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The von Neumann algebras of local observables associated with certain regions of space-time are 
believed to be factors. We show that these algebras are not of finite type. The commutant of the 
tensor product of two semi finite von Neumann algebras is analyzed with the aid of this result. The 
factors in question have the vacuum state as separating and cyclic vector. It is shown that a factor 
of type lao with lao commutant, and a subfactor of type lao with lao relative commutant have a common 
separating and cyclic vector. This settles negatively some conjectures aimed at proving that these 
factors are not of type 1. An argument of Araki's showing that the factors associated with certain 
regions are not of type 1 is presented in simplified form. 

I. INTRODUCTION 

SOME attention has been given recently to the 
algebras of local observables associated with 

regions of space-time by a quantum field theory.1-6 
For certain regions, these von Neumann algebras 
are believed to be factors in the sense of Murray 
and von Neumann. 7 The question of the types8 

of the factors occurring is of some importance in 
this connection. Making use of the cyclicity and 
separating properties of the vacuum state for these 
factors, we show (Theorem 1) that they are of 
infinite type. This same result makes possible a 
direct proof (avoiding Hilbert algebras) of the known 
result9 

(illl ® ill2), = illi ® ill~ when ill 1 and ill2 

are semifinite von Neumann algebras (i.e., have no 
portion of type III). Section IV is devoted to this 
proof. 

The strong separating and cyclicity properties 
of the vacuum state relative to the various factors 
seem to rule out their being of type I. The basic 
question is: 

* This research was supported in part by the National 
Science Foundation under Grant No. NSF-G 19022. 

t Alfred P. Sloan Fellow. 
1 H. Araki, J. Math. Phys. 4, 1343 (1963). 
2 H. Araki and E. J. Woods, J. Math. Phys. 4, 637 (1963). 
3 R. Haag, Proceedings of the Midwest Conference on 

Theoretical Physics, Minneapolis, Minnesota, 1961. 
4 R. Haag and B. Schroer, J. Math. Phys. 3, 248 (1962). 
6 I. E. Segal, Mathematical Problems of Relativistic Physics 

(American Mathematical Society, Providence, Rhode Island, 
1963). 

6 M. Gu€min and B. Misra, "On the von Neumann algebra 
generated by the field operators" (mimeographed note, 
Institute of Theoretical Physics, Geneva). 

7 F. J. Murray and J. von Neumann, Ann. Math. 37, 116 
(1936). 

8 See reference 7, especially pp. 171-172. 
9 J. Dixmier, Le.~ algebres d'operateurs dans l'espace Hil

bertien (Gauthier-Villars, Paris, 1957), p. 102, Proposition 14. 

If ill, ill', ill1, and illi (\ ill are factors of 
type I", and illl~ill, can ill and illl have a (1.1) 
joint generating and separating vector? 

In Sec. V we analyze cyclic and separating vectors 
for factors of type I", with I", commutants, and 
reduce some variants of (1.1)10 to (1.1). In Sec. VI, 
we construct such a joint generating and cyclic 
vector (settling the associated conjectureslO neg
atively). 

The final section contains a simplified form of 
an argument of Araki's.ll The uniqueness of the 
vacuum state as a translation invariant, together 
with the fact that it is separating, is used to show 
that the factor associated with a certain region 
of space-time is not of type I. 

Question 1.1 arose in a conversation (October 
1962) with A. S. Wightman (Theorem 1 was proved 
during this conversation). 

II. NOTATION 

As we have done in the introduction, we denote 
by ill' the set of (bounded) operators commuting 
with all the operators of ill (ill' is called the commutant 
of ill). We use the symbol and terminology for an 
orthogonal projection operator interchangeably with 
the symbol and terminology for its range (the 
closed subspace on which it projects). If ill is a 
family of operators and N a set of vectors, r <RN] 
will denote the closed subspace spanned by vectors 
of the form Ax with A in ill and x in N (so that, 
by the convention just adopted, [<RN] will also 
denote the orthogonal projection operator on this 
subspace). 

