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1. Introduction. In [19], Murray and von Neumann made use of their

trace function on a factor of type Hi to induce an inner product on the factor

and, by left multiplication, a representation of the factor (with simple multi-

plicity). Gelfand and Neumark [5] employed a similar process in more gen-

eral circumstances to construct representations of certain Banach algebras

and prove their well-known characterization of C*-algebras. Segal [24] recog-

nized the importance of this construction of representations for the study of

infinite-dimensional representations of locally compact groups and for the

study of C*-algebras themselves. Emphasizing the order structure, he con-

structed representations corresponding to positive linear functionals on a

C*-algebra. By means of such representations, spectral values could be made

to correspond to eigenvectors. The key to many of the results of [24] was

Segal's extremal characterization of those functionals which give rise to ir-

reducible representations.

The program of this paper is to describe, in terms of the C*-algebra and

its space of positive linear functionals (states) the type invariants of the

representing operator algebra arising from the given P*-algebra and the

representation induced by a given state of it. In particular, we characterize

those states which give rise to a representing algebra whose weak closure is

a factor, is of type I, of type II, and of type III (Theorem A). We shall sketch

a technique for doing the dimension theories of the weak closure of the

representing operator algebra due to a state and of its commutant in terms

of the state space. (The "coupling" can be described in these terms, from this.)

For the sake of clarity, we have carried this program out for factor repre-

sentations (the factor, or local, case). In the last section, we supply the defini-

tions (Definitions 4.2 and 4.3) necessary to make the extension of these local

results to the global case (arbitrary states) a routine matter. (The key to

these results, Theorem C, applies to the global case.) This same section con-

tains a characterization (Theorem H) of those (norm) separable C*-algebras

which admit maximal cyclic representations (equivalent to no proper sub-

representations of cyclic representations). These are the separable type I

(equivalently, GCR [6; 14]) algebras with countable structure space.

A standard translation makes these results applicable to unitary repre-

sentations of locally compact groups.

2. Notation and preliminaries. Our C*-algebras are complex Banach alge-
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bras with an operation A—*A* satisfying iaA+B)* = áA*+B*, iAB)*

= B*A*, iA*)* = A, and \\AA*\\ =\\A\\ -11-4*11, and containing a unit element
7. (This last is not an essential requirement.) A representation (sometimes

called, * representation) of such an algebra is a homomorphism cb whose

image lies in the algebra of bounded operators on some Hilbert space, satisfy-

ing cbiA*) =cbiA)*.

A positive element A in a C*-algebra is one which is self-adjoint iA=A*)

and whose spectrum consists of non-negative real numbers. A state p of a

C*-algebra 3Í is a linear functional on 21 such that piA)^0 ii A}t0. (The re-

quirement p(7) = 1 is often added; but we shall not do so.) Each state p of a

C*-algebra 31 "induces" a representation of 31 as follows [5; 24]. The mapping

A, B—>piB*A) is a positive semidefinite inner product on 31. From the

Cauchy-Schwarz inequality, the set of null vectors 3CP is a left ideal in 31. The

vector space quotient of 31 by 3CP is then a pre-Hilbert space in the induced

inner product. The operators </>p(^4)' defined on the quotient by 0p(yl)'(ß + 3Cp)

= AB-T-Kp axe bounded and have unique bounded extensions <£P(.4) to the

completion 3CP. The mapping cbp is the desired representation of 31. The vector

xp( = 7+3Cp) is cyclic under </>p(3I), i.e., its images under #„(31) form a dense

subset of 3CP.

If the C*-algebra 31 acts on the Hilbert space 3C (i.e., the abstract C*-

algebra has a faithful representation on 3C), each vector x in 3C defines a state

of 31 by A—>iAx, x). If 31 happens to be all bounded operators on 3C, we denote

this state by ux, otherwise, by ux\ 31. We refer to it as a vector state of 31. In

the construction above, p = cúx¡¡ o cbp (i.e., piA) = (<£p(.4)xp, xp), for each A in 31).

We speak of a representation such that there is a cyclic vector for the

image as a cyclic representation. If cb and yp are cyclic representations of the

C*-algebra 31 with cyclic vectors x and y, respectively, such that ti)xocb

= co„o</', then the mapping U' defined by U'icbiA)x) =ipiA)y extends to a

unitary transformation U of the Hilbert space upon which <£(3I) acts onto the

Hilbert space upon which «/'(SI) acts; and UcbiA) U~1 = ypiA), for each A in 31.

In general, when such a U exists, we say that cb and \¡/ axe unitarily equivalent

representations and that U effects or implements the equivalence.

If 5 is a family of operators on and V a set of vectors in the Hilbert space

3C, we denote by [SFU] the closure of the set of vectors { Tx: T in 'S, x in V}.

We denote by this same symbol the orthogonal projection operator on that

subspace. In fact, we adopt our usual convention of identifying a subspace

and the orthogonal projection on it with regard to terminology and notation.

If cb is a representation of the C*-algebra 31 as operators on 3C and x is in 3C,

then [<¿>(3í)x] is a projection commuting with 0(31). We call the set of oper-

ators commuting with a family ÍF, the commutant of SF and denote it by ff'.

With £' a projection in 0(31)', the mapping A—>cbiA)E' is a representation of

31. Such a representation is called a subrepresentation of cb. If, in particular,

E'= [<K3f)x], then this subrepresentation is unitarily equivalent to that in-



306 R. V. KADISON [May

duced by the state wx o cp of SI (from the preceding paragraph). We denote by

5~ the strong operator closure of the family of operators 9\ With ÍF a *-algebra,

íF~~ coincides with the weak operator closure of SF [l, p. 43, Theorem 2]. We

note that [íFü] = [S~V], for general SF.

