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 CHAPTER 1. INTRODUCTION AND BASIC CONCEPTS

 1.1. Introduction

 This paper will be concerned with certain developments in the spectral multi-

 plicity (unitary invariants) theory of self-adjoint families of operators. The sub-

 ject has its roots in the classical multiplicity solution of Hahn [12] and Hellinger

 [14] of the problem of describing those self-adjoint operators which are unitarily
 equivalent to a given self-adjoint operator. In their basic form, the results we

 obtain will provide a solution to this problem when the operators in question

 are not necessarily normal. These results were outlined in [19] (though, as stated
 there, they are incorrectly applied in the case of non-separable Hilbert spaces-

 we have made the revisions necessary to include the general case in this paper).

 Since the publication of [12, 14], the question has been re-examined and several
 variations and improvements made on the original solution. One may mention

 in this connection Wecken [49], Nakano [31, 32], Plessner-Rohlin [39] and Hal-
 mos [13]. These improvements have brought into focus the critical r6le played
 by measure-theoretic constructs in the unitary determination of self-adjoint

 operators. Moreover, the theory developed in [31, 13] applies, almost without

 change, to the unitary determination of commutative C*-algebras. (The follow-
 ing section contains a precise description of the terminology and notation we use.)

 Concurrently with these later improvements in the spectral multiplicity the-
 ory of a single self-adjoint operator, Murray and von Neumann undertook an
 investigation of rings of operators, more particularly, factors [28, 29, 30, 33, 34],
 while Nakano carried out a multiplicity decomposition of abelian rings of opera-

 tors in terms of maximal abelian algebras [32]. For all but the type III case, the
 Murray and von Neumann results reduced the unitary equivalence problem for

 factors to an algebraic problem and the determination of a "coupling constant"
 [30]. In recent years, Dixmier [6] and Kaplansky [22] have developed techniques
 for dealing with general rings of operators in much the same way as Murray and
 von Neumann dealt with factors. Making use of these techniques, Dye [7, 8],

 Griffin [10] and Pallu de la Barriere [51] carried the unitary equivalence theory
 developed by Murray and von Neumann to general rings of operators having no

 part of type III. Slightly before this, Segal [40, 41] put the results of [32] in a
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 more precise and cogent form extending them to rings of type I and carrying
 out the classification of maximal abelian algebras in terms of numerical invariants
 by means of the Maharam classification of measure algebras [26]. In this connec-
 tion, the work of Kaplansky in [23] is quite relevant.

 By completely elementary means, Griffin established the surprising fact that
 an algebraic isomorphism between factors of type III on a separable Hilbert
 space can be implemented by a unitary transformation. Amplifying this and
 incorporating it in his previous work, Griffin was able to determine when anl
 isomorphism between two rings of operators, having no portion of type JJ. with
 a J1h commutant, is implemented by a unitary transformation [11]. The gap in

 the case of a II,, ring with a I1i commutant is filled in [18]. Totally, then, we
 have a unitary invariants theory for the general ring of operators in terms of
 algebraic isomorphism.

 The complete (and, at present, rather smoothly functioning) classification of
 spatial types of rings of operators in terms of algebraic type together with the
 neatly formulated spectral multiplicity theory for a single self-adjoint operator
 [13, 31] (or, what amounts to the same thing, for a commutative C*-algebra)
 made it seem hopeful that an attempt to classify the general C*-algebra spa-
 tially in terms of its algebraic type (then followed by [17]) might prove suc-
 cessful.

 To understand the nature of the question with which we deal it is important
 to make completely clear the distinction between the spatial classification of
 rings of operators and of C*-algebras. The classical question and historically the
 first to be examined and settled in this area was the spatial classification of a
 single self-adjoint operator acting on a separable Hilbert space. Contrary to
 appearance, however, the spatial classification of abelian rings of operators in
 terms of algebraic type does not contain the classification of the single operator
 situation. A little thought shows that there is no apparent reason why the uni-
 tary equivalence of two (abelian) rings of operators, each generated by a self-
 adjoint operator having some fixed set as spectrum, should admit an implementa-
 tion by a unitary transformation which carries the first of these operators onto
 the second. Indeed, in ?5.2, we shall present an example in which such imple-
 mentation is not possible under the most restricted circumstances. The fact is
 that the spatial classification of a single self-adjoint operator requires a more
 detailed analysis than the spatial classification of abelian rings of operators in
 terms of algebraic types (although the latter classification can be made a part
 of the former). An abelian ring of operators can be decomposed in terms of mul-
 tiple copies of maximal abelian algebras, and algebraically isomorphic maximal
 abelian algebras are unitarily equivalent. Thus the abelian ring of operators
 is spatially characterized by cardinal numbers and the algebraic types of the
 maximal abelian algebras occurring in its decomposition. If the final classifica-
 tion in terms of numerical quantities is desired, the maximal abelian algebras
 must be analyzed in terms of the numerical quantities associated with its meas-
 ure algebra [26, 40, 41]. In terms of algebraic types, however, this classification
 does not require measure-theoretic constructs.
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 In contrast to the case of abelian rings of operators, the spatial classification

 of abelian C*-algebras includes the classification of the single-operator situation,
 both the C*-algebra and single operator classifications requiring the determina-

 tion of the spectrum and a canonically associated family of ideals of Borel sub-

 sets thereon. These remarks make it clear that the spatial classification of abelian

 C*-algebras (rather than abelian rings of operators) is the "many-operator, com-
 mutative" extension of the classical multiplicity theory of a single self-adjoint

 operator. In accord with this, one would expect the spatial classification of (not-

 necessarily-commutative) C*-algebras (rather than general rings of operators)

 to represent the non-commutative extension of classical multiplicity theory.
 This is the case, and the invariants we obtain which determine a C*-algebra

 spatially are much like those of the commutative case (and yield them easily

 upon specialization).

 Of course, the unitary equivalence of two C*-algebras entails their algebraic
 equivalence. By classifying the representations of a given abstract C*-algebra,
 we include a somewhat more general situation than we would by classifying the

 unitary equivalence classes of concretely represented C*-algebras and at the

 same time embody the assumption of algebraic equivalence without the need

 for carrying added algebraic isomorphisms throughout the computations. (We
 are indebted to George Mackey for pointing out the advisability of dealing with
 representations under other circumstances and for bringing to our attention the

 outline of the commutative separable case in [24].)
 According to [15], each abstract C*-algebra is isomorphic with some canoni-

 cally constructed linear space of functions on a compact Hausdorff space (the
 "pure state space" of the algebra). Thus a representation of the C*-algebra
 gives rise to a representation of the associated function system. Speaking for the
 moment of the separable or countably-decomposable case, we associate a de-

 scending chain of ideals of Borel subsets of the compact Hausdorff space with
 such a representation in a canonical manner (cf. Definition 4.4.1). Our main
 theorem, The Unitary Invariants Theorem (and The Second Unitary Invariants
 Theorem) of ?4.4, states that this chain of ideals completely characterizes the

 unitary equivalence class of the representation. Since the canonically associated
 function system and pure state space may be difficult to compute in a given spe-
 cific situation, while some other associated function system may be readily at
 hand, we have broadened our approach to cover more general function systems.
 (This broadening is described in more detail in ?2.4.) Thus the theory developed
 is not tied to the function representation on the pure state space.

 The basically new concept underlying the theory is the association of an ideal
 of Borel subsets (cf. the "permanent null sets" of Definition 2.2.1) with a (pos-
 sibly non-commutative) representation of a function system. The Extension
 Theorem, Theorem 2.2.5, provides the relation between the concrete C*-algebra

 and its weak closure which permits the application of available ring-of-operator
 techniques. It is the key result, and, once it has been established, the remainder
 is the technically arduous but conceptually simple matter of reworking some of
 the theory of rings of operators into a form suitable for combination with it
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 (Chapters III and IV) and application to the proof of The Unitary Invariants
 Theorem, 4.4.2. We conclude the paper with a chapter on special cases, examples,

 applications, and computation techniques.
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 1.2. Notation and basic concepts

 When we refer to a Hilbert space we shall mean a complex Hilbert space
 without a separability restriction unless specifically noted. We employ the usual

 parentheses notation (,) to denote the inner product and 11 x 11 to denote the
 norm (length) of a vector x. We use the notation I A II to denote the norm
 (bound) of a continuous (bounded) linear operator A, and all our operators will
 be bounded unless otherwise noted. The uniform topology on the family of

 bounded operators on a Hilbert space is the metric topology induced by 11 11 .
 In addition to the uniform topology, we shall have occasion to use the weak

 operator topology defined as the weakest topology on the bounded operators in
 which the linear functionals A -> (Ax, y) are continuous (the class of functionals
 being that obtained by letting x and y range through the Hilbert space), and
 the strong topology defined as the weakest topology in which the linear mappings
 A -* Ax of bounded operators into the Hilbert space (taken in its norm topology)
 are continuous. We recall the result of Dixmier [5] (cf. [27], in this connection)
 that the strong and weak closures of any convex set of operators coincide.

 By a C*-algebra we shall mean an abstract Banach algebra with a unit ele-
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 ment, over the complex numbers, with a conjugate-linear, involutory, anti-

 automorphism A -> A* satisfying I'AA* 11 = 11 A ' 2. A well-known theorem of
 Gelfand-Neumark [9] asserts that a C*-algebra has an isomorphic, norm-pre-

 serving, representation as a uniformly-closed algebra of operators on a Hilbert

 space such that the *-operation in the C*-algebra is carried into the adjoint

 operation in the operator algebra-whence, the operator algebra is self-adjoint.

 (We say that a family of operators is self-adjoint when it contains the adjoint

 of each operator in it.) We refer to the general C*-algebra as an "abstract C*-
 algebra" and to a C*-algebra of operators as a "concrete C*-algebra", when it

 is necessary to make these distinctions.
 By a state of a C*-algebra we shall mean a linear functional, positive on posi-

 tive elements and 1 on the unit element. In [15], fairly general partially-ordered
 vector spaces are studied (the "states" being called "positive, normalized, linear

 functionals") and it is shown that such spaces are linearly isomorphic in an order-
 preserving manner with a linear space of real, continuous functions on some

 compact Hausdorff space. The compact Hausdorff space was obtained by taking
 the closure in the w*-topology on the dual space of the partially-ordered vector
 space of the set of extreme points of the convex set formed by the states. We
 call such an extreme point a "pure state" of the vector space. We call the closure
 in question "the pure state space". Now the set of self-adjoint elements in a

 C*-algebra is a particular example of such a partially-ordered vector space. We
 shall refer to the system consisting of the linear space of functions (or its com-
 plexification, which is obviously linearly isomorphic with the full C*-algebra)
 and the compact Hausdorff space as "the representing function system of the
 C*-algebra". The isomorphism between the C*-algebra and the linear space of
 functions will be called "the canonical isomorphism". With regard to the states

 and pure states themselves, we recall that a state of a subspace, containing the
 order unit, of some partially-ordered vector space has a state extension to the
 full space, and pure states have pure state extensions. Those states of a concrete
 C*-algebra of the form A -* (Ax, x), with x a unit vector in the Hilbert space,

 will be called "vector states" and denoted by wx , as is now conventional.
 A concrete C*-algebra which is closed in the weak operator topology will be

 called "a ring of operators" (cf. [28]). Note that, by [5, 27], the strong as well as
 the weak closure of a concrete C*-algebra is a ring of operators. We denote the

 weak (= strong) closure of a[ by 2F. If the center of a ring of operators consists
 solely of scalar multiples of the identity operator I, it is called "a factor" (cf.
 [28]). If R is a ring of operators, the family of operators each of which com-
 mutes with every operator in 6R will be called the commutant of 6R and be de-
 noted by i'. The commutant i' is again a ring of operators, and when 6 con-

 tains the identity operator, 6R = i"; in fact, with 6R any self-adjoint algebra of
 operators containing the identity operator, i" is the weak (and strong) closure
 of 6R (cf. [35]). We employ the notation S' for the commutant of any set 8 of
 operators.

 If S is a set of operators on the Hilbert space 3C and x is a vector in 3C, we
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 denote by [Sx] the closed linear manifold (or orthogonal projection on this mani-
 fold) generated by vectors of the form Ax with A in S. If 21 is an arbitrary alge-

 bra of operators with weak (hence, strong) closure 9F, it is immediate that

 [21x] = [21-x], and, with 2f self-adjoint, [S2x] belongs to SI', since [S2x] is invariant
 under W1. We say that x is a generating vector for [S2x] (under 2I) and refer to
 [S2x] as a cyclic projection in S'. A projection E in a ring of operators R will be
 said to be countably-decomposable (relative to i) when each (pairwise) or-

 thogonal family of projections in iR contained in E has at most a countable
 number of non-zero elements. We say that 6R is countably-decomposable when
 I is countably-decomposable (relative to iR).

 As we remarked earlier, much of our task will be that of reworking the theory

 of rings of operators into a form suitable for our purposes. We outline here some

 of the basic theory and results which we assume. To begin with, we assume the
 entire "comparison theory" for projections in a ring of operators. We recall

 that two projections E and F in a ring of operators 6R are said to be equivalent

 (written E - F) when V*V = E, VV* = F, with V in i, in which case, V is
 a partially-isometric operator with initial space E and final space F. (We use

 the same symbol to denote an orthogonal projection and its range when no

 confusion can arise.) Using equivalence with subprojections, in an obvious way,

 one arrives at a partial ordering among the projections of R (the notation

 E < F. E -< F is employed in the usual manner). The basic result (cf. [6, 22,

 25, 28]), which we shall refer to as "The Comparison Lemma", asserts that,
 corresponding to each pair of projections E and F in a ring of operators 6R there

 are three central projections P, Q and R in i, uniquely determined by the proper-
 ties: PE - PF, and P is the maximal central projection with this property,
 QE < QF, RF < RE, and P + Q + R = I.

 A projection in a ring of operators R is said to be infinite if it is equivalent to
 a proper subprojection of itself, finite otherwise. An infinite projection is said
 to be purely infinite when its product with each central projection is either 0
 or infinite. In general, we qualify a property with the term "purely" when it
 persists under restriction to central projections in the manner indicated for
 "pure-infiniteness". Each ring of operators R contains a central projection Q
 maximal with respect to the property of being purely-infinite. The projection Q

 will be called the purely-infinite portion of i, and I - Q, which is necessarily
 finite, will be called the finite portion of (R.

 We shall have occasion to make incidental reference to the "type decomposi-

 tion" of rings of operators. We give a brief discussion of this decomposition-a
 detailed treatment of this and the basic comparison theory for projections may
 be found in [6, 22, 28]. A projection E in a ring of operators (R is said to be an
 abelian projection (in (R) when E (R E is an abelian ring. Corresponding to each
 positive integer and cardinal n, there is a central projection Pn in (R maximal
 with respect to the property of being the sum of n orthogonal equivalent abelian
 projections in i. The projection P,, is called the portion of 61 of type I, (61 is
 said to be of type In when P,. is the unit element of (R). The projection P equal to
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 the suml of the P,, is called the portion of 6R of type I (or the discrete portion of
 i). There is a central projection Q in 6R maximal with respect to the property
 that each non-zero subprojection is infinite. The projection Q is called the portion
 of @ of type III (and 61 is said to be of type III when Q is the unit projection in
 61). The projection I - P - Q is called the portion of 61 of type II (or the contin-
 uous portion of 61). The finite portion of 61(I - P - Q) is called the portion of

 type II, and the infinite portion, the portion of type II. .
 The theory of rings of operators has a natural dividing line which separates

 the algebraic theory from the spatial theory. Those results involving the ring
 itself are algebraic and those involving the ring and its commutant are spatial.
 The theory we have had to rework is mostly the spatial theory (except for our

 dimension theory), and, for the most part, those results we use are proved.
 We shall, however, make use of two basic spatial results which we state here.
 The first is Lemma 9.3.3 of [28] and we note that (despite the preliminary com-

 ments made there) the proof and result apply to general rings of operators on
 non-separable Hilbert spaces. This result states that if 6R and 6' are a ring of

 operators and its commutant, respectively, and if x and y are vectors in the

 Hilbert space upon which they act such that [6R'x] [6R'y] then [Rx] > [Ry].
 The second result states that a *-isomorphism between two rings of operators

 which have, together with their commutants, joint generating vectors, is imple-
 mented by a unitary transformation. We had originally intended to include a
 proof of this, but it is so elegantly and simply presented in [3] that we have only
 sketched the proof of an allied result in ?2.4 and shall refer to that note instead.
 We shall call the result just stated "The Unitary Implementation Theorem".

 A result of Kaplansky, [21], proves of great technical value to us. It states

 that the unit sphere in the strong (= weak) closure of an algebra of operators
 invariant under the adjoint operation is the strong closure of the unit sphere in

 this algebra. We note that Kaplansky's argument establishes that the self-
 adjoint operators in one unit sphere are strong limits of the self-adjoint operators
 in the other unit sphere and that the analogous result holds for the subfamily of
 all positive operators and its strong closure.

 A normal state of a concrete C*-algebra is a normal state of its weak closure
 in the sense of [4], i.e., a state which has as the limit of its values on each of the

 operators of a bounded increasing directed sequence in the weak closure, the
 value of the state on the least upper bound of the directed sequence. Equiva-
 lently (though not obviously so) a normal state of a ring of operators is a state
 which is completely additive on the lattice of orthogonal projections in the ring,

 and is a state which is strongly continuous on the unit sphere in the ring.
 The various mappings we consider will be adjoint preserving (when applied

 to systems of functions, we mean by this that real functions are carried onto

 self-adjoint operators). By a representation of an abstract C*-algebra (as a con-

 crete C*-algebra), we shall mean then an algebraic homomorphism which pre-
 serves the adjoint operation (and as an inessential but convenient normaliza-
 tion, we assume that the unit in one algebra is carried onto the unit in the other
 algebra). Our isomorphisms, homomorphisms, etc., between C*-algebras, will
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 be adj oint preserving (even when this is not specifically indicated by referring
 to them as *-isomorphisms, etc.). Employing the identity of the various charac-
 terizations of a normal state, Kaplansky's Lemma, and some elementary con-
 vergence theory for operators, it is a relatively easy matter to show that a
 *-isomorphism between rings of operators is strongly (weakly) continuous when
 restricted to the unit spheres, each being taken in its strong (or weak) topology.

 We include, in this section, a lemma concerning xvell-ordered families of pro-
 jections, which will be of some use to us later.

 LEMMA 1.2. If { Pa } is a set of projections indexed by a well-ordered family S

 and Pa < Pg when a < A, then the family {Qa }, Qa = Pa -U U<aPtP , consists of
 mutually orthogonal projections with sum equal to the union P of { Pa,.

 PROOF. If a < / then by definition Qg is orthogonal to Pa , and Qa is contained
 in Pay, so that Qg and Qa are orthogonal to each other. From the remark just
 made it is clear that U aQa < P. We assert that Pa = U a?<Qa for each 3 in S,
 whence U aQa contains P, and the proof is complete. We establish this fact by
 transfinite induction. If 1 denotes the first element in S then Q, = P1, by defini-
 tion, and the assertion holds for index 1. We assume that it has been established

 for all a < F. But Qg = P - Ua<gPPa = Pg - Ua<gQa )so that Pa = Ua?#Q;,
 as we wished to show.

 It should be noted that the analogous statement need not hold if S is simply-
 ordered but not well-ordered. The case in which S is the real line and { Pt } any
 purely continuous spectral resolution (say, the resolution of the operator "mul-
 tiplication by x" on L2(0, 1) under Lebesgue measure) illustrates this failure,
 since each Qt is 0 in this case.

 Two representations 01 and O2 of a as algebras of operators W, and W2 acting
 on the Hilbert spaces 3C1 and 3C2, respectively, are said to be unitarily equiva-
 lent when there exists a unitary transformation U of 3C1 onto 3C2 such that

 U01(A) U- = 4)2(A) for each A in W. If W = W, and 4) is the identity isomorphism,
 we say, in this case, that the isomorphism 42 of W, onto W2 is unitarily imple-
 mented by U. If there exists a U carrying the family 81 onto 82, we say that
 8S and 82 are unitarily equivalent.

 CHAPTER II. REPRESENTATIONS AND EXTENSION INVARIANTS

 The constructs which provide the key to the multiplicity decomposition of
 representations of C*-algebras are defined and their properties listed in this
 chapter. The first section deals with the various types of mappings we shall
 consider; the second section, with extension invariants in general and permanent
 null sets of representations in particular; the third section, with results related
 to and clarifying certain features of The Extension Theorem of the preceding
 section; and the fourth section, with techniques for carrying the general con-
 siderations of this chapter over to an extension of our later results.

 2.1. Mappings of function systems

 By a "function system", we shall mean the pair (2, X) consisting of a complex
 (real) linear subspace, ?, closed under complex conjugation of functions and
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 containing the constant functions, of the linear space, C(X), of complex (real)-
 valued, continuous functions on the compact Hausdorff space X, and the com-

 pact space X. When we speak of "order" in referring to functions of S, we shall
 mean the usual pointwise partial-ordering of the real functions in ?.

 DEFINITION 2.1.1. An "order-representation" of a function system (S. X) is a

 linear, order, adjoint and identity preserving mapping of ? upon some linear space

 of operators acting on a Hilbert space. An "order-homomorphism" is an order-

 representation 4 whose kernel is linearly generated by positive functions and such
 that 4-'(A) contains a positive element for each positive operator A in the image
 of 4).

 Several elementary remarks will be of later use. In view of the order-pre-
 serving nature of an order-representation, such a mapping is continuous, since
 it is norm-decreasing on real functions (the supremum norm being used for

 functions). The kernel of an order-representation is generated by its positive

 elements if and only if each real element of the kernel is dominated by a positive
 element of the kernel. In fact, if such domination is possible then for each real
 f in the kernel WC there is a positive g in 3C such that g _ f, so that

 f = g - (g - f); and 3C is generated by its positive elements (certainly by its
 real elements, since an order-representation is adjoint preserving). On the other
 hand, if 3C is generated by its positive elements and f is a real function in 3C,

 then f = gi + - * - + gn - (h1 + - * * + h,) = g - h, with g and h positive
 and in 3C (we may assume coefficients are real by equating real parts), so that

 g _ f.
 By an "operator system", we shall mean a (complex) C*-algebra or the real

 Jordan algebra of self-adjoint elements in such an algebra (with AB + BA as
 product), the terms "abstract" and "concrete" being appended when it is de-
 sired to indicate whether or not action on a specific Hilbert space is intended.
 The term "representation" as applied to such systems will mean a linear, ad-

 joint (where applicable), product or Jordan-product, and identity preserving

 mapping onto another such system. It follows from the fact that 0(1 A j) =
 I ?(A) l, that a representation 4 of an operator system is an order-homo-
 morphism.

 As with C*-algebras alone, the general operator system has a canonically asso-
 ciated function system (its representing function system on its pure state space
 [15]). When discussing a representation of an operator system, we shall, when
 occasion demands, pass to the mapping of its associated function system ob-
 tained by composing the representation with the canonical mapping of the func-
 tion system upon the operator system, without further statement and using the
 same symbol for both mappings.

 2.2. Permanent null sets and The Extension Theorem

 We describe our key extension invariant in:

 DEFINITION 2.2.1. If (S, X) is a function system and p is a state of ?, we say
 that a Borel subset S of X is a "permanent null set of p" when each positive exten-
 sion of p to C(X) induces a regular Borel measure on X of which S is a null set.
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 The collection 9l, of permanent null sets of p we call "the null ideal of p". If 0 is an
 order-representation of ? as a linear space of operators 21 acting on the Hilbert

 space JC, we call the intersection No of the null ideals M,,o of the states ao qf C, as
 w ranges through the normal states of X, "the null ideal of 4" and the sets in NO,
 "the permanent null sets of f". (WFe denote by M the intersection as X ranges through
 the vector states of a and refer to "the vector null ideal of &" and "the permanent

 vector null sets of 4)".)

 When the order-representation in question is clearly indicated, we shall denote

 the null ideal of w4 by t,, and of wo by M.. We note that the null ideal of a
 state of 2 is its null ideal when it is considered to be an order-representation.
 Although we have agreed to pass freely between an operator system I and its
 representing function system (2, X), we must recognize that, when I is con-
 cretely represented as acting on a Hilbert space, the canonical isomorphism L

 between ? and a possesses a null ideal M, , in view of the above definition. We
 shall call this ideal "the canonical null ideal of 21" and denote it by 9t(I).