10 See reference 6 (listed there as Conjectures Bl and B2). 
11 See reference 1, especially Lemmas 10.1-10.3; and 

reference 2, .especially Lemmas 4.1 and 4.2. 
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m. INFINITE TYPE IV. TENSOR PRODUCTS 

The von Neumann algebra of local observables 
associated with a bounded open region 0 of space
time by a quantum field is a factor which has the 
vacuum state !/to as a separating and cyclic vector. 
If 00 is an open subregion of 0 with boundary at 
positive distance from the boundary of 0, its factor 
<Ro is a proper subfactor of <R (again with !/to as 
separating and cylic vector). We prove 

Theorem 1. The factor <R is of infinite type. 
This will be accomplished by establishing: 

Lemma 12. If <Ro is a proper sub von Neumann 
algebra of the von Neumann algebra <R, and x is a 
separating and cyclic vector for both CR and CRo, then 
CR (and CRo) are of infinite type. 

Remark. Although the proof is somewhat simpler 
in the factor case, it seems worthwhile to establish 
this lemma for arbitrary von Neumann algebras. 
We shall do this. 

Proof: We assume that <R is finite and show that 
<Ro = CR. Assuming <R finite, [CRx] (= x, the under
lying Hilbert space) is finite in CR,12; so that CR' 
(and, similarly, CR~) are finite. Let D, D', Do, and 
D~ denote the center-valued dimension functions on 
<R, CR', CRo, and CR~, respectively,13 each normalized 
so that the identity operator I has dimension I. 
Since X = [CRx] = [<R'x] = [CRox] = [CR~x], D'([CRyJ) = 
D([CR'y]) and D~([CRoyJ) = Do([CR~y]), for each y in 
X, by virtue of the Coupling Theorem. 14 In partic
ular, with P a central projection in <R, [<RoPx] = 
P = [<R'Px] c [CR~x]; so that [CR~CRoPx] C [CR~Px] C 

[<R~<RoPx] and D~([CRoPx]) = D~(P) = Do([CR~Px]) = 
[<R~Px] (since [<R~x] is [CR~CRoPx], a central projection 
in CRO).13 Now [CR~Px]D~(P) = D~([CR~PxlP) = 
D6([CR~x]), so that P ~ [CR6Px]. Thus P = [CR6Px]ECRo; 
and the center of CR is contained in that of <Ro. 
By the same token, the center of <R~ is contained 
in that of <R. Uniqueness of the (normalized) dimen
sion function now implies that Do is the restriction 
of D to CRo; and D' is the restriction of D~ to CR'. 

Let E be a projection in CR and y be Ex. Then 
E = [CR'y] , so that D(E) = D'([CRy]). Since [<Ry] E 
CR' c CR~, D(E) = D' ([CRy]) = D6([CRy]) ~ DWCRoyJ) = 
Do([CR6Y]) = D([CR6y]) ~ D([CR'y]) = D(E). Thus 
D(E) =D([CR6yJ); and, since E~ [CR6y], E= [CR6y]ECRo. 
Hence each projection in CR lies in <Ro; and CR = CRo, 
contradicting the hypotheses. 

12 This is a consequence of Lemma 9.3.3 of reference 7 
(as in reference 9, p. 242, Proposition 3, or Lemma 3.3.4 of 
reference 13). 

U R. Kadison, Ann. Math. 66, 304 (1957), see Chap. III. I. See reference 13, Theorem 3.3.8. 

Lemma 2 is the key toU 

Theorem 3. If CRI and CR2 are semi finite von Neumann 
algebras, then (CRI ® CR2)' = CRf ® ~. 

For the proof of this, we shall want: 
Lemma 4. If CRo and CR are von Neumann algebras 

such that CRo C CR, the center of CR is contained in 
that of <Ro, and {E ~} is a family of projections in <R' 
with union I such that CRE~ = CRoE~ (or, dually, 
E~<R'E~ = E~<R~D for each a; then CRo = CR. 

