
 EXTENSIONS OF PURE STATES.*

 By RICHARD V. KADISON 1 and I. M. SINGER.

 1. Introduction and preliminaries. The main concern of this paper

 is the problem of uniqueness of extensions of pure states from maximal

 abelian self-adjoint algebras of operators on a Hilbert space to the algebra

 of all bounded operators on that space. The answer, as many of us have

 suspected for several years, is in the negative. To the best of our knowledge,
 the problem is not recorded in the literature. We heard of it first from

 I. E. Segal and I. Kaplansky, though it is difficult to credit a problem which

 stems naturally from the physical interpretation and the inherent structure

 of a subject. This problem has arisen, in one form or another, in our work

 on several different occasions; and we have been gathering bits of information

 related to it, over the years. (The present solution is prompted by just such
 a reappearance.)

 To state the problem precisely, let 9 be a (complex) Hilbert space and
 S an algebra of bounded operators invariant under the adjoint operation
 (A---A*), containing the identity operator, I, and closed in the uniform
 (operator bound) topology. The algebra, X, is a C*-algebra, and a linear
 functional, f, on W which is 1 at I and real, non-negative on positive operators

 (those operators, A, such that (Ax, x) ?0 for each x in 9), is a state of W.
 The set of states of W is a convex subset of the dual of W and is compact in
 the w*-topology on the dual (the weak topology induced by s). The Krein-
 Milman theorem tells us that the set of states is the closed convex hull of
 its extreme points-these are the pure states of W. An argument of the

 Hahn-Banach type enables us to extend states from a C*-subalgebra of W
 to W [4]. The set of extensions of such a state forms a compact convex
 subset of the dual whose extreme points can easily be shown to be pure states
 of W [4], provided that the state of the subalgebra is pure. Thus, if a
 pure state has a unique pure state extension from a C*-subalgebra of a C*-

 algebra to the algebra, then the closed convex hull of this extension, viz.
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 itself, is the set of all state extensions of the given pure state. Thus a pure

 state of a C*-subalgebra has a unique state extension to the algebra if and
 only if it has a unique pure state extension.

 If the C*-algebra W is abelian, the set of pure states is compact, and

 the natural mapping of W into the second dual, followed by the restriction

 mapping to the set of pure states, is an algebraic, isometric, order isomor-

 phism of SC onto the algebra of continuous, complex-valued functions on this

 compact space (the pure state space). (This isomorphism carries the adjoint

 operation in SC into complex conjugation in the function space.) An easy

 Zorn's lemma argument shows that W is contained in a maximal abelian,

 self-adjoint subalgebra, C, of the algebra, X, of all bounded operators on S.

 (Making use of the decomposition of operators as a sum of a self-adjoint
 and a skew-adjoint operator, it is not difficult to show that a is maximal

 with respect to the property of being abelian.) The fact that bounded families

 of operators in a have least upper bounds causes the pure state space of a

 to be extremely disconnected (i. e., the closure of each open set is open [8] ).

 Examples of maximal abelian, self-adjoint algebras arise from the multi-

 plication algebras on L2 (X, pt), with ,u a measure on the space X, i.e. the
 algebra of operators T0, with g an essentially bounded, JL-measurable function

 on X, where Tg7(h) =- gh, for each h in L2 (X, p). In particular, with X the
 unit interval and pt Lebesgue measure on X, the algebra, a, which arises will
 be referred to as 'the continuous maximal abelian algebra'; and with X,

 the integers, and ,A (n) = 1, for all n, the algebra, ad, which arises will be
 referred to as 'the discrete algebra.' (The maximal abelian algebras on finite-

 dimensional spaces are constructed as ad is, with the integers replaced by a
 finite set. The algebra, ad, can also be viewed as the set of bounded diagonal

 matrices relative to a complete orthonormal basis.) Each maximal abelian

 algebra on a separable Hilbert space is unitarily equivalent to a0, ad, a finite-
 dimensional maximal abelian algebra, or the direct sum of aC with one of
 the last two types. The problem of extensions of pure states from maximal
 abelian algebras to 3 (we consider mainly the separable case throughout this

 paper) reduces then, to a study of extensions from a, and ad. Although
 we refer to ad as 'the discrete maximal abelian algebra,' it should be noted
 that there is a great deal of 'non-discreteness' about it. In fact, its pure
 state space is easily identified with the ft-compactification of the integers [9].

 Each unit vector, x, gives rise to a state of i% by means of the mapping,

 A -- (Ax, x) ; and it is easily seen that this state, o, is a pure state of S.
 We refer to to, as a 'vector state' (also 'discrete state'). From our previous
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 remarks, we see that a pure state of an abelian C*-algebra is multiplicative

 (the converse is true for all C*-algebras), and from this, that a vector state

 is pure on an abelian C*-algebra if and only if the vector which induces it

 is an eigenvector for each operator in the algebra. (Note that two vector

 states of 53 are equal if and only if the two vectors differ by a scalar multiple

 of modulus 1.) Since some operators in a, have no eigenvectors, none
 of the pure states of a0 is a vector state-yet, each such pure state has a

 pure state extension to S. Thus, there are pure states of 5 which are not

 vector states-we call these 'singular pure states.' Indeed, the points of the

 B-compactification of the integers whicb do not correspond to integers give

 rise to pure states of ad which are not vector states and, therefore, have

 singular pure state extensions to 3. A well-known fact about singular pure

 states (which can be read out of the results of [3], for example) tells us that
 the singular pure states are precisely those which annihilate all completely

 continuous operators.