 The distinction we have made between the null ideal No and the vector null
 ideal M' is not a vacuous one. In Example 5.2.4, we give an instance of NO
 being properly smaller than 9f',-it being clear, of course, that M,6 is always
 contained in M' . In many cases, however, N and M' coincide-for example,
 when the weak closure of the image I of 4 is an operator system possessing a
 separating vector. (In this case, each normal state is a vector state, by [3]).

 The following lemma will be important for the proof of The Extension The-
 orem to follow and for the construction of the example to which we have just
 alluded.

 LEMMA 2.2.2. If 4 is an order-homomorphism of the function system (S, X) onto
 the concrete operator system (S, JC) then a Borel subset S of X does not lie in X,
 (in M'4) if and only if there exists a normal (vector) state w' of I such that the inte-
 gration process w due to the regular Borel measure induced on X by some state ex-
 tension of w'd from ? to C(X) has the property that w(f) = w(fxs), for each bounded

 Borel function f on X, where xs is the characteristic function of S. If S consists of

 a single point p in X, then { p} does not lie in No (in M' ) if and only if the state
 f -> f(p) of 2 is induced by a normal (vector) state of WI.

 PROOF. If a state such as w' exists, then, taking f to be 1, 1 = w(l) =W(xs),

 so that S does not lie in No (in M'), by definition of No (of M').
 If S does not lie in 9, (in 9d), there is a normal (vector) state w' of 2f such

 that the integration process wo induced by some state extension of w4) to C(X)

 assigns to xs a number t greater than 0. Let wc be defined by li(f) = wo(fxs)/t
 for f in C(X), so that w, is a state of C(X); and let w be the integration process
 due to wi, so that co(g) = cO(gxs)jt for g a bounded Borel function on X. Applv-
 ing the Schwarz inequality to the integration process coo, we have

 0 < I co(hs) ? _oo(h)1&,o(hxs)2! = o(4)(h))'coo(hxs)! = 0,

 with h a positive function in the kernel 3C of 4. Thus c4, the restriction of wI
 to ?, annihilates 3C, since 3C is generated by its positive elements, so that ' =
 w'o, with a' a linear functional on W. Since 0 is an order-homomorphisnm, the
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 representative f of the positive operator +(f) in 2a may be chosen positive,
 whence w'[4(f)] = xl(@) _ 0, and a' is a state of L. Moreover,

 cA,[ t)(f)] = co1(f) = coo(fxs) - C Aco(f) = t lo (f)I
 t t t

 that is, c' < co/t. Now c', being dominated by a multiple of a normal (vector)
 state &,o of 2F, is weakly continuous on the unit sphere of Xf, whence, as a special
 case of the remark following this lemma (by [7; Lemma 2.2]), co' has a normal

 (vector) state extension to 2F. The integration process co stems from co' and

 @(f) = I !O(fxS) = CO(AS),
 t

 which establishes the first assertion of this lemma.

 With S = {p} and co as above,

 O(f) = (fxP) = f(P)"(XP) = AP)

 so that the state f -* f(p) of ? is induced by a normal (vector) state of 2- if
 and only if {p} does not lie in 9l0 (in 94 )-which completes the proof.

 REMARK 2.2.3. If 2[i and 2f2 are operator systems acting on the Hilbert spaces
 3C1 and 3C2, respectively, and 4 is a positive linear mapping of 2[ into 22, then
 'p has an extension mapping ?IT into WY, which is weakly continuous on the unit
 sphere in W-1 if and only if the states A -* (O(A)x, x), x a unit vector in 3C2,
 of 2[i are each weakly continuous on the unit sphere 81 in 2[I at 0. Indeed, the
 necessity of this condition is obvious from the definition of "weak operator
 topology". On the other hand, if the condition obtains then 4 is weakly con-

 tinuous on 81 at 0 since the functionals B -* (Bx, x), x in 3C2, define a subbase
 for the weak operator topology in 2f2. Now the weak operator topology deter-
 mines a topological-linear and uniform structure, and X, being linear and con-
 tinuous at 0 on any sphere about 0, is continuous relative to the uniform struc-
 ture on 8Si. However, the unit sphere in 2[T is compact in the weak operator
 topology (as a consequence of The Tychonoff Theorem on the compactness of
 the product of compact sets) and is equal to S-, by [21, 5, 27]. Thus 4 has a
 (unique) weakly continuous extension 0o to S- (see e.g., [2; Theorem 1, p. 101]).
 The extension '0 of 4 from 2[ to 21T is now apparent. We note that Oo is order-
 preserving on W-1, since, with A positive in W-1, we have (4o(A)x, x) is a limit
 point of non-negative real numbers (4(B)x, x), B positive in 2[i. Moreover,
 for 4 to have the extension in question, it will suffice to show that the states
 A -> (q(A)x, x) above are weakly continuous at 0 on the set 8S1 of positive oper-
 ators in the unit sphere of 2[ . In fact, if this is the case, it follows at once that
 the states A -> (4(A)x, x) are strongly continuous at 0 on S+ ; whence, the com-
 posite mapping A -> (A+, -A-) -> (,(A +)x, x) - ('(-A-)x, x) = (4(A)x, x),
 where A+ = (I A I + A)/2 and A- = (A - I A 1)/2, is strongly continuous
 at 0 on the self-adjoint part Si* of 81, hence at 0 on k1S1 for each k > 0, and
 hence, by linearity, on all of Si. . From [5, 27] and linearity of A -* (4(A)x, x),
 we conclude its weak continuity on Si* and hence on Si.
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 The following definition introduces the refinement in the concept of "null

 ideal of a representation" necessary to handle the extension problem when the

 images of the representations under consideration have higher than countable
 decomposability character. This refinement is analogous to (and, in fact, gives
 a slight improvement of) the (best) refinement employed in the description of
 the multiplicity invariants of a self-adjoint operator (or commutative C*-alge-
 bra) on a non-separable Hilbert space.

 DEFINITION 2.2.4. "A (vector) null ideal band" of a representation 4 of a func-

 tion system as a concrete operator system (Sf, 3C) is a collection { 190 Ea I ( { Hq 1 Ea I)
 of null ideals 9L1 Ea(9 1 Ea) of restrictions 4) Ea. of 4 to countably-decomposable
 projections Ea in 2V (i.e., 4) Ea(f) = Ea4)(f)Ea), where {Ea} is an orthogonal
 family with sum I. We say that an ideal band b1 of a representation of a function

 system is contained in an ideal band b2 of another representation of the same func-

 tion system when there is a one to one mapping of b1 onto b2 such that the image of
 each null ideal in b1 contains that null ideal.

 THEOREM 2.2.5. (The Extension Theorem). An order-homomorphism 4), and
 an order-representation 4)2 of a function system (2, X) onto operator systems (21f , 3c1)
 and (9I2, 3C2), respectively, induce an order-representation 4 of W-1 into G2 such
 that 4) = 4)2 and which is weakly continuous on the unit sphere of W-1 if some null

 ideal band b1 = {19 iI Ea} of 4)1 is contained in a vector null ideal band b' = { 9' 21Fa }
 of )2 . A mapping 4 as described carrying Ea onto Fa , for each a, exists only if bi
 is contained in b2 = {9021 Fa }I With 4)i and 42 order-homomorphisms, 4 is an
 order-isomorphism hence a C*-isomorphism, and, thus, the direct sum of a *-iso-

 morphism and a *-anti-isomorphism of 21- onto W2 if either of the conditions bi = b2
 or b' = b' are satisfied and only if b1 = b2. In particular, if 21{ and W2 are count-
 ably-decomposable, 91, ,902 and 9% 1 % R2 are null ideal bands and vector null
 ideal bands, respectively, and may be used in place of their respective null ideal
 bands in the preceding statements.

 PROOF. We assume first that 41 is an order-homomorphism, 42 an order-

 representation, and that the null ideal band bi = {0 1 Ea} of 41 is contained in
 the vector null ideal band b' = {I42IFa} of 4)2 (i.e., 9 ~LiEa C 9%2IFa, for each a).
 We prove that the kernel 3C1 of 41 is contained in the kernel 3C2 of 4)2. Since 3C1
 is generated by its positive elements, it suffices to show that each positive
 function f in 3C1 lies in 3C2 . The set S of points p in X for which f(p) > 0 is an

 open Borel set, and, for each normal state X of EaJPEaX, w[4)1 I Ea(f)] = 0, so
 that S is a null set of the regular Borel measure induced on X by each positive

 extension of co4 I Ea from ? to C(X), i.e., S e 91,, . This being true for each
 such c, SE 9t,1l1Ea ; and thus S Ez 9S1FaX so that (4)2(f)x, x) = 0 for each x in
 the range of Fa . Since 4)2(f) is positive, it follows that 42(f)x = 0 for each such x,
 and therefore 4)2(f)Fa = 0. Hence 4)2(f) = 4)2(f) Ea Fa = Za?42(f)Fa = 0,
 and f is in 3C2 .

 Since 3Cx c 3C2, we conclude that 4 defined on 21, by: 4[)4(g)] = 42 (g) is well-
 defined. Moreover, if A > 0 and A is in W1, we can choose a positive f in ?
 such that 41 (f) = A, since 41 is an order-homomorphism, and, thus, +(A) =
 4'2 (f) is positive, i.e., 4 is an order-representation.
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 In view of the remark preceding this theorem, it suffices to establish the weak

 continuity on S+, the positive operators in the unit sphere of 21,, at 0 of each
 state A - (O(A)z, z) of W1, z a unit vector in 32, to show that 4 has an order-
 preserving extension mapping 2P1 into g2 which is weakly continuous on the
 unit sphere 8 of 21 . Suppose we have established that the linear functional

 A -* (O(A)za, za) on Wi is weakly continuous on s+ at 0, for each a, with Z, =
 FPz; and let ? > 0 be given. Since 1 = fl Z = Eafl Za l2 Za is 0 for all but
 a countable number of a, say a = 1, 2, . Then 1 = I z 11' = Ek 11 Zk 112
 whence, it is possible to choose a positive integer N such that EZkN+l fl Z1 2 <
 t2/36. Let xj', , xk,) be a finite set of vectors in XC1 such that if I (Ax~i, x~j)) i
 < l for i= 1, , kj and A in st, then I (O(A)zj, zj) < 8/12N (such vectors
 exist by weak continuity of the functional A -* (O(A)zj, zj) at 0 on S+). Suppose
 now that B is in S+ and that I (Bx~j), x( Jo) I < I for i = 1, , kj andj = 1, ,
 N. Let z' = z1 + + ZN and z = z - z'. Then

 (O(B)z, z) < I (O(B)z', z') I + 2 (O(B)z', z") I + (O(B)z", Z") I

 < Z k= I (O(B)zj, Zk) I + 2 z| "| + || z|

 < EZjk=I (k(B)zjzj)Y(k(B)Zk,, Zk) + c/2

 < Z j~=li e/2N + ?/2 = E

 whence A (O(A)z, z) is weakly continuous at 0 on S+ for each unit vector z in
 3C2, and 4 has the desired extension. (Note that with B positive [v, w] = (q5(B)v, w)
 is a positive semi-definite inner product on JC2, and that we have applied the

 Schwarz Inequality to this inner product to obtain the third inequality above.)

 It remains, therefore, to prove that the state co' of 21 defined by co' (A) =

 (O(A)z, z), with z a unit vector in the range of Fo and Fo in {Fa}, is weakly con-
 tinuous at 0 on S+ . We shall do this by extending co' from W, to a certain subclass
 of 21{ and establishing the countable additivity of this extension. The subclass
 in question is obtained from ?11 by a process like that employed in defining the
 Baire function class with the difference that we shall consider only monotone

 (directed) sequences. (Sequences are all we shall use in this connection, but we
 extend the discussion to include directed sequences because of its independent
 interest.)

 We begin by observing that it is possible to set up a correspondence between
 ordinals (attention may be restricted to ordinals whose cardinals do not exceed
 2Cd, with d the dimension of 3C1) and a class of subsets of 21-, each containing
 Wf* the self-adjoint operators in W1, so that if fi > 0 corresponds to 9Ib then
 Id consists of all operators AO which are the strong limit of monotone directed
 sequences { A z } in U s< Wa ; and so that 2[? = 21* . Moreover, the correspondence
 with these properties is unique. (We note, and shall make use of the fact, that
 in the foregoing statement and in all that follows concerning the operator classes

 Idthe results remain valid if we replace "directed sequences" by "sequences".
 In this case we denote the classes by WId).
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 Suppose that we have mapped each ordinal 8 < fi into a subset 2a of 21?{ so
 that the above properties hold for the ordinals less than F. Defining Id to be the
 set of operators in W1 which are strong limits of monotone directed sequences

 of operators in U s<0 21a and applying transfinite induction we have our assertion.
 The uniqueness of the correspondence is clear from its properties (by a trans-

 finite induction). We shall call 2Id "the fth monotone extension class of W1",
 and U,9 will be called "the monotone closure of 21" and denoted by 21 . (We
 use 9J' for the monotone sequential closure of 21 .) If A is an operator in 1',
 then by "the class of A" we shall mean the least ordinal fi such that A is in 9d .

 It is apparent from the defining properties that if 2I - 2+1 then 21 = Id
 for all y > fi, and that Id must repeat before the cardinality of : exceeds that
 of the subsets of all bounded operators on 3C1. Moreover, 91 is closed with
 respect to the process of taking strong monotone directed sequential limits, for
 if fi' is the least ordinal such that 91d' = Id J+ and A is the strong limit of the
 monotone directed sequence {A - } of operators in 21' (9= Id) then A is in d +1
 (= 91T), by definition.

 An elementary transfinite induction shows us that each class Id is closed with
 respect to multiplication by real scalars and addition of I or -I. We prove that
 21 is closed with respect to addition so that VW is a linear space. In fact, W? is
 closed with respect to addition. Suppose it is known that the sum of two opera-
 tors of class less than : is in 21, and let A and B be the strong limits of the
 monotone directed sequences of operators { As }X { Be }, respectively, each As and
 Be of class less than fA. Now As + B lies in Wm, for each 8, since it is the strong
 limit of the directed sequence (in y) { As + Be } of operators As + Be which lie
 in 91, by inductive assumption. Thus A + B, the strong limit of {AS + B},
 a monotone directed sequence of operators in 21, lies in 211; and 11 is closed
 under addition, by transfinite induction.

 We observe next that 21 is closed in the uniform (norm) operator topology.
 In fact suppose {An} tends uniformly to A with each An in VW. Replacing (An)
 by a suitable subsequence, which we again call (An), we can arrange to have
 fl B. 11 = 11 An - An11, n = 1,2, *2 * (with Ao = 0) less than 1/2', so that Bn
 < I/2n and

 I + Ek k= -Z I =l Ak + I1+ Ln=1K Bn - 2nE) = Bn + En-k+1 2n = 2k

 is a monotone decreasing sequence tending uniformly to A. Thus A lies in 21,
 and 21m is closed in the uniform operator topology.

 We prove that 21m is closed under the Jordan product (A, B) -* AB + BA, to
 which end it will suffice to show that the square of a positive operator in 21 lies
 in 21. Indeed, if this is done, choosing k larger than 11 B I, with B some operator
 in Wm we have B2 = (kI -B)2 - k2I + 2kB lies in W1 . Thus, with B and C
 in 21m, we have BC + CB = (B + C)2 - B2 - C2 in 21m. (We recall to the
 reader that 0 ? A < B does not imply A2 < B2-even for 2 X 2 matrices-so
 that, what otherwise might be the obvious approach to proving that WIm is closed
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 with respect to squaring, fails.) To begin, we show, by transfinite induction,

 that the inverse of a positive invertible operator in 21 lies in 91A . This is true
 for operators of class 0. Suppose that we have established it for operators of
 class less than A, and let A be a positive invertible operator in 21' which is the

 strong limit of the monotone directed sequence (A,), each A, of class less than d.
 Multiplying by some positive scalar, we may assume that A and each A, has
 norm less than 1, so that (I - A,) is a monotone directed sequence of positive
 invertible operators, I - A, of the same class as A, , by the foregoing results.
 Thus ([I - A]-') is a monotone directed sequence of operators in 21, by
 inductive assumption (monotone-from the fact that B-1 < C0 if B and C

 are positive invertible operators with C < B). Now ([I - A]-') has (I -A)-
 as strong limit (least upper or greatest lower bound), so that (I - A)-' lies in

 11 . By the same token, (I - tA) ' lies in 21, for all positive t not exceeding 1.
 If we have established that all powers of A not exceeding n > 1 lie in 2[' then

 [(I - tA) - (I + tA + t2A2 + ... + t-An)] = A n+1(I - tA-'

 lies in 21[, and A"-"-(I - tA)< tends monotonely to A"l as t tends to 0. Thus
 An+1 lies in 21, so that, all positive integral powers of A lie in 21' , by induction.
 This, together with The Spectral Theorem, The Weierstrass Approximation

 Theorem, and the fact that 21[ is closed in the uniform operator topology implies
 that A-' lies in 2B . Our assertion that the inverse of a positive invertible operator
 in 21[ lies in V1 follows now, by transfinite induction. If A is a positive operator
 of norm less than 1 in 21A , then (I - tA)-l lies in 9', when 0 < t < 1; and the
 argument given above, with n equal to 1, shows that A2 lies in !r . Thus 21 is
 closed under the Jordan product as asserted.

 We imitate the monotone extension class construction in the function space
 on X. More precisely, let 63 be the partially-ordered vector space of bounded
 Borel functions on X taken in their usual pointwise ordering; and let B be the

 quotient space of 63 modulo the order-ideal 9T of functions in 63 which vanish on

 the complement of a set in 91t,0 . We prove, by transfinite induction, that it is
 possible to assign to each ordinal : a set of elements Lo in P and a one to one
 mapping 4$ of Lo onto 21"S in such a manner that:

 (a) LP = L, the image of ? under the quotient mapping g - of 63 onto B,
 and 0?(J) = Xl(f), f in?.

 (b) an element f in P lies in LB, > 0, if and only if there exists a monotone
 sequence (Jn), fn in L-' with-Y < I, tending toy, i.e., each sequence of representa-
 tives (fn) tends to f pointwise on the complement of a set in 91, . Moreover
 41 (J) is the strong limit of (n [nf]).

 (c) if p' is a normal state of 211 and p is the integration process due to the
 regular Borel measure induced on X by any positive extension of p'41 from ? to
 C(X), then p(f) = p'k4(?)], for each f in Lo.

 (d) with f and g in Lo, o (J) > 4f (g) if and only if ] > 4. The correspondence
 with these properties is unique.
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 Condition (a) dictates our assignment to 0; viz., Lo = L and 4" (I) = cp(f),
 for f in L. Regarding this definition, we note that 91 n ? = 3Ci, so that 01 is
 well-defined. In fact, with f in 2 and 91, ()1(f)x, x) = 0 for each vector x in 3Ci,
 and thus +,(f) = 0, or f lies in iC1 . With f positive and in 3Ci, r[oi(f)] = 0 for
 each normal state r of 2h, so that the set of points where f differs from 0 (and

 so, exceeds 0) is a null set of 01 , andf lies in 91. It follows that L _ (Sc + 9z) /a 1_
 2/3Ci _ 2l, the isomorphisms involved being linear and, under the present
 assumptions, order-isomorphisms-the resultant mapping of L upon Wi is 4?.
 Indeed, the isomorphism from ?/3Cl to 2J1 is an order-isomorphism by hypothesis
 (01 is an order-homomorphism). If A is a positive operator in 211, there is a
 positive g in ? such that 01(g) = A, so that ? 0 and 4? (g) = A. If f is a posi-
 tive element in L, there is a function n in 91 such that f + n > 0,

 so that ()1(f)x, x) > 0 for each x in 3C1, and 41? (J) = 01 (f) > 0. This establishes
 (d) for 4? (conditions (a), (b) and (c) are clear, in this case).

 Suppose now that we have constructed La, o' satisfying conditions (a) through
 (d), for each a < f, and have established their uniqueness. According to (b),
 La is contained in L' if a' < a and, by uniqueness, 4la is an extension of 44 if
 a' < a. Let Lo be the set of all fin B which are the limits of monotone sequences
 of elements (Jf) in LInk , a < 3. Since the 01' are extensions of one another and
 (jn) is monotone, bounded by J in D and hence, by some constant, it follows
 from inductive hypothesis (d), that (0)1n(fn)) is bounded and monotone and,
 so, has a strong limit A which we define to be +$(f). Let g be the limit of the

 monotone sequence (On) In in Lo,", O < f, with (001n (On)) tending strongly to B.
 Suppose A ; B, and let p be the integration process due to the regular Borel
 measure induced by X by some positive extension of p'01, where p' is a normal
 state of 21 such that p'(A) > p'(B). By inductive assumption (c), pfn) =

 P [1)l (Jn)] and P(n) = p'[44fl(n.)]* The Monotone Convergence Theorem and
 normalcy of p' imply that p(fn) tends to p(f) and to p'(A), while P(On) tends to
 p(O) and to p'(B). (Recall that, by definition of 91So , fn and gn tend monotonely
 and almost everywhere to f and g, respectively, relative to p-measure.) Thus
 p(f) = p'[k0(f)] = p'(A), and p(O) = p'[00(0)] = p'(B), so that p(y) > p(O), and

 g f. Thus if g and ] lie in Lo and g > f then 4)() ? I (J). Taking g = we
 see that 4) is well-defined (i.e., the definition of +$(f) is independent of the se-
 quence (fn) chosen). The foregoing argument also establishes (c) for 00 (condi-
 tions (a) and (b) being apparent).

 To establish the remaining half of (d) for Lo and q5, suppose that 4) (f) ?
 1)0 (a), with f and 0 in Lo. If $ then the set S of points p in X such that g(p) >
 f(p) does not lie in 914, and is a Borel subset of X, whence, according to Lemma
 2.2.2, there exists a normal state p' of 21 such that integration p due to the regular
 Borel measure induced on X by some positive extension of p'41 from ? to C(X)

 has the property that p(f) = p(fxs), for each f in 6(, where Xs is the character-
 istic function of S. Thus p(O) > p(J). However, by (c), ace = '001 _/ Andre1A = i P(Ylrx _a
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 a contradiction. Thus f _ g, and (d) is established for Lo and 40 . It follows that
 41 is a one to one mapping.

 If A is an element of class A in 21' and (A.) is a monotone sequence of elements
 inl Ua g1 ~BLtending strongly to A, we can choose f,, (uniquely) in U h La, by
 inductive hypothesis, such that 40 (f) = An . From (d) we have that (fn) is
 monotone, so that (fn) converges on the complement X - S of a set S in 97Z"

 to a functionf in 63 (define f to be 0 on S). The elementf of B is in Lo and 44(f) =
 A, by definition of Lo and 4$. Thus 44 maps Lo onto 214, and the transfinite
 induction is complete, so that the assignment of ordinals f to classes Lo and
 mappings 40 with the stated properties exists.

 Let Lm be the union of all the Lo, and observe that, since the o4 's are exten-
 sions of one another, they define a mapping +, of Lm onto 18 . Aside from the
 properties of Lm and +, which are an immediate consequence of the properties
 of Lo and 4$, it is also the case that Lm is a linear space and +, is a linear iso-
 morphism of Lm onto 9A{.-as follows easily from the same transfinite induction
 argument employed to establish the linear character of 211 .