Proof: Since von Neumann algebras are generated 
by their projections, it suffices to show that each 
projection E in <R lies in <Ro. By assumption, for 
each a there is an Ao in CRo such that EE~ = AoE~. 
Let Fo be the range projection of Ao. Then Fo lies in 
CRO•

15 Now FoE~ (= E~Fo) and AoE~ (= E~Ao) 
are both projections with {E~AoX} dense in their 
ranges; so that AoE ~ = Foe ~ = EE~. With T' in 
CR', T'EE~ = ET'E~ = T'FoE~ = FoT'E~; so that 
EP a = FoP a, where Pais the central carrier of E~ 
(relative to CR,).IO Since the center of CR is contained 
in the center of <Ro, FoP a lies in CRo. Moreover, 

E(V P,,) ~ E(V E~) = E·I = E, 
a a 

so that 
E = E(V Pa) V EPa = V FoPa 

a 

lies in CRo. 

If E~CR'E~ = E~CR~~, then CRE~ = CRoE~ for 
each a l7 

; and from the preceding, CR = CRo. 
Proof of Theorem 3: With Af in CRf and A~ in <R~, 

A{ ® A~ commutes with each Al ® Az in <RI ® <Rz 
so that Af ® A~ lies in (CRI ® CR2)'. Thus CRf ® <R~ C 

(<RI ® <R2)'. The problem resides in establishing 
the reverse inclusion. 

Suppose Ef and E~ are projections in <R{, <R~, 
respectively, such that 

[(CRIED ® (CR2E~)]' = (CRIEO' ® (<R2E~)'. (4.1) 

Then 

(Ef ® E~)(CRI ® CR2),(Ef ® E~) 
= (EfCRfED ® (E~CR~E~) 
= (Ef ® E~)(CRf ® <R~)(E{ ® E~). (4.2) 

With CRI and CRz Abelian, Ef, E~ as above and 
cyclic; CR1Ef, CR2E~ and (CRIE:) ® (CR2E~) are maximal 
Abelian since each is Abelian and has a cyclic 

16 The range projection Fo commutes with R'. Cf. J. von 
Neumann, Math. Ann. 102, 370 (1929). 

16 See reference 13, especially Sec. 3.1. 
17 See reference 7, Lemma 11.3.2, and reference 9, p. 18, 

Proposition 1. 
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vector. IS Thus (4.1), and, hence, (4.2) hold, in this 
case. Since the union of projections E~ ® E~ in 
ffi~ ® ffi~, with m, E~ cyclic, is I; (ffil ® ff(2), = 
ffii ® ffi~, from Lemma 4, when ffil and ffi2 are 
Abelian-once we note that ffil ® ffi2, being Abelian, 
is its own center as well as that of (ffil ® ff(2), and is 
contained in ffii ® ffi~[C (ffi l ® ff(2),] and hence 
in the center of ffii ® ffi~. 

For arbitrary von Neumann algebras ffi I, ffi2 with 
centers e l and e2, respectively, the center e of 
ffil ® ffi2 is el ® e2. In fact, el ® e2 C e; while 
ffil ® I C ffil ® ffi2 C e' and ffi~ ® I C ffii ® ffi~ C 
(ffil ® ff(2)' C e'. Now, ffil and ffi~ generate e~; 
so that e~ ® I S; e'. Similarly I ® e~ S; e'. Thus 
ei ® e~ = (el ® ( 2)' C e'; and e l ® e2 ;;:2 e. 
It follows that el ® e2 = e. We conclude that 
ffi~ ® ffi~ and (ffil ® ff(2), have the same center 
(viz. el ® e2, the center of ffil ® ff(2). 

Combining this last conclusion with (4.1), (4.2), 
the comment that P(V., G.,) = V., PG., when 
PG., = G.,P for each ,,/, and Lemma 4, we see that 
it suffices to prove 

[(ffiIE~) ® (ffi2F~)1' = (ffiIE~)' ® (ffi2Fp)', (4.3) 

for all a and {j, where {E ~} and {Fp} are families 
of projections in ffi~ and ffi~, respectively, with 
union I. With ffil and ffi2 semifinite, ffii and ffi~ are I9 ; 
and each is generated by its finite cyclic projections. 
If E' and F' are finite cyclic projections in ffii and 
ffi~, respectively, (ffiIE')'( = E' R~E') and (ffi2F')' 
are finite; and their commutants have cyclic vectors. 
We may assume, therefore, that ffii and ffi~ are 
finite; and that ffil and ffi2 have cyclic vectors. 