If p is a state of the C*-algebra 21 such that ri£p, for another state t of

31 (i.e., p—r is a state of 21) implies that r = ap, for some scalar a; we say that

p is a pure state of 2Í. In another form, with pj^O, p is pure if and only if

p/p(I) is an extreme point of the (convex) set of states which take the value

1 at I. In [24, pp. 79-80], the pure states are identified as those which induce

irreducible representations (i.e., representations cj> such that <p(2l)' consists of

scalar multiples of I, or, equivalently [20], <p(2l)~ is all bounded operators).

If p is a state of the C*-algebra 21 and A an operator in 21, we denote by p¿

the state of 21 defined by pA(B) =p(A*BA).

Definition 2.1. If p is a state of the C*-algebra 21, we denote by ß the norm

closure of the set { pa '■ A in 21} in the dual space of 21 ; and by p the norm closure

of the set {t: r^ap, r a state of 2l}. We write t ^p when fQp, and T~p when

f = p. When fC\p = {0}, we say that r and p are disjoint.

Remarks (2a). The relation ~ is an equivalence relation on the states

of 21.
(2b). The relation < is (more precisely, induces) a partial ordering of the

set (of equivalence classes) of states of 21.

(2c). We have t )5p if and only if tEp- In fact, if t ¿p, then tEp since

tEt. If tEp, then, for some sequence of operators (An) in 21, Hp^n—t|| —>-0.

But ||p¿¿„ — ta\\ ú\\pAn — T\\ -|m|2; so that taEp, for each A in 21. Thus fQp.
(2d). We noted that <pp is irreducible if and only if p is pure. Now 3CP is

one (or zero)-dimensional if and only if p/p(T) is a homomorphism. Thus each

homomorphism of 21 is a pure state.

We shall make use of some of Mackey's terminology [16], applied, how-

ever, to representations of C*-algebras rather than groups.

Definition 2.2. If (pis a representation of the C*-algebra 21 as bounded oper-

ators on the Hilbert space 3C, we say that cp is a factor representation when <p(2l)_

has center consisting of scalar multiples of its unit element (i.e., is a factor in the

sense of [18]). Two representations of 21 are said to be disjoint when no subrepre-

sentation of one is unitarily equivalent to a nonzero subrepresentation of the

other.

We classify states according to the type invariants of the representing

algebras corresponding to them.

Definition 2.3. If p is a state of the C*-algebra 21, we say that p is primary if

<pp is a factor representation. If cp,,(2I)~ is of type I, II, or III, we say that p is

of type I, II, or III, respectively, and that p is finite or infinite as <pP(2I)_ is.

3. Principal results. Theorem A. If pis a state of the C*-algebra 21 then p is

primary if and only if ^ totally orders p. Lf p/p(T) is not a homomorphism; p is

pure if and only if p is minimal but not maximal in the set of primary states with
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respect to <• If p/p(7) is primary, it is of type I if and only if p^r for some

pure state t of 31 ; it is of type III if and only if it is minimal and maximal in the

set of primary states and not a homomorphism; it is of type II otherwise iequiva-

lently, if r<p implies t is not minimal).

Theorem B. A primary state p of the C*-algebra 31 is infinite if and only if

ß contains an infinite family of states {t„} such that r„(7) = l, ||r„ — tot||=2 if

n^m, and Tn~rmfor all n and m.

The proofs of these theorems require the following results.

Theorem C. If p is a state of the C*-algebra 31 then tEp if and only if cb,
is unitarily equivalent to a subrepresentation of cbp. Equivalently, tEp if and

only if there exists a vector x in 3CP such that t=wxo 0p.

The nonalgebraic aspect of Theorem C depends on the following result.

Theorem D. If o> is a state of the C*-algebra 31 acting on the Hilbert space

3C and (x„) is a sequence of vectors in 3C such that ||co—coIn| 3l||—K), then w is a

vector state of 31.

For the proof of this, we shall need:

Lemma E. If (R is a von Neumann algebra and (£„) ts a sequence of cyclic

projections in (R which tend strongly to E, then E is a cyclic projection.

Proof. Let Fn be the range projection of EEn. Then Fn^E, Fn is cyclic in

(R, and Fn tends strongly to E. In fact, with x„ a unit vector generating E„,

Exn generates Fn; for [<R'(Ex„)] = [E(R'xn]= [E(£n(«TC))], where 3C is the

underlying Hilbert space. With x a unit vector in E, (Fnx, x) a; iEEnEx, x)

= (£Enx, x)—>(x, x) = 1, since E£nE^7 and the range of EEnE is contained

in Fn. Thus Fnx—>x.

Working with E(RE and (R'£ acting on E(3C) ; we may assume that E — I.

Note next that 7 is countably decomposable. Indeed, if {Ga} is an orthogonal

family of nonzero projections in (R, let Gai(n), G„2(„), • • • be that countable

subfamily of {Ga} consisting of those projections G« such that Gaxnj¿0. Then

{G„m(„)}„,m is a countable subfamily of JGa} ; and if Ga is not in it, Gax„ = 0,

for all w. Thus Ga(R'x„ = 0, and GaEn = 0, for all w. Since En tends strongly to

7, Ga = 0; and {Ga} = {Gam(n)}n,m. From [10, Lemma 3.3.7], we can choose a

maximal cyclic projection F in (R (one such that every other is ^ it). If P is a

central projection such that PF is purely infinite (in the sense of [lO], i.e.,

QF is infinite for each nonzero central projection QúP)\ then PF~P, ac-

cording to [10, Lemma 3.3.3]; so that P is cyclic. Thus the purely infinite

central portion of F has cyclic central carrier ; and it remains to prove that the

central carrier, Q of the finite portion of F is cyclic. Restricting attention to

(R<2 and (R'Q acting on QiX), we may assume that F is finite. Since F is maxi-

mal cyclic, its central carrier is 7 [10, Lemma 3.3.6]. Thus, since F is finite,
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öl has no portion of type III. It follows that F is contained in a properly larger

finite projection unless F=I (in which case, / is cyclic and the proof is com-

plete). Let G be a finite projection containing F. As before, the range projec-

tions of GEn are cyclic, contained in G, and approach G strongly. Restricting

attention to G<RG and ôYG acting on G(3C), we may assume that I ( = G) is

finite.