 The uniqueness problem for extensions of pure states is the following:

 is there a unique state extension of a pure state of a maximal abelian self-

 adjoint algebra of the algebra, 53, of all bounded operators to B ? There are,

 of course, the two subdivisions of this problem--the question for ad and the

 question for a,. It is quite easy to see that uniqueness of extension cannot
 be expected for abelian CG-algebras other than the maximal abelian ones.

 In fact, if Vt is an abelian C*-algebra and a is a maximal abelian one con-

 taining it properly, then, making use of the function representation (of a),

 the Stone-Weierstrass theorem assures us that I does not separate pure states

 of a, i.e., that there are two distinct pure states of a which agree on W

 (and this restriction to X, being multiplicative, is pure). Naturally, one

 wonders why uniqueness should be expected in the maximal abelian case.

 Classically, our maximal abelian algebra, a, would be that associated with

 an orthonormal basis, viz. ad, and the pure state, one due to a basis vector, x.
 Since the one-dimensional projections on the basis elements lie in ad, anothecr
 pure state, p, which agrees with oZ on ad will annihilate all these projections
 with the exception of the one whose range contains x; so that if p is a vector

 state, that vector differs from x by a scalar multiple of modulus 1. Thus

 p = (O, when we note that if p were not a vector state, it would annihilate all

 completely continuous operators and, in particular, all one-dimensional pro-

 jections. More generally, if a is a maximal abelian algebra, wx is a pure
 state of a, E is the one-dimensional projection whose range contains x, and

 , is a pure state extension of (, from a to all bounded operators, then - wx.
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 In fact, x is an eigenvector for each operator in a, so that a leaves

 the range of E invariant and, hence, commutes with E (since a is a self-

 adjoint algebra). Thus E lies in a, and U is a vector state wv, since
 o(E) =wx (E) =1? 7L 0. From oy (E)-$ o(E) =1 , we conclude that lI E !!

 ==1 and that y lies in the range of E. Being a unit vector, y is a scalar

 multiple of modulus 1 of x, and (oy = ox on all bounded operators.
 Having these results for vector pure states, it is not unreasonable to

 expect them to hold for arbitrary pure states in the same way that one passes

 from certain properties of the point spectrum to those of the general spectrum.

 Indeed, a casual handling of limit processes (just allowing oneself the minor

 luxury of a sequential limit in place of a directed limit) leads to a "proof"

 of the uniqueness of pure state extensions-false but provocative. Add to

 this evidence the elusiveness of a counter-example and one has the case for

 the conjecture.

 In [5], von Neumann introduces a process for taking the "diagonal

 part" of certain operators in a von Neumann algebra (strongly closed CG-

 algebra) relative to a maximal abelian self-adjoint subalgebra. Among other

 things, this process is linear, order preserving, and idempotent, and, so,

 provides a continuous way of simultaneously extending all the pure states

 of a maximal abelian algebra (provides a cross-section in the sheaf-like

 structure of state extensions over the pure state space of the maximal abelian

 algebra, so to speak). Two distinct diagonal processes will, of course, settle

 t-he pure state extension problem negatively for a particular maximal abelian

 algebra. In Section 2, we give a discussion of diagonal processes suitable

 for our applications, and in 3, we prove the uniqueness of diagonal processes

 for ad and the non-uniqueness of diagonal processes for a. The non-unique-
 ness proof is a mixture of abstract and classical techniques which produces a

 specific operator with distinct "diagonal parts" relative to a, (and, so, to
 which some pure state of a0 can be extended in more than one way). In the
 last section, we discuss related questions concerning pure states.

 2. Diagonal processes. The lemma which follows provides the means

 for constructing diagonal processes relative to maximal abelian algebras.

 LEMMA 1. If C is an abelian von Neumann algebra generated by the

 projections {E}E,, a the set of positive integers, and p is a point of
 l(cQ) - A, where /(a) is the /3-compactification of A, then there is a

 linear operator, 9,p, whose domain is the set of bounded operators and which
 is such that:
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 (a) 0Op(B) commutes with each En (so, lies in a', the commutant

 of a), and 9, p(B) is a wealc closure point of operators {B I E1 I E2I1 . I En}, where
 TIE is ETE+ (I-E)T(I-E).

 (b) ?)p(AB) =A Z) (B), for each A in a (and 0Z)p(BA) - = ),,(B)A).

 (c) 0 p (I) =1, and 0Zp (B) 0 if B?0.

 Proof. Note that

 B I E II=IEBE + (I-E)B (I - E) 11

 =max{l EBE Jj, 11 (I-E)B(I-E) II} ? 1 B Ij,

 so that the function, f, defined on Q by f(n) - BIElI. IE maps Q into the

 (weakly compact) ball of radius 11 B 11 about 0 in the set of bounded operators.
 Note also that BIEIF BIFIE when EF=FE and that E(BIE) - (BIE)E;

 so that f (n) commutes with E,- , En. From the properties of /3(a),

 we have that f has a unique extension, f,, from Q to 8( (9) which is con-

 tinuous aind whose range is contained in the ball of radius 11 B 11 about 0. We
 define OZ)p(B) to be fi(p). The observation that (QB+C)I E z(BIE) +CIE,
 together with the fact that cQ is dense in the Hausdorff space ,8(a), yields

 the linearity of Z) and the fact that Op(B) is a weak closure point of
 {BIElI IEn}. If B is I, then BIEl lEn-I, for all n, so that Op1,(B) ==I;
 and if B ? 0, then B I El I. I E 0, for all n, whence each weak closure point

 of {B I E1 . . En} is positive and, in particular, p(B) ?0O. Moreover,
 (AB)IEk A(BIEk) (and (BA)IEk- (BlEk)A), with A in a, so that

 O p (AB) = A S p (B) (and . p (BA) = 5 p (B) A) (recall that left and right

 multiplication by A is weakly continuous). For a given no, O p (B) is a weak
 closure point of B I E1l I I E,, with m ? no, each of which commutes with Eno.