Since (ffil ® ff(2), = ffii ® ffi~ is equivalent to 
ffil ® ffi2 = (ffi~ ® ffi~)', and the finite cyclic projec
tions in ffi" ffi2 have union I, it suffices to prove 
(ffiiE)' ® (ffi~F)' = [(ffiiE) ® (ffiW)]', for all such 
projections E and F. But now (ffi~E)', (ffi~F)', ffiiE, 
and ffiW are all finite and ffi~E, ffi~F have cyclic 
vectors. We may assume that ffi I, ffi2, ffi~, and ffi~ 

are finite and ffi" ffi2 have cyclic vectors x and y, re
spectively. For each vector z, DI([ffiiz]):$DI([ffi~x]).14 
But DI(I - [ffiiz]) = I - DI([ffiiz]) ~ DI([ffiix]) -
DI([ffiiz]), so that there is a partial isometry V in 
ffil with initial space [ffiix] and final space V([ffiix]) = 
[ffii V x] containing r ffiiz]. Now [ffi l V x] ::) [ffi l V*V x] = 
[ffilx]; so that each cyclic projection in <HI is con
tained in a projection [ffiiw], with w cyclic for ffi l . 
Hence the union of such projections in ffil is I. 
Since the same is true for ffi2, it suffices to prove 

18 See reference 15. This can be made to follow from 
reference 7, Lemma 9.3.3, or reference 9, p. 242, Proposition 3. 

19 This follows from the references of 12, or explicitly in 
reference 9, p. 101, Corollaire 1. 

(ffi([ffiixl®ffi~[ffi~y])' = ([ffi{x]ffiI[ffi(x])®([ ffi'y]ffi2[ffi'y]) , 
for all cyclic vectors x for ffil and y for ffi2. But 
ffi([ffiix] and [ffifx]ffiI[ffiix] are finite with x as cyclic 
vector for each, while ffi~[ffi~y] and [ffi~y]ffi2[ffi~y] are 
finite with y as cyclic vector for each. 

We may assume ffi l, ffi2, ffii, ffi~ are finite with x 
a cyclic vector for ffi I, ffii, and y a cyclic vector for 
ffi2, ffi~. In this case, x ® y is cyclic for ffil ® ffi2 
and ffi( ® ffi, [C (ffil ® ff(2)']; hence for (ffi l ® ff(2)'. 
The product of the center-valued traces20 on ffil 
and ffi2 extends to a (finite) center-valued trace on 
ffil ® ffi2,21 so that ffil ® ffi2 is finite. Since ffil ® ffi2 
has a cyclic vector, (ffil ® ff(2)' is finite. From 
Lemma 2, ffii ® ffi~ = (ffil ® ff(2),. 

Remark. The formula for (ffil ® ff(2)' has not been 
proved for ffil and ffi2 factors of type III. 

v. JOINT CYCLIC AND SEPARATING VECTOR
REDUCTION OF THE PROBLEM 

The presumption that the cyclic and separating 
vector of (1.1) does not exist can be cast as a con
jecture in many forms. Two variants of this due to 
Guenin and Misra 6 are listed as: 

BI : If ffil is a proper subfactor of ffi, both are 
factors of type 10>, and if; is a separating and cyclic 
vector for both ffil and ffi, then each minimal 
projection in ffil is finite relative to ffi. 

B2: If ffi l is a proper sub factor of ffi unitarily 
equivalent to ffi, if; is a separating and cyclic vector 
for both ffi l and ffi, and ffi is the von Neumann 
algebra generated by ffil and ffii n ffi; then each 
finite projection in ffil is finite relative to ffi. 

Under the hypothesis of B I , ffii n ffi is a factor 
of type In (n possibly <Xl). The dimension of a 
minimal projection in ffil relative to ffi is n. To see 
this, note that the situation does not change if 
we replace ffi by a von Neumann algebra isomorphic 
to it. Assume, for the moment, that ffi is all bounded 
operators on some (separable) Hilbert space-so 
that ffil is then a 10> factor on this space with In 
commutant ffii (= ffi( n ffi). If E is a minimal 
projection in ffiI, the mapping Ai ---7 AiE is an 
isomorphism (since ffii is a factor) of ffii onto the 
algebra of all bounded operators acting on E (by 
minimality of E)- which algebra is, accordingly, 
of type In. Thus E is n-dimensional (with ffi all 
bounded operators), i.e., E has dimension n relative 
to ffi. 

