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 1. 1. Introduction. For the past three decades, the theory of self-adjoint
 operators and self-adjoint operator algebras has undergone a vigorous and

 moderately successful development. A large share of the credit for this

 moderate success must be given to the reasonably detailed theory of factors
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 created by Murray and von Neumann [6], and to its later elaboration, the
 general theory of von Neumann algebras, by several mathematicians [1].
 The von Neumann algebras are special enough so that incisive structural
 results can be established yet broad enough so that they can be related to the
 general self-adjoint operator algebras. The limitations which exist at present
 in the self-adjoint theory seem basically to reside in the special problems about
 factors which remain unanswered.

 It is our hope that the theory we initiate in this tract will be capable of
 filling an analogous role in the study of non-self-adjoint operators and operator

 algebras. In finite dimensions, the class of operator algebras we study are the
 triangular operator algebras (the algebras of those matrices relative to given
 bases in given orderings with 0 entries below the diagonal). In general, the
 class of algebras we study is characterized by the simple property: 5* n 5
 is maximal abelian. We call such algebras "triangular "-in finite dinmen-
 sions, they are subalgebras of the triangular matrices; with a maximality
 assumption, they are full algebras of triangular matrices. In infinite dimen-
 sions one would not expect a " classical " basis to be related to a given maximal
 triangular algebra in general. The " continuous " as well as the " discrete "
 appears in infinite dimensions. Even when this is taken into account, how-
 ever, a large section of the theory must concern itself with maximal triangular

 algebras to which no ordered basis (in the appropriately general sense) can
 be said to be associated. Of course the ordering of the basis has a much more
 critical position in the infinite-dimensional theory than in the finite-dimen-
 sional theory (based mainly on the fact that there is just one total-ordering
 type associated with a given finite set). The hyperreducible maximal tri-
 angular algebras (those satisfying certain reducibility conditions) seem to be
 the correct generalization of the concept of "ordered (orthonormal) basis " in
 the same sense that maximal abelian (self-adjoint) algebra generalizes the
 concept of "(orthonormal) basis."

 The theory of triangular algebras seems to us to provide the general
 framework within which the reducibility properties of a bounded operator can

 be studied-in particular, the questions centered about invariant subspaces
 and bringing operators to "triangular form." A satisfactory theory of tri-
 angular algebras might provide an effective tool for the analysis of infinite-
 dimensional representations of solvable Lie groups.

 In Chapter II, our basic definitions and results as well as examples
 establishing the existence of various special classes of maximal triangular
 algebras are presented. Chapter III contains the detailed development of the
 theory of hyperreducible triangular algebras. These have the position in
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 triangular theory which the abelian algebras occupy in the study of self-
 adjoint algebras. It is natural to expect, therefore, that their theory would
 be most accessible (though the abelian-hyperreducible analogy has very limited

 applicability). At another time we shall describe the general constructions,

 with triangular algebras-restriction to a projection, triangular direct sumns,
 and triangular tensor products. These operations are related to the hyper-
 reducible theory. With the aid of these, some ideal theory for triangular

 algebras, and the results of [5], an example of a triangular algebra which is
 not strongly closed can be constructed.

 1. 2. Preliminaries. Our Hilbert spaces are complex. Our maximal

 abelian algebras are the self-adjoint ones. All operators are bounded unless

 otherwise specified. The "multiplication algebra" associated with a measure
 space is the (maximal abelian) algebra of operators corresponding to multi-

 plications by essentially bounded measurable functions on its L, space.
 "Totally-atomic" maximal abelian algebras are those generated by minimal
 projections-the "non-atomic" ones are those without minimal projections

 (atoms). Each maximal abelian algebra is the direct sum of a non-atomic
 and totally-atomic one. The non-atomic algebras on separable spaces are
 unaitarily equivalent to the multiplication algebra of the unit interval under

 Lebesgue measure. A separating vector for a maximal abelian algebra^ is one
 which is annihilated by no operator in the algebra other than 0.

 If 5 is a set of operators and S a set of vectors, we denote by [5S]
 the closed linear space spanned by vectors Tx with T in 5 and x in S, and
 by 5' the set of operators commuting with each of those of F. We often use
 the same symbol to denote both a projection and its range. Invariance of the
 range of a projection, E, under an operator, T, is equivalent to TE ETE.
 Moreover, E is invariant under T and T* if and only if E commutes with T.

 Chapter II. General Theory.

 2. 1. Basic definitions and notation. A feature of the algebra of n X it
 matrices with entries on or above the diagonal relative to a particular basis
 and a particular ordering of that basis which embodies its characteristic
 property of having entries on just one side of the diagonal is the fact that its

 intersection with its adjoint is the set of diagonal matrices, i. e. the maximal
 abelian algebra associated with the basis. The fact that the algebra contains
 all such matrices is reflected in its maximality with respects to this inter-
 section property. These considerations lead us to
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 DEFINITION 2. 1. 1. If CAR is a factor and a a maximal abelian (self-

 adjoint) subalgebra of ITN; a subalgebra, 5, of 'in will be said to be "tri-

 angular in 9'n" (or simply "triangular," when in is all bounded operators

 on the underlying Hilbert space) with diagonal a( when 5 n f* = a. If S
 is not a proper subalgebra of another algebra which is triangular in 'i we

 shall say that 5 is maximal triangular in 'n. The projections in 'in which

 are invariant under S are called " the hulls of S ". The intersection of all
 hulls of 5 containing a given projection, E, is called "the hull of E (in 5)"

 and is denoted by "hj(E) ." The von Neumann algebra generated by the
 hulls of S is called " the core of S."

 Remark 2. 1. 2. If S is triangular in 'n with diagonal, a, and {Sa}

 is a family of algebras, containing 5, which are triangular in 'n, anid is totally

 ordered by inclusion; then S,, the union of the family, is triangular in 'in
 with diagonal Ca and contains S. In fact, SJ nl Sn is maximal abelian in

 'in, by assumption (S is triangular), and contains 5 n 5* (- a), which has
 also been assumed to be maximal abelian in 'in. Thus 5,x n 57j!*=Ca, and

 C is the diagonal of each SJ. An operator in 50 n fl o lies in some S<x

 and some 5aA . Since the family, {7,}, is totally ordered by inclusion, the
 operator lies in one of J5, n 5a*, n 7 n 5.*, and thus, in a. Of course,
 C is contained in 5O n fo*, so that a =5O n So*; and So is triangular in
 'in (with diagonal d). Applying Zorn's Lemma, we conclude the existence
 of a maximal triangular algebra in 'n containing S. We have observed, in

 addition, that when one triangular algebra is contained in another, they have
 the same diagonal.

 Remark 2. 1. 3. To test that an algebra S is triangular with diagonal

 a, it suffices to show that each self-adjoint operator in S lies in (1 and that
 a is contained in 5. In fact, 5 n 5* is a self-adjoint algebra containing
 each self-adjoint operator in S and generated (linearly) by these operators.

 Remark 2.1.4. If 5 is triangular in 'in with diagonal at, then each
 hull of S is invariant under 5, hence under a; hence commutes with and
 therefore lies in Ca (since it lies in 9T, by assumption, and a is maximal
 abelian (self-adjoint) in 'in). Thus, the hull, h (E), of each projection, E,
 lies in aC; and the core of S is an (abelian) von Neumann algebra contained
 in Ca. It is easy to see that h(E) = [Sint'E].

 In the theory of triangular algebras the core plays the role that the center
 has relative to the theory of self-adjoint operator algebras.
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 Remark 2. 1. 5. If 5 is a maximal triangular algebra with diagonal aC,

 the center of 5 consists of scalar multiples of I. Suppose A is in the center
 of 5, then, since a is maximal abelian, A lies in a, and, in particular, A is
 normal. With B in 5, BA = AB, whence, from Fuglede's Theorem [2],
 AB* - B*A, and B commutes with each spectral projection E of A. Thus

 E and I-E are hulls in 5, an impossibility, since the hulls are totally ordered

 (cf. Lemma 2. 3. 3), unless E is 0 or I. It follows that A is a scalar multiple
 of I.

 2. 2. Some examples. The most familiar instances of maximal tri-

 angular algebras which are not finite dimensional arise from particular

 total orderings of an orthonormal basis for separable Hilbert space. They
 consist of all operators leaving invariant each of the sftbspaces generated by
 the basis vectors preceding a given one. These subspaces and those spanned
 by a basis vector and all basis vectors preceding it are the hulls-the diagonal
 is totally atomic (cf. Theorem 3. 2. 1). The operators leaving invariant the

 multiplication operators corresponding to the characteristic functions of inter-

 vals with left endpoint 0 on L2(0,1) relative to Lebesgue measure provide

 an example of a maximal triangular algebra with non-atomic diagonal.

 This same example relative to a measure with some atoms gives rise to a
 maximal triangular algebra with mixed diagonal. In each of these examples,
 two properties of the maximal triangular algebras are prominent: the core is

 equal to the diagonal and the hulls form a totally-ordered family (under the

 usual projection ordering). Examination of the finite-dimensional situation

 would lead us to suspect that these properties are valid for all maximal tri-
 angular algebras. In point of fact, however, the first does not hold in general
 (though it does for algebras with totally-atomic diagonals-cf. Theorem 3. 2. 11)
 while the second does (cf. Lemma 2.3.3). The theorem which follows pro-
 vides us with the basis for specific examples of maximal triangular algebras
 whose core consists of the scalars (i. e. whose hulls are 0 and I).

 We say that a unitary operator, U, acts ergodically on a von Neumann
 algebra, a, when UGaU*- a and there are no projections in a invariant
 under U other than 0 and I. In particular, no projections of a other than 0
 and I commute with U; however, this is not equivalent to the ergodicity of

 u on a . In fact, with {y,},,O,? i ... an orthonormal basis, Fn =- [ym: m ? n],
 and a all bounded diagonal matrices; if we define U by: Uy- = Yn-i; then
 U leaves each F,n invariant but commutes with no projection in a, other than
 0 and I.
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 THEOREM 2. 2. 1. If the unitary operator, U, acts ergodically on the

 infinite-dimensional, maximal abelian algebra, a, then the algebra, eS, gen-
 erated by a and U is triangular, and the set of hulls in . is {O, I}; so that
 the same is true of each maximal triangular algebra containing A2.