 Thus O)p (B) commutes with E,,, for each no; so that Olp,(B) lies in a.

 DEFINITION 1. A linear order preserving mapping from all bounded

 operators into the commutant of an abelian von Neumann algebra, C, which

 is the identity on a is a "diagonal process relative to a." If the image of

 each operator, B, is a weak closure point of operators B I E1 1 I En. u'ith

 E],- *En in a, the diagonal process is "proper"; otherwise, it is "im-
 proper."

 Remark 1. If 0 is proper and B C a', Z (B) is a weak closure point

 of BIEl I-En B, so that 'Z (B) =B.

 LEMMA 2. If .1 is a diagontal process relative to a then i (AB)



 388 RICHARD V. KADISON AND I. M. SINGER.

 =AO (B) (and ' (BA) sZa (B)A) for each A in a and each bounded

 operator, B. If i is weakcly continuous on the unit ball, then it is the

 unique proper diagonal process relative to a, and i (B) is the weakc limit

 of {Bn}, where B, = BI El I I En and {En} is a generating family of projec-
 tions for a.

 Proof. We remark first, that if T and S are distinct operators in a',

 there is an extension to C' of some pure state of a (in fact, a pure state exten-

 sion) which differs on T and S. In fact, for each cardinal, n, there is a projec-

 tion Pn in a such that aPn is an n-fold copy of some maximal abelian algebra,
 aC., acting on a Ililbert space, Xn (i. e. a'Pn, acting on P, (N9) is unitarily
 equivalent to the algebra of nX n matrices with entries in an acting on the

 direct sum of Stn with itself n times, in the usual way), and Pn == I. With
 n

 T and S distinct, TPn: #SPn, for some n. If we can establish our result

 for aPn and its commutant a'Pn (on Pn (.9)), there is a pure state Pn of
 aPn and a state extension, en', of it to a'P. such that p '(TPn) 7 pn'(SPn).
 Defining p and p' by p(A) pn(APn) and p'(A') pn'(A'Pn), respectively,
 we note that p, being multiplicative, is a pure state of a, p' is a state

 extension of it and p'(T) 1 p'(S). We may assume therefore that a is an
 n-fold copy of the maximal abelian algebra ao acting on o9; from which
 a, is the algebra of all n X n matrices, with entries in a0, which give bounded
 operators acting upon the direct sum of S9O with itself n times. Let X be
 the pure state space of Co, so that Co is algebraically isomorphic to the
 algebra, C(X), of complex-valued continuous functions on X. Some entry

 in the matrix representations of T and S are distinct and, so, differ at a

 pure state po of Co. Let -,(A') be the matrix obtained by replacing each
 entry of A' by its value at po, for A' in a'. The operator corresponding to

 this matrix is bounded and positive if A' is positive. Indeed, with n finite,

 the boundedness is automatic and the positivity then follows from the fact

 that - is adjoint-preserving and multiplicative, since po is. (Boundedness
 and positivity can also be established when po is not assumed pure by making
 use of [1].) Thus JJ - (A') IA' j, when n is finite. Applying this to
 the infinite case, we see that each finite minor has norm not exceeding 11 A' 11,

 and again 11 - (A') 1f _1 A' IJ. As in the finite case, it now follows that
 ,0(A') is positive if A' is. Since - (T) 7po(S), there is a unit vector, x0,
 in the Hilbert space direct sum of the complex numbers with itself n times
 such that (j5(T)xo, xo) 7 (- (S)xo, xo). Now po(A) is a scalar multiple
 of I, for each A in (a so that A-> (7o(A)xo,xo) is a pure state, p, of a
 and A'-> (- (A)xo, xo) is an extension, p', of it to aI'. By construction,
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 p'(T) X4 p'(S). (The set of all state extensions of p to a' is a compact convex

 subset of the set of states of 1' whose extreme points are pure states of a'.

 If T and S coincide on each of these pure state extensions of p, they coincide

 on their finite convex combinations, so, on their (w*-) closed convex hull,

 i. e., on all state extensions of p-in particular, on p'. Thus T and S differ

 on some pure state extension to a' of a pure state of a.)

 If p is a pure state of a and p' a state extension of p to all bounded

 operators, then p'(AB) =p'(A) p'(B) (and p'(BA) =p'(B) p'(A) ), for each

 A in a. In fact, if E is a projection in a, p'(E) =O or 1, since p' is multi-
 plicative on (. Thus p'(EB) or p'[(I-E)B] is 0 (as p'(E) is 0 or 1,

 respectively), by an application of Schwarz's inequality to the inner product

 K, H -> p'(H*K) on the algebra of bounded operators. In either case,

 p'(EB) =p'(E) p'(B). Thus p'(AB) =p'(A) p'(B) for operators A in a
 which are linear combinations of projections in a, and, by continuity of p'

 in the uniform topology, for uniform limits of such operators. From the

 spectral theorem, each self-adjoint operator in a is such a limit, so that

 p'(AB) =p'(A)p'(B), for each A in a and each bounded operator, B.