 Returning now to the state c' whose weak continuity at 0 on 8' we wish to
 prove, we note that w'4 = Add = W.02, so that c'4l has each set of 91Z4 as
 permanent null set (since 9"10 C 9lEo C Fo a YLi, by hypothesis). Let c" be
 the integration process due to the regular Borel measure induced on X by some

 positive extension of co'4, from ? to 0(X). From the preceding remark, c" annihil-
 ates 9T and therefore induces a state V' of B. Define w on WT. by: (fi() =
 C('(f). Since +, is a linear, order-isomorphism of L'7 onto 218, wc is a state of 2In,
 and with f in Lo,

 c[+1d)] = C"(f) = w'ki0(f)] = COW1(h],

 so that X is an extension of c'. If (An) is a monotone sequence in W' with A as
 strong limit and (f,,) is the monotone sequence in L'n tending to f such that fi(fr)

 = A, and j1(f) = A, The Monotone Convergence Theorem implies that
 Co'(fn) = w(A.) tends to ct"(J) = @(A). In particular, we conclude that c(J:,nEn)
 = Zn (En) for each countable orthogonal family of projections {E. } in 1' . (The
 apparent generality in the choice of a positive extension of cW'01 is illusory, for
 it is easy to show that the integration process co" restricted to Lm is the same for

 each such extension.)
 It is possible, at this point, to complete the proof under the assumption that

 21 is countably-decomposable (or just that 9k8 is countably-decomposable)

 with the hypothesis 91C , 2 In fact, with G a non-zero projection in 21'
 and x a unit vector in the range of G (so that co(G) < (Gx, x) = 1), if G does not
 have the property that @(F) < (Fx, x) for each projection F in 9I8 contained in
 G then, by Zorn's Lemma, there exists a non-null, maximal, orthogonal family

 JG' } of projections in 9I8 less than G such that w(G') > (Gnx, x). Let Go =
 G- nGn so that Go lies in 9W8 . Since

 (Gx, x) _ @ (G) > ZnW(Gn) > Zn(Gnx, x) = (nGt x, x,)
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 we have that Go # 0. From the maximal property of IG. }, we have that w(F) <
 (Fx, x) for each projection F in 21' contained in Go. We conclude that each
 non-zero projection G in 21' contains a non-zero projection Go in 21[ such that,
 for some unit vector x in the range of G, @(F) < (Fx, x) for each projection F
 in 21' contained in Go.

 Let {Gas} be a maximal orthogonal family of non-zero projections in A?1S with
 associated unit vectors x,, such that @(F) ? (Fxn, xn) for each projection F in
 18 contained in G. From maximality, EXG.L = I. It follows at once from the
 fact that each positive operator can be approximated as closely as desired, in
 the uniform operator topology, by positive finite linear combinations of its
 spectral projections (The Spectral Theorem), and the fact that w, being a state
 of 2[' X is continuous on 21' in the uniform operator topology, that W(A) <
 (Axn, x ) if the range of the positive operator A in 21'8 is contained in G,,.

 Let - > 0 be assigned, and let Hk = Ei=k+l Gj. Note that w(Hk) = Zi=k+1 w(G1),
 so that C(Hk) tends monotonely to 0. Choose k so that w(Hk) < -2/4, and let
 A be an operator in S+ such that (Ayj, y j) < 4 = 1, , jk, where y3 =
 Gjxj . Observe that

 c[(Hk + XA)2] = W(Hk) + XW(HkA + AHk) + X2W (A2) > 0

 for each real X, so that

 [- | W(HkA + AHk) 5]2 < &(Hk)W(A2) < /4.

 In addition,

 0 < (GiA1 + XA')(AlGj + XA') = GjAG3 + X(GJA + AG7) + x2A,

 for all real X, whence, as before,

 12c(GiA + AG3) <2 < (GiAGi)w(A) < w(G3AG3) < (Ayj, yj) /4k

 forj = 1, ,k. Thus

 2X(A) = Z=i w(G;A + AG3) + o(HkA + AHk) < Ek=i . + =e k

 and w(A) < e. It follows that w is weakly continuous at 0 on S+, and the proof,
 in the countably-decomposable case, is complete.

 Unfortunately the representations {fl I Ea } are not such that (not necessarily
 order-homomorphisms) the above result is applicable to them "piece by piece"
 so as to give the general result. Further, the fact that Eo is not necessarily in
 18 so that Eo0f{Eo and Eo0f{ Eo need not be algebras, lends to the technical

 complications. We shall require a good deal more to settle the general case, but
 we wish to note that when we obtain a completely-additive extension of W to
 JL, as we shall, the argument of the preceding two paragraphs may be applied
 almost unchanged to complete the proof. The families of projections involved
 will then be uncountable, but, with f Go } replacing { G, } , 1 = w(I) = AE w(Go) so
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 that at most a countable number G1, G2, ... of {Go} have w(Go) = 0. Defining
 Hk to be Ep1, ,k Go, the proof then proceeds as above.
 In order to deal with the general case, it will be necessary to obtain more

 information about 2Jj'8 . Specifically, we shall prove now that E Ale E = E j1*E,
 if E is a countably-decomposable projection in A[W. To this end, it will suffice,
 of course, to show that EA'E lies in E Ale E, for each operator A' in AJj which
 is positive and has norm 1. Let A be the positive square root of A', and let { Pn
 be an orthogonal family of projections cyclic under AJ with unit generating
 vectors { zn }, respectively, and sum E. According to [21], it is possible to choose
 An in 81 so that max { f (An - A)Akzf :k = 0, 1, 2;j = 1, , nj} < 2
 Since 8- is compact in the weak-operator topology, (An) has as weak limit point
 some positive operator B in 8- . In view of the choice of An X we have

 max { fl (An - An+)Akz; :k = 0, 1, 2;j = 1, , n} < 2.

 Thus, with Bn = (An+1 - An)+, n = 1, 2, - , and Bo = Al, En=, BnAkzJ
 converges absolutely, for k = 0, 1, 2. In addition, AnAkzj tends to Ak+lzj, for
 k = 0 1, 2. (Cf. [20] with the argument below.)

 Let Tk = (I + Zk= o Bn)-' and note that, since 0 < Tj-' < T-11 I 0 < Tk+l <
 TkX so that the strong limit T of (Tk) lies in g2{'i and is positive. For each k,
 T(Zdk =o Bn) T < 1. In fact for fixed v in JC2 I (T(Zk=oBn) Tv, v) is approximated
 as closely as desired by ([Ein=o Bn] (I + Zn=o Bn>'v, (I ? Zn=o Bn)-lv)X for
 sufficiently large r. This last term does not exceed ([ZE 0 Bn] (I ? Zn=o Rn) 'v
 (I + Zn=o Bn)'v) for r > k, and (n=o Bn) (I+ En=o Bn)2 < I, by Spectral
 Theory-whence, our assertion. With t a positive integer, T(Zn=t Bn)T <
 T(EZk=0 Bn) T < 1. Moreover, T(Zk=t Bn)T is monotone increasing with k,
 so that its strong limit, Ct. is less than or equal to I and a positive operator in
 Se . Of course, Ct > Ct+1 > 0, so that Ct has a positive strong limit C in W8 -
 In addition, T(Ek=o Bn)T + Ck+l = Co I so that

 Co + T(Z n (An+1 - An))T = T[A1 + En ((An+l -An)+
 ? (An~1 - An))]T + Ck+l = T[A1 + EkZ=1 (An1 -

 + Ck+l = TAk+lT + CkAl,

 which is monotone decreasing and positive, and so has a positive, strong limit
 in 218 . This limit must be TBT + C since, TAkT tends weakly to TBT and Ck
 tends strongly to C. Thus TBT lies in 21 a

 We observe next that, for each w in 3C1, by choosing r large enough, we can
 approximate (T(Akz ? + n=o BnA'z ) w), k = 0, 1, 2, as closely as desired by
 (Akzj + EZ=o BnAkZj X (I + Er=o Bn)-'w) = (AkZj w); so that

 T(Akz + EZ=o BnAkz;) = Akz I k = 0,1, 2;j = 1, 2, ,
 and the range projection F of T is such that FAkzj = Akzj.

 The real-valued function, gn, defined as 1/t for t ? 1/n and 0 for t < 1/n is
 the pointwise limit of a monotone decreasing sequence of continuous functions,
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 so that gn(T) lies in 2Ii's (by Spectral Theory). Thus, defining Gn to be gn(T)T,
 for n > 1 and G1 to be 0, Gn is a spectral projection for T lying in 2[' , and
 gn(T)TBTgm(T) + gm(T)TBTgn(T) = GnBGm + GmBGn lies in Sfme, since
 WT. is closed under Jordan multiplication. Moreover, (Gm) is monotone increas-
 ing to F, which lies in 2[1.

 Let H,, = Gn+1-Gn 7 n = 1, 2, * , so that EnrH, = F. We have that

 (HmBHn + HriBHn)2 = HmBHnBHm + HnBHmBHn X

 for m P n, as well as HrBHmBHn Xlie in W'JS and are positive. Thus

 Zn=i(HmBHnBHr, + HnBHmBH,,) = HmBFBHm + En=iHnBHmBHn

 converges and lies in A" ; whence

 Hm(HmBFBHm + n=, HnBHmBHn)Hni = HmBFBHrn + HmBHmBHm,

 and hence HmBFBHm lies in WT, . Now

 (HmB iHn + Hn)(HnBHm + HO)

 = HmBHnBHm + Hm,,,BHn + H.BHrn, + Hr, _ 0,

 so that HnBHmBHn + HmBHnBHm + HmBHn + HnBHm + Hn is positive and
 lies ' . It follows that E =1 HnBHmBHn + HmBFBHm + HmBF + FBHrn, +
 F lies in W" , so that, from the foregoing, HmBF + FBHm lies in S" . Again

 (HmBF + FBHm)2 = HmBFBHm + HmBHmBF + FBHrnBHm + FBHmBF

 and

 HmBHm(HmBF + FBHm) + (HmBF + FBHm)HmBHm

 = HmBHmBF + 2HmBHmBHm + FBHmBHm

 lie in 2I'; so that HmBHmBF + FBHmBHm, and hence FBHmBF lie in 2M
 (recall that HmBFBHm is in 2e). Now FBHmBF is positive so that >iFBHmBF
 = FBFBF = S lies in 2M . Since (AnAkzj), k = 0, 1, 2 tends strongly to Ak+lzj
 and weakly to BAkzj, BAkzj = Ak+lzj . We have Szj = FBFBFzj = A2z, =
 A'zj, so that S 2[zj = A' 2'lzj X and SPj = A'PJ . It follows that SE = S> Pi
 = A'ZP3 = A'E, and that EA'E = ESE lies in E W" E. Our assertion,
 E -1- E = E W" E, with E a countably-decomposable projection in A[, is
 established.

 Since Eo, the projection in tEa } corresponding to Fo in {Fal, is countably-
 decomposable, we have, from the preceding work, that Eo WIe Eo and Eo 2Ji Eo
 coincide. We define wo on Eo J18 Eo by taking wo(EoAEo), with A in 2K , to be
 w(A), and establish that wo is a (well-defined) completely additive state of
 Eo 2f8 Eo. In fact, let A be an operator in Ale such that EoA Eo > 0, and let f in
 Lm be such that k1(f) = A. Let f be a representative of f in (3 and S the set of
 points p in X for which f(p) < 0. We assert that S is in 010 I Y ; for if this is not
 the case, there is a normal state p' of Eo 2IPEo such that the integration process
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 p due to the regular Borel measure on X induced by some positive extension of

 P'41 I E0 from ? to C(X) does not have S as a null set. Now p" defined on 2I- by
 p"(B) = p'(EoBEo) is a normal state of 2E and p"01 = 0, i Eo . By Lemma 2.2.2,
 we have that there is a normal state H of 2f- such that integration r due to the
 regular Borel measure induced on X by some positive extension of r'40 has the
 property; i-(gx8) = r(g), for g in 63 and xs the characteristic function of S; and
 r' is dominated on 24 by a positive multiple of p". From [21], we can find a
 directed sequence AA,} of elements in S+ tending strongly to I - Eo, so that
 o ? T'(A.) < ~kp"(A) and (p"(A,)) tends to p"(1 - Eo) = 0. Thus r'(I - Eo) =
 0. Now r(f) = T(fxs) < 0, while

 T(f) = T'[i(f)l = 7'(A) = T'[EoAEo + (I Eo)AEo

 + E0A(I - Eo) + (I -Eo0)A(I -Eo )] = T'[EoA E] > 0

 (the first equality coming from property (c) of ?,, and the last equality coming
 from an application of The Schwarz Inequality to H' and the fact that

 T'(I- Eo) = 0). Thus S is in 9T, 1 E, as asserted, and therefore in 9 =
 It follows that

 w(A) = w[>i(J)j = @"(y) - w"(f) ? 0.

 We conclude from this that co is well-defined, for if EoAEo = 0, then w(A) ? 0
 and w(-A) > 0 so that w(A) = wo(EoAEo) = 0, and that wo is a state of
 EoW0IEo. For the complete additivity of w0, we observe that if AEo0AEo is a
 convergent sum of positive operators, EoAEo, A, in 2W, then at most a countable
 number of EoA4Eo are different from 0. In fact, by countable-decomposability

 of Eo, there exists a countable, orthogonal family {PJ} of cyclic projections in
 2W having sum Eo with generating vectors { y, }, respectively. For each n,
 E1(EoApEoYn, Yn) converges and each (EoAEoyn, yn) is real and non-negative.
 Thus, at most a countable number of terms are different from 0, whence EoAEoyn
 = EoAyn = 0 with at most a countable number of exceptions. It follows that

 2Yn = 0 and EOAP = 0 for all n with at most a countable number of

 A, excepted. Now, if E0APn = 0 for all n then EoAM EPn = EoAEo = 0. Let
 Al, A2, * be all A, such that EcAEo 5 0 so that wo(J:.E0A1Eo) =
 O (ZnEoAnEo) and ZMWo(EoAPEo) = Znxo(EoAnEo). Suppose now that the A,
 lie in 21T and that ,;E0AAEo = ZnEoAnEo = EoAEo with EoAEo positive;
 and letf, fin be functions in 63 such that d, (fn) = An,, l(f) = A. Since E0AnEo _ 0,
 it follows from the preceding remarks that the set So of points p in X such that

 f,(p) < 0 is i'll 9Z1EI, SO that f,, and f are greater than or equal to 0 almost
 everywhere relative to 910 lEo and to w"-integration. Moreover, EoAEo >
 En= EA nE0 , so that f >? Zn=Ifn, 9fl1 E0-almost everywhere, and g =
 Enc f. is an w"-integrable function (by The Monotone Convergence Theorem)
 c9 1Eo-almost everywhere less than or equal to f, with w"(9) = = w"(fn) <
 A" (f). If So , the set of points p in X for which (f - g) (p) > 0, does not lie
 in MO IEt, then, as before, there is a normal state H of Eo if-pEo such that the
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 integration process T has the property r(hxj,0) = T(h) for each h in (B. In
 particular, r(f - g) > 0 so that r(g) = E'= r(fn) = E'=1 T'[Eo01(fn)Eo] =
 0 r'(EoA.,Eo) = r'(Z=1 EoA.Eo) = 'r'(EoAEo) < r(f) = r'(EoAEo). Thus

 w"(g) = Elw= E (A=) = = Z.wo(EoAnEo)
 - w"'(f) = wo(EoAEo) = wo (EEoApEo),

 and wo is a completely additive state of Eo 21T' Eo (= Eo WT Eo).
 Finally, we define a completely additive state extension of w from W1TS to AL,

 which we again denote by w, as the composition of the completely additive,

 positive, linear mapping A -> EoAEo of ?IP onto Eo0?4 E0 and the completely
 additive state wo of Eo Wi' Eo . (The definition of wo makes it apparent that the
 state just defined is an extension of w.) That w' is weakly continuous at 0 onl 8+
 follows now, as indicated before, by the argument employed in establishing the
 same fact with 2[P countably-decomposable.

 The remaining assertions of this theorem are easily proved. In fact, with both

 41 and 42 order-homomorphisms and a null ideal band of 01 equal to a null ideal
 band of 02, the foregoing results imply that there exist mappings P and 4A such
 that 440 = 42 and I4/2 = (p1, with 4 and 41 weakly continuous on 81 and 82, respec-
 tively. Thus 414 is the identity mapping on W1, and 041 is the identity mapping
 on 12 . Moreover 4) and 41 have unique extensions + and A to W1 and Y2, respec-
 tively. Since 416 and ?s are weakly continuous on 8 and 8, respectively, and

 agree with the identity mappings on 81 and 82, we have that + and / are inverse
 to one another. Now A, being an order-isomorphism of 2W1 onto WY, is a C*-
 isomorphism, as follows from [17] and hence the direct sum of a *-isomorphism
 and a *-anti-isomorphism, as follows from [16]. (The foregoing remains valid
 under the assumption that a vector null ideal band of 41 is equal to a vector null
 ideal band of 1k2).

 With 41 an order-homomorphism, 02 an order-representation, an order-repre-
 sentation 4 of 2[- onto t2[ which is weakly continuous on 81, such that fr, = 0)2,
 and such that 4(Ea) = Fa with {E,. }, {F,,,,} orthogonal families of countably-
 decomposable projections in 9A- and 2, respectively, with sum I exists, only

 if the null ideal band { .,I E1,} is contained in the null ideal band { 1Z,4F}. In
 fact, if S lies in {9Z1 J and wa is a normal state of FOa 2JFo then Wo(F,,AF) =
 c,(A) and wo(B) = wa4(EaBEa), since wa(I - Fa) = 0 and wao4(I - Ea)
 -o(I- Fa) = 0. Now wmy is normal on E,2[TEas and

 Wa42 1 Fa = Wa2 = M(ogu1l-, waX401 I Ea

 so that S is a permanent null set of w a4. It follows that S lies in NtO2i Fa, and our
 assertion is established. With 0 assumed to be an order-isomorphism as well,
 it is a C*-isomorphism [17], and carries countably-decomposable projections
 onto countably-decomposable projections, so that, by the preceding result, each
 null ideal band of 4l is a null ideal band of 42 . The proof is complete.

 We point out that the "null ideal band" refinement of the "null ideal" con-



 326 RICHARI) V. KADISON

 cept and the attendant technical complications of the above proof seem un-
 avoidable in the non-countably-decomposable case as we shall illustrate in
 Example 5.2.3.

 2.3. General remarks on the extension problem

 We make some comments concerning the extension problem and our proof of
 The Extension Theorem. Several of the points noted in this section and their
 proofs were observed in conversation with I. M. Singer-it is a pleasure to
 record here our gratitude for his stimulating comments and criticism at the final
 stage of this work.

 With regard to the statement of The Extension Theorem, the hypothesis
 bi c b2 is the weakest possible in this direction, since b1 C b' and b2C b . As-
 suming the existence of the mapping 4 as described, one can expect no more
 than bi c b2, for the mapping 0 will take normal states on W2 into normal
 states on 21f but need not take a vector state of W2 into a vector state of 2[j
 (depending on the situation of 2[ and W2 relative to their commutants 21, and 2

 The remaining chapters of this work will make it amply clear that countable-
 decomnposability of the algebras in question rather than the more familiar as-
 sumption of separability of the underlying Hilbert spaces (which implies count-
 able-decomposability) is the appropriate core situation with which to deal.
 Aside from the felicity of proof the assumption of countable-decomposability
 permits us and its appropriateness in dealing with the more general case, it
 allows us to draw conclusions at once about important situations not covered
 by the separability assumption. Indeed, a factor of type I1i is automatically
 countably-decomposable and so falls under the simpler case.

 Concerning the proof of The Extension Theorem, one may wonder at the con-
 sistent use of monotone sequences and the technical difficulties (identification
 of W' and Ed9J Eo) attendant upon their use. A more direct approach would
 seem to be the following. Let (An) be a sequence of operators in S' tending weakly
 to 0, so that (fr) in $, with 01(fi,) = Arm , tends to 0 in Li-norm for each pok,
 p a normal state of Wi. Unfortunately we cannot conclude from this that (fr)
 tends to 0 almost everywhere relative to pol, for then the set S on which (fr)
 does not converge to 0 would lie in 9>1 . It would follow then that (fr) tends to
 o relative to the L1-norm induced by wad (where w = w4 of the proof), i.e.,

 (w(A j)) tends to 0 and the proof would be complete. Even the fact that some
 subsequence of (fin) tends to 0 almost everywhere relative to PO, does not help,
 for the subsequence varies with p, and it may not be possible to choose one sub-
 sequence effective for each (directed sequences offer no solution). Now such a
 choice is possible for a countable family of p's, and it may be thought that, at
 least in the separable case, a countable, dense family of p's will suffice together
 with a continuity argument. This is not the case, for taking state extensions of
 pol (as opposed to linear functional extensions) from ? to C(X) loses touch with
 density properties (as can be illustrated by example). Again, the general nature
 of the state extensions rule out the possibility of dealing with a measure on X
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 with respect to which all the measures in question are absolutely continuous
 (even the extensions of a single state may not form a "bounded" family in the

 sense of absolute continuity). With (f,,) monotone (or almost everywhere mono-
 tone relative to 010A (fin) converges to some Borel measurable function f almost
 everywhere relative to I'l , and the sequence becomes amenable to the tech-
 niques available from our hypothesis. Critical use of this amenability is really
 made at only one point of the proof establishing the inductive step: L maps
 onto 1fS however, the proof being inductive, this feature of monotonicity
 actually pervades the entire proof. Our payment for the amenability of mono-

 tone sequences is the technical difficulty with 21 -
 Simplifying the conditions of The Extension Theorem, we can state:
 COROLLARY 2.3.1. If ? is a *-homomorphism of the operator algebra WI acting

 on the separable Hilbert space jC1 onto the operator algebra 212 acting on the Hilbert

 space 3C2 then 0 has a *-homomorphic extension mapping 21T into <2[ and weakly
 continuous on the unit sphere of 21T if and only if 0,W contains the canonical null
 ideal M(2[1) of t, the canonical isomorphism o; the representing function system
 (S. X) of 21 onto 1i .

 PROOF. Take X, as C and O2 as ho in The Extension Theorem, and observe that
 our present 0 is the 0 of that theorem. Now ? being weakly continuous on ST
 and a *-homomorphism of 2h into 12 Xit follows at once, from a limit argument,
 that 0 is a *-homomorphism of 2[7 into (2. The converse is immediate.

 In Example 5.2.1, we shall present an instance of an isomorphic mapping
 between abelian C*-algebras which, while it has an extension (weakly continuous
 on the unit sphere) to the weak closure, does not have an isomorphic extension,
 so that the inverse of the original isomorphism does not admit an extension to
 the weak closure. Thus, even under the most stringent conditions, extension is
 not generally possible, and some added conditions are necessary such as the null

 ideal hypothesis. It is a triviality that the so-called "weighted spectrum", i.e.,

 the family of normal states of 21P brought back to O via 01, is an extension in-
 variant, from the first few lines of the proof of The Extension Theorem, and,
 indeed, the substance of the entire proof is the reduction of the null set hypothe-
 sis to the "weighted spectrum" condition.

 From another viewpoint, the null set hypothesis and The Extension Theorem
 may be thought of as a "Galois-like" statement and situation. Identifying regu-
 lar Borel measures on X with their integration processes on 6(, we have a family
 (B' of positive linear functionals on 6B continuous with respect to some topology
 (defined by regularity). Given a cone VC' in B', we can ask for its positive kernel
 SC in 63 and the annihilator of XC in 6V'. In the countably-decomposable case, the
 substance of the proof of The Extension Theorem is that, with 3C' the regular
 integrations in ' induced by all positive extensions from ? to C(X) of all pol,
 p a normal state of A[, this annihilator is precisely 3C'. The duality property
 indicated is not valid in general, and seems, in the case we consider, to depend
 upon all of the special structure involved.