Let x be a unit vector in 3C. The state A—>(Tr(A)x, x) of öl is completely

additive, where Tr is the center-valued trace on (R [l, Chapter III, §4; 2],

in view of [10, Theorem 3.2.8(d)], since Tr is the dimension function on pro-

jections of öl, and (R is countably decomposable. This state is, accordingly,

normal (i.e., weakly continuous on the unit sphere of öl) [l, Theorem 1, p. 54

and Example 9, p. 65]. Thus (x, x)^(Tr(F)x, x)^(Tr(En)x, x)->(x, x) = l,

since Pn^P^P It follows that Tr(F) = I = F, I is cyclic (after the various

reductions—or E oí the original notation is cyclic) ; and the proof is complete.

Proof of Theorem D. Note that with 17 and r normal states of 2I~, ||r? — t\\

= ||t?I 21 — r\ 2l||, for the unit ball of 21 is strongly hence weakly dense in the

unit ball of 21" [13] and r¡— t is weakly continuous on the unit ball of 21".

Thus (o)Xn\ 2l~) is a Cauchy convergent sequence. Its limit in the dual of 21"

is clearly a state of 21" and an extension of a (which we denote again by w).

If 6>0 is given, choose n such that ||wlB—w|| <e/2. Then, if A in the unit

ball of 21- is such that | i»x„ (A)\ = \ (Axn,x„)\ <e/2,|io(^L)| <\o>x„(A)\ +e/2^e.

Thus cu is weakly continuous at 0 on the unit ball of 2l~, and, by linearity,

is weakly continuous on the entire unit ball, i.e., w is normal on 2l~.

Let £„ be the support of wIb in 21" and E the support of w. We have

Pn= [2l'xB]. Thus P„, the closure of the range of EEn, is a cyclic projection

in 21- contained in E. In fact, [WExn] = [£2l'x„] = P„. With cz„ = ||w-wIb|| ;

w(P - P„) g an + Wl„(P - Pn) = an+ ((£ - P„)*„, xn) = an + \\(E - F„)xn\\2

= a„ + ||P£a — Fnxn\\2 = an + \\Fn(EEnxn — xn)\\2

^ a„ + UpPa - xn\\2 = a„ + ((/ — E)xn, xn) = an + «*„(/ - P)

Ú an + an + u(I — E) = 2a„.

Thus w(E — P„)—>0. Now, from [l, Prop. 4, p. 62; 3, Lemma 2.3], P„ tends

strongly to E. Whence, from Lemma E, £ is a cyclic projection in 21". If y

is a generating vector for £, ío„ and o> have £ as support. Thus <o is a vector

state of 21- [l, Chapter I, §4].
Proof of Theorem C. Suppose, first, that T=uxocpll, lor some vector x in

3CP. Since 3CP= [$P(2l)xp], there is a sequence of operators (An) in 21 such that

¡¡cp^A^x,,—x||—>0. Now, if B is in the unit ball of 21, and y, z are vectors in

3Cp, ||</>p(P)||ál, so that;

I (4>ÂB)y,y) - i4>ÁB)z,z)\ á | i<t>ÂB)y,y-*)\ +\ i<t>ÁB)iy - z),z) \

= (NI + NI)lly-4
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Thus

||w„o<k, - WiO0p|| ^ (||y|| + ||z||)||y - z||.

In particular,

\\pa„ - t|| = ||co*p(A„)Ip 0^-10,0 d>„\\

^ (WhiAJxtW + ||*||)(KU»)*, - x||)
Ú (2||x|| + l)(||«P(^„)xp - x||),

for large w. Hence tEp-

Suppose now that tEp, so that there is a sequence of operators iA„) in

31 such that ||p¿„ —r||—>0. Then t annihilates the kernel of cb,,, since each px„

does, and induces a linear functional t' of $P(3l). If 4>PiA) ̂  0 then

0,(| A +A *| /2) =cb„iA) so that t' [cb„iA) \=r{\A +A*\/2) ^0, and t' is a state
of #p(3t). Since cf>p is a continuous linear mapping of the Banach space SI onto

the Banach space 0P(3I) [25, Corollary 3.1], it is an open mapping. By linear-

ity then, for some k>0, the ball of radius k about 0 in 31 is mapped onto a set

containing the unit ball in <£p(3l) by cbp. With T in $p(3t) and || T|| ^ 1, we may

choose A in 31 with \\a\\ Sk such that <b„(A) = T. Thus

| r'iT) - ^p(An)xpiT) |   =  | r'[d>PiA)] - Í4>PiA)<t>PiAn)xp, d,PiAn)xp) I

=  | riA) - paM) I   = *lk - PAn\\ ;

and ||t'— «<>p(ii,)iP||—»0. From Theorem D, there is a vector x in 3CP such that

t'=<ox|<£p(3i); so that r=u,o^. With £'= [<£p(3l)x], the subrepresentation

A—^d>PiA)E' of <pp is unitarily equivalent to <£r (since each of these representa-

tions is cyclic with generating vectors for the images which induce the same

state t of 31).

If cpT is unitarily equivalent to a subrepresentation of cb„ there is a vector

x in 3CP such that T = o)xocbp; whence tEp, from the first paragraph of this

proof.

Remark (3a). If p is a pure state then, from [11 ], $p(3l) is w-fold transitive

on 3CP so that p = {p¿: A in 31}, i.e., this last set is norm closed in the dual of

31. Moreover, from [7, Corollary 8], p = {pu: U a unitary operator in 31}.

Proof of Theorem A. Suppose that p is a primary state of 31 and t, ?;Gp.