 In particular, if p" is a state extension of p to C' and p' p"o a Z, then
 p' is a state extension of p to all bounded operators. (Recall that Z is the

 identity transform on a.) Thus,

 p"( (AB) )-p'(AB) = p'(A )p'(B) = p'(A )p" (2 (B) )

 =p"(A)p"( 10 (B) ) =-= p"(A9 (B) ),

 with A in a and B a bounded operator. (Note that the last equality follows

 from the considerations of the preceding paragraph applied to an extension

 of p" from at-and hence of p from a-to all bounded operators.) Since

 0 (AB) and AO (B) are in a' and p" is an arbitrary state extension to C'

 of an arbitrary pure state of a, ?Z (AB) = A 0 (B), from the results of the

 first paragraph of this proof.

 Suppose, now, that Z is weakly continuous on the unit ball (and, so,

 on each bounded ball), and that OZ)' is a proper diagonal process relative

 to Ct. In this case, 0'(B) is a weak closure point of {BIE`I IEn}. Each

 such weak closure point, A', is such that Z (A') is a weak closure point of

 {9Z (BIE IIEn)} = { Z) (B)}, whence Z (A') - Z (B). With A' in a',

 9 (A') =A', since i is proper (cf. Remark 1). Thus 0'(B) = 0 (B)

 and OZ)' = . Moreover, each weak limiting point, A', of the sequence

 (B I E1 I... I En), lies in U', since it commutes with each EK, and is a weak
 closure point of {BIE, IIEn}, so that A'== 9(B). Since {BIE! .IEn} is
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 contained in the weakly compact ball of radius 1B 11 about 0, (BI E1 IEn)
 has a weak limuiting point which must be i (B). Thus ) (B) is the weak
 limit of (BIE Is E")

 The next lemma notes the possibility of extending a positive linear

 mapping from a linear space of bounded operators containing I into an

 abelian von Neumann algebra to such mappings of all bounded operators

 into the abelian von Neumann algebra. The proof is a direct copy of the

 proof of Krein's extension theorem for states [4] making use of the boundedly
 complete lattice properties of abelian von Neumann algebras.

 LEMMA 3. If a is an abelian von Neumann algebra, 2, a self-adjoint
 linear space of bounded operators containing I, and (p0 an adjoint-preserving,

 positive, linear mapping of 2o into a, then qPo has an adjoint-preserving,
 positive linear extension with range in a to the algebra, 13, of all bounded
 operators.

 Proof. Partially order the set of adjoint-preserving, positive, linear

 mappings with range in a, domain a self-adjoint linear subspace of 93 con-

 taining 20, and which extend 'ps, by "function extension". Zorn's lemma

 applies, and there exists a maximal element, +, with domain 2. If 2:& X,
 there is a self-adjoint operator B not in 2. Choose a positive integer n,
 such that nI;? B ? -nI. Then -n((I) is a lower bound for the subset
 {+P(A): A2 and A?B} of a and ncp(I) is an upper bound for
 {+(C): C C 2 and C< B). These subsets have a greatest lower bound, A1,
 and least upper bound, A,, respectively, in a, since a is a boundedly com-
 plete lattice. Since +b(A) ?+(C), when A>B>C, with A and C in 2,
 A, ? A. Choose A in a such that A1 _ A ? A,, and define c' on the linear
 space generated by B and 2 as follows: cp'(aB+C) ==aA +(p(C), with C

 in 2. Then 1' is an adjoint-preserving linear mapping with range in a and

 is an extension of p. If aB + C > 0, making use of the choice of A in each
 of the cases., a o a >, oa < 0, we conclude that (p' is a positive mapping.
 Since B , 2, the existence of qp' contradicts the maximality of (p. Thus 2= 3
 and ( is an adjoint-preserving, positive, linear extension from 2 to a of 0'P.

 Remark 2. With the notation of the preceding lemma, '0P has a unique
 positive extension from 20 to D3 if and only if the greatest lower bound of

 {qp(A): A in 20 and A: B} is equal to the least upper bound of {0,o(C):
 C in 20 and B > C}, for each self-adjoint operator, B, in B. In fact, if they

 are equal, the positivity condition forces each positive extension of po to take
 this value at B; and if they are not equal for some self-adjoint B, we may
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 extend p0 to the space generated by B and 20 by assigning either of these

 values to B, and then extend the resulting mappings to two distinct positive

 mappings of 13 into a, each of which extends (p.

 Remark 3. If we take a as 20 and 0o as the identity mapping on a,
 the extension lemma guarantees the existence of a diagonal process with range

 in C7, and this diagonal process is improper if a is not maximal abelian (for

 a proper process is the identity on a', the commutant of at). In case a is

 maximal abelian, and we proceed as just noted, the extension lemma and

 the the preceding remark provide another criterion for uniqueness of the

 diagonal process.

 LEMMA 4. If 0 is a diagonal process relative to the maximal abelian

 algebra a, there is a *-representation, p, of the algebra, 113, of all bounded
 operators which is an isomorphism on a, and a projection E on the repre-

 sentation space such that

 9) (B) = -'[E(((B) )E]

 for each B in 113.