Conjecture Bl becomes then: ffii n ffi cannot be 
of type I", with if; a cyclic and separating vector 

20 See reference 9, p. 267, Theoreme 3, or R. Kadison, 
Proc. Am. Math. Soc. 12, 973 (1961). 

21 See rderence 9, p. 56, Theoreme 2. 
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for the factor CR of type I", with type I", commutant, 
and for the subfactor CR I of type I", of CR-i.e., BI 
asserts that (1.1) has a negative answer. Now if CR 
and 3 are factors of type I", (on separable Hilbert 
spaces X and X) each with commutant of type I",. 
each has a separating and cyclic vector22 and they 
are unitarily equivalent23 ; viz. there is a unitary 
transformation U of X onto X such that the mapping 
A ~ UAU- I of bounded operators on X into 
bounded operators on X maps CR *-isomorphically 
onto 3. If CRI and 31 are subfactors of CR and 3, 
respectively, of type I"" each with commutant 
relative to CR and 3(CRi n CR and 3i n 3) of type 1«>, 
then each has absolute commutant of type 1«> and 
so has its own cyclic and separating vector, from 
the preceding remarks. Moreover, UCR I U- I is a 
type I a> subfactor of 3 with relative commutant 
(U CR I U- I

), n 3 of type I a>. Again, from the preceding 
remarks (representing 3 as all bounded operators 
on some separable space), there is a unitary operator 
V in 3 such that VUCRIU-IV- I = 31, Thus VU is 
a unitary transformation of X onto X carrying CR 
onto 3, CR I onto 31, and, hence a separating and 
cyclic vector for CR and CR I , if one exists, onto such 
a vector for 3 and 31, Thus, if one such pair CR, CRl 

has a joint separating and cyclic vector, all such 
pairs do (all being unitarily equivalent to CR and CR I ): 

We have noted that each of CR and CR I has its 
own cyclic and separating vector. The problem is 
whether one vector will serve as such for both of 
them. Suppose x is such a vector. In any event, 
CR and CR I , being of type 1«> with (absolute) com
mutant of type la>, are unitarily equivalent, as 
noted above. Further, CR and CR I being factors 
of type I", implies24 that CR is unitarily equivalent 
to the tensor product of CR I and CRi nCR-in partic
ular, CR is generated by CR I and CRi n CR [and 
(CRi n CR)' n CR = CR I ]. As noted, the minimal 
projections of CR I , which are certainly finite in CR I , 

have dimension <Xl relative to CR, with CR{ n CR 
of type I",. Thus the example constructed in this 
and the next section, to show that (1.1) has an 
affirmative answer, settles both conjectures BI and 
B2 negatively. 

We begin by constructing a factor CR of type I", 
and a sub factor CR I of type I", with CRi n CR of type 
I", (which pair will be a "canonical form" for all 
pairs, by virtue of the preceding remarks). Let X 
be a (fixed) separable Hilbert space, CB(X) the 

22 See reference 7, p. 182, Theorem X; or E. L. Griffin, 
Jr., Trans. Am. Math. Soc. 75, 471 (1953), especially Lemma 
1.2.8; or reference 13, Lemma 3.3.6. 