 In the next section we shall discuss the question of representations of general
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 function systems. For the present, however, disregarding kernel, i.e., dealing
 with isomorphisms, we note that the representing function system (on the pure

 state space W) is minimal, and the representation on the full state space S is

 maximal. Indeed, with (2, X) a function system such that 2 separates the

 points of X and 0 an order-isomorphism of 2 onto the operator algebra A[, each
 point p induces a state p, of 2f defined by p,(A) = 0-'(A)(p). The mapping
 p -> p, is one to one, since 2 separates points of X, and continuous. In fact,
 an arbitrary subbasic open neighborhood of p,0 in 8 is given by an operator A

 in 2f and consists of all states p such that I p(A) - ppo(A) I < 1. Now F-1(A) is
 continuous, so that the set of points p in X such that

 1 > i 0-'(A)(p) - -(A)(po) i = I pp(A) - pp (A)

 is open. Thus the mapping p pp is a homeomorphism of X into 8, since this
 mapping is one to one and continuous, and X is compact. In this sense, S is

 maximal. We think now of X imbedded in S by the process just described. Re-
 stricting the functions in ? to d', the closure of the set of pure states of 21, is an

 order-isomorphism. Via this restriction mapping, then, each pure state p of 21
 is a pure state of ?, acting on X, which has a pure state extension to C(X). This

 extension corresponds to a point p of X. Now p and p as points of S do not

 separate 2, so that p = p, and each pure state of 21 lies in X. Since X is compact
 in 8, X is closed and contains P, so that a, is minimal. In particular, if the alge-
 bra 2f is concretely represented upon the Hilbert space 3C and V denotes the

 closure in S of the family of vector states of 21 then V contains (P, since 21 is
 represented upon V in an order-isomorphic fashion. If 21 acts irreducibly upon
 SC then, as is noted in [43], each vector state of 2f is a pure state, so that V
 coincides with 1'.

 If (2, X) is a function system and 01, 02 are order-isomorphisms of 2 as con-
 crete operator systems (2f, 3C1), (12, C2), respectively, such that each normal
 (vector) state of V1i, ,I2 induces a state of ? corresponding to a point of X, it is
 a simple matter to determine whether 0l and 42 admit the "extension" 4. In
 fact, suppose 9Z, (or 01') is contained in o'02 (or 01' 2). If p is the point of X
 corresponding to a normal (vector) state of Al , then the state f -> f(p) of C(X)
 induces a regular Borel measure on X which assigns to the set {p} whose only
 member is p measure 1, so that {p} is not in ( Moreover, if {p} is not

 in (90,), then, according to Lemma 2.2.2, the state g -+> g(p) of ? is induced
 by a normal (vector) state of 21T. Thus the normal (vector) states of W17 are
 precisely those corresponding to points p of X such that {p} does not lie in

 S (s4 1). Of course, the same considerations apply to 21k, so that a normal

 (vector) state corresponds to a point p such that {p} does not lie in 9Th12@Tho2)
 and therefore, by hypothesis, not in 91Z (04 1); whence to a normal (vector)
 state of 21T . The extension result follows for this situation. In particular, if
 (S. X) is a function system with X the full state space of S, and Xl, 42 are order-
 isomorphisms of 2 as operator systems, the extension result follows from the

 simple remarks just made. If (S, X) is a function system and Xl, 02 two order-



 REPRESENTATIONS OF OPERATOR ALGEBRAS :32 9

 isomorphisms of 2 as concrete operator systems (2t, sC1), (A2 , 3C2) such that
 91[ and 212 act irreducibly upon X1 and 3C2, respectively, then, by the fore-
 going, X contains the pure state space of ?, %f, f2 which is the vector state
 space (i.e., w*-closure of the set of vector states) of li , 212, and, again, the
 extension result follows. Thus, dealing only with essentials, we have the exten-
 sion result easily if X is large enough (for example, if it is the state space of ?)
 which is automatically the case when the representations in question are irre-
 ducible.

 2.4. Remarks on applications of the extension theorem

 Although our later applications of The Extension Theorem will refer to repre-
 sentations of C*-algebras, we wish to point out the methods of and reasons for
 applying this theorem to the more general situation it encompasses. In the first
 place, we have discussed certain types of order-representations of function sys-

 tems other than the representing function systems of C*-algebras. While each
 C*-algebra has a function system canonically associated with it its repre-
 senting function system-it may be difficult, when dealing with specific C*-
 algebras or classes of C*-algebras, to determine the pure state space and the
 representing linear space of functions on it. However, it may be possible to find
 some other compact Hausdorff space and a linear space of functions on it, more
 evident from the description of the algebra and order-isomorphic with it. For
 this reason, it is important for us to have a theory applicable to representations
 of function systems more general than those canonically associated with C*-
 algebras.

 Secondly, we have discussed the Jordan algebras of self-adjoint elements in a
 C*-algebra and C*-homomorphisms of these as well as C*-algebras and their
 *-homomorphisms. This generality merits attention by virtue of the fact that
 the representing function system of a C*-algebra, through which we shall in-
 vestigate the multiplicity structure of its representations, characterizes the
 C*-algebra algebraically only up to C*-isomorphisms, i.e., characterizes only the
 Jordan algebra of self-adjoint elements in the C*-algebra (see [17]).

 To obtain the more general form of The Unitary Invariants Theorems from

 the results of Chapter IV, we proceed as follows. The definition of multiplicity
 function of a representation of a C*-algebra (Definition 4.4.1) applies directly
 to an order-representation of a function system as an operator algebra. The
 Unitary Invariants Theorems apply to order-homomorphisms of function sys-
 tems, and give conditions for their "semi-unitary equivalence"-this being the
 direct sum of a unitary equivalence and the composition of a conjugate unitary
 equivalence followed by the *-operation. The proofs proceed in precisely the
 same way as the proofs of The Unitary Invariants Theorems. The equality of
 the multiplicity functions, now, establishes a C*-isomorphism between appro-
 priate parts of the rings in question. According to [16], a C*-isomorphism of a

 ring is the direct sum of a *-isomorphism and a *-anti-isomorphism. The mate-
 rial presented in Chapter IV handles the portion on which the mapping is a



 330 RICHARD V. KADISON

 *-isomorphism. The portion on which the mapping is a *-aItiisomorphism is
 dealt with in the same manner, making use of the fact that a *-anti-isomorphism

 between rings which have, together with their commutants, joint generating
 vectors is implemented by a conjugate unitary transformation followed by the

 *-operation, in place of The Unitary Implementation Theorem. It may be of
 value to sketch a proof of this variant of The Unitary Implementation Theorem

 at this point in view of the facts that the proofs of both results are nearly identi-

 cal and that we make vital use of these theorems.
 Let (R1 and R2 be rings of operators with x' and y joint generating vectors for

 G1R, G0 and (R2, ,(R2 respectively, and let 0 be a *-anti-isomorphism of (RG onto
 (R2. The state A -> (O(A)y, y) of (RG is a normal state and therefore corresponds
 to a vector state, A -> (Ax", x"), since Gh has the separating vector x' (by a
 proof close to that in which we concluded the continuity of w' from its count-

 able-additivity on 2[' in the countably-decomposable case of The Extension
 Theorem, see [3]). It is obvious that x" is separating for Gh, so that [&Rx"] =
 [21Rx']; whence [(1ix"] -- [(Rix'], by [28; Lemma 9.3.3]. Let V' be a partial isome-
 try in (R' mapping [(lix"] onto [dlRx'], the entire Hilbert space, and let x be V'x".
 It is easily seen that x is a generating vector for dh, and, since (Ax, x) =
 (AV'x", V'x") = (Ax", x") = (4(A)y, y), x is separating for dh. The mapping

 J taking Ax onto o(A)*y is densely-defined, conjugate-linear and norm-pre-
 serving, in view of the foregoing equality, and therefore has a unique conjugate

 unitary extension. It follows easily that (JAJ-l)* = O(A), as we wished to show.
 Our intent in stating the results of Chapter IV in terms of representations of

 C*-algebras was to avoid a tedious and confusing duplication of hypotheses and
 conclusions and to deal directly with the more familiar constructs of the subject.
 We stress the fact, however, that the theory is intended to cover the more gen-
 eral situation just discussed, and we envisage applications in this more general
 form.

 CHAPTER III. SOME RING OF OPERATORS PRELIMINARIES

 We gather together various general results concerning rings of operators
 which we shall need in the succeeding chapters. These results deal with proper-
 ties of projections in rings of operators, and the chapter is divided into sections
 containing results centered about particular properties. The first section deals
 with central carriers and separating properties; the second develops a dimension

 theory for projections in a finite ring of operators; and the third deals with cy-
 clicity and countable-decomposability.

 3.1. Central carriers

 If A is an operator in a ring of operators dR and { Pa } is a family of central
 projections in 6R such that PaA = 0 then PA = 0, where P is the union of { Pa } .
 Indeed Ax is orthogonal to the range of Pa for each a, hence to the linear span
 of their ranges, and thus to the range of P. We define the central carrier of A to
 be I - P where Pa runs through all central projections in 6R such that PaA = 0
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 and we observe, in view of the previous remark, that CiA = A, where CA de-
 notes the central carrier of A. It is clear that CA may also be defined as the inter-
 section of all central projections Q with the property QA = A.

 The following lemma is an extension of [28; Theorem III, p. 140] to rings of
 operators. The proof of [28] with trivial modifications yields this result. We give
 a shortened version of this proof more iIi the spirit of our treatment.

 LEMMA 3.1.1. If R is a ring of operators with commutant ;i' Bj, i, j = 1, ,
 are operators in Ci; and B$j, i, j, = 1, * , n are operators in Ci', then Ek BkBBj = 0,
 i, j, = 1, * , n if and only if there exist central operators Aij, i, j = 1,.,
 such that Ek BikAk3 = 0, jj = 1, , n, and Ha Ak ikBkj = B$j, i, j = 1, n.
 In particular, BB' = 0 with B in (RI B' in VR' if and only if CBCB' = 0.

 PROOF. The stated condition is sufficient in order that E. BikBkj = 0, for

 0 = D2h D: BikAAhB'j = ZAf Bik Eh AIhBXJ = Ek BikBj-

 Suppose now that Ek BikB.j = 0, i, j = 1, I Let E be the 71 X ii
 matrix ring over i'; B the matrix (Bij), Pn = (A ij) be the union of all projec-
 tions in (R' which are annihilated under left multiplication by B, with Aij in
 i'. We show that each Aij lies in the center of i'. To do this, Iwe must show that
 Pn commutes with each diagonal matrix Qn all of whose entries are Q', some
 projection in i'. Clearly BQ$Pn = 0, so that the projection on the closure of
 the range of QnPn is annihilated under left multiplication by B and, hence, is
 contained in Pn . Thus PnQnPn = QnPn , so that PnQn = (PnQnPn)* = Q1 P$.
 Hence Aij is in the center of i'.

 The matrix B' = (B.j) satisfies BB' = 0, by hypothesis, and, again, P'B' = B'
 or Ek A ikBj = B$ jI i, j = 1, * , n. Moreover, BP' = 0, so that ZkBikAkJ =
 0,i,j= 1, n.

 Finally, if CBCB' = 0, then 0 = BCsBCBB' = BB'; and if BB' = 0, then,
 from the above, there is a central projection P in Ci such that PB = 0, PB' = B',
 whence PCB = 0 and CB' < P. Thus CBCB' = 0, and the proof is complete.

 COROLLARY 3.1.2. If Ci is a ring of operators with commutant Ci' and F' is a
 projection in Ci', the kernels of the restriction mappings, A -, AF' and A -, ACF',
 of (R upon (RF' and (R upon (RCF', respectively, are identical.

 PROOF. According to Lemma 3.1.1, AF' = 0 if and only if CACF' = 0, which
 in turn is true if and only if ACF' = 0, from which our assertion follows.

 LEMMA 3.1.3. If 0 is an isomorphism of the ring of operators Cl1 onto the ring of
 operators (R2 and F1, F1 are projections in their commutants (Ri, (R , respectively,
 then the mapping + of (R1F1 onto (R2F2, defined by q,(AF') = 4(A)F2 is an iso-
 morphism if and only if 4(CF') = CF'2

 PROOF. If ,6 is an isomorphism of C1F' onto (R2F2 then P(CF;F1) = O(CF,)F2 =
 ,(F') = F2, so that 4(CF0) ? CF2. Applying this to A -1 -1(CF') _ CFe, SO
 that CFA ? O(CF;), and O(CF;) = CF2 . On the other hand, if O(CFI) = CFA, and
 q(AF') = o(A)F2 = 0, then, from Lemma 3.1.1, 0 = CG(A)CF2 = 4(CA)4(CF,) =
 (CAGCF;) so that 0 = CACF;, and A P' = 0. It follows that ,6 is an isomorphism
 of R1F1 onto (R2F'.
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 We remark that if GR is a ring of operators and F' is a projection in its com-

 mutant by, then OF' is the center of (RF/, where C is the center of (i. Indeed, it
 follows from Lemma 3.1.3, that (RCF' and IF' are isomorphic with GCF' map-
 ping onto eF'. However, it is trivial that CCF' is the center of RCF' , so that

 OF' is the center of (RF' as asserted. Now, by [28; Lemma 11.3.2], if E is a pro-

 jection in (R, E(RE is a ring of operators with commutant G'E when viewed as
 acting on E(3C), so that the center of E(RE is CE. Thus, if E is abelian in (R,

 E(RE = CE, and if F is a projection in (R contained in E then F = AE with A
 in C. It follows at once that A may be chosen as a projection P (in fact, CFA)
 in C. We may put the result just demonstrated in another form (for which we
 shall have later use): an abelian projection is minimal in a class of projections
 having the same central carrier.

 3.2. Dimension theory in finite rings of operators

 We develop a dimension theory for projections in a finite ring of operators
 without recourse to the trace function [6] on such rings. Our treatment of di-

 mension does not follow the treatment of [28] for factors and provides an alterna-
 tive method of developing the dimension function in factors.

 DEFINITION 3.2.1. A projection E, in a finite ring of operators R, which is the
 sum of b, orthogonal, equivalent copies of a projection F in (R, c, orthogonal equiva-
 lent copies of which have sum a central projection in R, is said to be a rational
 projection in (R with dimension b/c. (We define 0 to be rational with dimension 0.)

 If G is an arbitrary projection in R, the supremum u(G) of the dimensions of all
 rational projections contained in G is called the upper dimension of G. The infimum
 L(G) of u(PG) as P ranges over the non-zero central projections in R is called the
 lower dimension of G.

 We note some elementary consequences of the above definition.
 REMARK 3.2.2. If E is a rational projection in R with dimensions a/b and c/d,

 then a/b = c/d. In fact, observe first that if m/n is an integer, and, if the cen-

 tral projection P is the sum of n, orthogonal, equivalent copies of F, then F is
 the sum of m/n copies of G if and only if P is the sum of m copies of G. This
 follows easily from The Comparison Lemma and finiteness of R. Now, if [b, d]
 is the least common multiple of b and d, there is a projection G in R such that P,
 the central carrier of E, is the sum of [b, d] copies of G. Thus E is the sum of
 a[b, d]/b and c[b, d]/d copies of G. The finiteness of E tells us that a[b, d]/b =
 c[b, d]/d, which yields our assertion.

 REMARK 3.2.3. The projection E is 0 if and only if u(E) = 0. In fact, if E
 is 0 then u(E) = 0 as an immediate consequence of Definition 3.2.1. On the

 other hand, if u(E) = 0, and Fm is a rational projection of dimension 1/m, with
 CFm = CE, then E < Fm, for otherwise, by The Comparison Lemma, E con-
 tains a rational projection of dimension 1/m. Thus, from their definition and
 minimal property, the central carrier of E contains no abelian projections, so
 that there are rational projections F2. of dimension 1/2' with central carrier

 C(E. From the preceding remark, F2n > F2n+1 , so that we may choose the se-
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 quence IF2-1 descending and each containing E. The intersection of the F2r.
 has an infinite number of copies, and is therefore 0, by the finiteness of iR.
 Thus E = 0.

 LEMMA 3.2.4. If E is a projection in the finite ring of operators (R and Qa is a

 family of central projections in (R with union Q, then u(QE) = sup, u(QaE). For
 each positive real number r, there is a unique central projection Qr such that u(QrE) <

 r and Q, contains each central projection P such that u(PE) < r. Letting Q0 =
 I - CE and Qt = 0 for t < 0, {Q } is a resolution of the identity.

 PROOF. From Definition 3.2.1, it is clear that sup, u(QaE) < u(QE), since
 each rational projection in QaE is contained in QE. On the other hand, if F is a

 non-zero rational projection contained in QE, then CF < Q, so that CFQa' # 0

 for some a'. Thus Qa F(0 0) is a rational projection contained in Qa E with
 the same dimension as F, so that u(QE) < sup, u(QoaE).

 The second assertion of the lemma is obvious now if we take as Qr the union

 of all central projections P such that u(PE) < r. Clearly Qr < Qt if r < t, and
 Qt = I if t ? 1. Moreover, nr>oQr = I - CE, by Remark 3.2.3, above. Finally,
 nr>tQr = Qt, for clearly Qt -< nr>tQrI and, in addition, u[(nrf tQr)E] < t, so
 that nr>tQr 5 Qt ; and {Qr} is a resolution of the identity.

 We shall call Qr, constructed in the above lemma, the central portion of E
 for upper dimension r. We call the operator D(E) with resolution {Qr} the di-
 mension of E, and observe, as an immediate consequence of the nature of its
 resolution, that D(E) is bounded, positive, and central.

 LEMMA 3.2.5. If E and F are orthogonal projections in the finite ring of operators

 (R, then u(E + F) > u(E) + L(F.)
 PROOF. Suppose, first, that E and F are rational proj ections of dimensions

 a/b and c/b, respectively, such that CECF 5d 0. According to Lemma 3.2.4,

 u(E + F)

 = max {U[(CE - CECF)(E + F)], U[(CF - CECF)(E + F)], U[(CECF(E + F)] .

 Now CECFE and CECFF are the sums of a and c, orthogonal, equivalent copies,
 respectively, of a projection, b copies of which have sum CECF, so that

 CECF(E + F) is rational with dimension (a + c)/b. But

 U[(CE - CECF)(E + F)] = U[(CE - CECF)E] < a/b < (a + c)/b

 and UV(CF - CECF)(E + F)] < (a + c)/b, so that u(E + F) = (a + c)/b.
 Clearly, it was no restriction to assume that the dimensions of E and F have
 the same denominator.

 With E and F arbitrary orthogonal projections in R, choose a rational pro-
 jection 0 with dimension a/b > u(E) - e in E, where E is a preassigned, posi-
 tive number, and choose a rational projection G' in CGF with dimension c/d >
 u(CGF) - E. Then G + G' is contained in E + F, so that, by the foregoing,

 u(E + F) > u(G + G') = a/b + c/d > u(E) + U(CGF) -2E

 > u(E) + L(F) -2,
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 this computation holding even if CGF = 0 (in which case G' = 0). Since this
 inequality holds for each positive c, we conclude the desired inequality.

 LEMMA 3.2.6. Two projections E and F in a finite ring of operators aR are equiva-
 lent if and only if u(PE) = u(PF) for each central projection P in (R.

 PROOF. If E - F then PE - PF for each central projection P in R, so that
 u(PE) = u(PF), since equivalent rational projections have the same dimension.
 (Recall that, in finite ring, equivalences between projections can be implemented
 by a unitary operator in the ring.)

 If E and F are not equivalent, there is a central projection P such that, say,
 P'E < PF, and, by the first paragraph of this proof, we may assume that
 PE < PF. Let G be a non-zero rational projection of dimension d(> 0) con-
 tained in PF - PE. If we denote the upper and lower dimension functions of
 the ring iRQ, with Q a central projection in i, by UQ and LQ , respectively, then

 u(CGPF) > uic(G + CGPE) > UCG(CGPE) + LcG(G) = U(CGPE) + d,

 so that U(CGPF) > U(CGPE).
 LEMMA 3.2.7. If E is a projection in the finite ring of operators (R and X is the

 pure state space of the center C of (R, then

 u(PE) = sup { D(E) (x): P(x) = 1, x in X}

 L(E) = inf {D(E)(x):x in X}.

 PROOF. As we have done in the statement of this lemma, we employ the same

 symbol for a central operator and its representing function in C(X). Now Qt
 is the characteristic function of the complement of the closure of the set of
 points in X where D(E) exceeds t, with {Qt} the spectral resolution of D(E).
 Moreover the definition of Qt is such that if Q is a non-zero central projection
 in I- Qt then u(QE) > t. Thus if D(E) exceeds t at some point x such that

 P(x) = 1, then there is a non-zero central projection Q in P(I - Q,), so that
 t < u(QE) _ u(PE), and u(PE) ? sup {D(E)(x):P(x) = 1}. On the other
 hand, if t > sup {D(E)(x):P(x) = 1} then P < Qt, so that u(PE) < t. Thus
 u(PE) = sup { D(E) (x): P(x) = 1 }, from which, by continuity of D(E), extreme
 disconnectedness of X, [47], and the definition of L(E), it follows that L(E) =
 inf {D(E)(x):x in X}.

 THEOREM 3.2.8. (The Dimension Theorem). If R is a finite ring of operators
 acting on the Hilbert space KC, the dimension function D on R has the following
 properties:

 (a) D(E) > O and D(E) = 0 if and only if E = 0.
 (b) D(PE) = PD(E), with P in the center C of (R.

 (c) D(F) > D(E) if and only if E F.

 (d) D(Z E.) = ZD(E.), with {En } a countable, orthogonal family of projec-
 tions in (f, where F D(En) is understood as the supremum of the finite, partial
 sums in the complete, bounded lattice sense in C, the center of at.
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 (e) With R of type JJ1, the range of D is the set of all positive operators in the

 unit sphere of C. If (R is of type Jm, the range of D is the set of operators of the

 form ,o (j/m)Pj, with Pj } orthogonal central projections.

 PROOF. Ad (a): Lemma 3.2.7 and Remark 3.2.3 show that if E # 0 then

 D(E) > 0, since u(E) > 0.
 Ad (b): By Lemma 3.2.7, the supremurn of D(PE) on X - S is

 u[(I - P)PE] = u(0) = 0, where X is the pure state space of C and S is the
 set of points of X at which P is 1. Moreover, if P > Q then

 sup {(D(PE)) (x):Q(x) = I = u(QE) = sup {(D(E))(x):Q(x) - 11

 = sup I (PD(E)) (x): Q(x) = 1 } .

 Since D(PE) and PD(E) are continuous and have the same supremumr on each
 clopen subset of X, and since X is extremely disconnected, D(PE) = PD(E).

 Ad (c): If E is equivalent to F then PE is equivalent to PF for each central

 projection P, so that u(PE) = u(PF), by Lemma 3.2.6. As in the proof of (b),
 Lemma 3.2.7 and the continuity of D(E) and D(F), yield D(E) = D(F). If

 D(E) = D(F) and {P}, {IQ,} are the spectral resolutions of D(E) and D(F),
 respectively, then Pr = Q, for each r, so that u(PE) = u(PF), for each central
 projection P. In fact, if u(PE) = r then P < Pr and P $ Pt for t < r, so that
 u(PF) r. Thus, by Lemma 3.2.6, E - F.

 If F < E then F is equivalent to a subprojection of E which, by the foregoing

 has the same dimension as F. We can assume, therefore, that F < E. In this

 case r ? u(PrE) > u(PrF), so that Pr < Qr . Since { Pr,}, { Qr,} are the spectral
 resolutions of D(E), D(F), respectively, D(F) < D(E). However, if D(F) = D(E)

 then F - E, contrary to our assumption. Thus D(F) < D(E).
 If D(F) < D(E) then E is not equivalent to F and if F 4< E there is a central

 projection P such that PE < PF. Thus, from (b) and the above, PD(E) =
 D(PE) < D(PF) = PD(F), contrary to assumption. Thus F < E.

 Ad (d): We show, first, that if E and F are mutually orthogonal projections

 in R then u(E) + u(F) > u(E + F). According to Lemma 3.2.4, it suffices to
 establish this in the Im and I1i cases separately. In the Im case, however, the
 desired inequality is a simple consequence of the fact that the projections in
 question can be expressed as orthogonal sums of abelian projections and that
 abelian projections have upper dimension 1/m. We assume, henceforth, that
 R is of type II1 . We shall have occasion to consider the ring MP and projections
 PE, PF, where P is some central projection constructed during the argument,

 in place of Gi, E and F. This change will be effected by saying "restrict attention
 to P" and then dropping P from our notation, i.e., retaining the old notation.

 Let G be a rational projection in E + F with dimension d. We shall establish

 the desired inequality by showing that d < u(E) + u(F). Note that, under
 restriction to a central projection P such that PCG $ 0, PG is rational with
 dimension d and u(PE) < u(E), u(PF) ? u(F); so that establishing the in-
 equality in the restricted situation establishes it in general. To avoid the possi-
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 bility that some central projection constructed will be orthogonal to C<G, we

 begin by restricting attention to C<; . If CEOF = 0, then Lemma 3.2.4 establishes
 our inequality. We assume that CECF $ 0 and restrict attention to CECF .