 Proof. Let {F,} be a maximal orthogonal family of countably decom-

 posable projections in a, so that E Po= I. Note that 0), a defined by

 i)a(B) = 0 (B) F,a, f or B in the algebra, 11a, of bounded operators on Fac (t)
 (Sl the underlying ililbert space of 013), is a diagonal process relative to the

 maximal abelian algebra (aFa (on FPa(&V)). If we can find a representation
 Oac of 1ca, and a projection E, with the properties described in the lemma
 (relative to aa), then the direct sum, q, of the representations and E, the
 sum of Ea, establish the result for 9).

 We may assume that a is countably decomposable, so that there exists

 a (unit) separating vector, x, for a. We define a state, p, of 1 by:

 p(B) ===w() (B)). From Gelfand-Neumark [1] and Segal [6], p gives

 rise to a *-representation ( of 1 constructed as follows. The set of operators

 B in 13 such that p(B*B) = 0 is a left ideal, A. The quotient vector space

 313/ has a positive definite inner product on it defined by

 [B+ a, C+ c] ==p(C*B),

 so that the completion, 9o, of l/a relative to this inner product is a ililbert
 space. The mapping, B + a - AB + a, on l/a to 313/ extends to a
 bounded operator +p (A), for each A in 13 and (p is the *-representation in

 question. That ( is an isomorphism on a (with range No, let us say) is a
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 consequence of the definition of p. In fact, if + (A) =0, then

 0 [A+?c ,A+3] p(A*A)w (( (A*A)) IAx l2,

 for A in C, whence A =L 0. (Recall that x was chosen as a separating vector

 for a.)

 Let E be the projection on the closure of {A + a: A C a}. Our final

 assertion is that c[/0 (B) Eo (B)E, both operators restricted to E(5).
 We have

 [,[) (B)] (A + c)9, C + = p(C* 9Z(B)A)

 = [(0[C*0(B)A] -=wx[O(C*O(B)A)]
 and

 [El (B)E(A + a), C + c ] 1(B)(A + A), C + AI
 _ p(C*BA) =w [ 1)(C*BA) ] Swx[C*9 (B)A

 with C and A in a. Thus, as operators on E(SV91), +3[ (B)] =AEp(B)E.

 Remark 4. Relative to the scalar algebra, {AI} the identity mapping

 on D3 is the unique proper diagonal process, and each state, p, of a yields an
 improper diagonal process by means of the mapping B --p(B)I.

 Remark 5. If 9 is a diagonal process relative to Ga, then 9 (C) =0
 for each completely continuous operator, C. In fact, if p is a pure state

 of C0,, p o 9) is a state extension of p from (C to 3 and so, the finite convex
 combinations of pure state extenlsions, p', of p to D3 have p o 9 as a w*-limit

 point. Now p'(C) = 0 or else p' is a vector state, (w,. But then wx is pure
 on C0, so that x is a simultaneous eigenvector for aC,-a contradiction.
 Thus p'(C) = 0, so that finite convex combinations of such p' annihilate C

 and p o 0 (C) =p[90 (C) ]=0. Hence J (C) =0.

 3. Uniqueness and non-uniqueness of diagonal processes. We consider

 ad first and show that there is a unique diagonal process relative to it.

 Let {Xk} be an orthonormal basis for 29, the Hilbert space upon which ad

 acts, relative to which each operator in ad is diagonal. Let us define 9 (B)

 for a bounded operator, B, to be the operator whose matrix representation

 relative to {Xk} is the diagonal matrix with diagonal that of the matrix
 representation for B relative to {Xk}. Clearly, then, 0 is a diagonal process

 relative to ad. With X = E kXk and || B | 1,
 kc
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 and for suitably large N, E I k 12 (Bxk, Xk) < 1/2. Thus, with
 k?N

 I(Bxk,Xk) <E/21x11, kX1, ,N,

 we have (Z (B)x, x) I ?E E ak I1 I (Bxk, xk)I < ., so that Z is a continuous
 mapping at 0 on the unit ball of the algebra, X, of all bounded operators in

 the weak operator topology into 03 in this topology. Since 03 is a topological

 linear space in the weak operator topoloygy and 0 is linear, 9 is continuous

 on the unit ball of 03 in this topology. From Lemma 2, it follows that Z is

 the unique proper diagonal process relative to ad. By other considerations,

 we show that i is the unique diagonal process relative to ad.

 THEOREM 1. The unique diagonal process relative to ad is 9.

 Proof. If S' is a diagonal process distinct from 0Z, then i '(B) 0 El) (B)

 for some B in o3; so that ( Z'(B) Xk, Xk) 7 ) (9 (B)Xk, Xk), for some k-whence

 oWkl o 0- wx, o9. But @xk is a vector pure state of ad and has a uniquie
 state exteiasion to B3. Thus 9 is the unique diagonal process relative to ad.

 Of course, this does not establish that the pure states of ad which are

 not vector states (the points of the f8-compactification of the integers other

 than integer points) have unique state extensions to 3.

 THEOREM 2. There is more than one proper diagonal process relative

 to aC,; pure state extension is not unique relative to C,.