 Proof. Since U acts ergodically on a, we know that 0 and I are the only
 hulls, once we know that 3 is triangular. Note that each element, T, of i2
 has the form Ao + A1U + -. + A,,Un, with Aj in a, since UnA - UnAU-nU71'
 -A'Un. Assume that T is self-adjoint, so that

 Ao + AIU + * - ? + AnUn - Ao* + U-A* + ?**+ UnAn*

 Multiplying both sides by Un, renormalizing, and transposing, we have

 O = Ao' + A1'U + - + A.U2n, where An is as before. Assunme that
 Ao + * * * + AnUn= 0 is an equation of minimal degree for U over a. Let
 E be the range projection of A,n and F any projection in a contained in E.

 Then, if G U UnFU-n ;$i F, we have 0 4 G- GF(= M) ; whence 0 # U'MllU"
 ? F. Writing N for U-nMUn, we have NA. # n0, since N is a non-zero pro-
 jection in the range of A,,; and NAo + * + NAnUn =0. Thus NAO #0,
 for otherwise, U would satisfy an equation of degree lower than n over a.
 But

 0= NAo + NA1UN + + NA.U"N - NAo + + AnNUnNU-nUn

 = NAo + * * + AnNMUn = NAo + A1'U + *. + An_1UP-1

 (recall that FM = 0 and N .< F). Since NA0 0, this last equation contra-
 -dicts the minimal property of n. Thus Un leaves each projection in a con-
 tained in E invariant (i. e. in the present instance, G < F).

 The range projections of Ao and An must be identical, for if they are not,

 since they commute, one contains a non-zero projection, G, in a orthogonal
 to the other, so that one of GAO, GAn, is 0 while the other is not. In either
 case, U would satisfy an equation of degree less than n. Thus, E is the
 range projection of both AO and An. From our equation for U, we obtain
 A0U-n + A1U-(n-1) + . . ? + As =0; and this is an equation of lowest degree
 for U-1 over a. In fact, if there is one of lower degree, by taking adjoints
 and renormalizing, we locate an equation of degree less than n satisfied by U.
 From the result of the preceding paragraph, therefore, U-n (= Ut*) leaves
 each subprojection of E in a invariant. We conclude that Un commutes with
 each such subprojection. Thus, with F ? E and F in a,

 F + U-1FU + - * * + U-(n-I)FU"n-l
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 commutes with U. By ergodicity of U on a, F + + U-(n-1)FUn-1 is a
 scalar multiple, kFI, of I. Now each summand of

 F + U-1FU + . * * + U(tl-)FUn-l

 is a projection, and these projections commute. Elementary spectral theory
 tells us that kF is a positive integer (F = 0). If E + F, k7 + kEFX = kE, so
 that one of ICF, 7ICEF does not exceed IcE/2. If F and E -F are not minimal
 in a and F, let us say, is such that icF C klg/2, then we can choose F1 in ,
 F1 < F such that iFC C IcE!4. Thus, if E contains no minimal projections,
 we can locate a projection, F., in a, F.m < E with kFr < kE7/2m < 1: a con-
 tradiction. Thus E contains a minimal projection, F, of a. It follows that
 UjFU-i are minimal in a, and a being abelian, are (mutually) orthogonal
 or identical. Let m be the least integer such that UmFU-m =- F, so that m ? n,
 F, UFU-1 +- * * + Um-1FU-(m-l) are orthogonal, and

 F + UFU-1 + * * - + Um-lFU-(m-l)

 commutes with U. This sum is a scalar multiple of I, non-zero, and a pro-

 jection. It is, therefore, I; so that a is rn-dimensional, contrary to hypothesis.
 It follows that U satisfies no polynomial equation over a and A is triangular.
 The maximal triangular algebras containing A6 can't have a larger family of
 hulls than A has; whence the hulls of such maximal triangular algebras are
 O and I.

 This result and proof hold also in a factor.

 Example 2. 2. 2. Let C be the unit circle with Lebesgue measure, 9( be
 L2 (c), a be the multiplication algebra of L2 (C), and U the unitary trans-
 formation of 9( induced by an irrational rotation of C. It is well known that
 an irrational rotation of C is ergodic with respect to Lebesgue measure, from
 which we deduce that U acts ergodically on a. Of course, a is infinite
 dimensional, whence from Theorem 2. 2. 1, a and U generate a triangular
 algebra, A. Each maximal triangular algebra containing A has 0 and I as
 its only hulls.

 DEFINITION 2. 2. 3. A triangular algebra whose only hulls are 0 and I
 will be said to be "irreducible."

 Irreducibility is equivalent to the core's consisting of scalars. It is clear,
 moreover, that the irreducible triangular algebras are those which act irre-
 ducibily on the underlying ililbert space.
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 2. 3. Some basic lemmas. In this section we develop a criterion which

 guarantees the membership of a given bounded operator in a particular

 maximal triangular algebra. With the aid of this result, we show that the

 hulls of maximal triangular algebras in factors are totally ordered (under

 the projection ordering).

 Remark 2. 3. 1. If N is a projection invariant under the algebra A6
 and M is a projection orthogonal to N, then MSN = 0 for each S in 3

 In fact, MSN = MNSN = OSN =0.

 LEMMA 2. 3. 2. If a is a self-adjoint operator algebra, . an operator

 algebra maximal with the property of having a as its intersection with its

 adjoint, N and M orthogonal projections with N invariant under, antd in .,

 and B an operator such that B = NBMI, then B lies in P.

 Proof. Since B2 0, each operator, T, in A , the algebra generated by
 3 and B has the form,

 (*) S+EBS S+Y S SB+,BS SB+SB- S,

 where the terms S which appear are not necessarily the same but all lie in A.

 We shall show that A0 n -8 a, whence A0 = , by maximality, and B

 lies in P. To this end, it will suffice, of course, to show that each self-adjoint

 operator T in 4, (so, in A, n j3o*) iies in a, since 3 n fl * is a self-:adjoint
 algebra and, therefore, generated by its self-adjoint operators.

 We assume that T in 43 is self-adjoint and has the form described in (*).
 By hypothesis, the range of B is contained in N, so that B leaves N invariant,

 and, thus, A30 leaves N invariant. From Remark 2. 3. 1, we conclude that

 (I - N) TAT 0, whence from the self-adjointness of T, NT (I - N) = 0.

 It follows that T =NTN+ (I- N)T(I -N). Now (I- N)T(I -N)

 (I -N) S (I - N), since (I -N) B (I -N) SB (I -N) SNB =O,

 by hypothesis on B and invariance of N under S. With (I N) S(I - N)

 self-adjoint, we conclude that (I - N) T (I - N) lies in C. It suffices, there-

 fore, to show that NTN lies in a. But NTN NSN +Y NBS . *BSN

 + , NS . * SBN + , NBS * * SBN + , NS * . . BSN NSN, since BN
 BSN = 0; and NSN lies in a, being a self-adjoint operator (NTN) in A3.

 In the above lemma, we may assume that 3 has the maximal property

 with respect to some algebra, 9X, containing it, provided that the B in question

 lies in 9T. If 9n is a factor, then with the notation of Lemma 2. 3. 2, we
 may state:

 LEMMA 2. 3. 3. If E and F are projections in 3 invariant under X,
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 then one of E, F contains the other (i. e. the invariant projections in 2 are
 totally ordered).

 Proof. From invariance of E under 23, and, in particular, F, we have
 EFE FE; whence, taking adjoints, FE=EF. Both F- EF and E-EF
 are non-zero unless one of E, F contains the other. If both are non-zero, there
 is a non-zero partial isometry, V, in 9In with initial space in F-EF and
 final space in E - EF. Thus V = EV (F - EF), with E invariant under 23
 and orthogonal to F - EF. It follows, from the preceding lemma, that v
 lies in 23. However, V maps a part of F in F - EF into E - EF, orthogonal
 to F, contradicting the invariance of F under 23. Thus, one of F, F contains
 the other.

 Note that if (a is generated by its invariant projections, the first state-
 ment of the foregoing proof shows that a is abelian.

 LEMMA 2.3.4. If af is a maximal triangular algebra in a factor 'n
 with diagonal a and core 9, then h(G) - G is the hull immediately pre-
 ceding h(G) in 5 if G is a minimal projection in e. If E is a hull in 7
 which has a hull, F, immediately preceding it, then E- F is a minimal
 projection in E.

 Proof. If N is a hull in 5 not containing G, then N_? h (G), from

 Lemma 2. 3. 3, and GN = O, from minimality of G; so that N,I< h (G)-G.
 The union, F, of all such hulls, N, is clearly a hull, F? h (G) - G, and F
 is a hull immediately preceding h (G). If we have proved the last statement
 of this lemma, then h (G) - F is a minimal projection in 6 containing G,
 from which F = h (G) - G, and h (G) - G is a hull. It remains to establish
 the last assertion of this lemma.

 If M is a non-zero proper subprojection of E - F in e and
 N =E F-ilM, we can find a partial isometry, V, with initial space a
 non-zero subprojection of M and final space in N. If P is a hull of 7
 containing E, then v and 17* leave P invariant. If P does not contain E,
 then P ? F; so that V and V* annihilate P. Thus v commutes with each
 hull of 5 and hence with B. However, v does not commute with M and M
 was chosen in B. Thus E - F is minimal in E.

 2.4. Other directions. The method by which we established the exis-
 tence of maximal triangular algebras (a Zorn's Lemma construction) would
 yield, as well, the existence of an algebra, 7, maximal with respect to the
 property that 5* n 5 is a given self-adjoint algebra, a. More particularly,
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 we may choose a to be abelian or to be a von Neumann algebra-the case
 where a is maximal abelian is that of the maximal triangular algebras. (All
 this may be done in a given set of operators, e. g. a factor.) Without specifying

 a, we can construct an algebra, 5, maximal with respect to the property that
 t * fn is abelian-and containing a given such algebra, go. In fact, take
 5 as the union of a maximal family of such algebras containing 5O and
 totally ordered by inclusion. Clearly, 5 is an algebra and 5* n 5 is generated
 by its self-adjoint elements. If A1 and A2 are self-adjoint operators in 5,
 then A1 E S1, A2E 52, where 5i and 52 are in the maximal family of which
 5 is the union. Say, 5 C 52, so that A1 and A2 lie in the abelian algebra,
 52* n 52. Thus 5* n 5 is abelian. Of course 50* n 5o C 5* n 5, so that
 the abelian intersection with which we start may expand as we pass to the
 maximal algebra, 5. Indeed, it would appear possible that all such maximal
 algebras are maximal triangular (i. e. 5* n 5 is maximal abelian). We shall
 note that this need not be the case-even in finite dimensions. Before doing
 this, however, we wish to point out the importance of these considerations
 for certain critical questions in the theory of triangular operator algebras.

