such that 4,,(c) = 6(x0) + a,, ,for each 

G in K. 

Proof. From Lemma (4.1), there is a (unique) linear functional $I on E and a (unique) 

scalar a0 such that $&) = 4(c) + a,, for each d in K. Using Lemma (4.2), &, and hence 

@ID are w* continuous at 0, as is 4](2,!?). With L’,, in s, t’ + fi - &, + [4](2S)](ti - ZQ + 

4(&J = &a) is w* continuous at b, on g. Thus 41s is MI* continuous (on 3). If E0 is the 

null space of 4, then E0 n S is closed in s, by continuity of 41s. Since s is w* compact 

(Alaoglu-Bourbaki), hence closed in _i?, &, n 3 is closed in B. It follows from [2; p. 1291 

that 4 is w* continuous on E and from [19; p. 1161 that there exists a vector x,, in E such 

that 4(D) = 6(x0), for each V in E. The uniqueness of x0 is a consequence of the Hahn- 

Banach theorem. 
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Remark (4.4). We apply Lemma (4.3) in Theorem (4.5) with E the (real) Banach space 

of self-adjoint elements in a C* algebra ‘$l and K as S(%). For this application, let us note 

that each element of the unit ball of the dual of 2I is in D by [28]. 

THEOREM (4.5). If v is an qfine mapping of the family SJ’U) of weakly-continuous states of 

one * algebra 21 acting on the Hilbert space T? into the corresponding family S,(&?) of another * 

algebra g acting on the Hilbert space X, then there is a weakly-continuous positive linear 

mapping c( of %?- into 2I- such that o’(a(B)) = (v(o)‘)(B) f or each B in ~!3’- and each o in 

S,(21), where w’ is the (unique) weakly-continuous (state) extension of co to 2l-. If v is an 

af,i?ne isomorphism of S,(2l) onto S,(g) then CI is a C* isomorphism of .??I’- onto 2lI-. If v is 

untformly continuous relative to the w* uniform structures on &(2X) and S,,,(L@), then c( carries 

39 into 2l. 

Proof. If up = bt for states p and t, then ap(1) = a = b; so that v defined by v’(ao) = 

av(o), for a 2 0, is an affine extension of v from S,(%) to the (convex) cone of all weakly- 

continuous positive linear functionals on (II. According to Lemma (4. l), v has a linear exten- 

sion, which we denote again by v, to the set of all self-adjoint weakly-continuous functionals 

on 2l, and from this real linear space to its complexification, the set of all weakly-continuous 

functionals on ‘?I. (Note that o,,~ = (iw,+i, - iw,-i,. + o,+~ - w,_,)/4; and each weakly- 

continuous linear functional is the sum of linear combinations of the special ones a__.) 

For each Bin W- and each pair of vectors x, y in 2, we define cc(B)({x, y}) to be (v(o,,~~ (U))(B). 

Since {x, y} + w,,~ is a bounded, conjugate-bilinear mapping, v is linear, and (!v(o,_)ij 2 4 

when 11x11 and Ilyl( do not exceed 1 (compare the polarization formula just noted and observe 

that v preserves the norms of positive linear functionals); a(B) is a bounded conjugate- 

bilinear functional on 2. From the Riesz representation of such functionals, cc(B) corres- 

ponds to an operator on 2, which we denote again by cc(B). From this representation, we 

have the formula o&cc(B)) = (v(w,,,))(B). It follows that a is a positive linear mapping 

on .%V. With A’ in ‘u’, wA,,J(u = o, A,*y 1%; whence (cc(B)A’x, y) = (A’cc(B)x, y), for all 

x and y in ~$6’. Hence cc(B) E 2I” (= 2I’) and o>‘(a(B)) = (v(w)‘)(B), for each w in S,(Y!l). 

Since the weakly-continuous linear functionals define the weak operator topologies on 

<au- and 9#-, a is weakly continuous. 

If v is an affine isomorphism of S,,,(‘%) onto S,(&?), then v-’ induces a mapping p of 

PI- into K such that (V-i(w)‘)(A) = w’@(A)), f or each w in S,(9Q and A in ‘u- . Combining 

this with the formula for a and the fact that v-iv and vv-i are the identity transformations 

on S,(Ql) and S,(9), respectively, we conclude that w’(A) = ~‘(a@@))) and w’(B) = 

oY(P(c((B))) for all o’ in SJIU) and A in 21”- and all CO’ in S,(a) and B in K. Thus ap and 

/?E are the identity transformations on %I- and K, respectively; so that CI is an order 

isomorphism of J% onto 2II-. Now [l 1; Corollary 51 (or the alternative ending to the proof 

of [8; Theorem 7, p. 3321 for the case of von Neumann algebras) establishes that c( is a C* 

isomorphism of &- onto 2l-. 

