
NORMALCY IN OPERATOR ALGEBRAS

RICHARD V. IDISON

1o Introduction. In [9, Theorem 5; 393], von Neumann proves that each
weakly (equivalently, strongly) closed self-adjoint algebra of operators on a
Hilbert space (von Neumann algebra) which contains the identity operator I
enjoys the double commutant property. If we denote the algebra of all those
bounded operators commuting with a given family ff of operators by if’ (called
the commutant of if), this result may be phrased as: (R (R", for yon Neumann
algebras containing I. It is one of the key results of the theory.

This double commutant result expresses an algebraic property (called
normalcy) of the algebra of all bounded operators. In the process of determining
which properties of the algebra of bounded operators (factor of type I) are
shared by the other types of factors (yon Neumann algebras whose center
consists of scalar multiples of I), Murray and yon Neumann raise the question
of which factors are normal [4; 183]. They construct factors of type II which
are not normal [4, Lemma 3.4.2; 209] and conjecture that no factor of type II
is normal [4; 185]. In [8, Lemma 4.4.2 (ill)I, non-normal factors of type III are
exhibited. It is shown that all factors of type II are non-normal in [2]. The
question of .normalcy for a factor can be phrased in terms of the fixed algebra
under groups of unitarily induced (inner) automorphisms of the factor. We
speculated on the possibility that the normalcy assertion phrased so as to allow
*-automorphisms might be valid for all factors of type II1 Singer disproved
this in [10; 126]. A Galois theory result of this nature is established in [6], [7]
for finite groups of outer automorphisms of finite factors.
A known and easy extension of yon Neumann’s result states that each yon

Neumann algebra of type I is normal--where one now tests only those yon

Neumann subalgebras satisfying the obvious necessary condition that they
contain the center (see [1; 307, Exercise 13b], for example). We say that a
yon Neumann subalgebra o of a yon Neumann algebra (R is normal in (R when
it has the double commutant property relative to , i.e. (o’ )’ (R o
We shall prove that if o is of type I, it is normal in (R if and only if its center
is normal in (R (cf. Theorem 1). Dealing, then, with Abelian yon Neumann
subalgebras of 6, we give some (easy) equivalent conditions to normalcy in
(R (cf. Theorem 2). We show that those Abelian yon Neumann subalgebras
which are totally-atomic over the center of (R are norrnal in (R (cf. Definition 3
and Theorem 4). In the last section, we give an example of an Abelian yon

Neumann subalgelJra of a factor of type II1 which is not normal in it.
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2. The normalcy results. Our main theorem follows.

TnEon l. I/6to is a yon Neumann subalgebra o] type I o] the yon Neumann
algebra 5, then 5o is normal in 5 i] and only i] its center o is normal in .

Proo]. We suppose, first, that eo is normal in (. Let B lie in (() V’ )’ (% .
Let {E, be an orthogonal family of Abelian projections [3; 241] in o each with
central carrier P and with E. P. Choose one of the E, say Eo ;and let
Vo be Eo and V. be-a partial isometry in o with Eo as initial space and E. as
final space. (Recall that Abelian projections with the same central carrier are
equivalent.)
We assert that . V.BV*.(=B) lies in (eg (R)’ t, and hence, by hy-

pothesis, in eo Suppose, for the moment, that this has been established.
We may conclude, then, that EoBEo EoBEo is in o, for each Abelian pro-
jection Eo in 5o which lies in a family such as {E. }. Since o is of type I, each
Abelian projection in o is the sum of an orthogonal family of projections such
as Eo (intersect the given Abelian projection with each of the central portions
of o of type In). Thus EBE is in o for each Abelian projection E in to
since B (.

If E and F are Abelian projections in o with central carriers P and Q, re-
spectively, then EBF PQEBPQF. Now PQE and PQF are Abelian projections
in o with the same central carrier. Thus, to show that EBF lies in (o, with
E and F Abelian projections in o it will suffice to show this when E and F
have the same central carrier. Under this assumption, there is a partial isomet.ry
V in o with initial space E and final space F. We have, EBF EBVV*
EBVEV*. Since V lies in (o, it lies in (( )’ as does B; so that BV
lies in ( ( )’ (% . From the preceding paragraph, EBVE lies in o so
that EBF (=EBVEV*) does. Since (o is of type I, it is generated by its Abelian
projections [1, Theorem 1; 123]. Thus B lies in o

It remains to prove that Bc lies in (o Suppose that S in commutes with
eo and V*.SV commutes with EoBEo, for each a and % Then,