 The question of whether or not a bounded operator on a separable Hilbert
 space has proper invariant subspaces may be strengthened and weakened in
 various ways. In a stronger form, one might ask not just for proper invariant
 subspaces, but for a "thick77 family of such subspaces. A sense in which
 we can make this precise is to require that there be a resolution of the identity

 consisting of invariant subspaces, and more hopefully, a resolution with simple
 spectrum. Phrased in the language of our theory, we may ask:

 Question 2.4. 1. Is each bounded operator contained in some hyper-
 reducible maximal triangular algebra (core diagonal-cf. Definition 3. 0) ?

 This would provide a " triangular form for bounded operators. We are
 inclined to feel that there is little hope that this question has an affirmative
 answer. It raises, in a natural way, the following question:

 Question 2. 4. 2. Is each bounded operator contained in some maximal
 triangular algebra?

 This is a much broader question, allowing, as it does, the possibility that
 the operator falls in an irreducible maximal triangular algebra. From this
 we would not conclude the existence of a single proper invariant subspace,
 although in the general sense of our theory, we would have the operator in
 " triangular form " and might gain knowledge about it from an analysis of the
 maximal triangular algebra in question. (The ostensibly weaker demand that
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 the operator lie in some triangular algebra is not really weaker, since each
 such algebra is contained in one which is maximal.) Suppose that B is a

 bounded operator and 50 the (commutative) algebra generated by B and I
 (we may use any of the standard closures of 5O). Of course, 5o* n 5o is
 abelian, so that 5O is contained in an algebra, 5, maximal with respect to
 the property that g* n 5 is abelian. The example which follows shows that
 5* n 5 need not be maximal abelian.

 Exam ple 2. 4. 3. Let 5, be the algebra of all 3 X 3 matrices, (aq)), with
 a.,1 = a32 = a23 = 0, and let H be the positive square root of

 I V. 0 2 .

 0O l 1,

 For 5 we choose H1H-'-. A computation shows that with A in 5,, HAH-1
 is self-adjoint if and only if the matrix, (aj), for A, has aij -- 0, i t j, and
 a22= a33. Thus the self-adjoint operators in 5 are the image under an auto-

 morphism on 3 X 3 matrices of a 2-dimensional abelian set; and 5t n a
 is not maximal abelian though abelian. It remains to show that 5 is

 maximal with respect to the property of having an abelian intersection with

 its adjoint. We do this with a dimension argument. Suppose that A is a
 subalgebra of the 3 X 3 matrices which has dimension n. Let A U A * be
 the linear space spanned by A and A' *. Then

 2=-dim(A fl A) +dim(A*U A ) ?dim(A*fn A) +9.

 Since A n A is self-adjoint, it has dimension 3 or less if it is abelian; so
 that A has dimension 6 or less. The algebra generated by Si and an operator
 not in it is easily seen to be at least 7 dimensional, whence the same is true

 for the automorph, 5, of 7,. Thus, no algebra containing 5 properly can
 have an abelian intersection with its adjoint.

 Presumably, another computation would yield an example of an algebra
 with the maximal property having the scalars as intersection with its adjoint.
 With the aid of the example just constructed, we can produce an example in
 which the disparity betwen the dimension of the abelian intersection and that
 of the algebra is greater. In fact, let 5O be the algebra of m X m matrices
 (corresponding to bounded operators, when m =-oo ) whose entries are 3 X 3
 matrices having each 3 X 3 entry below the diagonal the zero matrix and
 each 3 X 3 entry on the diagonal some matrix in 5. Each self-adjoint
 operator in Jo has non-zero entries only on the diagonal and these some
 self-adjoint element of 5, Thus SO* n 5O is abelian and 2m-dimensional.
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 With m finite, maximal abelian algebras have dimension 3mn and go has
 dimension 5m + 9m(m -1). That 5O is maximal with respect to the
 property of having an abelian intersection with its adjoint is immediate from

 the corresponding fact for S and the fact that arbitrary entries appear above
 the diagonal.

 A possible way of relating a given bounded operator to a maximal tri-

 angular algebra would be to replace the "part of the operator below the

 diagonal" by zero. Caution must be exercised with this process in infinite

 dimensions. Even in the classical case of the maximal triangular algebra
 arising from an orthonormal basis, . . . * X-21, X1, XX1, X2,l * * , the " super-
 diagonal" part of the operator may not be bounded. We may view this

 situation in terms of the group, c, of integers and L2(3), relative to the
 disecrete measure on a (laar-Lebesgue measure). The Fourier-Plancherel

 transform establishes a unitary equivalence of L.2(9) with L2(C), where C
 is the circle group, which carries the maximal abelian algebra consisting of
 bounded L2 convolution operators on L2(A) onto the multiplication algebra
 of L2 (C). If x,, is the function which is 1 at n and zero elsewhere on c9 then
 the m, n-th entry of the matrix corresponding to convolution by g relative to

 the basis {x"} for L2(3), is f(m - n), for (f*x", xm) =- (f*x0)(m) f(m - n).
 If fo is 0 at positive integers and equal to f elsewhere on aQ, then the matrix
 for convolution by f, has as m, n-th entry (relative to {,,}) fo (m - n), i.e.
 its matrix is the " super-diagonal part " of the matrix for f (when n m m the
 entry is f(m - n), otherwise it is 0). However, while convolution by f may
 be a bounded operator, i. e. have Fourier-Plancherel transform a bounded

 measurable function on C, the transform of f, may be unbounded.
 In general, then, we must not expect an operator, A, to have a decom-

 position, A1 + A2, with A, in 5 and A2 in 5*, where 5 is a given maximal
 triangular algebra. If such a decomposition exists, however, it is clearly
 unique up to an additive factor from the diagonal of 5.

 In the chapter which follows, we shall give a reasonably detailed descrip-

 tion of the most accessible class of maximal triangular algebras. This
 description will include an effective test of maximality. When we leave this
 class, no such test is known to us; and we may ask:

 Question 2. 4. 4. Is there an easily applicable test for the maximality
 of a triangular algebra?

 We have in mind some test such as that afforded by the Double Commu-
 tant Theorem in the theory of von Neumann algebras for the property of
 being strongly closed.
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 Theorem 2. 2. 1 and the example which follows it make use of Zorn's

 Lemma so that we do not have an explicit description of the operators in the

 irreducible maximal triangular algebra which results.

 Question 2.4. 5. Is there an explicit construction of an irreducible

 maximal triangular algebra?

 Questions 2.4.4 and 2.4.5 are admittedly vague though, nonetheless,

 important for this theory. The following very definite question is perhaps

 the most provoking sample from a long list of questions one could ask about

 the irreducible triangular algebras.

 Question 2.4.6. Are there two (or more) irreducible maximal tri-

 angular algebras on separable iilbert space which are not algebraically
 isomorphic ?

 Chapter III. Hyperreducible Algebras.

 DEFINITION 3. 0. A triangular algebra whose hulls generate the diagonal

 is said to be hyperreducible.

 Note that each hull of a triangular algebra is a reducing subspace-the

 hyperreducible case is the one with the greatest possible reduction. ilyper-

 reducible algebras are those for which the core is equal to the diagonal. We

 have noted (cf. Remark 2. 1. 5) that the core plays the role of the center, so

 that the hyperreducible algebras in the theory of triangular operator algebras

 -would correspond to the abelian algebras of the self-adjoint theory. Through

 this analogy, we would expect the hyperreducible algebras to be the most

 tractable of the triangular algebras, and this is the case-though their theory

 is not nearly as complete at this time as the abelian self-adjoint theory.

 3. 1. The general structure. The following result gives, in very broad

 terms, the general structure of the maximal hyperreducible algebras.

 THEOREM 3. 1. 1. If {Eo} is a totally-ordered family of projections which

 generates the maximal abelian algebra, a; then 5, the set of all bounded
 operators which leave each Ea invariant is a maximal triangular algebra, with
 core and diagonal a. If {Ea} is closed under unions and intersections then
 it is the set of hulls of 5. Each hyperreducible maximal triangular algebra
 arises in this way.

 Proof. That 5 is an algebra is clear. If A is a self-adjoint operator
 in 57, then, since AE. = EaAEA = (EaAEa) EaA, we conclude that A

 4
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 commutes with and hence lies in L7, so that 5 is triangular with diagonal
 (and core, by hypothesis) equal to a.

 Choose a maximal triangular'algebra, go, containing 5, and let B be
 an operator in Jo. For each operator, T, EaT(I-- E,) lies in 5. Indeed,
 with E -< Ea,

 0 EaT(I Ea)E =N ENEaT(I - Ea)Ep,

 while, with Enl ? Ea,

 EaNT(I - Ea)Ef = EfEaT(I- Ea)E.

 In particular, ENB* (I -Ea) lies in 5 (hence in 5J). It follows that the
 self-adjoint operator,

 EaB*(I Ea) + (I- Ea)BEa,

 lies in 5 and, so, in a. Commutativity with Ea then gives

 EaB*(I-Ea) = (I-Ea)BEa,

 from which, by multiplying both sides by (I -ENa), we conclude that
 (IN-aE)BE,,= 0. Thus B leaves each ENa invariant, B lies in 5, 5 7o0,
 and 5 is a maximal triangular algebra.

 On the other hand, if 5 is maximal triangular and hyperreducible with
 hulls {ENa} and diagonal a, then {NE} generates the maximal abelian algebra,
 a, and is totally ordered. Thus, go, the set of operators leaving each EN
 invariant, is maximal triangular and contains 5. By maximality of 5, we
 have, 5 = 5O.

 If {Ea} is closed under union and intersection of its members, and E is
 a hull for 5, then E0 the union of, and E1 the intersection of all ENa contained

 in and containing E, respectively, lie in {NEa. If Eo < E < E1 then, as in
 Lemma 2. 3. 4, a partial isometry with initial space in E - Eo and range in
 E1 - E commutes with each Ea, hence with a, but does not leave E - E0
 invariant. Thus E is one of Eon, E1, and E lies in {EN,}. The hulls of 5
 are precisely the Ea, in this case.