Suppose, now, that v is uniformly continuous, where S,(‘%) and S,(.Q) are taken in their 

w* uniform structures. From Theorem (2.2) and the discussion following it, S,(%) is full 

and w* dense in S(2l). Thus, the w* compact S(2L) is the completion of S,,,(‘u) relative to 

the w* uniform structure; and, by assumption of uniform continuity, v has a w* continuous 
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extension from S,,,(czr) to ,S(%) which is again affine. As at the beginning of this proof, the 

affine extension of v to S(2l) has an afine extension, which we denote again by v, to C = 

{up: ain [O, I], p in S(cU)). Applying Lemma (4.3) to the affine mapping z + [v(z)](B) of C into 

the scalars, for a fixed self-adjoint B in 9, we conclude the existence of an operator cc’(B) 

in ‘?l such that z(ac’(B)) = [v(z)](B), f or each T in S(a). Tn particular, for o in &(%I), 

[v(w)](B) = ~(a’@)). But [v(w)](B) = w’(cl(B)), f rom the first part of this proof. Thus, 

w’(cr’(B)) = o(ol’(B)) = o/(@(B)), f or each o in S,(%), a(B) = m’(B) E 2I; and a maps @ into $3. 

In the first assertion of Theorem (4.5), the weakly-continuous positive linear mapping tc 

of g!- into Yl- (taking I onto Z) need not carry g into !!I. In fact, any such mapping will 

induce an affine mapping of S,(‘u) into S,,,(a). The set S,,,(%) is tied to %- and not ‘II; 

while the uniform space &,(‘%I) is bound to YL, as emphasized by the last statement of 

Theorem (4.4). 

COROLLARY (4.6). A mapping v of the (convex) set S,( 2X) of weakly-continuous states of 

a * algebra 2t, acting on a Hilberl space, onto itself is an afine w* unimorphism if and only if 

there exists a (weakly-continuous) C* automorphism OL of the weak closure 2I- of 53 onto 

itself mapping % onto 2l and such that (v(o)‘)(A) = w’(cc(A)), for each o in S,(2I) and each 

A in %I-. 

COROLLARY (4.7). A mapping v of a full,familyqf states S, of a C’ algebra 2l, onto those 

Sz of another C* algebra 21uz is an afine w* unimorphism if and only if there is a C* isomor- 

phism CY of 2S, onto 2X, such that p(a(B)) = (v(p))(B),for each p in S, and B in 2&. Inparticular, 

if 24 = (u,, v is an afine w* unimorphism if and only if c( is a C* automorphism. 

Pro05 The states of a C* algebra are MJ* compact, hence complete, relative to the w* 

uniform structure. From Theorem (2.2), S, and S, are w* dense in their respective state 

spaces. Since v is a unimorphism it has a unique unimorphic (affine) extension mapping 

S(2IJ onto ,.I?(‘&). Now each state of a C* algebra is weakly continuous in its universal 

representation; so that Theorem (4.5) applies to theextensionof \land 211, YI, in their universal 

representations. The existence of the C* isomorphism M follows. 

We note that Corollary (4.7) provides a means for establishing [ll ; Corollary 51 without 

using the Generalized Schwarz Inequality; and as a consequence, provides an alternate 

approach to proving [ll ; Theorem 2 and Corollaries 3 and 41 as well as Theorem 7 of [S]. 

The key to this argument lies in proving that a linear order isomorphism mapping I onto 1 

of one C* algebra onto another is a C* isomorphism [l 1; Corollary 51. But such a mapping 

induces an affine w* homeomorphism of the state space of one onto that of the other. Both 

state spaces are full families, of course, and being compact, the induced M?* homeomorphism 

is a unimorphism. Thus Corollary (4.7) applies to show that the given mapping is a C* 

isomorphism. 