E E.SVBV* PS E VBV* PSBo SB

where ,. denotes . ’ taken in the strong topology.
If S is in 6o then EoSEo is in Eo(oEo, which is Abelian, since Eo is an Abelian

projection in o. Now the center of Eo6toEo is EooEo Eo(2o [1, Corollary; 19];
which is, accordingly, EooEo. Since B commutes with ao, EoBEo commutes
with EooEo and, hence, with EoSEo In particular,EoBEo commutes with
V*.SV EoV*.SVEo, since V*.SV lies in 6to. Thus B commutes with 6to
as a consequence of B commuting with (o
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Assume now that T lies in and commutes with o From the foregoing,
Tc lies in and commutes with o By hypothesis on B, Tc and B commute.
.Now (V*.TV)c and B commute, since V*.TV lies in and commutes with
(o. Thus

EoBEo V*.TV EoB V*.TVEo E,B( V*.T V)oEo

Eo( V*.TV)BEo V*.TVEoBEo
Since EoBEo commutes with V*.TV for each a and % and T commutes with
o, T commutes with Bo. Thus Bo commutes with each operator in (R which
commutes with 0 By hypothesis, Be lies in ao and the proof of the sufficiency
is complete.

If to is normal in (R and B lies in (g V’ (R)’ (% , then B commutes with
6to (% (R( 5t); so that B lies in 6lo But since B lies in 6tD
(as 6to e) (% (R), B lies in o ;and (o is normal in (tt.

In view of the foregoing theorem, the question of normalcy of type I yon

Neumann subalgebras is reduced to the question of normalcy of Abelian yon

:Neumann subalgebras. We take up this question.

THEOREM 2. I1 6 is a yon Neumann algebra and a is an Abelian yon Neumann
subalgebra o] 6, the following statements are equivalent"

(a) ( is normal in 5.
(b) a is the intersection of maximal Abelian (sel]-adjoint) subalgcbras o] .
(c) a is the intersection of all maximal Abelian subalgebras of containing (L

(d) The yon Neumann algebra 5 generated by ’ and ( has ( as center.
In case the space upon which acts is separable, the ]ollowing may be added:
(e) The direct integral reduction of 5’ relative to ( yields factor representations

almost everywhere.

ProoJ. (a) --* (b): If a is normal in 6t and B in (R is not in a, then there is
some operator C in 6t which commutes with a but not with B. Since a is a
self-adjoint algebra, both C -t- C* and i(C C*) commute with (t, a.nd at least
one does not commute with B. We may assume that C is self-adjoint.
With the aid of Zorn’s lemma, we choose a maximal Abelian subalgebra ao

of (R containing ( and C. Since B and C do not commute, B is not in ao. Thus
a is the intersection of maximal Abelian subalgebras of (It. The intersection of
all the maximal Abelian subalgebras of 6t containing a will be contained in this
last intersection and contain a; whence (b) - (c).

(c) - (d): Clearly ( is contained in the center of . Suppose ( (. a.,
where l(. is the family of maximal Abelian subalgebras of (R containing (.

If T is in the center of (R, then T commutes with ’. Thus T lies in t. Now
each a. commutes with a and with (R’; and, therefore, is contained in (R. Since
T is in the center of (R, T commutes with each a.. But T lies in , and each
a. is a maximal Abelian subalgebra of (. Thus T lies in . a. a; and a is
the center of 5.
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(d) - (a): If a is the center of 1 and T in commutes with all operators in
(R which commute with a, then T commutes with a (since a is Abelian) and
with ’ (since T lies in ). Thus T lies in 5 Now each operator in (; com-
mutes with ’, so lies in ; and commutes with a. By hypothesis, then, each
operator in t; commutes with T. Thus T lies in the, center a of (R1 and a
is normal in .

Suppose now that the Hilbert space upon which (R acts is separable. We
show that (d) and (e) are equivalent. According to [1, Theorem 2; 181],
is decomposable relative to 6. From [1, Theorem 3; 182], ( is the center of
if and only if the decomposition of 5 relative to a yields a factor almost every-
where.

Of course, the maximal Abelian subalgebras of (R are normal in 5. These
are precisely the subalgebras of (. decomposition relative to which yield ir-
reducible (special factor) representations almost everywhere. The preceding
theorem identifies the normal Abelian subalgebras of t as those which yield
arbitrary factor representations almost everywhere.

For an Abelian subalgebra of (R to be normal in (R, it is certainly necessary
that it contain the center of . This is not sufficient as we shall see by example
in the next section. If the Abelian algebra is totally-atomic over the center,
however, it is automatically normal in . To make this concept precise and
prove the stated result, we shall need the following:

DEFINITION 3. I] is an Abelian yon Neumann algebra and 5 is a yon Neumann
subalgebra o/’, we say that a non-zero projection E in 5 is minimal in 5 relative
to i] no projection in 5 with the same central carrier as E in ’ is properly less
than E.