From Theorem C, there are vectors x and y in 3CP such that r = cax o <pp and

■q=tß}uocbp. The projections £'= [<A,(3I)x] and F'= [<¿>P(3l)y] lie in the factor

<£P(3I)' (pisprimary). From [18, Lemma 6.2.3], E' <F'oxF' <£'.Say £' <F.

A partial isometry in <¿>p(3l)' implementing this ordering effects a unitary

equivalence between the representation A—*bPiA)E' and a subrepresentation

of A—xbPiA)F'. But these last representations are unitarily equivalent to cbr

and <£„ respectively (as noted at the end of the proof of Theorem C). Thus

rEv, in this case; that is, t ^tj. It follows that ^ totally orders (the equiv-

alence classes of) p.
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Suppose now that ^ totally orders p; and let P be a central projection in

(ppÇn)'. Let x = Pxp, y=(I — P)x,„ t = wiO(/>p, and t|=ci)„oç4p. Supposer ^77.

From Theorem C, cpT is unitarily equivalent to a subrepresentation of <p„; so

that the representation A—*pll(A)P is unitarily equivalent to a subrepresen-

tation of the representation A—xpp(A)(I—P) (since P= [c/>p(2l)x] and I—P

= [c/>p(2I);y]). Let U' be a unitary operator which implements this equivalence,

and define V to be U' on P and 0 on 7—P. Then V is a partial isometry in

<pp(2l)' with initial space P and final space in I -P. Thus F' = (I-P) V'P = 0

and P = 0. Symmetrically, the assumption 17 ̂ r leads to the conclusion I — P

= 0. Thus <£P(2l)' is a factor as is <AP(2l)~; and p is primary.

Note that p is a minimal element relative to the partial ordering ^ if and

only if each subrepresentation of $p is unitarily equivalent to cpp (from Theo-

rem C); and this is the case if and only if each projection in tpp(2I)' is equiv-

alent to I. Now, this situation obtains for projections in a von Neumann

algebra if and only if it is a factor (since all projections are comparable) and

it is countably-decomposable of type III (since all projections are cyclic and

infinite) or it consists of scalar multiples of the identity operator (in this case,

c/>P(2I) acts irreducibly and p is pure). If we assume that 3CP is not one-dimen-

sional, equivalently that p/p(I) is not a homomorphism, and $p(2l)'= {al} ;

then with x and y two linearly independent vectors in 3CP, (x, y) is a generating

vector for 3CP © 3CP under (c/>p ©</>P) (21) (since </>p(2I)- is the algebra of all bounded

operators on 3CP [20]). Let t = u(x,v) o (0PfficpP). Now (0P©<pP)(2l)' is a factor

of type I2; so that £'= [(</>P©<£P)(2I)(x, 0)] is not equivalent to I. But #p is

unitarily equivalent to A^>(d)„®cpp)(A)E'. Thusp<t and p is not maximal in

the set of primary states.

We show, next, that p is maximal in the set of primary states if and only

if c/>p(2I)' is infinite or <¿>P(2I)' has a cyclic vector (so that 0P(2I)_ and </>P(2l)'

have coupling 1). In fact, if <pp(2l)' is infinite, and p ^t; then [<pT(2l)x]

~[$t(21)xt] = 3Ct, where x in 3CT satisfies wIocpT = p (cf. Theorem C for the

existence of such an x), since [c/>T(2I)x] and 3Cr are infinite cyclic projections

in the factor <M2I)' [10, Lemma 3.3.3], Thus p is a maximal state in the set of

primary states.

Suppose cpp(W)' is not infinite but has a cyclic vector, and let t be a

primary state of 21 such that p ^t. Choose x in 3CT such that o>x ocpr=p. Since

(p, is unitarily equivalent to A-*pT(A)E', where £'= [0T(2I)x]; E'<pr(Wj'E' is

finite, </>T(2l)-£' is finite since #„(21)- is [18, Theorem X], and [£'<£,(21)'£'*]

= £'[<i>r(2I)'x] = £' (since <pT(2l)"£' is finite with cyclic vector x for £', and

£'(pr(2l)'£' has some cyclic vector). Now [cpTCä)'x] lies in t/>T(2I)-, a factor;

whence, from £'[c/>r(21)'*] = £' and [18, Theorem III], [c/>r(2t)'x] = P Thus

[</>T(2I)x] = £' is maximal cyclic in 0r(2l)' [lO, p. 340]; and, since 3Cr is cyclic

under <M2I)-, E' is equivalent to I in <pT(2I)'. Thus p~r, and p is maximal in

the set of primary states.

If c/>P(2I)' is finite and is not cyclic, then (</>P©cpp)(2I)' is the tensor product
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of 0P(3l)' with a factor of type I2 and is, therefore, finite. With

£'= [(<&>©&) (3ï)(Xp, 0)], A-*i4>p®$p)(A)E' is unitarily equivalent to cb„. Let

F' be a maximal cyclic projection in ($p©</>P)(3l)' containing £' [10, Lemma

3.3.7]. If £'<£' then, by finiteness, £' is not equivalent to F'; and the

cyclic representation, A—>icbp@cbp)iA)F' is not unitarily equivalent to cb„.

Thus p is not maximal in the set of primary states. We may assume, there-

fore, that £' is maximal cyclic in (0P©<¿>P)(3I)'. From its definition, E' is not

3Cpffi3Cp; whence, by finiteness and maximal cyclicity of £', 3CP®5CP is not

cyclic under (#p©<£p)(3I). Thus, from [8, Lemma 1.2.8; 10, Lemma 3.3.6],

3CP©3CP is cyclic under (0Pffi<£p)(2I)'. Since E' is maximal cyclic in icpP®cpp) (31)',

some generator x for £' generates 3Cp©3Cp under (0P©</>P)(3l)'; so that

icbp®cbp)(3l)-£' and E'(0p©0p) (31)'£' acting on £'(3CP©3CP) have a joint gen-

erating vector. However, these von Neumann algebras acting on E'(3Cp©3Cp)

are unitarily equivalent to 0P(3l)~, <£P(3l)' acting on 3CP; so that they too have

a joint generating vector, contrary to assumption. Thus E' is not maximal

cyclic and p is not maximal in the set of primary states.