We take this occasion to note and close a gap in the proof of Theorem 2 of [ 1 l] pointed 

out to us by L. T. Gardner. The gap occurs in attempting to prove that the (self-adjoint) 

unitary operator p(Z) (= U) lies in the center of 21 by using a strengthened Lemma 8 of [8]. 

One cannot conclude immediately that the mapping is isometric on operators of the form 

A + in1, with A self-adjoint, until it is known that the image of A is self-adjoint. The part 
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of the argument “Now the map ... into a self-adjoint element” should be replaced by: 

“One of 111 + Tll, 11Z- T/I is 1 + llT]l, for each self-adjoint T in 2l. Thus (1 U + Blj or 

jl U - B\l is 1 + 11 B,ii for each self-adjoint B in 2li. With U = E - (Z - E), E a projection 

in ‘9x,, let B = EA(Z - E) + (Z - E)AE. Since UB + BU = 0, i/U + B]/’ = ]\(U + B)‘// = 

j]Z+ B2]j = 1 + I/B]]’ = I] U - B(12 = (1 + ]jB]/)‘; and ]\B]] = 0.” 

Proofof Theorem (3.3). From Corollary (4.7), each v, is induced by a C* automorphism 

C(~ of 9l. Since t--f p(cr,(A)) = [v,(p)](A) IS continuous for each p in S, and A in ‘%, t + a, is 

a weakly-continuous one-parameter family of C* automorphisms of ‘Ql. In addition, 

,+,+JA)) = Iv,+,, (p)](A) = [v,(v,.(p))](A) = p(a,.(cc,(A))), so that t + LX, is a one-parameter 

group. 

Using the analysis of C* homomorphisms given ins 2, the special properties of the 

physical system assumed in Theorem (3.4), and the following lemmas, we can conclude 

that the C* automorphisms associated with a dynamical group of this system are * auto- 

morphisms. 

LEMMA (4.8). Zf ‘2l is a C* algebra and {a,} is afamily of C* homomorphisms of SU onto a 

C* algebra ‘LI, acting on the Hilbert space 2, t in a topological space X, such that t -+ a,(A)x is 

a continuous mapping of X into SF (in the norm topology) for each A in 2l and x in 20; then 

t + P,x is a continuous mapping of X into %, where P, (a central projection in ‘2l;) is the 

homomorphic carrier of CI,. 

Proof. Suppose x is a unit vector in A? such that P,,x = x. If t -+ P,x is not continuous 

at t’, there is a net {tj} in X tending to t’ such that ]](I - P,Jxj12 = ((I - P,Jx, x) + 6 > 0. 

Let Xi = (I - P,>x, SO that x - xj lies in P,,(S) and atj(AB)(x - xj) = cc,,(A)a,,(B)(x - xj); 

a,j(AB)Xj = a,,(B)cc,,(A)Xj. Then 

([a,j(AB) - ~tj(A)ar,(B)Ix, Y> = ([~tj(Bbtj(A) - azj(A)~tj(B)lxj, Y) 

= (xi> [a,,(A)a,j(B) - %~(B)~,,(A)IY)* (*) 

with A and B self-adjoint operators in ‘u. By weak compactness, there is an x’ in the closed 

unit ball of 2 and a subnet (which we denote again by {xi}) of {xi} tending weakly to x’. 

Since P,.x = x, and by our continuity assumption; we have [qj(AB) - CL~~(A)GL~~(B)]X -0, 

and k,(A)q(B) - ~tjWatj(41~ -+ b&0~,@) - ~t@hk41~. (Note that ll~,@)ll I IIAII, 
so that we may avail ourselves of the joint strong continuity of multiplication on bounded 

sets.) If y is a bounded subset of 2, the mapping {u, v} -+ (u, V) of 9 x 2 provided with 

the product of the weak and norm topologies into the complex numbers is continuous. 

In fact, 

Ku’, v’) - (u, 41 5 I@‘, 0’) - (u’, u)l + I( u’, 21) - (24 v)l 2 l/u’/\ * /)u’ - ujl + l(u - u’, u)l. 