Remarlcs. (a) If consists of the scalar multiples of I, a minimal projection
in (R relative to ( is just a minimal projection in ( in the usual sense. Note
also that each projection in is a minimal projection relative to (.

(b) If (R contains , E is minimal in (R relative to , and P is a projection in, then PE is 0 or is minimal in t relative to (. In fact, if PE O, has central
carrier Q in (’, and F is a projection in with central carrier Q in (’ such that
F PE; then F (I P)E has the same central carrier as E in ’and F -t- (I -.P)E < E. This contradicts the minimality of E in 5 relative
to ; so that PE 0 or PE is minimal in (R relative to .

(c) If ( contains e and E and F are commuting minimal projections in (R

relative to (, then EF PE PF, where P is some projection in (. In fact,
take P to be the central carrier of EF in ’. Then P is contained in the central
carriers of both E and F. Thus both PE and PF have P as central carrier.
Now PE and PF are both minimal in ( relative to e, from the preceding remark;
and both contain EF. But EF has central carrier P; so that EF PE PF,
by relative minimality of PE and PF.

THEOREM 4. I] 5 is a on Neumann algebra with center and a is an Abelian
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yon Neumann subalgebra o] which contains and is generated by its minimal
projections relative to , then ( is normal in 5.

Proof. Let {Ea be the set of minimal projections in a relative to a. Note
that E.BE. commutes with a for each B in (R and each E.. In fact,
EE. PE. PEr for some projection P in , from Remark (c). Thus
EE.BE. PE.BE. E.BE.P E.BE.E, and E.BE. commutes with
generators for a. If T lies in (a’ [% 6t)’ then T commutes with E.E.,
as does E.TE.. Thus E.TE.(= TE.) lies in the center aE. of E.E.. In
particular, TE. lies in a, for each E.. The union of {E. is I, since any pro-
jection orthogonal to all E. annihilates a and, in particular, I. Thus finite
unions from {E. form a net which tends strongly to I. Since the union of two
commuting projections E and F is E F EF, an elementary induction shows
that the product of T and a finite union of E.’s lies in a. It follows that T
is a strong limit of operators in a; and T lies in a. Thus a is normal in
We note especially that when (R is a factor the above hypothesis on a implies

that it is generated by its minimal projections.

3. An example. We describe an example of a factor of type IIl and an
Abelian yon Neumann subalgebra of it which is not normal in it.

Let G be the free group on two generators a and b; let be /(G); and let
gi be the yon Neumann algebra generated by the "left translation operators"
U on l(G) defined by, (U])(g’) ](g-g’). From [5, Lemma 6.2.2], is a
factor of type II and each operator in 9 has the form a ),oU where

}, <: and the operator sum converges in the strong operator topology
independently of order of summation. Moreover, the result of applying addition
and multiplication to these infinite sums with the usual formalism yields an
infinite sum which represents the sum and product operators, respectively.
The representation of operators in in terms of these infinite sums is unique
except for order.

Our example is based on the following"

LEX 5. I] A (= hoUr) in 9 commutes with U.. then o 0 unless
a", ]or some integer n. The (Abelian) von Neumann algebra a. generated by

U.. is distinct ]rom the (Abelian) yon Neumann algebra ( generated by U. and
a is maximal Abelian in

Proo]. If U.. commutes with A, then A U.AU-. oU.oo-.
X.-.., Uo. From uniqueness of the representation for A, we have ho .-.o.,,

for each g in G. Thus },o h.-,o., for each integer m and each g in G. Since
ho is finite, }, 0, or there are at most a finite number of distinct elements

in - g g, forsomem0. Witha ga }.,., ..... If this last holds, a- aTM

g in the free group on the two generators a and b, this occurs if and only if g a",
for some integer n.
The elements hUo in r, with ,o 0 except when g a’, constitute the
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Abelian yon Neumann algebra al Now, from Zorn’s lemma, a is contained
in some maximal Abelian yon Neumann subalgebra. But the elements of 9
which commute with a2 are precisely the operators in the Abelian yon Neumann
subalgebra al Thus a is maximal Abelian in and is the only maximal
Abelian subalgebra of containing a..
To show that a and a2 are distinct, we observe that Ua in a is

not in (.. In fact, ( is the strong closure of the algebra of finite
sums B hUa,nI + ,Uan nl n integers. If x denotes the
function in 12(G) which is 1 at the group identity and 0 elsewhere, then
I] (U.- B)xl[ 1 +

_
1; >_ 1. Thus U,a2.

From the foregoing lemma, a a and a a Thus a is
not normal in . With regard to Theorem 2(b), a. is contained in a unique
maximal Abelian subalgebra al of 9r and not equal to it.
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