These characterizations of minimal states and maximal primary states

leave only the type I description to be established. Now, p is primary and of

type I if and only if #P(3I)' is a type I factor [18, Lemma 5.3.1]. The factor

0p(3i)' is of type I if and only if it contains a minimal projection £'. With x a

generator for £', the state t=ui o <pp in p is pure if and only if the representa-

tion A-+cbPiA)E' is irreducible, which is the case if and only if E' is minimal

in *,(«)'.
Remarks (3b). Two states t and p of 31 are disjoint if and only if their

representations are disjoint. In fact f and p contain r\ if and only if there are

vectors x and y in 3CT and 3CP, respectively, such that n =w, o <pr = cou o cbp, from

Theorem C. For such vectors, the subrepresentations, A—>cb,iA)E' and

A—*b„iA)F', where £' = [0T(3l)x] and F' = [#p(3l)y], of cpT and cb„, respectively,

are unitarily equivalent. Conversely, if there are unitarily equivalent sub-

representations of cbT and <bp, with x and y unit vectors carried onto one

another by a unitary transformation implementing this equivalence, then

o)x o cbT = ci3v o cj>p is contained in f and p, from Theorem C.

(3c). Combining (3b) with the criterion of Theorem A for p to be primary,

it follows that p is primary if and only if ß does not contain nonzero disjoint

states. In fact if ^ totally orders p, this is clearly the case. On the other hand,

if p is not primary and P is a central projection in <£P(3I)' such that O^P^I;

then, as in the second paragraph of the proof of Theorem A, A—>cbPiA)P and

A—>cpPiA)iI—P) are disjoint representations. With x and y unit vectors in

P and I — P, respectively, the states cax o cb„ and w„ o cpp in p, from Theorem C,

are disjoint, by (3b) above.

(3d). In the statement and throughout the proof of Theorem A, we have

left the meaning of minimality of p somewhat ambiguous. This causes no

difficulty since the two reasonable possibilities, "minimal in the set of states"
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and "minimal in the set of primary states" coincide. In fact, if p is minimal

in the set of all states, we have the situation dealt with in the proof of Theo-

rem A; p is primary and, of course, minimal in the set of primary states. If

p is minimal in the set of primary states and t ^p, then t is primary, from

Theorem A, so that r~p and p is minimal in the set of all states.

The situation is quite different with regard to maximality. We shall dis-

cuss this in detail in the next section (cf. Theorem H).

For the proof of Theorem B, we shall need:

Lemma F. If p is a state of the C*-algebra 21, t and n lie in p, and t', tj' are

normal states of cpPCñ)~ such that t = t' o <pp, n = r¡' o <£p; then the carriers of t'

and y' are orthogonal if and only */ ||t —ij|| =||t||+||ij||.

Proof. We may suppose that 21 acting on 3C is the universal representation

of 21 (the direct sum of cyclic representations of 21 corresponding to the dis-

tinct states of 21). Assuming this, there is a vector x in 3C such that cox| 21 = p

and vectors y and z in £' such that <av\ 21 = r and wJ 21 = r;, where £'= [2Ix].

From [13LIIT-UHK«,-«.)!»-!! =\\r\\+\\v\\ =|H|2+N|2.
The carrier of wy\ 2I_ is [Wy] and that of co2| 2l_ is [2l'z]. Identifying <pp with

A—*AE' (they are unitarily equivalent representations of 21), the carrier of

ç[2I'z]. It will suffice,
y||2 + ||z||2, for a von

is [E'WE'y]Q[Wy] and that of n' is [£'2I'£'z.
therefore, to establish the special case: 11(c«jw — <o2)| (R

Neumann algebra öl, implies that [(R'y] and [fft'z] are orthogonal.

Let G be the space generated by y and z. Since (co„—<o2) (A ) = (wv—«„) (G4 G)

and ||Gi4G|| ^||-<4||, as a functional on GölG, wy—coz has norm ||:y||2+||z||2. Let

A be an operator of norm 1 in GölG such that (w„—o}z)(A) = (Ay, y) — (Az, z)

= ||y||2 + ||z||2. From the Schwarz inequality, (Ay, y) = \\y\\2 and (Az, z)

= — ||z||2. From the Schwarz equality, Ay = y and ^4z= —z. With (A+A*)/2

in place of A, we conclude that y and z are eigenvectors of a self-adjoint oper-

ator corresponding to different eigenvalues; whence y and z are orthogonal.

With U' a unitary operator in öl', co„| öl = wt/<,,| öl, and w2| öl = a>t/'*| öl.

From the above, U'y and Vz are orthogonal for each pair of unitary operators

U', V in öl'. Now the unitary operators generate öl' linearly [l, p. 4] ; so that

[(R'y] and [öl'z] are orthogonal, and the proof of the sufficiency is complete.

To prove the necessity, we note that if the carriers G and F of n' and r',

respectively, are orthogonal, then (t' —??')(£—G) = ||t'||+||i7']| =t'(7)+?j'(J)

= ||t||+||ij||. With A in 21- such that AE' = F-G, \\AE'\\ ̂IP-Gil = 1,
T'(AE') = (Ay, y), and n'(AE') = (Az, z). The mapping AE'->AP, where P

is the central carrier of £', is a * isomorphism of 2l_£' onto 2l_P [10, Corollary

3.1.2]. Thus ||i4£'|| = ||i4P|| = l [5], and, since y and z are in £' (^P),

K - c*z)(AP) = (APy, y) - (APz, z) = (Ay, y) - (Az, z) = ||r|| + ||n||

á|| («,-«.) | «il =||t-i/||. Of course, ||T-ij||a|H|+||n||; so that ||t-ij||=||t||

+ pj  , and the proof is complete.
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Proof of Theorem B. The algebra $p(3l)- is infinite if and only if it con-

tains an infinite number of equivalent orthogonal nonzero cyclic projections

{£„}. With x„ a unit generating vector for £„, let Tn=o)Xn o cbp. Then r„(7) = 1,

||t„ —Tm|| =2, when n^m (from Lemma F), t„Gp, r„~rm, since E„and Emare

equivalent in <£P(3I)~, so that [#P(3l)x„] and [<pp(3I)xm] are equivalent in

<pP(3I)' [18, Lemma 9.3.3].