It follows from this, (*), and the convergences just noted, that 

0 = (x’, t+(A)&0 - ~,~(BMA)IY) = (bUk(4 - 44~,@W, Y>, 

for each y in &’ and all self-adjoint operators A, Bin ‘K Since CI,, maps onto, (CD - DC)x’ = 

0, for all C, D in 2I,,. Thus, from Remark (2.8), Prx’ = x’, for each t in X; and (xi, x’) = 

((I - P,Jx, x’) = 0. But (xi, x’) -+ (x’, x’); so that x’ = 0. Hence (xi, x) -+ 0, contradicting 
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(xi, x) = ((I - P,,)x, x) -+ 6 > 0. It follows that t -+ P,x is continuous at t’ for x such that 

P,.x = x. This same argument with Pti in place of I - Ptj and c(,~(BA) in place of a,,(AB) 

proves the continuity of t -+ P,x at t’ for x such that P,,x = 0. (Note that (Ptjx, x’) = 

(x, x’) = (x, P,,x’) = 0, in this case.) Thus, t -+ P,x is continuous for arbitrary x in 2. 

LEMMA (4.9). With the notation and hypotheses of Lemma (4.8), zf X is connected, P, = I 

for some 0 in X, and wzIV is a pure state of the center %? of 2& ; then P,z = z for all t in X. 

Proof. From Lemma (4.8) t -+ (Ptz, z) = o,(P,) is continuous on X. Since ~~1% is pure, 

w,(P:) = o,(P,)’ = w,(P,); so that o,(P,) is either 0 or 1. Now, Xis connectedand o,(PO) = 

w,(Z) = 1; so that o,(P,) = 1, for all t in X. Thus P,z = 7, for all t in X. 

LEMMA (4.10). If t + a, is a weakly-continuous ,family of C* endomorphisms of the 

physical system (21, S,) and c#~ is a C* representation of (21, S,) by operators on the Hilbert 

space 2, then t -+ $cc, is strongly continuous. 

Proof. With x a unit vector in &! and A a self-adjoint operator, we have, by 

assumption on {cq>, o,([@,](A)) -+ o,([&x,,](A)) as t --) t’. It follows that (([&](A))x, y) -+ 

(([@,,](A))x, y), for each x, y in %’ as t --f t’, by polarization. Thus ]l([&&4))x - 

(wtx4)xll* = (wJ~m2)bJ) - (m&4)x, @#4(4)x) - (([4%~IGm wa4)4 + 
(([4+lW)x, ([4~1(4)x) + 0 as t --f t’. Since c(, and 4 are linear, the same holds for 

arbitrary A in Cu. 

Proof of Theorem (3.4). Let {$J~} b e a separating family of factor representations of 

(21, S,). Theorem (3.3) tells us that thedynamical group is induced by a weakly-continuous, 

one-parameter group t + cc, of C* automorphisms. From the preceding lemma, t + 4p, is 

strongly continuous; so that Lemma (4.9) applies, and 4jicc, is a * homomorphism, for eachi 
and t (since #j(21)- is a factor, each vector state is pure on its center, the scalars). With A 

and B in 21,O = 4j(cr,(AB)) - ~j(cx,(A))~j(a,(B)) = dj[~,(AB) - z,(A)a,(B)] for each j and t. 

Since {4j} is separating, each cc, is a * automorphism. Both (a) and (b) are special cases of(c). 

Remark (4.11). Lemma (4.10) is valid if we assume that t + a, is a weakly-continuous, 

group of linear order-endomorphisms of (21, S,). In this case, 0 5 jl([@,](A))x - 

&Qxll 2 = (ma4)2w) - (~~~~,lWb> &4x) - (4Gm u~a~))x) + (#JW, ~box) -< 
(bW(~2N~~ x> - (WX4h dd44 - (K4x, W&0x) + GdGOx~ 464x) -4 as 
t + 0. Thus ll([4%lW)x - ([~~,~lGO)xll = II ([4~t-,~l(~tGO))x - #(&4)xII -, 0 as t --f f. 

The next phase of our work is concerned with showing that the dynamical transforma- 

tions of a physical system are induced by a (strongly-continuous) one-parameter, unitary 

group in a suitable representation (with certain restrictions on the system) and is therefore 

described by a Hamiltonian [26]. As a first step, we show that slight modification of a given 

faithful representation of the system guarantees that each X, is unitarily induced. For this, 

we shall want: 

LEMMA (4.12). If W is a von Neumann algebra acting on a d-dimensional Hilbert space 

J? and c( is a * automorphism of 99, then there is a unitary operator Uon 2 Q 2”’ (= X)such 

that U*(A @ Z)U = cc(A) @ I, ,for each A in 9, where Z’ has dimension d’ 2 max{K,, d) or 

2 N, in case d 5 K,. 

D 
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Proof. We show that (B 0 Z)’ (= 2 0 g(X’)) has coupling character d’ [9; Definition 

4.1.11. According to [9; Lemma 4.1.31 there is a countably-decomposable central projection 

P in (W @ I)’ which has coupling character a. Since X has dimension d’ (= dd’), a 5 d’. 