 3. 2. Triangular algebras with totally-atomic diagonals. Throughout
 this section, we shall be discussing the maximal triangular algebra, 5, over
 a maximal abelian algebra a which is generated by its minimal projections.
 In this case, the structure of 5 can be completely described. The main
 result is contained in:

 THEOREM 3.2.1. If S is a maximal triangular algebra with diagonal
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 C which is generated by its minimal projections, then 5 is hyperreducible.
 The total ordering of the hulls induces a total ordering on the minimal pro-
 jections, {Ea}, of a by means of the mapping from projections to their hulls
 (which is one-one on the minimal projections); two such triangular algebras
 are unitarily equivalent if and only if their sets of minimal projections are
 order isomorphic. Corresponding to each total-ordering type there is a
 maximal triangular algebra with a totally-atomic diagonal whose set of
 minimal projections has this order type.

 Proof. Since h(Ea) - [UEa] Eph(E) :7 0 if and only if [E05Ea] #7 0,
 i. e. EpTEa, #0 O, for some T in 5. If, in addition, Ea,h (EB) #&0, then E,TY'Ej
 #0 O, for some T' in 5. Now Ea,T*Ei is a scalar multiple of EaT'Ep, since

 Ea and En are one dimensional, so that Ea,T*Eo + ETEJE lies in a, and
 commutes with E,, EO,-contradicting EpTEa 0. Thus Eah (En) =0, and
 h(E) ?h(Ea) -Ea. Sinceh(EO) -E,= Ep, h(Ea) -EaV h(Ep).
 Hence h(Eo) -E, is a hull, so that E(= h(E,) - [h(Ea) -Ea]) lies in

 the core of 5. Since a is generated by {Ea}, 5 is hyperreducible. If

 h(Ea) h(Ep), then h(E,,)-Ea h(E) -E; and Ea= E,p. In fact,
 from Lemma 2. 3.4, h (Ea) - E, and h (Ep) - EB6 are the hulls immediately
 preceding h (E,,) and h (Ep), respectively. Thus the total ordering of the
 hulls induces a total ordering, <<, of {E,,} by means of the one-one mapping,
 h (Ec) - Ea. Since each projection in a is the sum of the minimal pro-
 jections it contains, and E0 << E,, (i. e. h (En) < h (Ea)) if and only if
 Ef l h(Ea); we have, h(Ea)= 2 E.

 Ei<<Ea

 If 51 ond J2 are maximal triangular algebras with diagonals a, and a2
 which are generated by their sets {Ea}, {Fa,} of minimal projections, acting
 on the Hilbert spaces &9( and 9(2, respectively, and the mapping Ea ,,,- F.is
 an order isomorphism of {Ea,} onto {Fa,} relative to the << ordering on these
 sets; then the unitary transformation, U, defined by mapping a unit vector

 in the range of Ea onto a unit vector in the range of F,a is such that
 ua1u = a2 and UEaU-1 Fa. We shall show that UJ1U-1 = 72. Indeed,
 from the description of J1 and 52 as the algebras of all operators on 1
 and 592, respectively, which leave the hulls in 51 and 52 invariant, it suffices

 to show that UEU-1 is a hull in 52 if E is a hull in J, (by symmetry, then,
 F is a hull in 51 if UFU-1 is a hull in 52). Now Uh(Ea)U'= h(F,a),
 since h (E) = 2 Ep, h (Fa) = , Fp, and En << Ea if and only if

 Eo<<Ea F8?Fa

 Fn---UEkU-1 << Fa UEaU-'-. If E is a hull in Ji, then E= V h (Ea),

 whence UEU' = V Uh (Ea) U-= V h (F,); and UEU-1 is a hull
 in 52. UEaU-'<UEU-' Fa?UELU-1
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 Let {a' be a set having a given total-order type, X9 a Hilbert space having

 dimension the cardinality of {as}, and let {Ea} be a maximal orthogonal family
 of one-dimensional projections on 59( indexed by {a} and totally ordered by
 the relation, <<, induced by this indexing. If a is the maximal abelian

 algebra generated by (Ea} and E is a projection in a, define h (E) to be

 V {E,: E,0 << Ea for some Ea < E}. Note that the set of 8's involved in the
 defining sum for h (E) is an initial segment of {a}. Since initial segments
 of a totally-ordered set form a totally-ordered set, the projections in {h (E):
 E a projection in a} form a totally-ordered set. The definition implies that

 h(E,a,) = EE,; whence h(Ea) - Ea=- h(h(Ea) -Ea). Thus, each Ea lies
 0<a

 in the algebra generated by {h (E) }, and this algebra is, therefore, a. From

 Theorem 3. 1. 1, the set of operators, 5, leaving each h(E) invariant is maximal,

 hyperreducible. Moreover, the equality, h (Ea) z EA, establishes the fact
 ,0<<a-

 that h is an order isomorphism of {Ea} with {h(Ea)}; and the proof is
 complete.

 COROLLARY 3.2.2. If 57, and 52 are maximal triangular algebras with
 totally-atomic diagonals and (p is an order isomorphism between their sets
 of hulls, then ,o can be implemented by a unitary transformation which carries
 Ji onto 52.

 Proof. By virtue of Theorem 3. 2. 1, it will suffice to show that f induces
 an order isomorphism between the sets of minimal projections. We recall
 that the mapping from minimal projections to their hulls is an order iso-

 morphism between the minimal projections and their hulls. It remains to

 note that p carries the hull, h(G), of a minimal projection, G, in 5, onto
 such a hull in 52. Now p (h(G) - G) is a hull in 52 immediately preceding
 p (h (G) ); whence p (h (G) ) is the hull of a minimal projection 52 (cf.
 Lemma 2. 3. 4).

 THEOREm 3.2.3. If 51 and 52 are maximal triangular algebras with

 totally-atomic diagonals, a, and a2, acting on Hilbert spaces, 694 and &92,
 respectively, and p is an isomorphism of 51 onto 52 carrying a, onto a2,
 then p is implemented by a bicontinuous linear isomorphism of &9I onto N9.
 In particular, if 51 52 and (p is the identity transform on a1, then the
 implementing transformation lies in a1.

 Proof. Since p(aG) = a2, so carries the set of minimal projections, {Ea},
 of a1 onto that of a2. Moreover, since a projection, E, is invariant under T

 if and only if TE=ETE, (p preserves hulls. Now EaK<<Ea' if and only if
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 Ea < h (Ea'); whence y (Ea) ? y (h (Ea,)) -= h (p (Ea,)), and 'p(Ea) << p(Ea').
 Applying these considerations to yp1, we conclude that 'p induces an order
 isomorphism of the minimal projections in 57 onto those of 52; so that
 there is a unitary transformation of 9t, onto 92 carrying 5, onto 52 and
 implementing 'p on {Ea} (hence on al). Composing the inverse of this
 unitarily induced mapping with *p, we see that it suffices to consider the
 case where yp is an automorphism of 51 which is the identity transform on a.

 Since Ea'5iEcx is one-dimensional if E0as << Ea,

 'p (EcxTEa) = Ea"p (T)Ea = ac'aEcx'TEa,, where aaot

 is some non-zero scalar (independent of T). If Eoe << Eo, then

 aaO EaeTt-`EaPTEae yp(Ea"T'Ea'TEa)

 =p (Eoa"T'Eoa) 'p (Eca'TEa) = aa"c2' aoX'aEa"T'Ea',TEa;

 whence aa"xaaa a. == aa o. Clearly aaa =- 1, for all a. Fix a", and define ba
 to be aa"&1o-' (or aaa" if <<?a"). Let B > baEa. We assert that B is an

 invertible operator in a1. To establish this, we need show only that { a,a |}
 is bounded above, for applying this result to pu-1, we conclude that {| a,,,, ,}

 is bounded above; whence { N b} and {| ba- |} are bounded above. If (I }
 is not bounded above, then for each positive integer, n, there exist c,, and xn',
 with 2,'<< ?, such that ? n3. Now E (1/n2)T, converges uniformly

 n

 to an operator, T, in W1, where Tn is a partial isometry (in 71) with initial
 space EOtn and range EaY'. But

 o y(T) Ea._ p(T)Eocn 11- (aa.'J/n2) Tn 11 ;> n

 whence yp (T) is not bounded, a contradiction. Thus l1aa I} is bounded.
 With T in 5i,

 Ea, (BTB-1) Ea = B (Ea'TEa) B-1 =' ba'ba-1Eoa'TEa

 -= aa1, 1,aaa"aEeaETEa = aa'aEa' TEa =- ?p (Ea'TEa) = Eay (T)Ea.

 It follows that BTB-1 o(T), and the proof is complete.

 An orthonormal basis for a Hilbert space determines and is determined
 by the maximal abelian algebra of bounded operators with this basis as eigen-
 vectors (the diagonal matrices relative to this basis). It is natural and
 customary therefore, to think of the arbitrary maximal abelian algebra as a
 generalized basis. In the same way, an ordered basis for the Hilbert space
 corresponds to the maximal triangular, hyperreducible algebra with diagonal
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 the maximal abelian algebra of this basis and atoms ordered by the basis. For

 this reason, we may think of the general maximal triangular, hyperreducible

 algebra as a generalized ordered basis, and we shall often refer to such an

 algebra as an "ordered basis." When the diagonal is totally atomic, we shall

 speak of a "discrete, ordered basis"; and when the atoms are ordered as the

 integers (positive, negative, or positive and negative), we shall speak of an

 "integer-ordered basis." The atoms of an integer-ordered basis correspond to

 those infinite, totally-ordered sets between each pair of elements of which,

 there are a finite number of elements.

 3. 3. Non-atomic hyperreducible algebras. In this section, we consider

 hyperreducible, maximal triangular algebras (on separable spaces) whose

 diagonals are non-atomic. We shall see that, unlike the totally-atomic case,

 all such algebras are unitarily equivalent and a fortiori isomorphic (cf.

 Theorem 3. 3. 1), but that not each order isomorphism between the hulls can

 be implemented by a unitary transformation.

 THEOREM 3. 3. 1. If 5 is a hyperreducible, maximal triangular algebra
 with non-atomic diagonal, a, acting on a separable Hilbert space, then 5 is

 unitarily equivalent to 5O, the algebra of all bounded operators on L2(0, 1)

 (Lebesgue measure) leaving each Fx invariant, where Fx is the projection due

 to multiplication by the characteristic function, Xx, of [0,Ax].