If there is an infinite set {t„} of nonzero states in p with ||r„—rm|| = ||t„||

+ ||Tm||, for n^m, and such that rn~Tm; then <pp(3I)~ is infinite. In fact, with

xm a vector in 3CP such that r„ = wÏB o cpp, the carriers of {oiXn\ <pP(9I)—} form an

orthogonal family of projections in 0P(3I)~, from Lemma F. These carriers

{ [0p(3I)'x„]} are equivalent, from [18, Lemma 9.3.3], for {[#P(3I)x„]} are

equivalent (since {t„} are equivalent).

4. Further developments. The order ^ on p relates to the Murray-von

Neumann ordering of the projections in #p(3l)'. The ordering imposed by

f Çij (cf. Definition 2.1) on the states of ß is associated with the standard

operator ordering of the cyclic projections in <pp(3I)_. We have:

Theorem G. If p is a state of the C*-algebra 31 then ß = {<¡¡z o cpp : x a vector

in the carrier o/<oIp |</jp(3I)-}.

Proof. Note first that the carrier of ux\ <¿>P(3I)~ is [0P(3I)'xp] = £; and that,

withy = yl'xp, 4'in 0P(3I)', wv o 0pg||^['||2p (since ^'*yl'g||4'||27). Moreover,

from the estimate of the first paragraph in the proof of Theorem C; with x

in [<Êp(3I)'xp], oíx o cbp is a norm limit of states of 31 majorized by some multiple

of p (i.e., in ß).

If t is in p and A is in the kernel of <bp, then <p„ÍA *A ) = 0 ; so that 0 = piA*A)

= r¡iA*A), for each state 77 of 31 majorized by a multiple of p. Thusr(^4*^4) = 0

for norm limits t of states such as 17; and, from the Schwarz inequality,

riA) =0. It follows, as in the proof of Theorem C, that there is a state t' of

#P(2t) such that t'o<£p = t. With 77 a state of 21 such that O^r/gap, and

cbpiA) 2;0 (we may assume that A ^0, as in the proof of Theorem C), 0^tj(^4)

= (tj' ocpp)ÍA) ^apíA)=aíuXpOcbp)ÍA); whence O^77'ga<oI()|0p(3i). From [3,

Lemma 2.2], r¡'=o)A'xp with A' in $p(3l)'. As in the proof of Theorem C, r' is

a norm limit of states 77' of </>P(3I). From Theorem D, r'=<«>2|</>p(3t); so that

t = w2o</>„. Now, with 77'=au<xp|<Ap(3I), ||ij'-t'|| =||«¿'«J&(a)--cú.|&(H)-||,

and ÍEA'xp, yl'xp) = ||^'xp||2. Thus ÍEz, z) = ||z||2 (using ■n'ÍI)-+r'ÍI)); and z

lies in E. This completes the proof.

Remark (4a). The proof above establishes, as well, that with r (=«,, o cbp)

in p, f = {wxocf)p: x a vector in the carrier of wv|0p(3l)-}. If E is the carrier

of ü>„|<EP(3l)-, it is equally true that f consists of the states induced by the

vectors of EE', where E' = [0P(3I)y]. The last line of the proof of Theorem G,

also proves that if o>2 o cbp is in f, then z is in £.

The identifications made by Theorems C and G of p, and f, respectively,

yield ßQß.
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Definition 4.1. We call a state p of 21 separating when ß = ß.

As an easy consequence of Theorems C and G, we have:

Corollary. A state p of a C*-algebra 21 is separating if and only if xp is a

separating vector for $P(2I)-.

Proof. The vector xp is separating for c/>p(2l)~ if and only if it is cyclic for

0P(2I)'. This is the case if and only if [<£p(2t)'xp] = 3Cp = [#p(2l)xp]. From Theo-

rems C, G, and the remark following, this last is equivalent to p = p.

Each state r of 21 in ß corresponds to an equivalence class of projections in

</>P(2I)', the cyclic projections generated by vectors y in 3CP such that t = w„ o <pp

(i.e., the projections in c/>p(2I)' restrictions to which give representations uni-

tarily equivalent to cpT). On the other hand, the same vectors y all generate a

single projection in c/>p(2I)_, the carrier of the normal extension of t' from

<£P(2I) to c/>P(2I)~ (using the notation of the proof of Theorem G). For the re-

mainder, we adopt the notation r' for the normal state of cj>p(2I)_ such that

t = t' o <pp.

Referring to the foregoing association of states in p with projections in

c/>p(2l)~ and cpP(2I)', we can develop a dimension theory on p, in terms of the

states of 21, which will reflect the dimension theories of <pp(2l)~ and <pp(2l)'. The

details are routine from the comments which follow. With r and r¡ in p",

orthogonality of the carriers of r' and 77' is equivalent to \\t — rj\\ =||t|| + rç |,

from Lemma F. Using [18, Lemma 9.3.3], equivalence of the carriers of r'

and 77' is the same as t-~tj. Having equivalence and orthogonality, the dimen-

sion theory on p can now be constructed in any of the usual ways (e.g. [10,

§2; 18, Chapter VI11]). This will correspond to the dimension theory of the

cyclic projections in c/>p(2I)~. In view of the coupling theory [8; 9; 18] and the

fact that all projections in $P(2l)' are cyclic, this theory will correspond to the

full dimension theory on these projections, once we have described the

coupling in terms of p. For this, we use Zorn's Lemma to locate a maximal

set of states {ry} in ß each equivalent to p and orthogonal in the above sense.