Suppose that {Fk} is an orthogonal family of cyclic projections in (% @ Z)’ with sum P and 

cardinality a. Let xk be a generating vector for Fk, {El} be a maximal orthogonal family of 

one-dimensional projections in %‘, Ej be P(Z 0 EJ) and Y-k be the set of j such that Ejxk # 0. 

Since {Ej} is an orthogonal family, Yk is denumerable for each k. If Ejxk = 0, then 

0 = (2 Q I)Ejx, = Ej[(.% Q I)xJ = EjF,. Since Ej # 0, Ej 5 P, andx Fk = P; Ejxk # 0, for 

some k. Thus, each j lies in some Yk. Now, the cardinality of (Ej} is d’, so that d’ I a&. 

Thus d’ I a, since d’ 2 K1 ; and d’ = a. It follows that (8 @ Z)’ has coupling character d’; 

and from [9 ; Lemma 4.1.71, that the automorphism A 0 Z + cc(A) @ Z of &? 0 Z is unitarily 

induced. 

If d I K,, let P be the maximal finite central projection in GI?‘, and take d’ to be &,. 

Then X is separable and (9 @ Z)’ is purely infinite (it contains Z@ a(&“)). If P # 0, 

(B @ Z)‘(P @ Z) (with finite commutant, (2P) 0 Z) has coupling character tf, (each projection 

cyclic under (9?P) 0 Z is finite [9; Lemma 3.3.31, while (2 0 Z)‘(P 0 I) is purely infinite). 

Since a(P) = P, (AP) 0 Z + (a(A)P) @ Z is unitarily induced [9; Lemma 4.1.71. 

If P# Z, then W(Z - P) and (B?(Z - P)) @ Z are purely infinite. Since X is separable, 

(..%?(I - P)) 0 Z has a cyclic vector [9; Lemmas 3.3.6 and 3.3.31; so that ((B?(Z - P)) @ Z)‘, 

which is purely infinite, has coupling character 1. Again, (A(Z - P)) 0 Z + (cr(A)(Z - P)) @ 1 

is unitarily induced ; and A @ Z -+ c( (A) @ Z is unitarily induced. 

Proof of Theorem (3.6). From Theorem (3.4) the dynamical group t -+ vt is induced by a 

weakly-continuous, one-parameter group ? + CI, of * automorphisms of ‘5!I. Suppose that 

the faithful representation (p is by operators on the d-dimensional Hilbert space &?. Let 

2’ and .X (= _Y? 0 2’) be as in Lemma (4.12); and let $(A) = $(A) @ Z, for each A in PI. 

Now, the mapping B + B @ I is an algebraic * isomorphism of a(&‘) into 5?(X) which is 

weakly and strongly-continuous on bounded subsets of B(z). Since the normal states of a 

von Neumann algebra are those which are strongly (or weakly) continuous on its unit 

ball [3; Theoreme 1, p. 541, the normal states of 4(a)- and G(s)- coincide under the 

mapping B --t B @ I. Thus rc/ is a complete faithful (separable) representation of the dynami- 

cal system (91, S,, t --f vt) with the same normal states as 4. Moreover, the automorphism 

Il/%V of i/G) 1s extendable to a * automorphism of $(2l)-, since I,@,/-’ transforms the 

set of vector states of $@I)- onto itself [9; Remark 2.2.31, by virtue of the fact that ICI is a 

representation of the dynamical system (2l, S,, t + v,). From Lemma (4.12), this extension 

of i&,*-i is implemented by a unitary operator U, on X; and the theorem follows. 

The proof of Theorem (3.8) will be reduced to a question about a representation of a 

group by (inner) * automorphisms of a von Neumann algebra %Y and, then, concluded in 

Theorem (4.13). The representation, in question, is continuous relative to the bounded- 

weak (operator) topology (which we abbreviate as bounded-weak topology) on mappings of 

9 into itself. A typical subbasic open set for this topology consists of all those mappings 

which take a given bounded set in B into a given weak (operator) open set in B (a typical 
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bounded-weak open neighborhood of a’ is {cz : /([u(A) - a’(A)]x, x)1 < 1, for all A in the 

unit ball of g}). 