 Let ? > 0 be assigned, and let G' be a rational projection of dimension 1/n

 where n is so chosen that nd is an integer and 1/n < -. Restrict attention to

 C,;, . Then G is an nd fold copy of G'. Suppose E admits p copies of G' with re-
 mainder E', so that u(E) > p/n. Since G' ,jS E', there is, by The Comparison
 Lemma, a non-zero central projection P such that QE' < QG' for each non-zero

 central projection Q < P. Restrict attention to P. Similarly, if F admits q

 copies of G' with remainder F', then u(F) > q/n, and, again, we can find a non-
 zero central projection R such that QF' < QG' for each non-zero central pro-

 jection Q < R. Restrict attention to R. Since E' < G', F' < G', E'F' = 0, and
 E' + F' is finite, E' + F' admits at most one copy of G' with remainder G".
 By restriction, we can arrange, once again, that G" < G'. Thus, under the indi-
 cated partitioning, E + F admits not more than p + q + 1 copies of G' with
 remainder G"( < G'). If nd were to exceed p + q + 1 then E + F would not be
 finite, for we could map the p + q + 1 copies of G' onto the same number of

 copies of G' among the nd copies of G' in G, and map G" properly into one of the
 remaining copies. Thus p + q + 1 > nd, so that u(E) + u(F) + 2e >

 (p + q + 2)/n > d. This being true for each positive c, we conclude that
 u(E) + u(F) > d, and, finally, that u(E) + u(F) ? u(E + F).

 From Lemma 3.2.7 and the last inequality, we have that the supremum of
 D(E) added to the supremum of D(F) over any clopen (closed and open) subset
 of X is not less than the supremum of D(E + F) over this set. The continuity

 of D(E), D(F), D(E + F), and the extreme disconnectedness of X yield
 D(E) + D(F) ? D(E + F). Employing the inequality u(E + F) > u(E) + L(F)
 of Lemma 3.2.5 and Lemma 3.2.7 in this manner, we conclude that D(E + F) >
 D(E) + D(F), so that D(E + F) = D(E) + D(F). Of course, we now have the
 corresponding result for any finite number of projections.

 Clearly, En=, D(En) < D(n=1 En), from the definition of 2j D(En) and
 the additivity of D on finite, orthogonal sets of projections in 6R. Suppose,

 however, that E D(En) < D(E En). In this case, we can find a clopen set
 S in X and a positive, rational number b/c such that PE D(En) < (b/c)P <
 PD(> En), where P is the characteristic function (central projection) of the
 set S, and such that P is the sum of c orthogonal copies of some projection E
 in 6R. Then, by (b) and finite additivity of D, we have D(E) = (1/c)P. If F

 denotes the sum of b copies of E, then D(F) = (b/c)P > PY D(En). By virtue
 of (c) and finite additivity of D, we can find an orthogonal family of projections

 {Fn} in R contained in F such that Fn--, PEn, so that S PEn Fn < F.
 Thus D(F) = (b/c)P > D(E PE.) = PD(E En), contrary to the choice
 of P. Hence D(Z En) j= D(En).

 Ad (e): From the argument above, we see that if a/b is any non-negative,
 rational number not exceeding 1, in case 6R is of type III, and with b = m if .(
 is of type Im, and P is a central projection, then (a/b)P is in the range of D.



 REPRE;SE NTATIONS OF OPERATOR AL(GEBRAS 3Ax7

 Now if 1n-I is an orthogonal family of central projections, Ian/bn are rational
 numbers of the above type, and IEsIn is a collection of projections in (R such
 that D(En) = (an/b,,)P,, ,then D(E PnEn) = E D(PnEn) = (a,1bn)P,,
 by (d), and thus E (a,/b,,)P,, is in the range of D.

 Now, from The Spectral Theorem, each positive operator A in the unit sphere

 of C is the uniform limit of a monotone increasing sequence A,, I of finite, linear
 combinations, with non-negative, rational coefficients not exceeding 1, of mu-

 tually-orthogonal, central projections (spectral projections for A). With (R of
 type Ill , each A,, = D(En) for some projection E,, in (i. Using (c), we can ar-
 range the E,, so that El <F 2 < *--.Define F1 = E1 and Fn = E,, - E,,-1
 Then JFn, is an orthogonal family of projections, and D(Zk_ F,,) =
 En=1 D(Fn) = Ak, so that En=1 Fn(= E), the union of IEn ,I has dimension
 D(E) = D(Z Fn) = D D(Fn) = lim A,, = A, by (d). If (R is of type Im.
 the range of D consists of operators EZ=n (J/rm)P,, with IPj an orthogonal
 family of central projections in (R.

 3.3. Cyclicity, separation and countable-decomposability

 We begin by noting that VIF' is countably-decomposable if (R is, with F' a
 projection in the commutant of i(. Indeed, with (R countably-decomposable,
 CF' is countably-decomposable, so that (GCF' is countably-decomposable. How-
 ever (ICF, is isomorphic to (RF', by Lemma 3.1.3, and isomorphisms clearly
 carry countably-decomposable projections onto countably-decomposable pro-
 jections.

 LEMMA 3.3.1. A central projection P in a ring of operators (t is the central carrier
 of a cyclic projection in (R if and only if P is countably-decomposable relative to
 the center e of (R. A cyclic projection in (R is countably-decomposable. Projections
 with the same generating vector (in (R and (V') have the same central carrier.

 PROOF. If E is a cyclic projection in (R with generating vector x and P = CE,
 and if {Pa}, IE0} are orthogonal families of projections in C and (i, respectively
 contained in P and E, respectively, then Ai, Pic 12 and ZB Ii EBX j2 are each
 not greater than fl x I1 and, hence, finite. Thus at most a countable number of

 terms of each sum are non-zero. However, if Eox = 0 then {0} = [GR'Eox] =
 [E0 Vx' I = EOE = EB, and if P,,,x = 0 then, similarly, POhE = 0, SO that 0 =
 P<,P = Paw, from Lemma 3.1.1. Thus {Pa}, {E01 have at most a countable
 number of non-zero members, and P and E are countably-decomposable.

 Suppose now that P is countably-decomposable, and let I Pn I be a (countable)
 set of projections cyclic under e' with sum P, each P,, with a unit generating

 vector x, . Let x = En xn/n. Then [e'x] = P, for [('x] contains [e'P,,x] =
 [E'Xn] = Pn, for each n. Letting [I'x] = E, we have that E < P, since i' is
 contained in C', i.e., PE = E. Moreover, if Q is in C and QE = E, then Qx = x,
 so that [E'xl = [C'Qxl = [Qe'x], whence P = QP. Thus P = C,, with E cyclic
 in (i. From this argument, we see that P is also the central carrier of [lRx], which
 establishes the last assertion of the lemma.

 We shall call a vector x "a separating vector" for the ring of operators (R,
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 when Ax = 0 for an operator A in 6R implies that A = 0. Clearly such a vector
 is a generating vector for I under 6', for I- [6R'x] lies in (I, annihilates x, and
 is therefore 0. On the other hand, if ['i'x] = I and Ax = 0, with A in iR, then
 [A f'x] = 0, so that A = 0, and X is separating for (R. Combining this with the
 first statement in the above lemma, we see that an abelian ring of operators GI

 which is countably-decomposable possesses a separating vector. In fact, I is

 the central carrier of a cyclic projection in (R, which must be I itself, since GR
 is abelian. From the foregoing, it follows that each generating vector for I under

 i' is separating for (R. This fact is basic to the classical abelian, multiplicity
 theory, and appears in each account of this theory in a slightly altered form.

 The version just noted appears in [32]. The first statement of Lemma 3.3.1 is

 the non-commutative extension of this result.

 We note for future reference that an abelian projection E which has a count-
 ably-decomposable central carrier is cyclic. In fact, by Lemma 3.3.1, CE is the

 central carrier of some cyclic projection F, and, since E is an abelian projection
 with the same central carrier as F, we have E , F, and E is cyclic.

 LEMMA 3.3.2. If (R is a ring of operators acting on a Hilbert space R, { Qk } is a
 countable family of orthogonal, central projections in (R, and {Ek } is a family of
 projections cyclic under (R such that Ek' Qk, then E' = Ek Ek is cyclic under (R.

 PROOF. Let Xk be a generating unit vector for Ek, Ik = 1, 2, , and let
 x = E=l xk/1k. Then [(Rx] contains [GRQkx] = [(RXk] = Ek, for each k, so that
 [(Rx] contains E'. On the other hand, E'x = x, so that E' contains [Gix]. Thus
 E' = [(Rx], and E' is cyclic as we wished to prove.

 LEMMA 3.3.3. If E and F are projections in a ring of operators (R such that E

 is countably-decomposable, F is purely-infinite, and CE < CF, then E , F. Two
 purely-infinite, countably-decomposable projections in (R are equivalent if and only
 if they have the same central carrier.

 PROOF. Assume that E AI F. Employing The Comparison Lemma and re-
 stricting (R to the central projection so obtained, we may assume that QF < QE
 for each non-zero central projection Q in R. Since CE ? CF, F does not become

 o under this restriction, and F is infinite. Thus, there is a partial isometry in (R

 mapping F upon a proper subprojection F1 , F, upon a proper sub-projection F2X
 and so forth. Clearly F - F,, F, - F2 X are orthogonal, non-zero, equiva-
 lent projections contained in F. Thus F contains an orthogonal, countably-

 infinite family {Fn} of equivalent, non-zero projections. Let {En} be a maximal,
 orthogonal family of projections contained in E, equivalent to Fn. By maxi-
 mality, E1 I E En X so that, by The Comparison Lemma, there is a non-
 zero central projection Q such that Q(E - A En) < QE1 - QF1 Since
 QE1, QF2, QE2 QF3, X * and Q(E- Z En) + Z QEn = QE, we see that
 QE $ QF, contradicting QF < QE. Thus E < F.

 If E and F are both purely-infinite and countably-decomposable, and CE =

 CF, then, from the foregoing, E , F and F < E, so that E - F. In general,
 if E and F are equivalent projections in (R, there is a partial isometry V in (R
 such that V*V = E and VV* = F; so that if PF = F then PV = PVV*V =
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 VV*V = V, and PV*V = V*PV = V*V, with P a central projection in (R.

 Thus QE = E implies QF = F, with Q a central projection in (i, and CE = CF .
 LEMMA 3.3.4. If E and E' are projections lying in a ring of operators (R and its

 commutant V', respectively, and E and E' have a joint generating vector (under V'
 and (R, respectively), then the finiteness of one of E or E' implies the finiteness of
 the other. A projection which is cyclic under a finite ring of operators is finite.

 PROOF. Suppose E is finite and E' is infinite. By restricting (R and i' to a
 suitable central projection, we can assume that E' is purely-infinite. If QE is

 abelian, for some non-zero, central projection Q, then QE' is abelian, by [28;
 Lemma 9.3.3], contradicting the pure-infiniteness of E'. Thus E can be expressed

 as the sum of two orthogonal projections F and G in (R with central carrier CE.

 Let x and y be generators for F and G, respectively, and let F' = [cRx], G' =
 [(Ry]. If F', say, were infinite, then there would exist a central projection Q such

 that QF' is purely-infinite (with central carrier Q < CE' = Cs , by Lemma 3.3.1)
 and countably-decomposable, so that QF' and QE' would be equivalent, by

 Lemma 3.3.3. It would follow from [28; Lemma 9.3.3] that QE and QF are equiva-

 lent. However, QE = QF + QG and QG ? 0, since CG = CE, so that QF is
 properly less than QE, contradicting the finiteness of E. Thus F' and G' are

 finite, so that, since E' is purely-infinite, there are two orthogonal projections

 F" and G" equivalent to F' and G', respectively, contained in E'. If V' is a
 partial isometry in i' mapping F' upon F", then

 F = [GR'x] ? [(R'V'x] ? [GR'V'*V'x] = [GR'x] = F,

 and [GRV'xI = V'[Rx] = F". Thus F, F" and G, G" have joint generating vectors
 (V'x, as shown, in the case of F, F") z and w, respectively. We have

 E = F + G ? [(R'(z + w)] > [R'F"(z + w)] + [GR'G"(z + w)j

 - [R'z] + [GR'w] = F + G = E,
 and

 F" + G" > [i1(z + w)] ? [(RF(z + w)] + [RG(z + w)]

 = [Gz] + [(Rw] = F" + G".

 From [28; Lemma 9.3.3], the finite projection F" + G" is equivalent to the in-
 finite projection E', a contradiction. Thus E' is finite.

 If E' in G' is cyclic under the finite ring of operators (R with generating vector
 x, then E = [(R'x] is finite, so that E' is finite.

 In connection with the first assertion of the following lemma, see also [42;
 Lemma 1.1].

 LEMMA 3.3.5. If the projection E in the ring of operators (R is finite and CE is
 countably-decomposable relative to the center e of (R then E is countably-decomposable
 relative to (R. If, in addition, (R' is purely-infinite then E is cyclic.

 PROOF. Let {Ea } be an orthogonal family of projections in (R contained in E.
 From the comments following Lemma 3.3.1, we can choose a separating unit
 vector x for CE (which is isomorphic to the countably-decomposable ring CCE).
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 Then, if (D(Ea)x, X) were non-zero for an uncountable set of a, some countable

 subcollection E1, E2, X. -would be such that oo = En (D(En)x, x) =

 (D(Z~ E,)x, x) < (D(E)x, x) = 1, where D is the dimension function on
 E(RE, a finite ring. Thus D(Ea)x = 0 for all but a countable number of a. But
 D(Ea) lies in eE, so that, by choice of x, D(Ea) = 0 and Ea = 0 for all but a

 countable number of a and E is countably-decomposable.

 If R' is purely-infinite, let {En} be a maximal orthogonal family of cyclic
 projections in GI contained in E with xn a generating vector for En . By maxi-
 mality, >in, E. = E. Let E' = [(Rx], so that E' is finite by Lemma 3.3.4.
 Since R' is purely-infinite, we can choose an orthogonal family {E / } in V' with
 E" , Em . As in Lemma 3.3.4, there exists a unit generating vector Yn for En
 and En . Then y = E yn/n is in the range of E and [GR'y] _ [GR'Eny] = [GR'yn] =
 En so that [GR'y] = E; and E is cyclic.

 We shall say that a cyclic projection E in a ring of operators GR is maximal
 cyclic when E < F implies F is not cyclic, and we shall say that E is absolutely,
 maximal cyclic when E < F implies F is not cyclic. Of course CE = I, for such

 an E and the center of dR is countably-decomposable. Since equivalence of pro-
 jections preserves cyclicity, an absolutely, maximal, cyclic projection is maximal
 cyclic, though the converse is not true. Indeed if E is absolutely, maximal cyclic

 and E < F then E - E1 < F, and I - E and F - E1 have equivalent, non-zero
 subprojections Eo and Fo, respectively. Then E + Eo - E1 + Fo and E1 + F0
 is cyclic if F is, contradicting the absolute, maximal cyclicity of E. Thus F is
 not cyclic and E is maximal cyclic. Clearly, equivalence preserves maximal

 cyclicity, though not absolute, maximal cyclicity. Thus, if I is cyclic it is cer-
 tainly absolutely, maximal cyclic and any subprojection equivalent to I is there-
 fore maximal cyclic without being absolutely, maximal cyclic. If E is maximal
 cyclic and P is a central projection in GI then PE is maximal cyclic in ?RP, for

 with F cyclic in GRP and F > PE, F + (I - P)E > E and F + (I - P)E is
 cyclic, by Lemma 3.3.2, contradicting the maximal cyclicity of E. Concluding
 these remarks, we note that all maximal, cyclic projections in GI are equivalent.
 In fact, if E and F are maximal cyclic and P is a central projection such that
 PE < PF then PE - PF, by maximal cyclicity of PE in GRP, so that E - F,
 by symmetry and The Comparison Lemma.

 Adapting the argument of [10; Lemma 1.2.8], we prove, along with Lemma

 1.2.8. of [10] itself:

 LEMMA 3.3.6. If (R and its cominnutant V' are purely-infinite rings of operators
 with a countably-decomposable center e, then GI contains a purely-infinite, cyclic
 projection with central carrier I. The class of maximal cyclic projections in dR is
 precisely the class of purely-infinite, countably-decomposable projections with cen-
 tral carrier I. If 61 is countably-decomposable, there is a central projection cyclic
 under 61 whose orthogonal complement is cyclic under GI'.

 PROOF. Let {x, } be a collection of unit vectors in the Hilbert space SC, upon
 which @ and V' act, maximal with respect to the property that {Ea }, { Eal
 are orthogonal families of projections in GR and V', respectively, Ea, Ea cyclic
 under G', dR, respectively, with generating vector Xa, and JEa} mutually equiv-



 REPRESENTATIONS OF OPERATOR ALGEBRAS 341

 alent projections with central carrier I. Any countable subfamily JE.} of {EEa
 has sum E which is cyclic under i' with generating vector x = En xn/n, for
 [6R'x] contains [R'Enx] = [(R'xn] = En, and x is in the range of E. (The family
 {Ea} is non-null, by Lemma 3.3.1.)

 If the collection {En} is infinite then E is purely-infinite with central carrier
 I, since the En are equivalent with central carrier I. We may assume, there-

 fore, that { En} is a finite set, E1, X * * * Ek . We shall establish, first, the existence
 of some purely-infinite, cyclic projection or, what amounts to the same thing-

 by restricting to a suitable non-zero, central projection, the existence of some

 infinite, cyclic projection. Thus, we may assume, for this purpose, that E1 is

 finite, whence E, being a finite sum of finite projections, is finite. Since E' =
 E' + ... + Ek has the same generator as E, we have by Lemma 3.3.4 that
 E' is finite. Thus I - E and I -E' are purely-infinite with central carrier I,

 so that, by Lemma 3.1.1, (I - E)(I - E') 5- 0, and, in fact, the mappings
 A -* A(I - E'), A' -* A'(I - E) of GR onto (R ( - E') and i' onto ('(I -E)
 respectively, are *-isomorphisms. Thus (I - E) (I - E') is purely-infinite and

 has central carrier I - E' relative to (R ( - E'), so that (I - E)(I - E') >
 E1(I - E'), according to Lemma 3.3.3. (Recall that E1 is cyclic in i, so that

 E1(I - E') is countably-decomposable in ?R(I - E').) Let Fk+1 be a subprojec-
 tion of (I - E)(I - E') equivalent to E1(I - E'). Then Fk+l is finite in

 WI- E')

 and hence cyclic under the purely-infinite ring (I - E')>R'(I - E'), according
 to Lemma 3.3.5. Let Xk+1 be a generating vector for Fk+? , and let

 Ek+1 = [(R'Xk+1]

 Then (I - E')Ekl = [(I - E')R'(I- E')xk+l] = Fk+l, so that Ek+1 is equiv-
 alent to E1, the mapping A -* A (I - E') being an isomorphism of 6R upon
 5R(I - E'), and Ek+1 is orthogonal to E1, . , Ek. Moreover, [iRXk+1] = Ek+
 is orthogonal to E', since E'Xk+1 = 0.

 The existence of the vector Xk+1 contradicts the maximal property of

 {Xi , . * Xk},

 so that E1 is infinite, and we have established the existence of a purely-infinite,

 cyclic projection in (i. Now, let {Fo I be a collection of purely-infinite, cyclic

 projections in (R maximal with respect to the property that { CF I is an orthog-
 onal family. Since C is countably-decomposable, there are at most a countable

 number of Far . By Lemma 3.3.2, F = , For is cyclic. Clearly F is purely-

 infinite and has central carrier P = F Cpa . However, (R( - P) and i'(I - P)
 are either purely-infinite or (0), (in case I = P). If they are purely-infinite,
 then R(I - P) contains a purely-infinite, cyclic projection (with central carrier
 in I - P, of course). This would contradict the maximal property of {Fa} , so
 that I = P, and F is the desired purely-infinite, cyclic projection with central
 carrier I.

 Since each cyclic projection in (R is countably-decomposable, it follows from
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 Lemma 3-3.3, that each such projection E in (i satisfies Es' 1ft, where F is the
 purely-infinite projection with CF - I, just constructed. Thus F is maximal

 cyclic in Gi, and only projections equivalent to F are maximal cyclic. From
 Lemma 3.3.3, again, this class is the family of purely-infinite, cyclic projections

 with central carrier I.

 We assume now only that it is countably-decomposable, and, returning to

 the beginning of the proof, we construct the family xa } as we did, dropping

 the condition that the projections in {Ea } be equivalent. Since GR is countably-

 decomposable, {Ea} is at most countable; we relable it as {En }, and note, as
 before, that E and E' are cyclic under i' and Gi, respectively with generating

 vector x (constructed as before). If (I - E)(I - El) 5? 0, a non-zero vector y
 in the range of (I - E)(I - E') adjoined to the set {x,} contradicts the maxi-
 mal property of this set, for [GR'y] and [Ry] are non-zero and orthogonal to E

 and E', respectively. Thus (I - E)(I - E') = 0, so that CI-ECI-E' = 0. Now
 I - C1 ?< E so that I - CI-E is cyclic under (i. Similarly, I - CI-E' is cyclic
 under i'. But CI-E? I- Cr-E', so that C0-E is cyclic under i', and the proof
 is complete.

 LEMMA 3.3.7. Each cyclic projection E in a ring of operators (R with countably-

 decomposable center C, is contained in a maximal, cyclic projection.
 PROOF. Clearly, the sum of maximal, cyclic projections in 5RP and cRQ, with

 P and Q orthogonal, central projections, is maximal cyclic in cf(P + Q), so
 that it suffices to establish the lemma in the cases in which ( is finite

 and purely-infinite.

 We note, first, that if dt contains a maximal, cyclic projection F our lemma
 follows. In fact, QF is maximal cyclic in (RQ, with Q a central projection in (i.

 Thus E < F, for otherwise there is a central projection Q such that QF < QE,
 contradicting the maximal cyclicity of QF in cRQ. Let R be a central projection

 such that QE < QF, for each non-zero, central projection Q in R, and

 (I - R)E (I - R)F.

 Let G be a subprojection of RF such that RE G. Then RF -G U< R - RE,
 for otherwise there is a central projection Q in R such that

 Q - QE < QF - QG,

 and, since QE QG, we would have Q equivalent to a proper subprojection of
 QF, so that Q ahd QF are purely-infinite. Then QE must be finite, for if not

 PE is purely-infinite for some central projection P < QCE < R, so that, by
 Lemma 3.3.3, since PF is countably-decomposable, PF < PE, contrary to

 the choice of R. Thus Q - QE is purely-infinite and, again, by Lemma 3.3.3,
 since QF - QG is countably-decomposable, QF - QG Q - QE, contrary to

 the choice of Q. Now, with RF - G -< R - RE and RE G, there is a pro-
 jection Eo in R, containing RE and equivalent to RF. Thus Eo + (I - R)E is
 equivalent to F, and is therefore the desired maximal, cyclic projection in (R
 containing E.
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 If (R and 6V are purely-infinite, it follows from Lemma 3.3.6 that &1 containsd
 a purely-infinite cyclic projection with central carrier I, and that this projec-
 tion is maximal cyclic in (R. We assume that one of M, V' is finite, say (R, and
 establish the existence of absolutely, maximal, cyclic projections in (R and i'.
 In fact, since C is countably-decomposable, it follows from Lemma 3.3.5 that W
 is countably-decomposable and from Lemma 3.3.6 that there is a central pro-
 jection P in (R such that P = [R'y] and I - P = [GRx]. If F = [GR'x] then F is
 absolutely, maximal cyclic in 61(I - P), for if F < [61'(I - P)z] then, by finite-
 ness of (i, F < [6R'(I - P)z], an impossibility, since then, I - P < [61(I -P)z],
 by [28; Lemma 9.3.3]. Thus F + P is absolutely, maximal cyclic in (R. In addi-
 tion, [Ryj is absolutely, maximal cyclic in cU'P. In fact, [GRy] is finite, by Lemma
 3.3.4, so that if [61y] < [LRPz] then [61y] < [61Pz], and P < [LR'Pz], as before,
 and this is impossible. Thus I - P + [GRy] is absolutely, maximal cyclic in ,'
 and the proof is complete.