 Proof. If we represent our Hilbert space, N as L2(0, 1) under Lebesgue
 measure and ai as the multiplication algebra of this measure space, then the

 set of projections {Ekm7: M 1, 2, * *, k =1, . * , rn} corresponding to multi-
 plication by the characteristic function of the closed intervals [((k - 1)/rn,

 mn m
 k/rn] generate ae,. Now I E Ekm, so that B I El,, II Emm = EkmBEk,n,, and

 k=1 k=1

 mn

 B I E mm I Emnm I Elm, Ernnmn E EkmnBEkmn. From Lemma 2, if thlere is a
 k=1

 unique diagonal process 9 of the form 0,, p in the pl-compactification of the
 integers but not an integer, in particular, if there is a unique proper diagonal

 m

 process, then 9 (B) is the weak limit (with respect to j) of E EkmBEkm, where
 k=1

 n= 2i. In fact, if this is not the case for some B, then 9 )p(B) # ) Op(B)

 for some points p and p' in 8 (3 ) -- -. We -shall exhibit such a B.

 The functions, fn, defined by fn (X) = e2n for n = O, ?1, *, form
 an orthonormal basis for N. As B, we shall take the projection, G, on the

 subspace spanned by certain of these elements {fn = 1, 2, } (to be

 8
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 specified later). We have

 00 co k #/

 (EkmGErkm (1), 1) = I (fng, Ekm (1) ) 12 fkE m e27rinj. dx 12
 j=1 j=1 -1)/m

 coo

 E I ( 1/27rin1) [e2,rinjk/m0 e27rin(k-1)/m] 1 2
 j=1

 00

 - (1/4,r2nj2) 1 e27irjj/m' 1 K2
 j=l

 whence

 (( EEkmGEkm) (1), 1) = ' (m/4i2n12) n e22iflfl 1 12
 k-l j=1

 00

 = E (m/ir2n/) sin2 ( /rn).
 j-l1

 We show that, for a suitable choice of ni, n2,

 00

 ( 1 ) ~~~~~(M7n/Jr2 ) , ( 1/n j2 ) Sin2 (,7rnj/m)
 j=1

 does not tend to a limit as m (- 2r) tends to oo. For our set, {nj}, choose
 all integers in the closed intervals [222, 22k], k -1 1, 2, (so that n1 -1,

 n2 = 2, n, 4, n4 5, * - ).

 Note that (1) may be rewritten as

 00

 (1/7) (7rnj/m ) -2 [sin2 (rn/m )](7r/m) (=am)
 j=1

 which is the integral over [O, oo] of the step function, sm, defined as

 (rnj/m)-2 [sin2 (7rn/m) ] (1/7r) on the interval [7r (nj 1)/rn, 7rn1/m],
 j 1, 2, , and 0 elsewhere, and that, with m =- 0 (4),

 (17w) > (,rnj/m) -2 [sin2 (wnj/m) (ir/m)
 m/4<nj-?m/2

 7'1/2
 Sm(x)dx (- bm).

 w/4

 Now, with Mk1 22k, Snk is a Riemann approximating step function to
 - x 2sin2 x on the interval [w/4, 7/2]. Thus, if a2m tends to a limit as m

 tends to oo, so does ank as lk tends to oo, and

 ,r/2

 limrn a2 =- limk a,nf, ? limkb &fk =r- x2 sin2 xdx> >7r2.
 J/4

 (For the last inequality, note that the derivative, 2x-3 sin x (x cos x - sin x),

 of x-2 sin2 X is negative on [7r/4, r/2], so that x-2 sin2 X> 47rW2 on [w/4, r/2).)
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 On the other hand, there are no terms nj in (22k-1, 22k+12). Thuis, with

 rk = 22k+1-2, Srk is 0 on [7r22k-1(22k+l-2) -1 7rk/(k + 1) ], whose left end point

 tends to 0 as 7c tends to oo. Since each Sm is bounded (e.g. by 1) on [0, 7r],

 we have lim7>,4 srk (x) dx 0. Thus, if limm a2m exists, then

 00

 '72 < liMk amk = liMk ark =iMk Srk (X) dx

 liMk Srk (x) dx?_limk (1/7T) f x-2 dx= 7r-2

 a contradiction. (Note that Sm (x) ? 71X-2, for x in [0, oo).) Thus limk a2k
 does not exist, and G does not have a unique diagonal part relative to a,
 (G is the projection on the space spanned by e27rnjx. , where {nj} is as described).
 From our earlier discussion, there are pure states of a0 which do not have

 unique state (and pure state) extensions to all bounded operators (in fact,

 which have distinct values on G).

 4. The pure states. We have noted that non-uniqueness of diagonal

 processes implies non-uniqueness of pure state extension and that uniqueness

 of the diagonal process does not lead to uniqueness of pure state extension.

 The problem of uniqueness of pure state extension (and even that of diagonal

 processes) may be raised in more refined form. Given a maximal abelian

 self-adjoint algebra C; for which operators, B, is it the case that all exten-

 sions of the same pure state of a coincide on B?

 LEMMA 5. If C is a maximal abelian algebra then there exists a sequence

 of projections {En} in a such that BIE . 1E. converges to an operator of a

 in the uniform topology if and only if p1(B) =-p2(B) for each pair of states,

 pl p2, of all bounded operators such that pli a =p2 I ais a pure state of a.

 Proof. Suppose that a sequence such as {En) exists, for the operator B.