Proqf of Theorem (3.8). Since C$ is faithful and the direct sum of factor representations, 

these factor representations form a separating family for (‘2X, S,). Theorem (3.4) now 

guarantees that there is a one-parameter group t --t c(, of * automorphisms of 21 such that 

[v,(p)](A) = ,$&,(A)), for all A in 41 and p in S,. lfE,isaprojectionin4(2l)‘such that4(‘U)-E, 

(acting on E,) is a factor, then the central carrier of E, is a minimal projection in the center of 

~$(a)- ; for each subprojection of this carrier in the center of 4(s)- lies in the center of the 

factor @(5X)-E,. Thus, the center of $(Iu)- is totally atomic (i.e. generated by its minimal 

projections). From Theorem (3.6), there is a complete, faithful, separable representation 

$ of (‘LI, SO, t -+ v,) with the same normal states as c$, such that the * automorphism 

I/Jc~,I+!J-’ has an extension /3, to $(2l- which is implemented by a unitary operator on the 

representation space X of $. This unitary operator can be chosen in Ic/((LI)-, from the 

hypothesis that t + vf is inner relative to 4. Since $(A) = &A) 0 Z, &!!I)- and tJ(21)- 

are * isomorphic. Thus the center of $(‘2I)- is totally atomic. 

By assumption, t -+ v~(o,c/J) is continuous relative to the norm topology on SO, for each 

unit vector x in the representation space of 4. The same is true for each finite convex 

combination of vector states, i.e. t + vt(w) is norm continuous, for each o in S,. The 

weakly-continuous states of $(a)- are norm dense in the set of normal states [3, Theorem 

1, p. 541; so that S, is norm dense in the normal states of 4. Since q!~ is complete its normal 

states lie in S,. Moreover, each v, is an isometry on S,, since it is implemented by CI,, an 

isometric linear isomorphism of !!I onto itself [6]. Thus t -+ v<(o) is norm continuous for 

each normal state CO of 4 (by a “three E argument”). Since C$ and II/ have the same normal 

states, it follows, in particular, that t -+ vr(oY$) is norm continuous, for each unit vector y 

in X. Thus t -+ w&x, = oy~q!-‘tj = coyfltll/ is norm continuous. Again, $ being a * 

isomorphism, the mapping p --+p$ of the continuous dual of $(2l) onto that of 2l is an 

isometry; so that t + coy/jf is norm continuous. It follows that t + Bt is a bounded-weak 

continuous, one-parameter group of inner * automorphisms of the von Neumann algebra 

$(2I- with totally-atomic center acting on a separable Hilbert space. We completetheproof 

with the aid of the theorem which follows. It establishes that such groups (and more general 

groups) of * automorphisms of such von Neumann algebras are induced by strongly- 

continuous, unitary groups. 

THEOREM (4.13). If the topologicalgroup G is a simply-connected, compact or semi-simple Lie 

group or the additive group ofreal numbers and C$ is a bounded-weak continuous representation 

of G by inner * automorphisms of a van Neumann algebra W with totally-atomic center V 

acting on a separable Hilbert space 2, then there is a strongly-continuous, unitary representation 

g + U, of G by operators in B such that $(g)(A) = U,AU,*, for each A in 92 and each g in G. 

Proof. Let {Pj} be the family of minimal projections in %‘. By hypothesis ZjPj = I; so 

that Z = C @ Xj, where Pj = Pj(Z). Since the center of ~j (= &?Pj) is WPj = {bPj : b a 

scalar); 9tj (acting on Xj) is a factor. Again, by hypothesis, there is a unitary operator 

V, in 8 such that 4(g)(A) = VgA V,*_ Since PjV, = VgPj, V4Pj is a unitary operator (in 
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gj) and I = ~j. Moreover, this mapping of G into inner * automorphisms of gj is 

a bounded-weak continuous representation of G. If we establish our theorem in the case 

where 9 is a factor, we will have a strongly-continuous, unitary representation g + Uy) 

of G by operators in ~j such that 4(g)(A) = UY’AU, (j)*, for each A in gj and g in G. The 

direct sum g + U, of the representations g -+ U, (j) has the desired properties. 