 We observe some simple consequences of Lemma 3.3.7. If 4 is an isomorphismn
 of one ring of operators (R with a countably-decomposable center onto another
 such ring 612, then 4 preserves equivalence of projections, and if, in addition,

 4) and 4-1 preserve cyclicity of projections, then 0 (and 4-1) preserve maximal
 cyclicity and absolute, maximal cyclicity. On the other hand, if 4) alone is as-

 sumed to preserve maximal cyclicity, then 0 and 471 preserve cyclicity, so that
 4-1 preserves maximal cyclicity. In fact, if E is cyclic projection in ,i , then,
 by Lemma 3.3.7, E is contained in a maximal, cyclic projection, so that +(E) is
 contained in the image of this maximal, cyclic projection, and +(E) is cyclic. If

 +O(G) is cyclic, choose a maximal, cyclic projection F in (iR. Then G ; F, for
 otherwise there is a central projection P such that PF < PG, so that

 +)(P)+)(F) < +(P)+)(G),

 contradicting the maximal cyclicity of +(P)+)(F) in GR20(P). (Recall that

 +O(P)+O(G)

 is cyclic in G24(P).) Thus G is cyclic.
 THEOREM 3.3.8. (The Coupling Theorem). If (R and its commutant (R' are

 finite rings of operators with dimension functions D and D', respectively, and if
 E = [R'x], E' = [iRx], F = [dR'y], F' = [dRy], then D(E)D'(F') = D'(E')D(F).

 PROOF. In view of (b) of The Dimension Theorem, in order to establish the
 desired equality, it suffices to show that D(PnE)D'(PJF') = D'(PnE')D(PJF)
 for each projection Pn of a set {Pn} of central projections with union CECF.
 (From Lemma 3.3.1, CE = CE' and Cp = CF'). We take Pn to be the charac-
 teristic function of the closure of the set of points in X, the pure state space
 of the center e of i, at which each of D(E), D'(E'), D(F), and D'(F') exceeds
 1/n. We restrict attention to dlPn and dR'Pn. Thus D(E), D'(E'), D(F), and
 D'(F') are invertible.

 Clearly, it suffices to establish D(QaE)D'(QaF') = D'(QaE')D(QaF) for each
 projection Qa in an orthogonal family IQa,} of central projections with sum 1J
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 so that we may deal with cases where 6R is type II, and Im, separately. Denote
 by C and C' the images under D and D', respectively, of absolutely, maximal,
 cyclic projections in 6R and 6', respectively, so that D(E) < C, D'(E') < C',

 and C, C' are invertible. Let i/ be the mapping defined by 4/(D([GR'z])) = D'([6Rz])
 of the set of operators e1 in the range of D between 0 and C onto the set of

 operators C2 in the range of D' between 0 and C'. Note that [28; Lemma 9.3.3]
 and the properties of the dimension function listed in The Dimension Theorem
 assure us that each element of e1 is representable in the form D([R'z]), that

 the image of such an element under if is independent of the representation
 chosen, and that if is a one to one mapping of e1 onto C2 which is order-preserv-
 ing with an order-preserving inverse.

 If D(G) < C, and D'(G') = {I[D(G)], then there exists a vector z such that
 [(R'z] = G and [6Rz] = G'. In fact, by definition of if there is a vector w such
 that [(R'w] = G and D'([(Rw]) = 4[D(G)] = D'(G'). Thus, by (c) of The Dimen-
 sion Theorem, [61w] - G', and the existence of the vector z follows as in Lemma
 3.3.4. Now, if A, B and A + B lie in e1 and {t(A) + a,(B) lies in C2, then

 {I(A + B) = {I(A ) + JI(B).

 In fact, by (e) of The Dimension Theorem, we can choose orthogonal pairs of
 projections M, M' and N, N' each in 6, 6', respectively, such that D(M) = A,
 D(N) = B, D'(M') = {I(A), and D'(N') = 4f(B). By the foregoing remarks, we
 can find vectors z, w such that [6R'z] = M, [(Rz] = M', [(R'w] = N, and

 [(6w] = N'.

 Letting v = z + w, we have

 M + N ? [(R'(z + w)] ? [(R'M'(z + w)] + [(R'N'(z + w)] = M + N,

 so that [6R'v] = M + N, and, from this argument, [6Rv] = M' + N'. Thus

 {(A) + JI(B) = I[D(M)] + {I[D(N)] = D'(M') + D'(N')

 = D'(M' + N') = 4 [D(M + N)] = {(A + B),

 and if is additive where defined. The homogenity of if with respect to positive
 scalars follows on rational scalars from the additivity and on real scalars, since
 it is order-preserving, when if is defined on the operators in question.

 Thus Af has a linear, order-isomorphic extension mapping the linear space
 spanned by e1 onto the linear space spanned by e2. We denote this extension
 by Af again, and note that if is defined on each central projection P and has P

 as an image element both when 6R is of type II, and (6 is of type Im, sinoce C
 and C' are invertible and by the nature of e1 and e2 in the type II, and Im cases
 (as indicated in (e) of The Dimension Theorem). Let CO = {f(I), so that Co > C'
 and CO is invertible. Define the mapping r by r(A) = CO 1A(A), so that r is a
 linear, order-isomorphism with r(I) = I. By definition of if and r, and by
 Lemma 3.3.1, r preserves central carriers. Since

 I = r(P + I - P) = r(P) + r(I - P),
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 the preceding comments yield r(P) = P, for each central projection P), wvhetice.
 T is the identity mapping. Thus

 D(PnE) = r[D(PnE)] = Co t[D(PnE)] = Co-D'(PnE')

 and D(Pl'F) = CO D'(PF') so that D(PnE)D'(PnF') = D'(PnE')D(PF), as
 we wished to show.

 CHAPTER IV. UNITARY INVARIANTS

 The present chapter is devoted to the developments centering about rThe
 Unitary Invariants Theorem. The first three sections are concerned with a pre-
 liminary spatial investigation of a ring of operators and its commutant. The
 division into these sections is based on some of the possible combinations of
 finiteness and pure-infiniteness of the ring and its commutant. Each of the com-
 binations of these sections requires its characteristic techniques. The final sec-
 tion of this chapter welds the previous considerations into our main theorem,
 The Unitary Invariants Theorem.

 4.1. Rings with infinite commutants

 Discrete, finite and infinite, cardinal techniques dominate this section, the
 basic tool being a systematic study of the "coupling character" of central pro-
 jections as described in the following:

 DEFINITION 4.1.1. A central projection P in a ring of operators 6R acting on a
 Hilbert space SC is said to have coupling character b (relative to (R) when each count-
 ably-decomposable, non-zero, central subprojection Q of P is the sum of b orthog-
 onal, equivalent projections in 6R, each cyclic under 61' and Q cannot be expressed
 as a sum of fewer than b such projections. The ring 6R is said to have coupling char-
 acter b when I has coupling character b.

 We observe that the above definition assumes within itself the "purity" of
 the coupling character of a central projection which has a coupling character.
 That is, any non-zero, central subprojection of a central projection with coupling
 character b has coupling character b.

 LEMMA 4.1.2. If (R is a ring of operators acting on the Hubert space JC and

 Qa,}, a in S, is a family of central projections in (6 having coupling character b,
 then their union Q has coupling character b.

 PROOF. We may assume that the subscript family S is well-ordered. In order
 to show that Q has coupling character b, we must show that each countably-
 decomposable, central, subprojection P of Q is the sum of b, orthogonal, equiv-
 alent, cyclic projections and is not a sum of fewer than b such projections.
 However, since all the projections involved commute, P is the union of {PQa 1;
 and each PQa has coupling character b. It suffices therefore to deal with the
 case where the center C of 6R is countably-decomposable and to establish, in
 this case, that Q is a sum of b, orthogonal, equivalent, cyclic projections in iR
 and is not a sum of fewer than b such projections.

 We establish this result first for a monotone-increasing family of central

 projections f{Pa 1) indexed by elements of S, and, in the process, establish this
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 fact for a countable orthogonal family of central projections. Let G. be

 Pa - Uo<aPo.

 Since the Pa are well-ordered by inclusion, Lemma 1.2 tells us that the Ga are
 orthogonal and UaGa = U aPa = P. Since e is countably-decomposable, all but

 a countable number of Ga are 0. Relable the non-zero ones as G1, G2, X * . It
 follows from the fact that each Ga is contained in Pa, that Ga is 0 or has cou-
 pling character b. Let {Eke} be a family of b, orthogonal, equivalent, cyclic

 projections in 6R with sum (over oy) equal to Gk . Then, with E7 = Zk Eke, we
 see that Zk Gk(= P) is the sum of the b, orthogonal, equivalent projections
 {E7}. That each E7 is cyclic, follows from its definition and Lemma 3.3.2. If P
 were the sum of b', orthogonal, equivalent, cyclic projections {Fr}, then Gk
 would be the sum of the b', orthogonal, equivalent cyclic projections { GkF};
 and, since Gk has coupling character b, we conclude that b < b'. Thus P has
 coupling character b.

 We now make the specific choice Uo? aQo for Pa. Clearly the first Pa, being
 the first Qa , has coupling character b. If each Pa, a < 3, has coupling char-

 acter b, then, by the above, Ua<<Pa, QA - QO(Ua<OPa), and

 Q0 - Q0 (Ua<,BPa) + Ua<OPa( = P0)

 all have coupling character b. It follows, by transfinite induction, that each

 Po has coupling character b, so that, from the above, UaPa = UaQa = Q has
 coupling character b.

 LEMMA 4.1.3. If (R is a ring of operators acting on a Hilbert space SC of dimen-

 sion d, we can associate with (6 an orthogonal family of central projections {Pbl,
 indexed by the cardinal numbers b not exceeding d, such that Pb is either 0 or has

 coupling character b and such that Eb>1d Pb = I. If IQb } is a family of central
 projections in (R such that Qb is either 0 or has coupling character b and the union

 of {Qb} is I, then Qb = Pb ,forallb < d.
 PROOF. With b a cardinal number not exceeding d, let Pb be the union of all

 central projections in (6 with coupling character b. (Let Pb be 0 if there are no
 such central projections.) According to Lemma 4.1.2, Pb is either 0 or has cou-
 pling character b. If b and c are distinct cardinal numbers not exceeding d, then
 PbP, = 0, since, otherwise, PbP, would have coupling character b and c. Let
 P = I -bd Pb . If P is not 0, the class C of all cardinal numbers c with the
 property that some non-zero, central subprojection Q of P is the sum of c,
 orthogonal, equivalent, cyclic projections in R, is not empty. In fact, if P has
 a non-zero, abelian subprojection E, let {Ea } be a maximal orthogonal family
 of projections in GR equivalent to E; so that the Ea are necessarily cyclic and
 contained in P. (We may assume CE is countably-decomposable.) Since E is

 not equivalent to a subprojection of P - EaEa , by maximality of {Ea },
 there is a non-zero, central projection Q in P such that Q'(P - Ea) < Q'E,
 for each central Q' in Q. However, with E abelian, this can occur only if Q =

 FcQEa, so that Q is a sum of orthogonal, equivalent, cyclic projections in (i.
 We assume, henceforth, that P contains no abelian subprojection.
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 If P contains a non-zero, purely-infinite, central subprojection Q, let F be a
 non-zero, cyclic projection in Q and let {Fa} be a maximal orthogonal family

 of projections in R equivalent to F. As above, we find a non-zero, central pro-

 jection R in CF such that R(Q - Ea F,,) < RF. If {Fa} is a finite family and
 F1 one of its elements, then RF1 is purely-infinite, and the purely-infinite projec-

 tion R is the sum of R(Q - Za Fa)( <RFl) and a finite number of copies of
 RF1,. Thus R(Q - B , F,) + RF1, being the sum of two countably-decom-
 posable projections, one purely-infinite, is itself countably-decomposable and
 purely-infinite, and, hence, equivalent to each of the RFaX by Lemma 3.3.3.
 Thus R is the sum of the orthogonal family of equivalent, cyclic projections,

 {R(Q - g Fa) + RF1, RFa}a l . On the other hand, if {Fa} is an infinite
 family, let F1, F2, be a countable subfamily, and let En be a subprojection
 of RFn equivalent to R(Q - Aa Fa). Let G1 denote R(Q - Za Fa) + RF1 -E

 and Gn be En,- + RFn - , for n = 2, 3, . Then {Gn, RFa}n=1,2, ;ap1,2,
 is a family of orthogonal, cyclic projections equivalent to RF and having sum

 R. We note especially, for use in the lemma which follows, that we have just
 proved that if P is a purely-infinite, central projection and F a non-zero cyclic

 projection in P, then P contains a non-zero, central subprojection R which is
 the sum of an orthogonal family of projections equivalent to RF.

 Finally, with P finite and having no abelian subprojections, and with {Ga} a
 maximal, orthogonal family of projections in (R equivalent to a cyclic subprojec-

 tion, G, of P, we can again find a non-zero, central projection Q in CG such that
 Q(P - Za Ga) < QG. Since P is finite, {Ga} has a finite number of elements,
 say n. Employing Theorem 3.2.8, we find that

 (n + 1)D(QG) ? nD(QG) + D[Q(P - Ea Ga)] = Q)

 so that D(QG) ? Q/n + 1. Theorem 3.2.8 tells us that there is a projection E
 in P with dimension Q/n + 1, that E -< QG-so that E is cyclic, and that Q
 is the sum of n + 1 orthogonal projections equivalent to E.

 Thus, in any event, the class C is non-empty, as asserted. Let b be the least
 cardinal number in C, and let Q be a non-zero, central subprojection of P which
 is expressible as the sum of b, orthogonal, equivalent, cyclic projections. Clearly,
 from the minimal nature of b, Q has coupling character b. However, Q is orthog-

 onal to Pb , contrary to the construction of Pb . Thus P is 0, and I Pb } is the
 desired coupling character decomposition of (i.

 If IQb} is a family of central projections with the properties noted in the
 statement of this lemma, then Qb is contained in Pb, by construction of Pb .
 Since the Pb are mutually orthogonal and the Qb have union I, we conclude
 that Qb = Pb-

 We shall refer to Pb as "the central portion of (R with coupling character b",
 and to {Pb} as "the coupling character decomposition of (i".

 LEMMA 4.1.4. If (R is a purely-infinite ring of operators with a countably-de-
 composable center and coupling character b, then I is the sum of b, orthogonal,
 maximal, cyclic projections in (R. If GI' is purely infinite then I is the sum of b,
 orthogonal, purely-infinite, cyclic projections, and if GI' is finite then I is the sum
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 of b, orthogonal projections { Ea } with generating vectors { ya } such that [61Ya] = I,
 for each a.

 PROOF. The last statement of the lemma follows from the first and the na-
 ture of the maximal, cyclic projections in 6R when V' is as described, by Lemmas

 3.3.6, 3.3.5 and [28; Lemma 9.3.3].
 To prove the first statement, we note that if b is finite, then I is the sum of

 a finite number of orthogonal, equivalent, cyclic projections. Since I is purely-
 infinite in (R, each of these projections is purely-infinite in iR, and, hence, by
 Lemma 3.3.6, maximal cyclic in (R.

 We assume that b is infinite. Let F be a maximal, cyclic projection in (R, the
 existence of which is guaranteed by Lemma 3.3.7. Let {Qa } be a maximal,
 orthogonal family of central projections such that Qa is the sum of an orthog-
 onal family of cyclic projections each equivalent to QaF. We observe that

 Ea Qa = I. In fact, if Q = I - Za Qa 5 0, then Q is purely-infinite and the
 comment in the proof of Lemma 4.1.3 applies, showing that Q has a non-zero,
 central subprojection R which is the sum of an orthogonal family of projections
 each equivalent to RF, contradicting the maximality of {Qa}I.

 We show now that each Qa is the sum of b, orthogonal, cyclic projections
 equivalent to QaF. Write R for Qa and let { Fe } be a family of orthogonal, cyclic
 projections equivalent to RF with sum R. By hypothesis R is the sum of b,

 orthogonal, equivalent, cyclic projections Eg . Let x, be a generator for E0 , and
 let So be the family of those y's for which Fzxo 5z 0. Since

 he 1| Fxo 11 2 = 11 X 2 112

 is finite, there are at most a countable number of elements in So . On the other
 hand, if Fzxo = 0 then FE0 = 0, and since 0 5 Fe ? R and Hi Ed = R, each
 y lies in some So . Thus, this standard "invariance of dimension argument" for
 Hilbert spaces tells us that the cardinality of {Fe} does not exceed Mob = b.
 By definition of "coupling character", however, the cardinality of { Fed is not
 less than b, from which it follows that R is the sum of b, orthogonal, cyclic pro-
 jections equivalent to RF.

 Let Qa = Ey F.a, with {Foa} an orthogonal family consisting of b, cyclic
 projections equivalent to QaF, and let Fy = Za Fya. Then

 EZF7 = ZaQa = I,

 and Fly is equivalent to F, which concludes the proof.
 LEMMA 4.1.5. If (R is a ring of operators with a countably-decomposable center,

 {Pbl its coupling character decomposition, and S the set of ordinal numbers less
 than the initial ordinal whose cardinal is not less than each cardinal c with the
 property that P, is non-zero, then (R possesses an orthogonal family of cyclic pro-

 jections {Ea}, indexed by elements of S, such that E: Ea = I and CEI - CEa if
 a < d. If 6R and 61' are purely-infinite, then each Ea can be chosen so
 as to be purely-infinite.

 PROOF. Let {Eba } be an orthogonal family of cyclic projections, indexed by
 elements of S, equivalent for a less than the initial ordinal with cardinal b, zero
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 for other ordinals, and having sum Pb. Since the center of GR is countably-de-

 composable, there are at most a countable number of non-zero Pb; so that,

 by Lemma 3.3.2, Ea = Zb Eba is cyclic. Clearly, a Ea = 2b Pb = I, and the
 family { Ea. } is orthogonal. We can explicitly determine the central carrier of
 Ea from the fact that CEba is Pb, provided Eba is not 0. In fact, if the cardinal

 of a is c then CEa = Zc<b Pb, from which CEB < CEa if a < ,3. The last state-
 ment of the lemma follows from the fact that the non-zero Eba can be chosen
 purely-infinite, according to Lemma 4.1.4, with GR and i' purely-infinite.

 We refer to { Ea } as a descending carrier decomposition of (i.
 LEMMA 4.1.6. A *-isomorphism 4 between two rings of operators (R1 and (12

 acting on Hilbert spaces 3C1 and 3C2, respectively, each of which has a generating

 vector, is unitarily implemented if and only if 4 preserves maximal cyclicity of

 projections.
 PROOF. Let x be a generating vector for I under 1, ; let E1 = [(RGx], so that

 E1 is a maximal cyclic projection in 1, and, hence, O(E1) is maximal cyclic in
 G2 ; and let y be a generating vector for O(E1) under R2 , so that [Gl2Y] is maxi-
 mal cyclic in (R', hence equivalent to I, and, as in Lemma 3.3.4, y can be chosen
 such that [GR2YI = 3{C2. Choose, by Lemma 4.1.5, a descending carrier decom-
 position {Ea} for (I - El))R1(I - E1) acting on (I - E1)(3C1) (any cyclic de-
 composition will do). Clearly, then, { E1, Ea } is a descending carrier decomposi-
 tion for (1R, and, since E1 is maximal cyclic, Ea g E1 for each a. Note, in this

 connection, the countable-decomposability of the centers of 1, and G2, since
 (1 and (R' possess the separating vectors x and y, respectively, by Lemma
 3.3.1. The same situation holds relative to G2 and the projections 4)(E1), 4)(Ea).
 Let Va be a partial isometry in (R1 with initial space Ga in E1 and final space
 Ea . Take V1 = E1 . Now ElG1lEl, (REl and 4(El)(R24(El), (R;O(E1) have joint
 generating vectors x and y, respectively. Thus, by The Unitary Implementation

 Theorem, the isomorphism 4 restricted to El(RlEl is implemented by a unitary
 transformation U1 of E1(3C1) onto 4(El)(3C2). Let Ua = 4(Va)U1V*, so that
 Ua is a unitary transformation of Ea onto 4)(Ea); and let U be the unitary trans-
 formation of 3C1 onto 3C2 defined as Ua on each Ea . Note that

 U1 = 4)(E1) UlEl = U1,

 so that there is no conflict between the notation Ua and the original choice of

 U1 . Because of this original choice, U implements 4 on E1lEl . Moreover,

 UVaU' = UVaUT' = UaVaUT' = )(Va)UlVaVaUT'

 - 4(Va)4(Ga) = 4(VaGa) = O(Va,)

 Thus U implements o restricted to the subring of G, generated by El(RlE1 and
 the Va . However, this ring is all of G, , for A = (E. Ea)A (iE. Ea) and we
 have to show merely that EaAEa' is in the generated subring. But,

 EaAEa' = VaV*AVa'V*i = VaEiV*AVa'EiV*'.
 It follows that U implements 4) on R, , and the proof is complete.
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 LEMMA 4.1.7. If 4 is a *-isomorphism of one ring of operators d1 onto another

 (R2 and their respective commutants (R1, (are each purely-infinite with coupling
 character b, then 0 is induced by a unitary transformation of C1, the Hilbert space
 upon which (R1 acts, onto 3C2, the Hilbert space upon which 1R2 acts.

 PROOF. Note first that, since 0 maps e1, the center of GR1, isornorphically
 UPOn e2, the center of 2, Io carries a maximal orthogonal family of countably-
 decomposable projections in e1 onto such a family in e2. Since MR and GR' re-
 stricted to countably-decomposable central projections are purely-infinite with

 coupling character b, it suffices to deal with the case where el and C2 are count-
 ably-decomposable. We assume this throughout the remainder of the proof.

 Let P be the central projection in G1R such that 21RP is finite and Jil(I - P)
 is purely-infinite. According to Lemma 4.1.4, P is the sum of b, orthogonal,

 equivalent, cyclic projections {E'a } in 2RP such that if xa is a generator for Ea
 then [(RlPXa] = P; and I - P is the sum of b, orthogonal, equivalent, purely-
 infinite, cyclic projections {F' } in (R(I - P). Now +(P) plays the same role
 with respect to GR2 as P does with respect to Rh, so that we can find orthogonal
 families of projections {M' } and {N' } in (R2&(P) and (R2(I - 4)(P)), respec-
 tively, with properties corresponding to those of { Et } and { Fa }, respectively.

 From Lemma 3.1.3, we see that the mapping taking A1PE' = A 1E' in

 (RlPE'a = (RlE'a

 onto 4)(Al)4)(P)M'a = 4)(A )M' in (R2q(P)M' = 512M' is an isomnorphismn. Now
 if xa is a generator for Ea, we see, from the properties of E' X that xa is a joint
 cyclic vector for (R6lEa and Ea(R 6E' acting on Ea(3CI). Similarly (R2M' and

 Ma (R2Ma

 possess a joint cyclic vector. Thus, according to The Unitary Implementation

 Theorem, the mapping of (R,1Ea onto (62Ma, described above, is implemented by
 a unitary transformation Ua of Ea (x1,) onto Ma (3C2). The unitary transformation
 of P(3C,) onto ct5(P)(3C2) defined as Ua on each E'(acl), clearly implements 4
 restricted to 21RP (onto (R62(P)).

 It remains to show that 0 restricted to 61(I - P) is implemented by a uni-
 tary transformation. There is, of course, no loss in generality in assuming that
 P = 0, in view of the above. We do so in the interest of simpler notation, so

 that (i. I1, 6I2 and (R' are assumed to be purely-infinite, ?, Fa = I, and
 Ea Na = I. As above, the map of ,RiFa onto (R2N'a which carries AF, on
 4(A,)N, is an isomorphism and it suffices to show that these maps are imple-
 mented by unitary transformations of F' (5C,) onto N' (3C2) We may therefore
 assume that F' = I and N' = I. (Observe that, since F' and N' are purely-
 infinite, (RlFa, F.G(R Fa (R2N' and N(R'GN' are purely-infinite.) Thus R1, 61,
 (R2 and 61 are purely-infinite, and 61R, (R2 have generating vectors. It follows,
 from Lemma 3.3.6, that the maximal cyclic projections in 61R and (R2 are pre-
 cisely the countably-decomposable, purely-infinite projections in these rings. Thus
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 0 preserves maximal cyclicity and is unitarily implemented, according to Lemma
 4.1.6, which completes the proof.