The number of these states together with the dimension of a state r in ß of

maximal dimension orthogonal to each tt (normalizing so that p has dimen-

sion 1 in case it is finite) describes the coupling.

We take up again the question of maximal elements in the state space of

21 (as opposed to maximal elements in the set of primary states; cf. the proof of

Theorem A and Remark (3d)). While there will exist states which are maximal

in the set of primary states, in general there are no states which are maximal

in the set of all states (equivalently, no maximal cyclic representations). In

fact, we prove:

Theorem H. If 21 is a countably generated C*-algebra, then the following

conditions are equivalent:

(a) 21 has a maximal state.
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(b) 31 has at most a countable number of unitarily inequivalent irreducible

representations.

(c) 31 is a type I C*-algebra with countable structure space (i.e., a countable

number of primitive ideals).

(d) 31 is a GCR algebra with countable structure space.

Proof, (a)—»(b) : Suppose p is a maximal element and r any element of the

state space of 31. With cp = cbp®cbr, 3C = 3CP©3CT, and £p and Er the orthogonal

projections of 3C onto 3CP and 3CT, respectively, then £p and £T are in <p(2I)'.

Let P and Q be the central carriers of £p and Er, respectively. Since p is

maximal, Ep is a maximal cyclic projection in $(31)' (in the sense of [10,

p. 340]). From the remarks preceding [10, Lemma 3.3.6], all maximal cyclic

projections in <?S(3I)' are equivalent. From [10, Lemma 3.3.7], £T is contained

in some maximal cyclic projection; so that ET ~£P, and r ^p. It follows that

each state of 31 lies in p, and p (really, p) is the maximal element.

From Theorem C, each state of 21 has the form cax o cf>p, with x a vector in

3CP. Since the states of 31 form a separating family, cpp is an isomorphism. The

vector xp is separating for #P(3I)', so that <£P(3I)' and its center are countably

decomposable. Since each state of 31 arises from a vector in 3CP, each cyclic

representation of 31 is unitarily equivalent to the restriction of cbp to a cyclic

projection in <7>p(3i)'. Disjoint representations correspond to projections in

<pP(2I)' with mutually orthogonal central carriers. Now, unitarily inequivalent

irreducible representations are disjoint. Each such representation of 31 is a

subrepresentation of cpp, and #P(3I)' has a countably decomposable center.

Thus 31 has at most a countable number of unitarily inequivalent irreducible

representations. This implication is valid for arbitrary C*-algebras.

(b)—»(c): Suppose now that 3Í is countably generated as a C*-algebra

(i.e., 21 is the smallest C*-subalgebra containing some countable subset).

Equivalently, we may assume that some countable subset (the polynomials

with rational coefficients in the generators) is norm dense in 21. Thus each

cyclic representation of 21 occurs on a separable space. In essence, the results

of [17, Theorem 3.1; 22], making use of the deeper portions of reduction

theory [21] complete the proof of this part. In fact, using [l, Theorem 2,

p. 220, Corollary, p. 169, Corollary l(i), p. 179, Proposition 6, p. 163, Theo-

rem 3(a), p. 174], we conclude, by reducing a cyclic representation of 21 rela-

tive to a maximal abelian subalgebra of its commutant, that the commutant

of each such representation contains a minimal projection. Of course, the cen-

tral carrier of a minimal projection is a minimal central projection; and re-

striction to it is a factor representation of type I. By the same token, the

orthogonal complement of this minimal central projection contains a minimal

projection. Thus, the commutant of the image is a direct sum of factors of

type I. It follows that the C*-algebra 21 is a type I algebra.

We give a proof of (b)—»(c) which establishes (b)—»(a) and which does

not appeal to reduction theory. From each unitary equivalence class of
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irreducible representations of 21, choose one representation c/>„ of 21 as oper-

ators on 3C„. Let \f>n be the representation of 21 on 3Cn®3C„ defined by: $n(A)

= cpn(A) ®I, and let \J/ be the representation 12n~i ®\¡/n of 21 on

3C(= 12Z-i ©3Cn®3Cn). Since each 3C„ is separable, X. is separable. Let cp be

a representation of 21, ft an abelian C*-subalgebra of <p(2l), t and v pure states

of <p(2l) whose restrictions to ft are distinct pure states of ft, and A a self-

adjoint operator in 21 with cp(A) in ft such that r [cp(A) ] 9^r) [<p(A) ]. Since the

irreducible representations of 21 form a separating family [24], \p is an iso-

morphism; and t ocpo yf/~l, n ocpo yp~l are pure states of <K2l) corresponding

to distinct spectral values of ip(A). Now each pure state of ^(21) gives rise to

an irreducible representation of 21 which is unitarily equivalent to some sub-

representation of \j/, by construction of ^. Thus each pure state of ^(21) cor-

responds to a vector in 3C. In particular t o cpoyp~l, r\ o cp o \¡/~l arise from eigen-

vectors for ip(A) corresponding to the distinct eigenvalues t[<p(^4)], 77 [<p(^4) ].

By separability of 3C, there are at most a countable number of pure states of

ft. Rosenberg [23, §5] notes now that the pure state space of ft has isolated

points (from Category). Since ft is isomorphic to the algebra of continuous

functions on the pure state space [27; 28], the function which is 1 at an iso-

lated point and 0 elsewhere corresponds to a minimal projection £ in ft.