 Then, with pi and p2 states of all bounded operators whose restrictions to a
 are pure and equal, p1(BIE) =p1(B) and p2(BIE) =p2(B) for each pro-

 jection, E, in (. In fact, p1(E) is 0 or 1, since E is a projection in a and

 p, is pure on a, while p1(B I E) = p1(E)p1(B)p1(E) +p -(I E)p1(B)pi(I - E)
 p1(B) (cf. Lemma 2, second paragraph of the proof). Thus,

 p (B I E1 I I En) = pi(B) and lim pi(B I E1 I... I En) = p1(A) =p(B),

 where B I E1L I I En tends uniformly to the operator A in a (recall that states

 of C*-algebras are continuous in the uniform topology). Similary, p2 (B)

 =p2(A) (= p1(A) =-p(B)), so that pi(B) =p2(B).
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 Suppose now that all extensions of each given pure state of G coincide

 on B. Clearly then each diagonal process relative to a has the same value,

 A, at B. We shall find {EnJ such that B I .I E. tends uniformly to A, or
 equivalently, that (B-A ) I EI I... I En =- B I E I. . En - A tends uniformly to 0.

 Of course, extensions of a given pure state of a coincide on B -A, and have

 value 0 (since B -A has diagonal 0 under each diagonal process relative

 to (). We may assume, therefore, that each extension of a pure state of a

 has value 0 on B, and that B is self adjoint.

 Now a is *-isomorphic with C(X), where X is extremely disconnected-

 each point, x0, of X corresponds to a pure state, p$o, of a (and conversely).

 Since each state extension of p,, has the value 0 on B, we have

 0 = inf{pZo(A): A in, A _ B)=-sup{pO(A): A in a, B A.

 Thus, we can choose operators A$o and Axo in a such that A-To ? B ? Ao

 and 1/n > Axo (x0) >?0 A o(x0) > - 1/n, where A is the function in C (X)
 corresponding to an operator, A, in a. It follows that there is a closed-open

 set, containing xo, whose characteristic function corresponds to a projection

 EnI,0 in a, on which Axo is less than 1/n and J,,o is greater than - 1/n. Then

 (1/n)En $0 >- En,xoAx?

 = En,OAxEn,o >? ? EnE E 0A$? > (-1/n) En,xo)

 so that 11 En,XOBEn,xo 11 C 1/n. Since X is compact, the closed-open sets corres-
 ponding to En ,xo, for each x0, cover X and have a finite subcovering. Denote
 the corresponding projections by En , Enkn. We may replace this set of
 projections (using intersections and relative complements) by an orthogonal

 set of projections in a each of which is contained in some Enj and such that
 each Eln is the sum of projections in the new finite set. If E is one of the

 new projections, contained, say, in Enl, then

 11 EBE 11 = 11 EEnlBEnlE 11 B< 1 E 112 || EnlBEn 11 1/n.

 We may assume that El n, Enk,E are orthogonal, so that their sum is I
 (their corresponding closed-open sets cover X). Thus

 kn

 11 BI E I E-7n 11 , = ElnBEni 1 ?1/n.
 j=1

 The sequence Ell, E12y * , Elk,iE,,* 2 , E2C, * will serve as the desired
 sequence, {En}.

 Bemark 6. If the state extensions to 03 of a state of a maximal abelian
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 algebra, a, coincide on each operator of a certain set, A, (i. e. the restriction

 of these extensions to A3 defines a single-valued function on s ) then the same

 is true for the uniform closure of the self-adjoint linear space generated by

 A and for the set of those operators, T, for which there is a family, {EnJ
 of projections in a such that TIEi. I En has a uniform limit in P.

 THEOREM 3. All state extensions to #3 of a pure state of ad coincide
 on each permutation matrix (i.e. each linear operator which permutes the
 eigenvectors of ad).

 Proof. Let {xn}%=,2, be a basis of eigenvectors for ad, and let
 Txn = xa(,), where a is a permutation of S. Then, the matrix of T relative
 to {xn) has 1 at each entry a(n), n and zeros at the other entries (it is a

 permutation matrix). Let 3, be the fixed points of a. We shall define three
 other sets of integers, 2, &3, and 3,. Assign to 3 2 the first element of a
 not in 3 , and suppose that each element of ?Q less than n has been assigned
 to one of a,c- , a, in such a way that j and a (j) are not in the same set
 if they are distinct. Assign n to the first one of 2, a3, a, which contains
 neither ao(n) nor a-' (n), unless ao(n) =n, in which case, assign n to 9a.

 In this way, we construct four pairwise disjoint sets a,, a,, a3, 34 with
 union a such that a (n) and n lie in no one of them, unless they are equal

 (in which case it lies in ,) . Let Ej, j =1, , 4 be the projection (in ad6)
 on the subspace spanned by {xk: 7c in aj}. From the construction, ElTE1
 = E1 and EjTEj = 0, j = 2, 3, 4, while E1, , E4 are mutually orthogonal
 and have sum I. Thus TI E1 I E2 I E3 I X4-E1, which lies in ad. An application
 of Lemma 5 completes the proof.

 Combining Theorem 3 with Remark 6, we see that pure state extension

 from ad iS unique to the algebra of linear combinations of permutation
 matrices (and to its uniform closure). We note that the proof of Theorem 3

 applies to more general 0, 1 matrices (e. g. to those operators which annihilate

 some basis vectors and are one-one mappings of the others into the set of
 basis vectors).