23 See reference 9, p. 233, Theoreme 3. 
24 See reference 7, Lemma 3.2.4. 

algebra of all bounded operators on X, X' the 
direct sum X EB X EB ... of X with itself a countable 
number of times, and X" the same, with X' in 
place of X. With T an operator on X, let T- be the 
operator on X' defined by T- (x') = (TXI' TX2, ... ), 
where x' [= (Xl' X2, ... )] is a vector in X'. Similarly, 
if P is an operator on X', we can associate with it 
an operator P- on X". In terms of (infinite) matrices 
with operator entries, T- is the matrix with all 
off-diagonal entries 0 and each diagonal entry equal 
to T. Viewed as infinite (operator entry) matrices, 
the operators on X" are infinite matrices each of 
whose entries is an infinite matrix with entries 
operators on X. Thus CB(X) -- is an "infinite copy" 
of CB(xf; and CB(x'f, an infinite copy of CB(X'), 
contains CB(xf-. Both are factors of type I a> with 
commutants of type I",. Denote CB(X) -- by CR I and 
CB(X') - by CR. The matrices representing operators 
in (CB(x'f)' have scalar multiples of the identity 
operator on X' as entries. Moreover, (CB(Xf-)' n 
CB(X') - (= CRi n CR) consists of operators whose 
matrix representation has each principal (diagonal) 
infinite matrix block [i.e., operator in CB(X')] equal 
to one infinite matrix, all of whose entries are 
scalar multiples of the identity operator on X, and 
all nonprincipal blocks equal to O. Thus CRi n CR is 
and infinite copy of a factor of type I", [viz. (CB(xf)'], 
and is itself a factor of type I",. 

In the notation of tensor products of Hilbert 
spaces, X' can be identified with X @ X, and X" 
with X @ X @ X, CB(xf with CB(X) @ I, CB(x')with 
CB(X) @ CB(X), CB(X) -- (= CR I ) with CB(X) @ I @ I, 
CB(X') - (= CR) with CB(X) @ CB(X) @ I( = CB(X') @ I), 
and CR; n CR with I @ CB(X) @ I. 

In the development which follows, we shall derive 
conditions on the set of coordinates of a vector 
x' in X' under which it is a separating vector for 
CB(xf and conditions under which it is a cyclic 
vector for CB(xf. 

Definition 5. A set of vectors {Xi} in X is said to be 
an L2 set when L~-l I/XiW < <Xl. An L2 set of vectors 
{Xi} in X will be said to be L2-independent when 
L~-I aix; = 0, for a; with L~=l la;/2 < <Xl, implies 
ai = 0 for all j. 

Remark 6. The L2 sets are precisely the possible 
sets of coordinates of vectors in X'. 

Remark 7. Note that with {xd an L2 set, and 
I:~-I lail2 < <Xl, L~-l ajX; converges absolutely, 
for I:~-l lail I/ X il/ ~ (L~-l lal2)i(L~_1 I/xiln! 
(by Cauchy-Schwarz). 

Lemma 8. The set of vectors {Xi} in X is L 2-

independent if and only if there exists a Hilbert
Schmidt operator T on X which is one-one [i.e., null 
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space (0)] and an orthonormal basis {y;} for X such 
that Ty; = Xi, for all j. 

Proof: By a unitary equivalence, we may assume 
that X is l2 (sequence Hilbert space) and Xi = 
(a l ;, a2;, ... ). Let T be the operator on X (so 
represented) which corresponds to the matrix (ak;) 
relative to the orthonormal basis { y;j, where y i 
has jth coordinate 1 and all other coordinates O. 
Then T is a Hilbert-8chmidt operator if and only if 
{x;} is an Lz set, for 2:7=1 IIx;W = 2:~~1 2::-1 lak;12 = 
Trace (T*T). 

With {x;} an L2 set, and Z = (fJl, fJ2' ... ), 
o = Tz = (2:7-1 fJiali, 2:7=1 fJ;az;, ... ), if and 
only if 2:7=1 fJ;ak; = 0, for all k. This last is the 
case, if and only if 2:~-1 fJ;x; = 0. Thus Tis one-one 
if and only if {Xi} is L2-independent. 

Lemma 9. The vector x' = (Xl! X" ••. ) in X' is 
cyclic for Cl3(xf if and only if {x;} is L2-independent. 

For the proof of this, we shall need the following 
two remarks: 

Remark 10. If Tin Cl3(X') has aMI as k, jth entry, 
and z' in X' has all coordinates ° except the jth, 
which is some unit vector z in X, then Tz' = 

(aliz, az;z, ... ); so that IITz'W = 2::=1 lakil z S 
/ITW Ilz'W = IITW· Thus all columns of this 
special T are "square summable". Applying this 
to T*, we conclude that all rows of T are "square 
summable" . 