With B in ft, EBE = aE, for some scalar a; from the isomorphism with the

function algebra. If ft is maximal abelian in cp(2I) and P is a self-adjoint oper-

ator in <p(2I), then ETE = bE or the C*-algebra generated by ETE and £

(hence, in <p(2l)) contains a smaller nonzero projection than £. Since £ft£

consists of scalar multiples of £, such a projection commutes with ft and,

by maximality, lies in ft. This would contradict the minimality of £ in ft.

Thus £<p(2I)£ consists of scalar multiples of £. Since the family of such

multiples is strongly closed, the mapping T—>ETE is strongly continuous on

the unit ball, and the unit ball in 0(21) is strongly dense in the unit ball of

cp(2l)~ [13]; £cp(2l)-£ consists of scalar multiples of £. It follows that £ is a

minimal projection in the von Neumann algebra <p(2I)~. As before, restriction

to the central carrier of £ yields a factor of type I. Thus 0(21)' contains a

minimal projection, for each representation cp of 21, and, as before, 21 is a type

I C*-algebra.
If <p above is cyclic and P is the central carrier of E, then P is the sum

of at most dim (£i(3C)} pairwise orthogonal minimal projections £„' in

</>(2t)', each with central carrier P. Now, the restriction of cp to E{ is an ir-

reducible representation of 21; so, unitarily equivalent to some cp„. The restric-

tion of cp to P is a multiple of the restriction of <p to E{ with no more copies

than dim {£1 (3C)} =dim 3Cn. Thus, the restriction of cp to P is unitarily

equivalent to a subrepresentation of \p„. Now cp is the direct sum of such re-

strictions (each pair disjoint). Thus cp is unitarily equivalent to a subrepre-

sentation of \p. From Theorem C, the state o)x o \j/, where x is a cyclic vector

for ^(21), is a maximal state of 21. That ^ is a cyclic representation follows
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from the fact that each yf/n is cyclic, that the 4/n are pairwise disjoint (cf. [7,

Lemma 3]) and that there are at most a countable number of ipn. Each i/'«

is cyclic as a result of the strong density of #„(31) in all bounded operators on

3C„, the separability of 3C„, and the fact that \¡/n is a multiple of cbn with dim 3C„

copies. This establishes (b)—»(a).

Under the hypothesis of uniform separability on 31, the equivalence of

type I with GCR is due to Glimm [6, Theorem l]. In particular, (c)—»(d).

From [4], each primitive ideal in the GCR algebra 31 corresponds to a given

unitary equivalence class of irreducible representations. Thus (d)—>(b); and

the proof is complete.

The preceding theorem does not apply to von Neumann algebras, even

those on separable Hilbert space, since they are not (in general) separable in

the norm topology. On the other hand, it is not hard to see that such algebras

have a maximal state if and only if they have finite dimension as vector

spaces. In fact, each maximal abelian subalgebra contains a countable num-

ber of orthogonal (nonzero) projections unless it has finite dimension. The

von Neumann algebra generated by these projections is isomorphic to the

/3-compactification of the integers [26]; and, so, has 22° distinct pure states.

Each such has a pure state extension to the von Neumann algebra. The

Kaplansky argument (given in [12, p. 399]) applies now to show that there

are at least an uncountable number of inequivalent irreducible unitary repre-

sentations of the von Neumann algebra. However, (a) and (b) of the preced-

ing theorem show that it cannot have a maximal state in this case. Thus each

maximal abelian subalgebra has finite linear dimension. In particular, the

center has, so that the identity is the sum of orthogonal minimal projections

in the center. The restriction of the von Neumann algebra to each such

projection is a factor. The factors whose maximal abelian algebras have finite

linear dimension are, of course, just those isomorphic to a finite matrix alge-

bra. Thus the only von Neumann algebras (on separable Hilbert space)

which have maximal states are those of finite linear dimension.

We conclude with a brief outline of an extension of this theory to the case

of arbitrary cyclic representations (the global theory).

Definition 4.2. If 21 is a C*-algebra and p is a state of 21 then two states r¡

and t of 21 in ß are said to have the same central carrier in ß when 77 is disjoint

from a state v in ß if and only if t is disjoint from v. The state r in ß is central

in ß when t is maximal with respect to ^ in the class of states with the same cen-

tral carrier.

Remarks (4b). The states 77 and r have the same central carrier in ß if

and only if the cyclic projections corresponding to 77 and t in <pp(3l)' all have

the same central carrier.

(4c). The state t is central in ß if and only if the class of cyclic projections

corresponding to t in <pP(3l)' contains a central projection.

The difficulty we encountered in distinguishing those states which give
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factor representations of type III and those which give one-dimensional

representations has its global analogue. In this case, states p such that

<rjp(3l) is abelian (i.e., of type Ii) take the place of the homomorphisms. Such

states are described in terms of the state space in the following:

Definition 4.3. A state p of a C*-algebra 31 is said to be of type L when

t = t for each r in ß. The state r in ß is said to be a type III component of ß when

t is not of type Ii and is both maximal and minimal relative to ^ in the class of

states with the same central carrier. The state r in ß is said to be abelian in ß when

it is not of type 111 in ß and is minimal relative to ^ in the class of states with

the same central carrier. The state t in ß is said to be a type I component of ß

when t is central in p and has the same central carrier as some abelian state in ß.

The state t in ß is said to be a type II component of ß when r is central in ß and

contains no type I or III components of p.

Remarks (4d). A state r in p is a component of p of type I, II, or III, if

and only if the class of cyclic projections in <pP(3I)' corresponding to t contains

a central projection P such that <pp(3I)'P is of type I, II, or III, [15] respec-

tively.

(4e). The state r in ß is abelian in ß if and only if each of the cyclic projec-

tions corresponding to r in <i>P(3I)' is abelian [15] in 0p(2i)'.

(4f). Standard techniques allow us to locate three states in p uniquely

described by the property of being the maximal components of ß of types I,

II, and III, respectively. Moreover, no state in p is disjoint from all three.

These states are called the components of types I, II, and III, respectively.
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