 Proof. Since a is abelian on a separable space, there is a unit vector,

 x, which is separating for a. The hulls being totally ordered and x separating,

 W. takes distinct values on distinct hulls so that we can index each hull, E,
 with w,na(E). Let {Ex} be these hulls so indexed. Note that Eo = 0, E, = I,
 and for each jm in [0, 1], there is an E,h with A Ex = -E V E,. In fact,

 if this were not so, V Ev would be the hull immediately preceding A EX

 which would, according to Lemma 2. 3.4, be the hull of a minimal projection.

 Thus {Ex} is a resolution of the identity, say A = f \ dEx. Let ao be the
 multiplication algebra of L2 (0, 1) (Lebesgue measure), and let (o (f (A)) be

 Tf, the operator due to multiplication by f, a bounded measurable function on

 [0, 1]. Because of the properties of {Ex}, y is an isomorphism of a with aO.
 The mapping f (A) x -> f is isometric; for

 (f(A)x,g(A)x) =f (A)f(A)d(Exx,x) =f #g(A)f (A)dA

 -(fgns),

 and therefore has a unitary extension, U, which is easily seen to implement yo.
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 Now Xx (A) = Ex, whence 'p (Ex) Txx Fx. From Theorem 3.1. 1, 5 is
 describable as the algebra of all bounded operators which leave each Ex

 invariant, so that U carries 5 onto 5o.

 If f is an order isomorphism of [0, 1] onto [0, 1] the mapping Ex -* Ef(x)
 will be an order isomorphism of the hulls of 5 onto itself (using the notation

 of the preceding theorem). We may ask ourselves if this mapping can be

 implemented by a unitary transformation of 5 onto S. The corresponding

 question in the totally-atomic case had an affirmative answer. In the present

 case, the answer is in the negative. An indication of why this is so will serve

 as a good introduction to the methods of the following section. Such a

 unitary transformation must carry JfA dEx onto 5 A dEf(vX ( *f f-I (y) dEM,).
 We note that, under the hypothesis, f will be a homeomorphism of [0, 1]
 onto itself (the image of an interval is an interval). Thus, the C*-algebras

 generated by both f \ dEx and f f1 (X) dEx correspond to the algebra of multi-
 plications by continuous functions on [0, 1], both have simple spectrum [0, 1],

 and the spectral null sets in both cases are given by the constant function, 1.

 In the first case, these are the null sets of the integration process, g -> fg (A) dX,

 and in the second, those of g -> f g (fr (A) ) dA. The first, then, are the Borel
 subsets of [0, 1] of Lebesgue measure 0, and the second are the images under

 f of these. Our task, then, is to construct an f which does not preserve the

 Borel sets of measure 0. Such functions are described in the literature (cf.,

 [3, p. 83]). For example, let f be defined by f(A) = (A+g(A))/2, where g
 is the Cantor function.

 3.4. The general diagonal. We consider, now, the case where the

 diagonal is not assumed pure in the sense of total atomicity or non-atomicity.

 Experience with the self-adjoint theory conditions us to expect that the general

 case is a simple matter of separating the diagonal into its totally-atomic and

 non-atomic parts. This is not so in the present theory, as will be evident

 from the results of this section. The order, which is a primary constituent

 of this investigation, places the atoms throughout the continuous portion of

 the diagonal in a manner which does not permit a separation consistent with

 this theory.

 DEFINITION 3. 4. 1. The " hull class," h (5), of an ordered basis, 5,

 on a separable space with hulls, {Ea}, and diagonal, a, is the class {{(Eofx, x)}:

 x a separating vector for a} of subsets of [0, 1].

 Remark 3.4.2. The mapping -, taking Ea onto (Efax, x) is an order

 isomorphism since {E(a} is- totally ordered and x is a separating vector for a.
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 The greatest lower bound, Ea0, of a subset of {Ea} is its intersection and a

 strong limit point of it; whence -q(Ea0) is a lower bound and a limit point
 of its image under q. Thus qj(Eao) is the greatest lower bound of this image.
 It follows that the greatest lower bound (and likewise the least upper bound)

 of each subset of { (Eax, x) } lies in it, whence { (Eax, x) } is closed. Each
 member of the hull class is a closed subset of [0, 1] containing 0 and 1.

 Rermark 3. 4. 3. With X in h (9) and X' the complement of X in [0, 1],
 X' is open and thus, the sum of a countable family, I,,I,, I *, of disjoint
 open intervals. The left and right hand endpoints, 17b and rk, respectively,

 of '7 lie in X (we refer to the set of these endpoints as "the edge of X,"
 to the 1k as "the left edge," and to the rk as "the right edge"); and Ik

 corresponds to the hull immediately preceding the hull which corresponds

 to rk. Thus rk corresponds to the hull of a minimal projection in a (cf.

 Lemma 2. 3.4). Conversely, if G is a minimal projection in a, then
 h (G) - G is the hull immediately preceding h (G), so that the (non-empty)

 interval (,(h(G)- G), (h(G))) is some Ik. There is a one-one corres-
 pondence effected by - between the hulls of minimal projections in a and the
 right edge points of X.

 THEOREm 3. 4.4. Two separable ordered bases, 9, and 5J2, are unitarily
 equivalent if h (91) n h (2) #7 4 and only if h (51,)-h (52).

 Proof. A unitary equivalence between 57 and ty2 preserves diagonals,

 hulls, and the separating vectors for the diagonals; whence h (,k) = h (52).

 Suppose, now, that x and y are separating vectors for the diagonals of 71
 and 52 which give rise to the same set, X, in both h(51) and h(52). Let

 us index the hulls of 5, and 52 by points of X in such a way that (Exx, x) =AX

 = (Fxy, y), for each of the hulls Ex and Fx in 5, and 52, respectively. The
 sets aC1 and a62 of linear combinations of {Ex} and {Fx}, respectively, are self-

 adjoint algebras which are weakly dense in the diagonals of 51 and J2,
 respectively, so that [(C1x] =--9i, and [a2y] = S92 (with SV91 and 5,2 the

 n

 Hilbert spaces upon which J, and 52 act). The mapping taking ( c aiEx) x
 n j=1

 onto (Y cajE x) y is isometric, for

 n n

 11 ( E aEj&) jj2 x ( aicjEx,Ex,x, x)
 i,j=l

 n n
 ( a cdFX4FXJy, y) = 1 c FAy 112.
 i, j=l j=1
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 Thus, this mapping has a unitary extension, U. Note that,

 UExU-1( ( Zx)y) = UE< (I a,E)x )-U( ( ciExEx,)x

 = (I axFx ) y Fx ( ( at) y);

 whence UExU-1 = Fx, and U effects a unitary equivalence between Ur, and 52
 (cf. Theorem 3.1.1).

 The concept of an orientation-preserving homeomorphism which carries

 the null sets of Lebesgue measure onto these null sets of the image will play

 an important role in our work. We shall call such a mapping "a Lebesgue
 order isomorphism."

 THEOREM 3.4. 5. If X is a closed subset of [0, 1] containing 0 and 1,

 X' its complement in [0,1] with connected components I:, I,, ,, is the
 Borel measure on [0, 1] defined by ,u(S) = m(S n x) + Y m(Ik), where rk

 rk e5

 is the right endpoint of Ik and m is Lebesgue measure on [0, 1], a is the

 multiplication algebra of L2([0, 1], j), 7 is the algebra of all bounded

 operators on L2 ([0, 1],/A) leaving each Ex and Ex. invariant, where EX and
 E;. are the projections due to multiplication by the characteristic functions

 of the half-open interval, [0, A), and the closed interval, [0,A], respectively,

 then 5 is an ordered basis with diagonal a and hulls {Ex, Ex.}, and X E h(7).

 Proof. Each operator due to multiplication by the characteristic function

 of a closed or open interval, and hence, a Borel set, lies in the von Neumann

 algebra generated by {Ex, Ex.}; whence this algebra is a. Of course, {Ex, EX.}
 is -a totally-ordered family of projections, and from Theorem 3. 1. 1, U is an
 ordered basis with diagonal a. Let 5 be a subset of {Ex, Ex.}, E its inter-

 section, and y the right endpoint of the interval which is the intersection of

 the intervals corresponding to the projections of F. Clearly Ey ? E. Now
 E corresponds to multiplication by the characteristic function of some ,u-

 measurable subset, S, of [0, 1]. If A > y, there is a A', with Ex, or Ex. in X,
 such that y c A' < A; whence E ? Ex . ? Ex. Thus, 14{A': A' C S, A' > A}) = 0,

 and since this holds for each A>y, ,({A: AC S,A >y} ) =0. Hence EcEy.,
 and E = Ey or Ey.. Similarly, the union of the projections in a lies in
 {Ex, Ex.}, and from Theorem 3. 1. 1, {Ex, Ex.} is the set of hulls of 5.

 Observe that each rk lies in X, so that if S n x = then ,u(S) t 0. Note

 also that /A([0, Ao] ) A,o when A0 E X, for

 ,u([o, Ao] m ( [0 Ao] n x) + z, m (Ik)
 rk nXo

 =M( [0,Axo] nlX) ? m ([05,Ao1- [0,A0,] n X) =A0,.
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 Moreover, ,u( [0,AO)) = A0 or Ik if A0O {rk} or AO = rk, respectively. Now, if

 A f X, (Exx, x) =( [, A)) = ( [O,A] ) = (Ex.x, x), where x is the constant
 function 1 on [0, 1]. If A0 is the least upper bound of [O, x] n x,

 /,A ( [O, A) ) - IA ( [0, Ao] )+ p ( (Ao, A) )=- -.a ( [0, Ao] )-~Ao E X.

 Thus X is the member of the hull class of 5 corresponding to the separating
 vector x.

 The ordered bases arising from the constructions of the foregoing theorem

 contain representatives from each unitary equivalence class of ordered bases,
 since each ordered basis is unitarily equivalent to the ones constructed on each
 of the sets in its hull class. We must still say, however, when two ordered
 bases arising from the construction of Theorem 3. 4. 5 are unitarily equivalent
 (and which closed sets appear in a given hull class). Theorem 3. 4. 8 answers
 these questions. Several remarks will be of help.