We assume that W is a factor acting on the separable Hilbert space 2”. The weak and 

strong topologies on the family of bounded operators agree on ‘E, the unitary group in this 

family (cf. [27; p. 31, for example) and provide it with the structure of a topological group. 

According to [4; Lemme 41, this topology on % is given by a metric in which it is a complete 

and separable (countable dense subset) space. Since gu, the group of unitary operators in 

9, is the intersection of a weakly-closed set, 9?, with %!, the same is true for 9?‘,. Now, 

[4; Lemme 31 establishes that if Q,, is a closed subgroup of .!J%?” there is a Bore1 subset %? of 

%!,, which meets each left coset of %YO in one and only one point (99 is a Bore1 cross section for 

the canonical mapping y of &!u onto 9?,/%J. By changing a single point, if necessary, we 

may assume I is in &J. 

In particular, the foregoing applies to the case where q0 is taken to be the center 

qc, (= {al: ]a( = l}) of 9”. Since g,J%?,, is non-denumerable, 99 is non-denumerable and, 

so, Bore1 isomorphic with the unit interval [15; Theo&me 2, p. 3581. Now, ,9!, is a 

complete separable metric topological group relative to the appropriate metric (s(U, I’) = 

c,ll(U - 0hil/2mil~mll~ where (xm} is a countable dense subset of Z’) with associated 

topology the strong (and weak) operator topology on 9’,. Hence 9?J&?,, is a separable topo- 

logical group admitting thecompatible metric, s,,(U+?,,, V%?,) = inf{S(U, UP’) : [al = 11, relative 

to which it is complete. The canonical homomorphism ye of 9u onto 9?,,/%Z0 is continuous 

and bijective between g and W,,/V,. From [14; Theo&me 1, p. 2531, q,, (= n],%?) is a Bore1 

isomorphism of &J onto 9?‘u/%?0. 

The mapping r’ of 9?,, onto the group r(g) of inner * automorphisms of 9 defined by, 

z’(U)(A) = UAU*, is a homomorphism with kernel g,,. In fact, if z’( U)(A) = U*A U = A, for 

each A in ..%‘, then UE B?‘, n St’,, = go. Thus r’ induces an isomorphism r of 9JV0 onto r(g). 

We note that r’ is a continuous mapping when % is considered in its weak operator topology 

and r(a) in the associated bounded-weak topology, so that r is continuous (q being open). 

With x a unit vector in P and E > 0 given, j((U*AU - V*AV)x, x)1 I I(U*A(U - V)x, x)1 

+ I((U* - V*)AVx, x)1 I 21/(U - V)xil < E, for each A in the unit ball of 9, from the 

Cauchy-Schwarz Inequality, provided Il(U - V)xll < s/2. We show that the bounded-weak 

topology on I(&?) is induced by the metric d(cr,a’) = sup{C,(((cc - cc’)(A)x,, ~,,,)j/2~l/x~l]~: A 

in the unit ball of a>; so that z(9) . IS a separable metrizable space relative to this 

topology. Note that d(ol, CX’) 5 2, since * automorphisms are norm preserving. If x, a 

unit vector in 2, and E > 0 are given, choose x, so that /Ix - x,]I < s/8. If d(cc, a’) < 

.s/2m+2]]~,)]2, then ]((a - cc’)(A)x,, x,)1 < e/4, for each A in the unit ball of R; so that 

]((a - a’)(&, x)1 = lw,((a - d(A))/ 5 I( t*, - ~x,)Ka - a’)(A)lI + is,,, Ku - 4(A)l I < 
2(l]x]] + I]xm]l)]]x - x,/j + s/4 < E, for each such A. On the other hand, if E > 0 isgiven, and 

CI, tl’ in r(W) are such that ]((a - a’)(A)Xj, xj)l < 2j]lxj]12a/2(m + l), forj = 1, . . . , m + 1, and 

all A in the unit ball of 9?‘; where 2-” < a/2; then d(oc, a’) < E. Since r is continuous 
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and bijective, its image, z(g), is a Bore1 set in its completion (relative to d) [ 14; p. 253 (I)] and zis 

a Bore1 isomorphism. We conclude that yl;‘~-~4 (= 0) is a Bore1 mapping of G into &Y. 