 4.2. Finite rings with finite commutants

 The connectedness of the real line is basic to the analysis of the present sec-
 tion, which draws heavily upon the dimension theory for finite rings developed
 in ?3.2. The following definition plays a role analogous to Definition 4.1.1, for
 this continuous situation.

 DEFINITION 4.2.1. We define the upper coupling nunber of a countably-decom -
 posable, central projection P in a finite ring of operators (R with finite commutant
 (f' to be 1/L(E'), if E' # P, where E' is a maximal, cyclic projection in (V'P,
 L(E') is taken relative to V'P, and I./L(E') is understood to be xc if L(E') = 0;
 and we define the upper coupling number of P to be u(E), if E' = P, where E is a

 maximal, cyclic projection in (RP. For an arbitrary central projection Q in R we
 define the upper coupling number to be the supremurn of the upper coupling num-
 bers of the countably-decomposable, central projections contained in Q. We call the
 upper coupling number of I the upper coupling number of (R, V' and denote it
 by ((R, R').

 Regarding the above definition, note that (ifQ, (I1Q) < ((R., (I{'), since

 L(QE') > L(E')

 and u(QE) < u(E). From which it follows that no ambiguity arises in deter-
 mining the upper coupling number of a countably-decomposable central projec-
 tion directly or by taking a supremum. Note also that the upper coupling num-
 ber as defined is independent of the maximal cyclic projections chosen since all
 maximal cyclic projections in a ring with countably-decomposable center are
 equivalent.

 We have used the term "coupling character" in ?4.1 and "upper coupling
 number" in the above definition. The terminology suggests a relation between
 the two concepts which does, indeed, exist. The discreteness of the situation
 studied in ?4.1 allows us to consider only "pure" coupling characters while the
 continuousness of the present situation requires us to consider central portions
 of rings corresponding to "intervals of coupling numbers" (in analogy with the
 relation between the studies of the spectral decompositions of operators with
 discrete, pure-point spectrum and those with continuous spectrum). We could
 define "coupling number" in the present case, e.g., by the purity of the upper
 coupling number. Having done this, it would follow easily from the dimension
 theory of ?3.2 that a projection with a certain coupling number, in the present
 sense, had this number as coupling character.

 LEMMA 4.2.2. If {PPa } is a family of central projections, with union J), in a
 finite ring of operators 6 with finite commutant ?' and each Pa has an upper cou-
 pling number not exceeding r then the upper coupling number of P does not exceed
 r. There is a family { Q, } of central projections in (R, with union I, and such that
 Qr has upper coupling number not exceeding r (r finite) and contains each central
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 projection with upper coupling number not exceeding r. If { Rr} is a family of
 central projections such that Rr has the properties listed for Qr then Rr = Qr .

 PROOF. To establish the first statement of this lemma, we must show that
 ((RQP, G1QP) < r for each countably-decomposable, central projection Q in (R.
 All projections in question commuting, we have that PQ is the union of PaQ.
 It suffices, therefore, to assume that P is countably-decomposable (and hence
 all Pa are countably-decomposable) and to show that (GIP, VP) < r. For
 notational simplification, we may just as well assume that P = I.

 If r = oc, there is nothing to prove, so that we may assume that r is finite.
 Let E and E' be maximal, cyclic projections in 61 and i', respectively. Note
 that since UaPa = I, X = (UaSa)-, where X is the pure state space of the
 center of c1 and Sa = {x:x in X, Pa(x) = 1}. In fact, each Sa being open and
 X being extremely disconnected, X - (UaSa)- is a clopen subset of X whose
 characteristic function corresponds to a central projection orthogonal to each
 Pa and hence to I, [47]. If E' = I then

 ((R1, 6') = u(E) = sup { D(E) (x): x in X},

 and PaE' = PaX so that r ? ((RPaX (R'Pa) = sup {D(E)(x):x in Sal, by Lem-
 ma 3.2.7. Thus the closed set, {x:D(E)(x) < r}, contains UaSa and is therefore
 X; whence (R, V') _ r. If E' 5- I then

 (6R1 61') = 1/L(E') = 1/inf {D'(E')(x) :x in X} = sup { 1/D'(E')(x) :x in X}.

 We wish to show that r > (1, 6'), or that D'(E') ? 1/r. From the above, it
 suffices, of course, to show that D'(E')(x) > 1/r for x in Sa, for all a. We ob-
 serve that, for some a', Pa'E' 5? Pa', since E' P? I and UaPa = I. Thus

 r ? ((RPal, (R'Pa') = 1/L(Pa'E') > 1

 and 1 > 1/r. Now, if x is in such an Sal, from the remarks above,

 r ? 1/D'(E')(x) or D'(E')(x)_ 1/r.

 On the other hand, if x is in Sa and PaE' = Pa then

 D'(E')(x) = D'(PaE')(x) = Pa(X) = 1 _ 1/r.

 Thus, in any event, (61, 6') < r, and the upper coupling number of P does not
 exceed r.

 For Qr we take the union of all central projections in 61 with upper coupling
 number not exceeding r. From the foregoing, Qr clearly has the stated proper-
 ties. Moreover, if Rr is another central projection with the properties stated for
 Qr then Qr contains Rr and Rr contains Qr so that Qr = Rr .

 Finally, we show that Ur<.Qr = I. Indeed, if this is not the case, then, with
 Q = I - UrQr, there is no central subprojection of Q with finite upper coupling
 number. Thus, if F' is a maximal cyclic projection in (R'Q, we ha ie, from Defini-
 tion 4.2.1, that L(RF') = 0, relative to (R'R, for each non-zero, central sub-
 projection R of Q. Using Lemma 3.2.7, it follows that D'(F') takes the value 0
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 in each non-empty clopeni subset of the pure state space of the center of 6RQ.
 The continuity of D'(F') and the extreme disconnectedness of this pure state
 space imply that D'(F') = 0, whence F' = 0. Thus Q = 0, and the proof is
 complete.

 We shall refer to the projection QT, constructed above, as the central portion
 of i, i' for upper coupling number r.

 LEMMA 4.2.3. A projection E in a finite ring 6R with finite commutant i' is
 cyclic if and only if CE is countably-decomposable and u(PE) ? (dRP, 6R'P) for
 each non-zero central projection P in (R.

 PROOF. If E is cyclic then, according to Lemma 3.3.1, CE is countably-de-
 composable. In any case, u(PE) = u(PCEE) and

 ((RPCE , VRPCE) -< ((RP, VRP),

 so that, working relative to (RCE and FACE, we see that it suffices to deal with
 the case where dR has a countably-decomposable center. We make this assump-
 tion.

 Let F and F' be maximal cyclic projections in dR and i', respectively. If E is
 cyclic then E g F, so that u(PE) < u(PF) < (dRP, dIP). If (R, i') < 1 then
 F' = I, so that u(F) = (R. d'); and, if (R, i') _ 1, then, either F' = I, and
 1 = ((R, 61') = u(F), or else F' 5 I, in which case there is, by Lemmas 3.3.5
 and 3.3.6, a non-zero central projection Q such that QF = Q; so that

 1 > u(F) ? u(Q) = 1.

 Applying this last comment to the case where RP, VIP, PF, and PF' replace

 (), ', F, and F', respectively, we see that the hypothesis u(PE) < (dIP, dI'P)
 entails u(PE) < u(PF); for if (dIP, dI'P) < 1 then

 u(PF) = (dP, (R'P) _ u(PE),

 and if ((SP, VP) ? 1 then 1 = u(PF) ? u(PE). The continuity of D(E) and
 D(F) on the pure state space X of the center of di, the extreme disconnectedness
 of X, and Lemma 3.2.7, show us now that D(E) < D(F), whence E < F, by
 (c) of Theorem 3.2.8, and E is cyclic.

 LEMMA 4.2.4. If (R, and (R2 are finite rings of operators with finite commutants
 Ri and R21, respectively, acting on Hilbert spaces RC1 and 3C2, respectively, and if
 Oo is a *-isomorphism of the subalgebra U,<o(R1Pr of (R1 onto the subalgebra

 Ur<oo6R2Qr X

 where Pr. and Qr are the central portions of (R, and (R2, respectively, for upper cou-
 pling number r, which carries Pr onto Qr, then q)o has a *-isomorphic extension
 mapping (R1 onto (R2 which is unitarily implemented.

 PROOF. We define the extension q5 of q)o by means of the limit: 4)(A) = strong
 limit,.T o(APr) for A in (iR . We must show, of course, that this limit exists.

 This will have been established when we have shown that lim,.a qo(APr)X
 exists for each vector x in 3C2 . Let E > 0 be given. According to Lemma 4.2.2,
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 QT approaches I strongly, so that we can choose t such that

 11(I-Qt)x 11 < ?/2 Jl A 11
 If r and r' are greater than t, then

 | ko(APr)X - Oo(APr')x l < ?| qo[A(Pr - PrT)](X - QtX) ||

 + 11 Oo[A(P, - Pr')]Qtx 11 < 2 11 A l /2 1 A 11

 + | O[A(Pr - Pr')Pt]x = 8.

 Thus 4o(APN)x is Cauchy and has a limit. Since (12 is strongly closed, q)(A) lies
 in 612

 Applying the foregoing with qo ' in place of q)o, we see that qo '(BQt) has a
 strong limit, which we shall denote by 1p(B), for each B in (R2 . Now 4l(B)Pr =
 strong limittr 4)5'(BQt)4O'(Qr) = 4)Y'(BQr), so that q)o(4,(B)Pr) = BQr and
 0(,(B)) = B. Thus 4) maps G1R onto 612. Clearly, 4) restricted to (R1Pr is 00. It

 is a simple matter to show that 4) is a *-isomorphism. We verify that

 O)(AB) = O)(A)O)(B)

 and that A = 0 if q5(A) = 0. In fact,

 k(AB) = strong limit q)o(ABPr) = strong limit 4)o(APr)4)O(BPr)

 = strong limit q)o(APr) strong limit 4)o(BPr) = q)(A)q)(B).

 If 4(A) = 0 then 0 = q)(A)4)(Pr) = q)(APr) = q)o(APr), so that APr = 0, for
 all r. Since Pr tends strongly to I, A = 0.

 As a consequence of the fact that O)(Pr) = QT, we have that P and q5(P) have
 the same upper coupling number, for each central projection P in Ri . Indeed,
 if P has upper coupling number r, with r finite, then P < Pr) so that

 4)(P) - QTr.

 Thus the upper coupling number of +5(P), t, does not exceed r. Applying this to
 P = +-l'+(P), we see that r < t, so that r = t. Thus, if the upper coupling num-
 ber of P or q5(P) is oo then the other must be oo. Since 4) preserves the upper
 dimension of projections and the upper coupling number of central projections,
 it follows from Lemma 4.2.3 that 4) and 4-1 map cyclic projections onto cyclic
 projections.

 Restricting 4) and the rings 61R, 61R to a countably-decomposable, central
 projection does not alter the hypotheses, whence we may assume that the cen-
 ters of 61R and (12 are countably-decomposable and, hence, by Lemma 3.3.5,
 that 61R, 612, R1, and 61' are themselves countably-decomposable. This being
 assumed, it follows from the definition of "upper coupling number of a central
 projection" that P1 and Qi are cyclic under 61R and (12, respectively. Moreover,
 q5(P1) = Q1, so that 4) maps 6R1Pi isomorphically upon (R2Q1. Clearly, this re-
 striction of 0 inherits the property of preserving maximal cyclicity. Thus, by
 Lemma 4.1.6, the restriction of 4) to 6R1Pi is unitarily implemented. It remains
 then to show that the restriction of 4) to 61R(I - P1) is unitarily implemented,
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 or, what amounts to the same thing, to prove our result under the assumption

 that P1 and Q, are zero. We make this assumption and observe that, in con-
 sequence, I is cyclie under Al and Ro, for otherwise, by Lemma 3.3.6, there is
 a central projection P which is non-zero and cyclic under d1. From Definition
 4.2.1, then, P would have upper coupling number not exceeding 1 and be con-

 tained in Pi .

 We note next that if E and E' are cyclic projections in R1 and R1 , respec-

 tively, which have a joint generating vector, and if G' is a projection in (R2,
 then +(E) and G' have a joint generating vector if and only if

 o[D'(E')] = D'(G').
 Indeed, if there is a joint generating vector for O(E) and G', and if F , F2 are
 maximal cyclic projections in 61, 6R, respectively, so that the pairs I, F' and
 I, F2 have joint generating vectors under 61R, &R and (I2, (R', respectively,
 then by The Coupling Theorem (3.3.8),

 D1(E)D (F') = D (E')D1(I) - D'(E')
 and

 D2(0(E))D2(F2) = D(G')D2(I) -D'(G').
 Thus

 o(D'(E')) = q(D1(E))q(D (Ft)) = D2(0(E))O(D'(F')),

 and our task is to prove that D2(F2) = O(D'(F')). Now, if P is a non-zero,
 central projection in fh , the assumption that P1 and Q, are zero implies, as in
 the foregoing paragraph, that PF' 74 P and that O(P)F2 74 +(P), so that, rela-
 tive to 21RP and (RG1(P), we have

 ((R1P, (R1P) = 1jL(PF') = 1/L(0(P)F2) = (6RX0(P), 641(P)).
 Thus, viewed as functions on the pure state space of the center of (R2 , 4(D (F'))
 and D2(F2) have the same infimum over each clopen set in this space, by Lemma

 3.2.7. Hence, by the continuity of q(D,(F1)) and D2(F2), and the extreme dis-
 connectedness of this pure state space, O(D'(F')) = D2(F2), and 4(D'(E')) =
 D2(G') as we wished to show.

 If we assume that 45(D'(E')) = D2(G') and that y is a generating vector for
 k(E), and G" = [6R2Y], then, from the preceding paragraph,

 D2(G") = o[D'(E')] = D2(G').

 Thus G' and G" are equivalent in (R'. Let V' be a partial isometry in (GR' with
 initial space G" and final space G', and let y' = V'y. Then

 4(E) = [GR2y] = [GR'G"y] = [GR2V/*V/y] C [GR2V'y] = [GR'y'I C [RIyI = (E),

 so that [(RGy'] = 45(E); and

 [6R2Y'] = [612V'Y] = V'[6R2Y] = G',

 which establishes the existence of a joint generating vector for 4(E) and G'.
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 Since &R is countably-decomposable, we can choose a sequence {E' J of mutu-
 ally-orthogonal, cyclic projections with sum I in 6R . Let yi be a generating vector
 for E', and suppose that we have chosen projections F, X * F -1 in (R' which are
 mutually-orthogonal and such that D2(F') = O(D'(E')), i = 1 -- , n- 1.
 In this case,

 D2(I - n-1l F') = (D'(I - n,=1 E')) _ O(D'(E'),
 so that I*- ~i= F. contains a projection Fn with D2(Fn) = (D'(En))
 This follows from (e) of Theorem 3.2.8 in the type II case, and in the "mixed"
 type II, type I case, we observe that our information on the relation of the
 "couplings" of 6R, 6R and R2, (R' , and the fact that O is an isomorphism between
 the centers of 6R and (R2 , assures us that 4(D(E')) is of the appropriate form to
 be the dimension of some projection in (RX which projection can then be chosen
 in I - E = F' . Note that the above argument establishes the existence of
 F' . Thus we can find an orthogonal family of projections IF'}, i = 1, 2,
 in (IR such that D2(Fti) = O(D'(E$)), so that

 D'(E- 1 F') = JX=1 D2(F') = E- 1 4(D (E$)) = O[Ez=1 D (Ei)]

 = O[D'(J1 E')] = 4(D'(I)) = +(I) = I,
 from which F= = I.

 If we let Ei = [6Ryi], the criterion we established above assures us that
 O(Ei) and F' have a joint generating vector. Let PE' be a central projection
 in (RE, with P central in R , so that PE' is a cyclic central projection in E'(RE'.
 Thus the upper coupling number of PE' is u(PEiE'), since PEiE' is a maximal
 cyclic projection in (R1PE' . Similarly, the upper coupling number of 4(P)F' in
 (R2Fi is u(4(P)4(Ei)F') = u(4(PEi)F$). Now 4(CE/) = O(CEi) = C,(Ei) =
 CF; so that, by Lemma 3.1.3, the mapping qis defined by q i(AE') = q(A)F' is an
 isomorphism of (R1E' onto (R2F'. Thus u(PEXEi) = u(4(PEi)F'), and qi pre-
 serves the upper coupling numbers of central projections and hence, as before,
 maximal cyclicity of projections. Thus, by Lemma 4.1.6, each 4i is implemented
 by a unitary transformation Ui of E$(3Cl) onto F'(3C2). The unitary transforma-
 tion of XC1 onto 3C2 defined as UT on each E'(3C1) implements 0, and the proof is
 complete.

 4.3. Infinite rings with finite commutants

 The case now under consideration presents a new type of difficulty and re-
 quires, for its final description, constructs which we have not as yet encountered.
 The essentially new feature of the present situation is the failure of a certain
 matching or normalization to take place algebraically or under simple numerical
 restrictions. The basic manageable situation is that of an isomorphism between
 rings which have, together with their commutants, joint generating vectors.
 In each case, of course, we must keep track of what the isomorphism does to
 those elements of the center which are distinguished by the role they play rela-
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 tive to the commutant. Once this is done, our problem becomes that of reducing
 the factor case to the joint generating vector situation.

 If we are dealing with a factor having an infinite commutant, we effect this
 reduction by taking a maximal, orthogonal family of cyclic projections in the

 commutant (having the smallest cardinality for such families). If the factor
 itself is finite then the commutant possesses a generating vector and the reduc-

 tion is effected. If the factor is infinite, one must continue with a choice of a
 maximal, orthogonal family of maximal, cyclic projections in the factor. Now,

 as Lemma 3.3.6 tells us, the maximal, cyclic projections in an infinite factor whose
 commutant is infinite are precisely the countably-decomposable infinite projec-

 tions. Since countable-decomposability and infiniteness are preserved by *-iso-
 morphisms, the family of maximal, cyclic projections chosen is mapped into

 another such family. Thus, in any event, the infinite commutant situation re-
 quires only the minimal cardinality of the orthogonal, cyclic family in the com-
 mutant as invariant, to guarantee that the isomorphism between the original
 factors can be unitarily implemented.

 If we are dealing with finite factors having finite commutants, the dimension
 of the maximal, cyclic projections (either in the factors or their commutants-
 whichever projections happen to differ from I) must be the same for the isomor-
 phism to be unitarily implemented. If the maximal, cyclic projections in the
 commutants happen to differ from I, then we are in the case analogous to that of
 a factor with an infinite commutant, and the dimension of the maximal, cyclic
 projection plays the same role as the coupling character. If the maximal, cyclic
 projections in the factors themselves differ from I, then the situation is analogous
 to the case of an infinite factor with a finite commutant. However, with both the
 factor and its commutant finite, the maximal, cyclic projections in the factor
 can be singled out by means of one number (their common dimension). This
 number, then, serves as the invariant which determines when the isomorphism
 is unitarily implemented.

 In the case of infinite factors with finite commutants, however, the situation is

 considerably changed. The first reduction is not necessary, since the infinite
 factors have generating vectors. On the other hand, the second reduction, which
 necessitates the choosing of a maximal family of maximal, cyclic projections,
 leads to the difficulty that we can no longer describe the maximal, cyclic projec-
 tions algebraically or in terms of invariantly associated numerical constants,
 and, hence, cannot guarantee, in a simple manner, that the isomorphism be-
 tween the infinite factors carries maximal, cyclic projections onto maximal,
 cyclic projections, or even that an automorphism of such a factor preserves
 maximal cyclicity. Indeed, it is shown in [18] that this need not be the case. In
 a certain sense, the present case, while the most uncomfortable, from a techni-
 cal viewpoint, is the most natural. Here, the maximal, cyclic projections do not
 enjoy the special algebraic and numerical privileges which they do in the other
 cases.

 We note that in the case of an infinite factor of type I with a finite com-
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 mutant, the maximal, cyclic projections can be algebraically characterized as

 those projections which are the sum of a certain fixed number (depending on

 the commutant) of orthogonal, minimal projections, so that, in reality, the char-

 acteristic difficulties of the present case lie in the situation of a purely-infinite

 ring of type II with a finite commutant. We shall, however, defer, until the end

 of the next section, the separate investigation of the type I case.

 In the case of the purely-infinite ring of type II with finite commutant, one

 must, in effect, take the entire equivalence class of maximal, cyclic projections

 as invariant. With regard to representations, however, this class reflects itself

 in a family of ideals of Borel sets in the pure state space and, so, becomes an

 invariant of much the same type as those at which we arrive in the other cases.

 WVe proceed to this investigation.

 DEFINITION 4.3.1. If 0 is a representation of an operator system as a concrete
 operator system (S1, 3C), we call a null ideal band {9 <M1 ga } a characteristic null ideal
 hand of 4 when each Ea is maximal cyclic in ?FCEa*

 We remark that, with WF purely infinite, characteristic null ideal bands exist.

 In fact, let IPa} be an orthogonal family of countably-decomposable central
 projections in A- having sum I, and, with the aid of Lemma 3.3.7, choose an

 orthogonal family E0,J of maximal cyclic projections in A-P, with sum Pz,
 for each y. Then J9E01E,:0, -y} is a characteristic null ideal band of 4.

 THEOREM 4.3.2. Two representations ,1, 42 of a C*-algebra 2I as concrete operator
 algebras (21 , sC1), (912 , 3C2) such that S1, a2 are purely-infinite and WI , 2are
 finite, are unitarily equivalent if they have a common characteristic null ideal band

 and only if the set of characteristic null ideal bands of 01 coincides with the set of
 those of 02-

 PROOF. Since the characteristic null ideal bands of 01 and 42 are defined in terms
 of 41 , 02, XC1 and 3C2, it is clear that the sets of such bands for 01 and 42 coincide
 if 01 and 42 are unitarily equivalent.

 Suppose now that the characteristic null ideal bands {9Z1, E,} and {9Z021 F.
 are identical. Then, from The Extension Theorem, there is a *-isomorphism 4

 of 2IP onto W2, taking Eat onto Fa, for each a, such that 441 = 4)2 and weakly-
 bicontinuous on the unit spheres of 2IT and W2. Let Po } be a maximal, orthog-
 onal family of central projections in ?I- such that each Po is contained in some
 CEa, and note that, by Lemma 3.3.1, CEa, and hence Po , is countably-decompos-
 able relative to the center of 9[1, since Eax is cyclic. Moreover, EaPo is maximal
 cyclic in 2[-Po , as is 4)(Ea)4(PO) = FaQo in 9IPQo , by the remarks preceding
 Lemma 3.3.6, since E a and Fa, are maximal cyclic in 9IPCEa and 1WC Fa, respec-
 tively, and Po < CEa, Q0 < CF,_ . We assert that , Po = I. Indeed, if P =
 0 Po then (J - P)CEA = 0, for each a, by maximality of IPo)}, so that

 (I -P)Ea = 0,

 and (I - P)(a Ea) = I - P = 0, establishing our assertion.
 Of course, if we show that I)j Po is implemented by a unitary transformation,

 for each 3, then 4 is implemented by a unitary transformation which carries
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 q1 onto 0)2. Our problem, then, is reduced to showing that an isomorphism. 4
 of a purely-infinite ring of operators 91P with finite commutant 91 and countably-

 decomposable center onto another such ring W2, which carries some maximal,
 cyclic projection in 91P onto a maximal, cyclic projection in W2, is implemented
 by a unitary transformation. Now maximal, cyclic projections are equivalent,

 by the remarks preceding Lemma 3.3.6, and X, +-l preserve equivalence of pro-

 jections, so that 4 and +-l carry maximal, cyclic projections onto maximal,

 cyclic projections. The hypotheses of Lemma 4.1.6 are fulfilled, and 4 is imple-
 mented by a unitary transformation, once we note that WI and WT have generat-

 ing vectors, in view of Lemma 3.3.5. Now if U is a unitary transformation of

 XC1 onto 3C2 which implements 4 then L/4l(A)U'-1 = 0[01(A)] = +)2(A), and the
 proof is complete.