 Remark 3.4.6. If X and Y are closed subsets of [0, 1] containing 0
 and 1, and f is an order isomorphism of X onto Y then f has an order-
 isomorphic extension mapping [0,1] onto itself. In particular, the extension
 is a homeomorphism, and f is continuous on X. In fact, the right and left
 edgepoints of X are characterized as those points of X having an immediate
 predecessor and successor in X, respectively. Thus f maps such edgepoints
 onto the corresponding edgepoints for Y and can be extended linearly over the

 intervals of X'. It is routine to check that f, so extended, is an order iso-
 morphism of [0, 1] onto itself.

 Remark 3.4.7. With X, Y, and f, as above, construct 1u and v, measures
 on X and Y, respectively, as in Theorem 3. 4. 5. (We shall refer to , and the
 ordered basis of Theorem 3. 4. 5 as "the canonical measure and ordered basis
 for X.") Denoting by f, again, the order-isomorphic extension of f constructed

 above, f is a Lebesgue order isomorphism on [0, 1] if and only if it is on X,
 if and only if f carries the null sets of ja onto those of v. In fact, since f is
 linear on each of the countable number of connected components of X, it is
 a Lebesgue order isomorphism on each of these; so that f is a Lebesgue order
 isomorphism on [0, I], if and only if it is on X. Now, the J and v null sets
 in X can be described as those subsets containing no right edgepoints and
 whose Lebesgue measure is zero, so that f is a Lebesgue order isomorphism
 on X if and only if f carries p/-null sets onto v-null sets.

 THEOREM 3.4.8. The canonical ordered bases 7, and 72 for the sets
 X and Y, respectively, are unitarily equivalent if and only if X and Y are
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 Lebesgue order isomorphic. The hull class of an ordered basis consists of
 the images of any one of its members under Lebesgue order isomorphisms
 of [0, 1] onto itself.

 Proof. The hulls of 51 and 52 are {E>} and {FF}, respectively, where
 Ex and Fx are multiplication by the characteristic functions of [0, A] n X
 a-nd [0, x] n Y with X in X and X in Y, respectively. Let f be an order
 isomorphism of X and Y, and define S? by: p (Ex) Ff(gx). The diagonals
 a, and a2 of 51 and 52, respectively, contain strongly dense C*-subalgebras
 %1 and ,2, respectively, consisting of multiplications by continuous functions
 on X and Y, respectively. Let T. be the operator in '1?, corresponding to
 multiplication by g, and define jp (T,) to be Tg0 f-i, the operator in f2 corres-
 ponding to multiplication by go f-. If p on {Ex,} can be implemented by a
 unitary transformation, the unitary equivalence induced on al, when restricted

 to Wl, is the mapping, p, just defined; for Tg is approximable to within e in
 bound by some finite linear combinations of the Ex's, and the unitary equiv-
 alence transforms this linear combination (as vp) into one in the Fx's approxi-
 mating Tg0f-i to within e in bound. On the other hand, a unitary trans-

 formation which implements p on t[1 carries Ex onto Ff(\); for Ex is the
 greatest lower bound in a1 of the multiplications corresponding to continuous

 functions which are 1 on [0, x] n X and lie between 0 and 1 on X - [0, A],
 and yp on W1 transforms this set onto the corresponding set for Ff(x). Thus,
 (o on {Ex} is implemented by a unitary transformation if and only if (o on

 %h is; and this last obtains, if and only if the two representations, t. and ql2,
 of C(X) defined by: /' (g) = Ta, q2 (g) = Tg 0 f-1 are unitarily equivalent.
 Since tlle weak closures of Wf1 and %2 are maximal abelian, p can be unitarily

 implemented if and only if vp has an isomorphic extension to these weak
 closures, and this occurs if and only if q, and '2 have the same null sets
 (cf. [4, Corollary 2. 3.1], for example). The constant function, 1, is a
 separating vector for a1 and a2, whence the null sets are easily computed
 as the ,u-null sets in X for t1 and f1 of the v-null sets in Y for q2. By
 symmetry, we conclude that p on {E,} is implemented by a unitary trans-
 formation if and only if f carries the ,u-null sets onto the v-null sets.

 Suppose now that 5 is an ordered basis with hulls {Ea,}, diagonal a,
 and x is a separating vector for a. Let X be {(Eax,x)}, so that XE h(S);
 and let S1 be the canonical ordered basis for X. From Theorem 3.4. 5,
 X E h (5); whence Si and S are unitarily equivalent, by Theorem 3.4.4.
 If Y is a closed subset of [0, 1] containing 0 and 1, and 52 is the canonical
 ordered basis for Y, then 52 is unitarily equivalent to S if and only if 52
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 is unitarily equivalent to 31-which occurs if and only if there is a Lebesgue

 order isomorphism of X onto Y. On the other hand, 52 is unitarily equiv-
 alent to 5 if and only if Y is in the hull class of 5. Thus, h (5) consists of

 the images of X under Lebesgue order isomorphisms of [0, 1] onto itself.

 3. 5. Special cases and examples. While the preceding section gives a
 fairly complete account from the general viewpoint, there is still much to be

 done regarding special cases. By virtue of the results of that section, the
 remaining problem can be recast as that of finding detailed information

 concerning special hull classes. We have not ruled out the possibility that

 " order isomorphism " will suffice in place of " Lebesgue order isomorphism "

 for the classification of hull classes. (We shall do so in this section.) The
 example of ? 3. 3 shows us that an order isomorphism need not be Lebesgue,

 but it is conceivable that its existence guarantees the existence of one which

 is Lebesgue. In fact, Theorem 3. 2. 1 shows that this is so in the totally-atomic

 case (in this instance, the order isomorphism itself is Lebesgue). In addition,

 the hull class of a non-atomic ordered basis consists of [0, 1], whence an order

 isomorphism guarantees the existence of one which is Lebesgue (e. g., the

 identity mapping), if one of the ordered bases is assumed non-atomic. Even

 after we have noted that this phenomenon does not hold in general, we may

 still inquire into the classification of hull classes by means of "order iso-

 morphism" and special properties of sets-e. g. aa order isomorphism class
 of measure 0 sets may form a total hull class (cf. Remark 3. 5. 9).

 We begin with the description of a construction closely akin to the
 construction of the canonical measure for X.

 LEMMA 3. 5. 1. If X is a closed subset of [0, 1] containing 0 and 1,
 II,I2, *, the distinct connected components of [0, 1] - X, rk and Ik are
 the right and left endpoints of Ik, respectively, then the mapping 0 of X
 into [0, 1] defined by:

 0(a) ==a- m(Ik),
 rkh2

 is continuous, order preserving, and identifies a and b if and only if
 m ([a, b] n x) = 0. The image, Z, of 0 is a closed interval.

 Proof. Clearly, I 0 (a) -0 (b ) I I a-b 1, so that 0 is continuous and
 Z is compact. If a and b are in X and a < rk ? b, then [a, b] contains Ik
 so that

 0(b) 6O(a) = b -a- I m(Ik)-rm(a, bi nx).
 a<r_`b

 Thus, 0(a) _ 0(b), and 0(a) =0(b) if and only if m( [a, b] n x) = 0.
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 Let a' be sup{a: a E X and 6(a) ? c}, and b' be inf{b: b C X ar.d c ? 0(b)}.
 Since X is closed, a' and b' lie in X; and since 0 is continuous, 0 (a') < c
 < 0(b'). However, [d, b'] n x contains just a' and b' and, so, has measure 0.
 Thus @(a) ==0(b') = c, and c E Z. It follows that Z is a closed interval.

 The set, Z, consists of 0 alone if and only if 0(1) = 0(0) 0-which
 occurs if and only if in ([o,1] lnX) =m(x) -o, i.e., Y m(Ik) =1. If a
 is an ordered basis with diagonal a, X in h(S) corresponding to the separating
 vector, x, and Ek is the minimal projection in a with (h (Ek) X, X) = rk;

 then lk - ( [h (Ek) -Ek]X, X), so that m (Ik) = (EX, x), and (( Ek)x, x)
 = ' m (Ik) = 1. This is equivalent to a being totally atomic.

 LEMMA 3. 5. 2. If X and Y are closed, measure-zero subsets of [0, 1]
 with infima a and c and suprema b and d, respectively, and f is an order
 isomorphism of the right edgepoints of X in [a, b] onto those of Y in [c, d],
 there is a Lebesgue order-isomorphic extension of f mapping [a, b] onto
 [c, d] and carrying X onto Y.

 Proof. Clearly, it suffices to consider the case where a c = 0 and

 b = d = 1. Assuming this, let p, and v be the canonical measures and a and
 .3 the canonical ordered bases for X and Y, respectively. From the comment
 preceding this lemma, S and A have totally-atomic diagonals. From Remark
 3. 4. 3, the hulls of the minimal projections in S and .3 are order isomorphic
 with the right edgepoints of X and Y, respectively, and, so, to each other.
 According to Theorem 3. 2. 1, this isomorphism can be implemented by a
 unitary transformation carrying S onto P. This unitary transformation
 carries the hulls of a onto those of A order isomorphically. By means of
 the order isomorphisms of X with the hulls of S and Y with those of A, we
 arrive at a Lebesgue order isomorphism (recall that 0 = m (X) = m (Y))
 of X onto Y extending f. Remarks 3. 4. 6, 3. 4. 7 imply the existence of the
 desired extension of f to [0, 1].

 If a is not totally atomic, we may normalize 0 by composing it with
 multiplication by 1/m (Z) (= 1/n (X)) to get a mapping of X onto [0, 1]
 with the properties of 0 noted in Lemma 3. 5. 1. We denote this new mapping

 by Ox (in the case where a is not totally atomic). Writing pk for Ox(rk)
 and o (pk) for the order type of the set of right edgepoints of X in 0X-1 (pk)
 (so that o (Pk) is some denumerable total-order type), we shall say that X
 has a uniform edge of type r if each o(pk) =-r. The construct consisting of
 [0, 1], the points pk, and their associated order types, will be called "a point
 ordered interval" and the set of points {pk} its "atoms."
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 LIEMMA 3. 5. 3. If X and Y are closed subsets of [0, 1] containing 0

 and 1, m (X) #O0#m (Y), f is a Lebesgue order isomorphism of X onto Y,
 and g is defined by g(p) =Oy(f(0x1(p))), for each p in [0,1], then g is a
 Lebesgue order isomorphism of [0, 1] onto itself, {g (pk)} are the atoms of
 the point ordered interval for Y, where {pk} are those of the interval for X,

 and o (pk) = o (g (Pk)). If a mapping such as g is given, then there is a
 mapping, f, such that g(p) = Oy(f(Ox-1(p))), for each p in [0, 1], which is
 a Lebesgue order isomorphism of X onto Y.