Since 0(g)&?(g)* = $(g)(A) for each g in G and A in 9, and since $ is a homomorph- 

ism of G into I(.%); O(gl gJ1O(g,)B(g,) (= y(gr, gJ1) is in go. A straightforward compu- 

tation, using the fact that O(gJ1O(gl)-rO(gl g2) is in the center of .%:,, shows that 

Y(SZ> &(g192, s3)-1Ykh 92 93hQl> 921-l = 1; so that y is a 2-cocycle as a 2-cochain 

on G with coefficients in the circle group T1 (trivial action on Tl) in the usual cohomology 

theory of groups [5]. 

Since 0 is a Bore1 mapping, y is a Bore1 mapping of G x G into TI. In these circumstan- 

ces, [17; Theoreme 21 shows that the standard abstract group extension E (constructed 

by providing the Cartesian product T, x G with the multiplication (a,, gl)(a,, g2) = 

(a,a,y(g,, g2), g1g2)) of TI by G associated with y has a unique locally compact separable topol- 

ogy relative to which there is a continuous (open) homomorphism of E onto G with (closed) 

kernel (topologically group isomorphic to) Tl. Now, [24; Theorem 11, [7; Theorem4.4 or 1; 

Corollaire 2, p. 3481 and [3 1 ; Lemma 3.41 tell us that when G is a simply-connected, compact 

or semi-simple Lie group or the additive group of real numbers the extension E of T, by G 

splits (i.e. E is the topological group direct product of TI and G relative to the given mapping 

of Eonto G). Thus there is a continuous homomorphismg --f (t(g)-‘, g) of G into E (the par- 

ticular form for this homomorphism follows from the additional consequence of the splitting 

that composing the homomorphism with (a, g) -fg yields the identity transform on G). The 

multiplication described on E together with the information that g -+ (t(g)-‘, g) is a homo- 

morphism establishes y(gl, g2) = 5(g&(glg2)-‘t(g&, for all gl and g2 in G (i.e. y is the 

coboundary of 5). Now, [17; Theoreme 21 tells us that the mapping of T, x G onto E (with 

its locally compact topology) is a Bore1 mapping; and, since the homomorphism of Ginto E is 

continuous, 5 is a Bore1 mapping of G into TI. 

It follows that g -+ U, = 5(g)-‘0(g) is a Bore1 mapping of G into g,,. Moreover, 

u 9192 = f(sr gJ1% gJ = y(gl, gXs2)-‘5(sJ1 ~(g,)~(g,)y(gl~ g&r = ~JJ,,~ so that 
g + U, is a Bore1 group representation of G. From [30, p. 671, g -+ U, is a strongly-continuous, 

unitary representation of G, and by construction, it is by means of operators in W, and gives 

rise to the representation 4 of G in I(%!). 

Remark (4.14). Since each * automorphism of a type 1 van Neumann algebra which acts 

as the identity on the center is inner [13], the hypothesis that the representation 4 of Theorem 

(4.13) is by inner automorphisms is automatically fulfilled in case they act as the identity on 

the center and .@ is of type I. Hence, if 4 in Theorem (3.8) is a type I representation and the 

dynamical group acts as the identity on its center, it is generated by a Hamiltonian. 

We conclude with a remark on representations of groups by * automorphisms of a 

factor of type II,, with coupling I. The topological hypothesis may be added and the strong- 

continuity conclusion drawn very much as in Theorem (4.13). There is a corresponding 

corollary relating to dynamical systems. 

Remark (4.15). If 4 is a representation of a group G by * automorphisms of a factor w 

of type II, with coupling 1 acting on a (separable) Hilbert space 2, then there is a unitary 
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representation g --f U, of G on A? such that 4(g)(A) = U,AU,*, for each A in B. In fact, 

in this case, there is some unitary operator V, on 2, such that $(g)(A) = &A V,*, for all A in 

8. Let x0 be a trace vector for .B and 92’. Then Vqx, is a trace vector for 92 and 9’; so that 

the mapping AV,x, + Ax, extends to a unitary operator V,’ in 92’. Thus U,x, = x0, where 

U, = V;Vg and 4(g)(A) = U,AU:, for all A in 92. Now U,U,,U,*,, lies in 5%’ since it 

induces the identity automorphism on 9 (recall that C$ is a representation of G). Since 

U,U,TU,*,pxo = x0 and x0 is separating for 9?, U,U,TU,*,T = I; and g -+ U, is a unitary 

representation of G. 
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