 5. Related questions. The results that we have obtained leave the

 question of uniqueness of extension of the singular pure states of ad open.
 We incline to the view that such extension is non-unique (although the
 diagonal process is unique-Theorem 1, and there is a large class of operators
 to which extension is unique-Theorem 3). Our considerations also raise
 the question of whether or not each pure state of #3 is the extension of some
 pure state of some maximal abelian algebra. (This is true for the vector
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 states of B.) With regard to this last question, one can partially order the

 states of 3 by compariing the sets of elements on which they give "definite

 information." (We say that the state, o of t3 is definite on a self-adjoint

 operator, A, when Z is pure on the C*-algebra generated by A-equivalently,

 when o (A2) 2 (0(A)2. The set of operators on which o is definite is "the

 definite set" of w.)

 THEOREM 4. A state of 3 is pure if and only if its definite set is

 maximal (with respect to inclusion).

 Proof. If $ is the left kernel of o, then the definite set of X is

 {KW*+ AI), where A* is the set of self-adjoint operators in K and A is a
 real number. (Note that the set of self-adjoint operators in a uniformly

 closed left ideal determines that ideal-in fact, the positive operators in the

 ideal determine it [7].) Indeed, if A is in i*, then 0==-o(A) === 0(A)2
 - (A2) (by definition of A), so that X is definite on A* and hence on
 {,K* +?Al). On the other hand, if o is definite on B, then it is definite
 on B-w(B)I, so that w([B- o(B)I]2) 0(B - o(B)I)2 =0 aind B - (B)l
 is in A*, B is in ,* +-Al}. If K is not a maximal left ideal and is a
 left ideal in 3 containing K properly, choose A in 2 * not in K. If
 A == B + AI, with B in A *, then A-B = AI is in , so that A =0, A == B

 is in /-a contradiction. Thus { 9* + Al} contains {,K* +AI) properly.
 It follows that the definite set of X( is maximnal only if its left kernel is a

 maximal left ideal-which implies that (0 is pure [2].

 Suppose, now, that A is a maximal left ideal and that 2 is a left ideal

 such that { 2 + Al contains { X * + AI}, the definite set of some pure state.
 We show that { 2 +* AI), the definite set of an arbitrary state, coincides

 with {,K* + AI}, in this case. Passing to a maximal left ideal containing 2,
 we may assume that 2 itself is maximal; so that 2 is the left kernel of a

 pure state, p, of 13. If t annihilates a vector, y, then so must XK; for other-
 wise, t* contains all self-adjoint completely continuous operators, and in par-
 ticular, one whieh maps y onto a non-zero vector orthogonal to y-contradicting

 the fact that {f * + AI) has y as an eigenvector and contains {,K* + Al).
 Thus K* consists of all self-adjoint operators annihilating some vector, z,
 and has y as an eigenvector; so that z is a scalar multiple of y, ( * anni-
 hilates y, X 2, and {A+AI + I}.

 We may assume that 2 does not annihilate a vector and, so, contains V,
 the ideal of completely continuous operators in S. Thus, p, the irreducible

 representation of 13 associated with p has e as kernel. If A is in ( * but
 not in *, then p(A2) =p(A)'#0; so that p(E) :740 for some spectral
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 projection, E, of A corresponding to an interval whose closure does not

 contain 0. In fact, from the Spectral Theorem, A is a uniform limit of

 finite linear combinations of such spectral projections, and if p annihilates
 each of them, then since p is uniformly continuous, p (A) 0. Since E

 corresponds to an interval whose closure does not contain 0, I - E + AE has

 an inverse, B; so that BEA E[B(I- E+AE)1] E is in Se* and hence
 in { + ? AI}. Moreover, ECE is in Se, hence in { + AI}, for each self-
 adjoint C in S. Now p maps { 2 +-AI} into the set of self-adjoint operators

 which have x as an eigenvector, where x is a vector such that wx =p;
 so that the projection, +(E), has x in its range (since p(E) # 0), and

 cp(E)cp(C)cp(E) x c (E) (C)x =ax. Since cp is an irreducible represen-
 tation of S, p (E) must be the one-dimensional projection whose range
 contains x. But p annihilates B, and p (E) , 0. Thus E is infinite dimen-

 sional, and E F + I - X, where F and I - F are infinite dimensional;

 so that +(E) +(F) +q(I -F), with + (F) and (I- F) non-zero or-
 thogonal projections. (Recall that the kernel of c is B3). Hence p (E)
 cannot be one-dimensional, each A in S * lies in A*, C is contained in

 and W = }, by maximality, and {IC -]- AI} is a maximal definite set.

 Presumably, the definite set of each pure state contains the set of self-

 adjoint elements of some (perhaps many) maximal abelian algebras. A

 general question of obvious interest is that of the classification of the irre-
 ducible representations of B3. We know from [3] that the separable ones

 are all unitarily equivalent (to the algebra of bounded operators on separable

 Hilbert space) and are associated with vector states. The vector states of 13

 are unitarily equivalent. Is this the case for the singular pure states of S3?
 A clever counting argument of Kaplansky's shows that this is not so. In

 fact, each pure state of CL has a pure state extension to S, so that there are
 at least 2C pure states of B (the pure state space of ad iS / (S) which has
 cardinality 2C), while there are only C operators (as can easily be seen from
 the matrix representation relative to a countable orthonormal basis.) Each
 unitary equivalence class contains at most C states, so that there are 2C
 inequivalent singular pure states.
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