 Proof. As defined, g is not obviously single-valued, since 9x1 (p) may
 contain more than one point. However, if a and b are in 9x-1 (p), then
 mr([a,b] nfX) o0, from Lemma 3.5.1; and

 0 =m (f ([a, b] n x)) =-m ( [f (a), f (b.)] n Y),

 since f is a Lebesgue order isomorphism, whence Vy(f(a)) = Oy(f(b)), again
 from Lemma 3. 5. 1. Thus g is single-valued. Since Oy, Ox, and f are order
 preserving, g is. With Pk equal to Ox(rk) and f (rk) a right edgepoint of Y
 (since f is an order isomorphism), we have that g(pk) is Oy(f (rk)), an atom
 of the point ordered interval for Y.

 In the proof of Lemma 3. 5. 1, we noted that 0(b) -V(a) r m([a, b] n ),
 so that Ox (b) -Ox (a) m ( [a, b] nX) /m (X). Thus, m (Ox-1 ( [p, q] ) )

 = (q - p) m (X), and m (Ox-1(S) ) =nm(S) m (X), for each open subset, S,
 of [0, 1]. By regularity of m, if m(S') =0, then m(Ox-'(S')) =0. On the

 other hand, from the fact that I Oy(b) -Oy (a) I j I b-a I/m (Y), we con-
 clude that if m (Y0) = 0, for a subset, Y0, of Y, then m (Oy(Y)) =0. Thus,

 if n (S) ==0, for S a subset of [0, 1], m (Ox-1 (S)) 0, m (f (0x-' (S))) O,
 and 0 =-m(Oy(f (Ox- (S)))) =m(g(S)).

 WhLat we have proved for g holds as well for the mapping Oxf0y-1, which
 is clearly g1. It follows that g is a Lebesgue order isomorphism of [0, 1]
 onto itself mapping atoms (for X) onto atoms (for Y). When we note that
 y-1 (g (Pk)) f(0X-1 (pk)) and f maps the right edgepoints of X onto those
 of Y (order isomorphically), we see that the right edgepoints of y-1 (g (Pk))
 are order isomorphic to those of 9x-1 (Pk), whence o (pk) = o (g (Pk) ) .

 Suppose, now, that g is given with the properties described above. We
 show that there is a Lebesgue order isomorphism, f, of X onto Y such that
 g OyfOx-1. We note first that if Ax-' (p) contains more than one point
 then p is an atom for X (i. e. p is some pk). In fact, x-1(p) =- [a, b] nx,
 where ea inf{a': a' E x-1 (p) }, b = sup{b': b' E x-1 (p) }, a and b are in
 Ox-'(p), and m([a,b ]nX) 0 (cf. Lemma 3.5.1). Thus,

 M( Ik)[b-a]0;
 Ik C [a,b]
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 and in particular, there is some rk in [a, b]. Of course, Ox (rk) = p = pk.
 If p is not an atom for X, then by assumption, g (p) is not an atom for Y,
 whence Ox- (p) and Or1 (g (p)) each consist of a single point. Define

 f (0x-1 (p) ) to be Oy-1 (g (p) ), for such points, p. By assumption on g,
 O(Pkc) = o (9 (pk)), which guarantees an order isomorphism of the right
 edgepoints of X in OX-r (Pk) onto those of Y in Oy1 (g (pk)). If 0x-' (Pk)
 - [a, b] n X and Y-1 (g (pk)) = [c, di n Y, the right edgepoints of OX-1 (Pk)
 in [a, b] and Oy-1(g(pk)) in [c,d] are those of X which lie in [a, b] and
 those of Y which lie in [c, d], respectively. This is clear with the possible
 exception of the points a and c. However, a cannot be a right edgepoint of X
 for then the corresponding left edgepoint would lie in OX-'(Pk) but not in
 [a, b]. Similarly, c is not a right edgepoint of Y. It follows from Lemma
 3. 5. 2 that there is a Lebesgue order isomorphism of [a, b] n X onto [c, d] n Y.

 We define f on [a, b] n X to be this isomorphism. Clearly, g - OyfOx1;
 and f is an order isomorphism. If m (Xo) 0 for a subset, X0, of X, then

 m(Ox(Xo)) 0 and m(0y-1(g(Ox(Xo)))) 0, from the first part of this
 proof, since m (g (x (XS))) ) 0. Now f (Xo) is contained in O0y1(g(Ox(Xo)));
 whence m (f(X0)) =0, and f is a Lebesgue order isomorphism.

 By virtue of the preceding lemma, the study of hull classes is equivalent
 to the study of denumerable subsets of [0, 1] each point of which has a
 denumerable total-order type associated with it, under Lebesgue order iso-
 morphisms of [0, 1] onto itself. The next lemma shows that all possibilities
 occur as point ordered intervals.

 LEMMA 3. 5. 4. If {Pk} is a denumerable subset of [0, 1] and {Tk} is a
 set of denumerable total-order types, then there is a closed subset of [0, 1]

 containing 0 and 1 whose point ordered interval has {pk} as its atoms and Tk
 as the order type associated with pk?.

 Proof. We begin by showing that each non-zero interval contains a closed
 subset, with the interval endpoints as members, having measure 0, and whose

 right edgepoints have some preassigned denumerable order type, T. If T is
 the order type of a non-null finite set, this result is clear. We assume that T
 is the order type of some infinite (denumerable) set, {aj}112,... We may
 assume, in addition, that the interval in question is [0, 1] (translating and
 multiplying by a suitable scalar). For each positive integer, k, let bk be

 z 2-*f, where {akn} is the subset of {aj} consisting of points not exceeding ak;
 n

 and let 1k be the open interval of length 2-l with bk as right endpoint. If
 aj < ak then bk - bj > 2-k, by construction; whence Ik and Ij are disjoint.
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 Let X be the complement in [0, 1] of the union of the intervals, 'k* Clearly,
 X is closed, contains 0 and 1, has {bk} as its set of right edgepoints, and has

 measure 0 (since Y M (Ik) = 2-k - 1). The comment establishing the dis-
 k=1 k=l

 jointness of I, and Ik, when j 7i, also establishes the fact that the corres-
 pondence aj-> bj is an order isomorphism of {aj} with {b,}. Thus, the right
 edgepoints of X have order type -r.

 If {Pk} is a finite subset of [0, 1], there is no difficulty in establishing
 the conclusion of this lemma (when the result just proved is employed).
 We assume that {pk} is an infinite set. Let c be (Y 2-(Jc+1)) + pk/2, where

 {pk.} is the subset of {pj} consisting of those numbers which do not exceed pk;
 and let Jk be the closed interval of length 2-(k+1) with Ck as right endpoint
 (and dk as left endpoint). Let Xk be a closed, measure 0 subset of Jk con-
 taining Ck and dk and having right edgepoints in Jk with Tk as order type.
 The complement, X, of U (Jk- Xk) in [0, 1] is a closed subset of [0, 1]

 containing 0 and 1 (since neither of these points lies in Jk4- Xk, k = 1 .
 If pj < pk, then Ck c; _ 2-(k+1) + (pk-pj)/2, so that Jk and Jj are disjoint.
 The components of the complement of X in [0, 1] are, therefore, the aggregate

 of the components of the complement of each Xk in Jk, so that the right
 edgepoints of X in [0, 1] are those of each Xk in Jk. (Note that dk is not a
 right edgepoint of X, by disjointness of J4 and Jj, with j =Lo 7k.) Now,

 00

 0(1) =1 - 2 2-(j+1) = 1/2, so that Ox = 20; and GX(Ck) = 2(pW/2) = pk. Thus,
 j=1

 each Pk is an atom for X; and since m (Xk) =- 0, OX (Xk) pk, so that {Pk}
 is the set of atoms for X. The right edgepoints of X which Ox maps onto pk
 are those of Xk in Jk, and therefore has 7rk as order type; for any other right

 edgepoint of X lies in some Xj, with j#Ik, and Ox(X1) =pjIPk. Thus X
 has a point ordered interval with {pk} as its set of atoms, each pk associated
 with the denumerable, total-order type, Ir.

 The lemma which follows provides the key to the description of a special
 family of hull classes.

 LEMMA 3. 5. 5. If R and S are dense denumerable subsets of [0, 1]
 both containing 0 and 1, and m, M are numbers such that 0 < K < 1 < M,
 then there exists a homeomorphism, f, of [0, 1] onto itself such that:

 (i) f(0) =0, f(i) ;
 (ii) f mapsR onto S;

 (iii) m(x-y) < f(x)--f(y) ?M(x-y), for each x?gy in [0,11
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 Proof. If we construct a mapping, g, of R onto S satisfying (i) and (iii)
 for points x, y in R, then g is uniformly continuous and so has a unique
 continuous extension, f, to [0, 1]. By density of R and continuity of f, (iii)
 holds; whence f is a homeomorphism of [0, 1] onto itself satisfying (i), (ii),
 (iii).

 To construct such a g, we begin by enumerating the sets R and S as r1
 (0), r2(= 1),r3, * and s1(= 0), S2(= 1), S3, respectively. When we

 refer to " the points of {a1,, * * , a"} adjacent to a ", we shall mean those points
 aj, ak such that aj < a < ak and aj < ah < ak, for 1 h < n, implies ah-=a.

 We write (r, s, r', s') in place of the inequalities, m < 1> <M.

 Define "an s link of length h," for s in S, to be a set of ordered pairs

 f (rs, snl) (r2, s) , * - (rh, s,n^)} such that (rj, snp rk,8nfk), for j#c k; j,
 ,h; and s,n s.

 If L {(r1, s,l),* , (rk, s"k)} is an s"k link, h > k, and snh is such that

 (rnp,, Sn, rAh,t S, for j 1 *,k, then there is an s,n link of length h of
 which L is a subset. In fact, with k ? a < b < h, suppose that we have found

 Sn, such that (rj, sn,, ra, (s)for j = h, 1, 2, * *,a- 1. Let rj and rj" be the
 points of {rh, rl, r2,' - *, rbl} adjacent to rb. The set of points, x, for which

 (rb, x, rj', s,,) and (rb, x, rf, Sny), is a non-null open set, since (rT, S, ,, s"1 S);
 so that it contains elements of the dense set, S. Let Snb be that element
 of lowest index. Since rp, rp are adjacent to rb and (r1, s,n, rb, Snb)
 (r1", sfl,,, rb, sfnb), we have (rj, slnp rb, snb), for each j=h, 1, * , b-1. In
 this way, we construct an sn, link containing L.