Remark 11. If T has fJiI as entry in the first row 
and jth column, and ° at all other entries, where 
rl = 2:~-1 IfJil2 < co, then, with z' (Zh Zz, ... ), 
Tz' = (2:~=1 fJiZi, 0, 0, ' .. ). Thus 

IITz'l1 = II ~ fJ;Zill S ~ Il1illlzill 

S (~ lf1iI
2Y(tt Ilz;/1 2Y = f1l1z'll, 

which establishes both the convergence of 2:~-1 f1;z;, 
so that T is a well-defined linear operator on X', 
and the boundedness of T. 

Proof of Lemma 9: The vector x' is cylic for 
Cl3(xf if and only if it is separating for (C13(Xf),.25 
From our earlier comments about the matrix form 
of an operator T in (C13(X) -y, we know that the 
k, jth entry is ak/I, with ak; some scalar. Thus 
TX' = 0, if and only if L~-l akjXi = 0, for all k. 
From Remark 10, 2:~=1 lak;12 < co, for all k. 
Thus if Ix;! is L2-independent, ak; = 0, for all 
k, j, T = 0; and x' is separating for (C13(xf)' and 
cyclic for Cl3(Xf. 

26 See reference 9, p. 6, Proposition 5 (note: "totalisateur" 
replaces "cyclic"). 

On the other hand, if x' is cyclic for Cl3(Xf, so, 
separating for (C13(Xf)', and 2:~=1 fJ;Xf = 0, with 
2:~-1 IfJil 2 < co, then T, with f1iI as 1, jth entry 
and all entries ° in rows other than the first, is 
bounded, by Remark 11. Hence T lies in (C13(Xf)' 
(by virtue of its matrix form). But Tx' = (2:7=1 fJ;XiI 
0,0, ... ) = 0; so that T = ° and f1f = 0, for all j. 
Thus {Xi I is L2-independent. 

Lemma 12. The vector x' = (Xl, X2, ... ) is separating 
for Cl3(xf if and only if its set of coordinates {xd 
spans X. 

Proof: We have T-x' = 0 if and only if TXk = 0, 
for all k, which is the case if and only if T annihilates 
the subspace M of X spanned by {Xk I. Now l' 
annihilating M is equivalent to T (and hence T-) 
being 0, if and only if M = X. 

From Lemmas 9 and 12, we see that (Rl and (R 
have a joint cyclic and separating vector if and 
only if there is an L2 set I xn in x' which spans 
X'-so that x" = (xf, x~, ... ) in X" is separating 
for (R (and a fortiori for (Rl)-such that {Xk; I is 
L2-independent, where x, = (Xkl1 Xk2, ••• )-so that 
x" is cyclic for (Rl (and a fortiori for (R). 

It is useful to view the desired construction in 
intrinsic form (say in our fixed Hilbert space X). 
We ask for a sequence El, E 2 , ••• of mutually 
orthogonal, infinite-dimensional subspaces of X, an 
isometry V; of E j onto E I , and an L2 set IXkl 

which spans X such that {ViEiXk} is L2-independent 
(in E l). In this formulation, EI replaces X, X re
places X' (as a direct sum of the E; or EI with 
itself a countable number of times by virtue of the 
isometric identification Vi of Ei with E l), Xk replaces 
x~, and V;E;Xk replaces Xkj' It is in this form that 
we establish the existence of a joint separating and 
cyclic vector, in the next section. 

VI. THE CONSTRUCTION 

We state the result being proved explicitly as: 
Theorem 13. If at is a factor of type I., acting on 

the separable Hilbert space X, (R' is of type I., and 
(RI is a subfactor of (R of type I", with relative commutant 
(Rf n (R a factor of type I co, then there is a vector x in 
X which is cyclic and separating for both (Rl and (R. 