 Suppose, now, that we have defined g(r1),. -, g(r,-1) so that

 { g (ri) ), * - *, (r1,. g (r,-1) ) } (= L) is a link, and g (r1) =0, g (r2) =1.
 Let s be the element of S- {g(r1),- * ,g(rn-1)} with least index; and let
 Sn be the s6t of elements of S paired with r^, in those s links containing L

 which have minimal length. We shall define g(r,,) to be the element of S8
 with least index, so that { (r1, g (r1) ), *- , (r, g (r4) ) } is a link; but first,
 we must show that Sn is not empty. For this, it will suffice to prove that

 some s link containing L exists. Let g(rj ) and g(ry') be the elements of
 {g (r1),- -, g (r_1) } adjacent to s. As in the preceding paragraph (by
 density of R), there is an element rh, of R such that (rj1,g(rj),rh, s) and
 (rj, g (rj), r7, s); whence (rj, g (rj), r s), for all j =1 , * * - ,n-1. From
 our preceding comments, we conclude that there is an s link containing L.

 If g does not map R onto S, let s be the element of S not in the range
 of g with least index; and suppose that each element of S with index less

 5
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 than that of s is contained among g(r1),g(r2), * ,g(rk). From the above,
 there is some s link, of length h, let us say, containing

 { (r1, g (r1) ), * * * , (rk, g (rk) ) }

 Let {(r,,g(r1)) * , (r1,g(r1)), (rj+1,s,",+1) , (rh,s)} be an s link of
 length not exceeding h for which j is maximal (since s is not in the range
 of g, there is some first sn+, which is not g (rj+1)). Certainly then j : k, so
 that s is the element of S - {g (r1),. , g (rj) } with least index. By defini-
 tion, g(rj+1) occurs with rj+1 in an s link of length not exceeding h' and
 containing { (r1, g (r,)), * , (rj, g (rj) ) }. This contradicts the maximal
 property of j; whence g maps R onto S, and the proof is complete.

 Remark 3. 5. 6. The result of the preceding lemma is valid in the case
 where R and S both contain or both do not contain 0 or 1 (as can be seen by
 adjoining 0 or 1 to the sets-whichever is appropriate).

 If X is a closed subset of [0, 1] containing 0 and 1, we shall say that
 two points, a and b, of X are "equivalent in X " when m ([a, b] nx) =O
 (equivalently, when 0 (a) = 6(b) -cf. Lemma 3. 5. 1).

 THEOREM 3. 5. 7. If T is a denumerable order type, the family, 5, of
 closed subsets, X, of [0, 1] containing 0 and 1, which are nowhere. dense,
 have uniform edge of type r, have non-zero Lebesgue measure, and for which
 O and 1 are equivalent in X to right edgepoints of X is the hull class of some
 ordered basis. The family of subsets having the same properties and for which
 O or 1 are not equivalent to a right edgepoint is also a hull class.

 Proof. If X E S and f is a Lebesgue order isomorphism of [0, 1] onto
 itself, then clearly, f(X) E . Thus, a contains the hull class determined
 by X.

 With 0 ? p < q _ 1, 0-1 ( [p, q]) =[a, b] nx, since 0 is order pre-
 serving. Now X is nowhere dense, so that [a, b] -X is non-null. Hence, a
 right edgepoint of X lies in [a, b] and some atom for X lies in [p, q]. The
 set of atoms for each set of 5 is everywhere dense in [0, 1] and contains 0
 and 1 (in the case of the first statement of this theorem). According to
 Lemma 3. 5. 5, there is a Lebesgue order isomorphism of [0, 1] onto itself
 carrying the atoms for X onto those for Y, where X and Y are sets in 5,
 and necessarily preserving the order types associated with these atoms, since
 by hypothesis, r is associated with all the atoms for X and Y. Lemma 3. 5. 3
 now applies, and we conclude that there is a Lebesgue order isomorphism of
 X and Y. Thus 5 constitutes a complete hull family.
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 Remark 3. 5. 8. We note in the foregoing theorem that X being nowhere

 dense implies that its atoms are everywhere dense. Suppose that we are given
 that the atoms for X are everywhere dense in [0, 1]. By definition of Ox,
 an open interval in X maps in a one-one manner onto an interval in [0, 1]

 which contains no atoms for X. Thus X contains no open intervals, and being
 closed, X is nowhere dense.

 Remark 3. a. 9. The density of the atoms for X in [0, 1] is equivalent

 to their closure having measure 1. The unitary equivalence class of ordered
 bases corresponding to the hull class of Theorem 3. 5. 7 can also be described
 as the set of ordered bases whose point ordered intervals have a set of atoms

 whose closure has measure 1, contains 0 and 1 (similarly for the other three

 cases), and each atom is associated with a fixed order type, T. In this
 framework, we can state a similar result for the case where the closure of the

 set of atoms has measure 0. In fact, the family of all denumerable subsets

 of [0, 1] equivalent to a given one under order isomorphisms of [0, 1] onto
 itself, all of whose closures have measure 0, and associated with each point
 of which is a fixed denumerable total-order type, T, constitutes the family
 of point ordered intervals corresponding to a unitary equivalence class of
 ordered bases. Clearly, Lebesgue order isomorphisms of [0, 1] onto itself
 leave this family invariant; while the order isomorphism between the closures

 of two sets of the family is Lebesgue in these sets (since these closures have
 measure 0) and can, therefore, be extended to a Lebesgue order isomorphism
 of [0, 1] onto itself (cf. Remark 3. 4. 7). The order isomorphism of the sets
 of atoms, themselves, would not be sufficient; for unlike the situation of
 Remark 3. 4. 6, an order isomorphism between subsets of [0, 1] which are not
 closed need not be extendable to an order isomorphism of [0, 1] onto itself
 (and so, from Remark 3. 4. 6, not extendable to their closures). Indeed, the sets,

 A = {1/2 - 1/n, 1/2 + 1/n}=2,3, ... and B ={1/4-1/n, 3/4 + 1/}n=4,5,*-
 are order isomorphic but their closures in[O, 1] are not (the closure of A has
 a point, 1/2, without immediate predecessor or successor, while the closure
 of B has nio such point).

 The examples which follow indicate some of the limitations to the possi-
 bility of simple characterization of hull classes. Making use of a non-uniform
 edge, the next example gives us our first instance of order isomorphic sets
 which do not belong to the same hull class.

 Example 3. 5. 10. Let g be a homeomorphism of [0, 1] onto itself which
 carries some set of measure 0 onto a set of measure different from 0 (such

 as f, described in ? 3. 3). Let r,, r2, * be an enumeration of the rationals
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 in [0, 1], and let Tk be the total-order type corresponding to the totally-
 ordered sets with k elements (a finite set). If X and Y are closed subsets
 of [0, 1] which have {rk, 7k} and {g (rk), -rk} as point ordered intervals (cf.
 Lemma 3. 5. 4) then there is an order isomorphism, f, of X onto Y such that
 g = OyfOx-1, from Lemma 3. 5. 3. (Note that the second part of the proof of
 Lemma 3. 5. 3 applies to order isomorphisms, g, which are not Lebesgue to
 give order isomorphisms, f, which are not Lebesgue.) If there is a Lebesgue
 order isomorphism, fo, of X onto Y, then there is a Lebesgue order iso-
 morphism, go, of [0, 1] onto itself carrying rk onto g (rj), k = 1, 2, , such

 that Tk= Tjk and go = Oyfo0x-1, from Lemma 3. 5. 3. Since Tk and 7j, are the
 order types of finite sets with kc and jk elements, respectively, Ic-= 1k; whence

 go (rk) = g (rj) = g (rk) . Both g and go are continuous and {rk} is dense in
 [0, 1], so that g = go. But go is Lebesgue and g is not. Thus X and Y,
 though order isomorphic, do not lie in the same hull class.

 In the foregoing example, special use was made of the fact that the edge
 of the closed sets involved was not uniform. The next example describes a
 case in which two order isomorphic sets with uniform edge (of any type we
 wish) do not belong to the same hull class and whose sets of atoms have
 closures with the same measure (not 0 or 1, of course, in view of Theorem
 3. 5. 7, and Remark 3. 5. 9).

 Example 3. 5. 11. Let C0 and 02 be dense denumerable subsets of Cantor
 sets of measures 0 and 1/4, respectively, in [0, 1/2], both C0 and C2 containing

 1/2; and let g' be a homeomorphism of [0, 1/2] onto itself carrying C0 onto
 C2 (multiply by 1/2 in the preceding example). Let D1 be a dense denumer-
 able subset of [5/8, 1] containing 5/8; and let D2 be its image under the
 linear order preserving homeomorphism, g", of [5/8, 1] onto [7/8, 1]. The
 mapping, g, defined as g' on [0, 1/2], g" on [5/8, 1], and linear from [1/2, 5/8]

 to [1/2, 7/8], is an order isomorphism of [0, 1] onto itself carrying
 S (= C0 U Di) onto 82(= 02U D2). Note that the closures of Si and 82
 have measure 3/8. If h is an order isomorphism of S, onto S2, then h (1/2)
 is a point of S2 with an immediate successor and, hence, a point of C2. If
 h (1/2) 7& 1/2, then some point of Di other than 5/8 maps onto 7/8. However,

 no point of D, other than 5/8 has an immediate predecessor, while 7/8 does.

 Thus h(1/2) = 1/2, h (5/8) = 7/8, h(C1) =C2, and h(D1) =D2. Since the
 closure of C0 has zero measure and that of C2 does not, no Lebesgue order
 isomorphism of [0, 1] onto itself carries S onto S2. From Lemma 3. 5. 3,
 X and Y, closed subsets of [O, 1] whose point ordered intervals have S and
 S2 for their sets of atoms, respectively, are not in the same hull class. However,
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 there is an order isomorphism, viz. g, of [0, 1] onto itself carrying S1 onto S2,

 and again, from Lemma 3. 5.3, X and Y are order isomorphic.

 Added February 3, 1960: Question 2.4. 1 has a negative answer as can

 be seen with the aid of a result of W. F. Donaghue, " The lattice of invariant

 subspaces of a completely continuous quasinilpotent transformation," Pacific

 Journal of Mathematics, vol. 7 (1957), pp. 1031-1035.
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