Proof: For the purposes of this construction (and 
from the discussion of the preceding section), we 
may take X in the specific representation L 2 ([0, 1]) 
(relative to Lebesgue measure). Following the 
required construction as outlined at the end of 
the last section, we take Xk to be the function 
')' -+ ')'k /k (actually, the equivalence class of all 
square-summable functions which differ from this 
function at most on a set of measure 0). As E k , 
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we choose the subspace of X consisting of those 
functions which vanish almost everywhere (a.e.) 
outside of [2- k

, 2-(k-O]. Let Xk = kXk' 

Note that the transformation U~ defined by 
(UU)('Y) = T(k-!)/2f('Y/2k- 1

), for continuous f in 
E k, maps this set of functions isometrically onto 
the set of continuous functions in E!. Denote by 
Uk the (unique) extension of U~ to Ek mapping 
Ek isometrically onto E!. Note also that U;E;Xk = 
k- 1

T(i-1) (k+;)E1Xk. Let W k be the operator on X 

defined by W kf = h- f, for f in X, where f k is 0 
on [O,!J, Ion [l, 1_2-(k+1), and -Ion [1_2-(k+l), 1]. 
We note that each W k maps El isometrically onto 
itself. Finally, we take Vk to be WkUk. 

To see that the choices satisfy the desired condi
tions, observe that {xd spans X by virtue of the 
Weierstrass Polynomial Approximation Theorem. 
Suppose L7.k=1 cx;kV;E;Xk=O, withL7.k=1 ICX;kl

2 < CD. 

Then 0 = L7.k-1 cxjkk-12-(;-I)(k+!)WjEIXk = 
L7.k~1 {3jkWjEIXk, with L7.k=1 1{3jkl < CD. Thus 
o = L7=1 Wjy;, where Yj = L:=l {3jkE1Xk' Now 
Yj is the (equivalence class of the) restriction to 
[l, 1] of gj, where 

(6.1) 

so that gj is analytic on the open unit disk 5) in the 
plane of complex numbers (since L:=l l{3jkl < CD). 

Since f;g i is in the equivalence class W jY;, 

n 

l.i.m. L fjgj = 0 (6.2) 
]=1 

(i.e., the sum L7=1 figi converges in L2 to 0). But 
figj is gj on [!, t); so that g = L7=1 gj is 0 (a.e) 
on [!, t). Since g is analytic on 5), g is 0 on 5). 

Define go to be 0; and note that f k is -Ion the 
interval [1 - 2-(k+I). 1 - 2-(k+2» (= a), while 
fi is 1 on a, for j = k + 1, k + 2, .... Suppose 
we have established that go, "', gk-l are 0; so that 
L7=kgj isO. Then, from (6.2), lim [L7-k+1 gj - gk] = 0 
on a; so that lim Li-k gi = 2gk on a. Since gk is 
analytic on 5), gk = O. By induction, each gk is O. 
From (6.1), {3jk = 0, for all j and k. It follows 

that {VjEjXk} IS L2-independent; and the proof 
is complete. 

VII. REGIONS WITH FACTORS NOT OF 
TYPE I (ARAKI) 

Arakill shows that the von Neumann algebra of 
local observables associated with a certain region 
is a factor not of type I. He considers the region <9 
of space-time, the coordinates of whose points 
satisfy Ixol < lXII, Xl > 0, X2, and X3, arbitrary 
(and also the interior of the set of points spacelike 
with respect to these-for the purpose of the 
commutant). He notes that <9 is invariant under 
translations in X2 and Xa, and that the unitary 
operators associated with such translations have the 
vacuum 1/;0 as unique invariant state. The von 
Neumann algebra CR associated with <9 is a factor 
which has 1/;0 as separating and cyclic vector. From 
this data, we conclude that CR is not of type I. 
In fact: 

Proposition 14. If CR is a factor acting on the Hilbert 
space X, U is a unitary operator which induces a 
nontrivial automorphism of cR, 1/;0 is separating for cR, 
and 1/;0 spans the eigenspace for U corresponding 
to the eigenvalue 1, then CR is not of type I. 

Proof: If CR is of type I, then U = VW' with 
V in CR and W' in CR' (both unitary). (This is well
known: each automorphism of a type I factor is 
inner, as noted in Sec. V; and if V in CR induces 
the same automorphism as U, then W' = V-IU 
commutes with CR.) Since VW' = W'V; u, V and 
W' commute. Thus V1/;o = VUI/;o = UVI/;o, and 
by uniqueness, V1/;o = a1/;o with lal = 1. Since 1/;0 is 
separating for CR, V = aI. Thus U (= a W') is in 
CR' and induces the trivial (identity) automorphism 
of cR. 
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