 4.4. The multiplicity function and Unitary Invariants Theorem

 We gather together our preceding results to give The Unitary Invariants
 Theorem. The unitary invariants we obtain for representations of C*-algebras

 are most conveniently listed with the aid of a "multiplicity function" which we
 describe in the following

 DEFINITION 4.4.1. Let 2f be a C*-algebra, 4 a representation of 9f as an algebra
 91o of operators on the Hilbert space SC, P the maximal purely-infinite, central projec-

 tion in 20, Q the maximal purely-infinite, central projection in WI (I - P), and
 R = I - P - Q. Let Pb be the central portion of 2[OIP with coupling character b,
 for each cardinal number b not exceeding the dimension of 3C. For each positive real

 number or infinite cardinal b let Qb = Q + Rb +2c~b PC, where Rb is the central
 portion of 9-f-R, ?'1R for upper coupling number b. (We use the obvious convention
 that Rb = R with b an infinite cardinal.) We associate with 4 a "multiplicity func-

 tion," fo , which assigns to 0 the set of characteristic null ideal bands of 4 ) Q and to
 each positive real number or infinite cardinal b the set of null ideal bands of the repre-

 sentation Ob = 4 | Qb . We shall say that two multiplicity functions for representa-
 tions of 9f are "equivalent" if their values at each number have a non-null intersec-
 tion, and that they are "identical" if their values are the same at each number.

 Concerning this definition, we remark that it is appropriate to use the number
 o for the Q portion of the representation, for this is the portion which is infinite

 with finite commutant and, so, has "coupling" 0.
 THEOREM 4.4.2. (Unitary Invariants Theorem). Two representations 41, 4)2

 of a C*-algebra 9f as algebras of operators A{1, 9f2, respectively, acting on Hilbert
 spaces 3C1, 3C2 , respectively, are unitarily equivalent if their associated multiplicity
 functions are equivalent and only if they are identical.

 PROOF. Since the multiplicity functions of 41 and 02 are defined in terms of the
 Hilbert space constructs arising from 01i, 42 and the C*-algebra Xf, the unitary
 equivalence of 41 and 42 implies that these multiplicity functions are identical.

 We suppose now that 41 and 42 have equivalent multiplicity functions. If
 we employ the notation of Definition 4.4.1 for the projections defined there, as

 applied to 91T, 92, t, arm, using the superscripts I and 2 to indicate those projec-



 360 RICHARD V. KADISON

 tions (and mappings) related to the representations 01 and 02, respectively,
 then, by The Extension Theorem (2.2.5), there exist isomorphisms + (b) of 2ILQ 1)
 onto Q2 b such that 1(b) lb = 2b , where lb , 02b are the representations q51 | Qbl)
 and O2 b Qb2), respectively. In case b = 0, Q(l) = Q(1) and Qb2) = Q(2), whence,
 in view of the fact that 01 I QG) and 42 I Q(2) have a common characteristic null
 ideal band and Theorem 4.3.2, not only do we have the isomorphism &O); but
 we have that it is unitarily implemented, so that 4)o , 02o are unitarily equivalent.

 We next observe that, when b < c, +(b) is +(c) restricted to -fjQ-l). Indeed, by

 [21], Q(l) is the strong limit of a directed sequence of operators 01(A,) in the unit
 sphere of 9Ii , so that Q l) is the strong limit of 01 (A ) Q l) = Olb(A ) and

 Q~l)QMl) = Q(l)

 is the strong limit of O)(A,)Q(1) = O)c(A,). Thus 0(C)(Q(l)) is the weak limit of
 4(C)[O)c(At)] = 02c(A ), and 4)(b)[0lb(AY)] = k2b(A,) tends weakly to 4)(b)(Qbl)) =
 Qb2) . Hence 02c(AA)Qb2) = 2 = 02(A b)Qb2 = 02b(A,) tends weakly
 to 0((Qb )Qb and to Qb; whence b)(Qbl))Qb2) = Qb2) and Qb2) < (c)(Q~l)
 Applying this result to ()(C)f1 we have that Q(l) < (+(c)) l(Q(2)), so that

 4 (Q ()) _ Qb X

 and, thus, W)((Qb )) = Q 2). Now

 4)(C)[4(A)Q(l)] = 4(C)[O1(A)Qc)Qb)] = 02c(A b

 = 02(A)Q (2) = 4(b)[O1(A)Q(l)]

 so that +(C) and + (b) agree on a weakly dense subalgebra of 9fjQbl). The weak
 continuity of )(C) and + (b) on the unit sphere of IL Qbl) (and [21]) imply that

 +(C) and +(b) agree on 9i Q"1). We can therefore define a mapping Oo of UbQ1 1Q )
 onto UbSEjQ 2) by letting Oo be +(b) on 2[ Q(1). Exactly as in the proof of Lemma
 4.2.4, it follows that Oo has a *-isomorphic extension 4) mapping 21 onto 2.
 (Note that UbQbl) = I and UbQb2) = I.)

 We have that 4 carries Q(l) ( = Qol)) upon Q(2) ( = Q(2)), since 4 agrees with
 4(O) where the latter mapping is defined. Thus 4) restricted to 9-tQ(1) is unitarily
 implemented. Let us denote by S(1) and S(2) the maximal central projections in
 91T and 92 respectively, such that 9IpS(1) and _IhS(2) are finite and 9I[S(l),
 2 ) are purely infinite. Thus S(') + R(1) and 8(2) + R 2) are the maximal,

 central, finite projections in 2W and W- respectively, and p(l) - S(l), p(2) - (2)
 are maximal, purely-infinite, central projections in W-1(I - Q(1)) and

 g2( (I-Q(2))>

 respectively. Since 4 maps 9I7(I - Q(1)) isomorphically upon Qi2(I ))
 cp(S~l) + R l)) = S(2) + R(2) and c(p(l) _ S(1)) = p(2) _ S(2). Now, according
 to Definition 4.4.1 and Lemma 4.2.2 -Ub<.Qb1l) contains R(1) and Ub<w Q(2) con-
 tains R(2). Moreover, by choice of S(1) and S(2), no central subprojection of S(1)
 or S(2) can have finite coupling character (recall that, by Lemma 3.3.4, each pro-
 jection cyclic under 2f-S(') and 52[S(2) is finite in 9'S(l), W2S(2), while S(1) S(2)
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 are themselves purely-infinite in 2[, 2, respectively); so that S") and 8(2) are
 orthogonal to Ub<-Qb"' and Ub<-Qb(, respectively. But 0(Ub<-Qb()= Ub<-Qb
 so that

 U (1) (1) (1) (1) ~~~~(2) ( (2) (2)) (2) 0[( b<Qb ))(S + R l))] = o(R l)) = (Ubb<-oQb )(S + R (R

 Thus o(S(l)) = S(2) and, hence, o(p(l)) = p(2).
 Since cp(R(1)) = R (2)~ 4(R(1)Qb1)) = R(2) Q2) i.e., c(R'l)) = R(2). It follows

 from Lemma 4.2.4 that c restricted to 9-IPR(1) is unitarily implemented. More-
 over,

 4)(P(l)Qbl)) = 4)(Zc<b pCl)) = p b2)Qb = EC<b PC

 Now, Zb<d Pl) is the union of Zc_ b PC) Ib<d, and Eb<d Pb is the union of
 Ec<b pc2) }. Thus, since

 O(Zc<b Pc")) = Ec-b Pc, 4(Zb<d POl) = Eb<d pb 2

 Of course, then, Op(Pb) = pb2) for each b, and 4 maps 9fP'l) isomorphically
 upon 2p (2). It follows, from Lemma 4.1.7, that 4 restricted to 9{Ppl) is uni-
 tarily implemented, so that 4 restricted to J f(ZbPb(l)) = LPa1(l) is unitarily
 implemented, and, thus 4 restricted to 9fi(Q(1) + R(1) + p(l)) = 91i is unitarily
 implemented.

 The proof is concluded now, as in Theorem 4.3.2, when we observe that 41 =
 4)2. Indeed,

 (0[01(A)])Q(2) = 0[01(A)Qb1 ] = 0[0lb(A)] = 02b(A) = 02(A)Qb2
 so that

 O = (0[c1(A)] - 02(A))(UbQb29) = (0[01(A)] -2(A))II

 and 4[41(A)] = 02(A) for each A in 9-f.
 We note that, in the case of a countably-decomposable representation, with

 ideal bands taken as the permanent null ideal alone corresponding to the various

 unit projections, the multiplicity function of a representation of a C*-algebra is
 monotone-decreasing, i.e., the ideal of Borel sets corresponding to the value b
 is contained in the ideal corresponding to the value c, if c < b. Indeed, employing

 the notation of Definition 4.4.1, QC < Qb, so that with A > 0 A in 2f, q5(A) _ 0
 and o(A)(Qb - QC) _ 0, whence co(4(A)Qc) < w(4(A)Qb), where w is a normal
 state of 9I . With (2, X) the representing function system of 9I and t the canoni-
 cal isomorphism of ? onto 21 the states p and r of ? defined by p(f) = O(OWWf),
 r(f) = w(O(Jf)Qb) stand in the relation p ? r so that each positive extension of
 p to C(X) is dominated by a positive extension of r to C(X), and our assertion
 follows.

 We turn to the analysis of an infinite representation with type I commutant
 in terms other than the characteristic null ideal bands of the representation.

 this investigation will be carried out in the context of the general situation, and
 we begin with a modification of the concept of multiplicity function.
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 DEFINITION 4.4.3. Let 0 be a representation of a C*-algebra I as an algebra of
 operators %l acting on a Hilbert space JC, and let Q0 be the maximal central projec-
 tion in 2[ such that 2[ Q0 is of type IT., and 90Q0 is finite. Adopting the notation
 of Definition 4.4.1, we define Pb to be Q0 + Zb>1/?n Qm + Rb + Zc<b PC, where
 Qm is the maximal, central projection in 9o such that 91t-Qm is infinite and 2Q
 is of type Im , m 1, 2, . We associate with 4 a "separating multiplicity func-

 tion" fo which assigns to 0 the set of characteristic null ideal bands of 4 I Qo and to
 each positive real number or infinite cardinal b the set of n ill ideal bands of the repre-

 sentation O)' = 4) Pb of W.
 The use of Zb>l/m Qm in defining Pb rather than Z:fl<b QM', as might have

 seemed more natural, is a matter of technical necessity. In the proof of The

 Unitary Invariants Theorem, once the isomorphism 4 had been constructed, it
 was possible, on the basis of the construction and the special features of the

 situation, to show that p preserved the R and P portions of the ring (the Q
 projection is preserved by assumption, in effect), although they depend upon the

 commutant as well as the ring in question. In the present case only the Qo por-
 tion is taken care of automatically, and the Q$ portions become confused with
 the Pb portions if care is not exercised. In fact, the multiplicity function defined

 by using

 Em<b QM

 would not constitute a set of unitary invariants for the representation.
 THEOREM 4.4.4. (The Second Unitary Invariants Theorem). Two representa-

 tions 4), 4)2 of a C*-algebra Wf as algebras of operators W1I, 12 acting on Hilbert
 spaces 3C1 , 3C2 are unitarily equivalent if their associated separating multiplicity
 functions are equivalent and only if they are identical.

 PROOF. The arguments of The Unitary Invariants Theorem apply to show that

 there is an isomorphism 4 of 21T onto 2f- such that 441 = 02, that O(R"1)) =
 R( )M (S(D) = S(2), and 0(Qo(1)) = Qo(2). Thus, using the fact that 4 preserves
 the purely-infinite part of 21T, with the foregoing,

 4(Eb>I/m QMn(1) + Zb> Pc P)) = Jb>I/m Qmn + Zb c p c

 Choosing b slightly less than 1, we have 4(E)Z2 Q'l)) = Z=2 Q(2); and with
 b 1, we have 0(Zfn=2 Q$'(l) + p(1)) = EMOL2 Q 2I + p(2), so that o(p) =
 pf2). Now, with b slightly greater than 1, we have o(EZ Qml)+pf))=
 ZX=1 Q$2) + pf2), so that 4(Zm= Qm'l)) = E i QEf2= . The argument of The
 Unitary Invariants Theorem now tells us that (Pl)) - p(2) and 4(Q'(l)) =
 Q$2) and that 4 is unitarily implemented when restricted to W1T (I - Z-=I Q(1))

 We complete the proof by showing that 4 restricted to 21QN'1) is unitarily
 implemented. To simplify our notation, we prove that if 4 is an isomorphism of
 the ring (1R onto the ring (R2 and both rings are purely-infinite with commutants

 of type Im , then 4 is unitarily implemented. This proof is carried out by making
 the usual reduction to the case where 61R and (R2 have countably-decomposable
 centers (we assume this done) and then noting that the maximal, cyclic projec-
 tions in 61R and (R2 can be characterized as those projections which are expressible
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 as the sum of in, orthogonal, abelian projections having the identity as central

 carrier. Let us assume this fact, for the moment, so that 0 preserves maximal
 cyclicity. From Lemma 3.3.5, it follows that RC1 and 3C2 have generating vectors

 under (R and d2, respectively, so that, by Lemma 4.1.6, 0 is unitarily imple-
 mented.

 It remains to establish the criterion for maximal cyclicity in a purely-infinite

 ring (R with countably-decomposable center and commutant 6' of type Im.
 If we have established that one projection in 61 which is expressible as a sum of
 m, orthogonal, abelian projections with central carrier I is maximal cyclic then,

 since all such projections are equivalent, all such projections are maximal cyclic,

 and since all maximal, cyclic projections are equivalent in 61, all maximal, cyclic

 projections are so expressible. Let E be a maximal, cyclic projection in iR, and

 let x be a generating vector for E, so that [6Rx] = SC, by Lemma 3.3.5, [28;
 Lemma 9.3.3] and the maximal cyclicity of E. According to Lemma 3.3.4, E

 is finite, so that E(RE is finite. Relative to E(aC), the commutant W'E of ERE
 is isomorphic to 6', by Lemma 3.1.2, since CE = I. Thus 61'E is of type I,,.
 Moreover, x is a cyclic vector for both E(RE and 61'E. From The Coupling
 Theorem (3.3.8), we see that the dimensions, relative to their respective rings,

 of cyclic projections in E(RE and R'E having a joint generating vector are iden-
 tical. Thus, if F' is an abelian projection in 6'E (necessarily cyclic) with central

 carrier E and generating vector y, then, since 61'E is of type Im, the dimension
 of F' is E/m, so that the dimension of F = [(R'Ey] = [(R'y], in 61, is E/m. It
 follows that E is the sum of m copies of F in E(RE, hence in 6. But, from [28;

 Lemma 9.3.3], F is abelian in E61E, i.e., F(E(RE)F = F(RF is abelian, so that F
 is abelian in 61. Finally, CF = CE = I, and the proof is complete.

 CHAPTER V. SPECIAL CASES, EXAMPLES, APPLICATIONS AND

 COMPUTATION

 The Unitary Invariants Theorem of the preceding chapter has been stated

 under the most general conditions. Various simplifications occur when this
 theorem is applied to special cases. Many of these cases are of sufficient interest
 to warrant individual attention. In particular, we shall consider the separable,
 the abelian, the factor cases and the more important subcases and combina-
 tions of these cases in the first section of this chapter. The second section is
 devoted to some examples which clarify and illustrate some of the points and
 settle some of the questions implicit in the foregoing material. The third sec-
 tion contains a discussion of applications and an (abstract) application-
 namely, we list unitary invariants determining when two non-normal operators

 on a Hilbert space are unitarily equivalent. The final section contains results
 related to the computation of null ideals.

 5.1. Special representations

 If 0 is a representation of a C*-algebra as an operator algebra acting upon a
 separable Hilbert space, then, of course, all of the higher cardinal considerations
 of The Unitary Invariants Theorem disappear-all rings in question are count-
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 ably decomposable, and the domain of the multiplicity function need extend

 just to No .
 The case of abelian C*-algebras holds a place of special interest being the first

 to yield to spectral analysis and being the easiest case in which to view the effects
 of the various processes we have employed in the spectral decomposition of repre-

 sentations of general C*-algebras. We shall give a descriptive discussion (with-

 out formal proofs) of the result of applying The Unitary Invariants Theorem to
 a representation of an abelian C*-algebra, and we shall compare this result with
 the classical multiplicity decomposition of such a representation.

 In point of fact, the earliest work [12, 14] determined the unitary invariants

 of the action of a self-adjoint operator on a Hilbert space, or, what amounts to

 the same thing, of a representation of an abelian C*-algebra as an operator al-

 gebra acting on a separable Hilbert space. We begin with a description of this
 work. If 2a is an abelian C*-algebra, 4 a representation of it as an (abelian)

 operator algebra 2Io acting upon the separable Hilbert space XC, one associates
 with 0 an orthogonal sequence of projections {En } in 2I0 with sum I, each En
 cyclic under 2Io and (Cgn) a decreasing sequence. The descending carrier de-
 composition of 2I' (cf. Lemma 4.1.5) serves as such a decomposition. Now the
 projections {Et } are not unique relative to the stated properties, though the

 ascending chain of null ideals corresponding to the representations 4 I E' of K
 are; i.e., the ideal chains obtained from two such decompositions are, element by

 element, identical. On the other hand, the projections {Qb} of Definition 4.4.1
 are unique, and it is by passing thru this decomposition that the unitary in-
 variance of the null ideal chain just described is established.

 An examination of the effects of these modes of decomposition upon a self-
 -djoint operator acting on a finite-dimensional space is quite instructive. Let

 our operator be A, and let its distinct spectral values be X1, **, X. with cor-
 responding eigenspaces E1, * * , En of dimensions d1, d2 , * * * , dn , respectively.
 A descending carrier decomposition obtained with the aid of {Ek} can be de-
 scribed as follows-choose a non-zero vector from each space Ek, and let Eo
 be the space they generate. Choose a non-zero vector, from each of the spaces in
 which it is possible, orthogonal to the original vectors chosen, and let E' be the
 space they generate. Continuing in this way, we obtain a descending carrier

 decomposition E', ***, Ed 1, where di = max {d1, ***, dn). The projection
 Qb of the coupling character decomposition is Edi ib Ei. There is little difficulty
 now in passing from the descending carrier decomposition to the coupling charac-
 ter decomposition. The projection Qb is the union of all (central) projections of the

 ring 21 generated by A, contained in Ad1 E'. The description of the construc-
 tion of a descending carrier decomposition which involves the coupling character
 decomposition is the substance of the proof of Lemma 4.1.5. Of course, this de-
 scription does not depend invariantly upon the coupling character decomposition,
 since this latter decomposition is unique while the descending carrier decomposi-
 tion is not.

 The pure state space X of 2 is the discrete space consisting of n-points
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 {xi, , xn}, and the representation 0 in question takes the function which is
 vP at xi onto the operator 2,=, viEi . The null ideal of 0 i Qb is the ideal of sub-
 sets of IXk:b < dk} and the null ideal of + l E' is the ideal of subsets of

 {IXk:dk ? b}.

 Thus the ideals corresponding to E' and Qb are complementary to one another
 (i.e., each consists of the "Borel" subsets of X which have void intersection with

 all the subsets of the other)-if we had dealt with I -Qb instead of Qb the theo-
 ries would coincide, in this case. The reduction theory of von Neumann [34]

 provides a decomposition corresponding to the eigenspace decomposition E1l
 *. , E. above, in the commutative case; and, in the non-commutative case
 gives the central decomposition of rings of operators into factors.

 In effect then the unitary invariants for the action of a self-adjoint operator

 upon a separable Hilbert space may be obtained by a two step process: the de-
 composition of the ring engendered by the operator into distinguished pieces
 relative to its commutant (multiple copies of maximal abelian algebras, in this

 case), and the construction of unitary invariants for the situation in which the
 engendered ring has a single, "simple" constituent in its decompositon, viz.,

 itself. The technique behind The Unitary Invariants Theorem fits into this

 pattern-The Extension Theorem invariant corresponding to the unitary in-

 variant for a "simple" representation and the ring decomposition occurring as
 before.

 The analysis of the non-separable, single operator (or abelian) situation was

 carried out by Wecken [49], and later by Plessner-Rohlin [39]. This analysis
 again is the two-step process we described; however, the ring decomposition step
 has become much more difficult. In [49], prior to our present advanced state of
 knowledge of ring decomposition, both steps are taken together and at the ex-
 pense of the unitary invariants for "simple" representations. Specifically, the
 so-called "weighted spectrum", which in our terminology is the full set of normal
 states transferred to the representing function system, is taken as invariant of
 the "simple" representation rather than the more basic family of permanent
 null sets of these states. We have noted that the extension problem is a triviality
 with the full set of normal states taken as invariant. In [39] more modern tech-
 niques are introduced into the theory to deal with the non-separable abelian

 case, but the "weighted spectrum" remains as invariant. The theory of [12, 141
 is finally carried over to the non-separable abelian case, with basic invariant the
 null sets, in [31]. Of course more work must be done with the null set invariant

 than with the weighted spectrum as invariant since the theory must contain
 the work of The Extension Theorem (greatly simplified by commutativity, how-
 ever). In our terminology, Nakano uses as invariant the set of all null ideals cor-
 responding to restrictions of the representation to countably-decomposable pro-

 jections in the ring of operators generated by the representing operator algebra.
 This fails to give the single ideal as invariant in the separable case, as we have

 managed to do by using null ideal bands; though the gap is slight in the com-
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 mutative case. Halmos [13] manages to avoid the involvements of the extension
 problem with the null sets used as invariants while employing an invariant some-
 what sharper than the full set of normal states.

 By a "factor representation" we shall mean a representation q5 of a C*-algebra
 ,A as an algebra of operators 2fo acting upon some Hilbert space 3C in such a way
 that 2{f is a factor. This class of representations is quite broad including as a
 special case all irreducible representations (in this case the factor is of type I).

 Since the only central projections in W0 are 0 and I, the multiplicity function fo
 assigns to 0 the set of characteristic null ideal bands of q5 and to each other num-
 ber in its domain the set of null ideal bands of 4), if 2I- is infinite and 2f is finite.

 Otherwise, there is some positive number or infinite cardinal a such that fo assigns
 to each b < a the ideal 63 of Borel sets in the pure state space of 2f and to each
 c ? a the set of null ideal bands of 4. If 2fi is of type In and 2fo of type Lm.
 with n and m finite, then, more specifically, a = m/n above and the set of null

 ideal bands contains No (the ring 2f- being countably-decomposable in this case).
 If 2tI' is infinite and has coupling character b then a = b above and the set of null

 ideal bands of q contains No when n < No, whatever the type of 2U. With n
 infinite and m finite, we have the situation described for 2fj infinite and 2fI
 finite above, but, in this case, it is more informative to describe the separating

 multiplicity function f,. We have f (b) = G3 for b ? 1//m and f , (b) is the set of
 null ideal bands of 4 for b > 1//m, and contains 9f if n ? No . Note that the case
 m = 1 is precisely the case of irreducible representations. With W0 and 2fI' of
 type II1 having coupling number b, fo(a) = 63 for a < b, and fo(a) is the set of
 null ideal bands of q5 and contains No , for a _ b. In all but the II,,, II, case, the
 factor representation is determined to within unitary equivalence by a number

 (possibly an infinite cardinal) and a null ideal band (or No an ideal of Borel sets,
 in the countably-decomposable case).

 5.2. Some examples

 To illustrate the role the null ideals play in the problem of map extension
 (cf. The Extension Theorem of 2.2), we shall begin this section with an example

 of a *-isomorphism q5 of one concrete, countably-decomposable abelian C*-algebra
 2[I upon another ?12 which admits a (weakly) continuous extension 4)' mapping
 AT[ into 521 with 4' a homomorphism but not an isomorphism. Thus this is a

 situation in which 910 contains X (2f1 , 3C1) properly. Moreover, 4-1 does not admit
 a continuous extension to W2, for if 4" were such, then )"+' would be a continu-
 ous mapping of 2fP into itself which is the identity on 2f and hence the identity
 on SIP. We would deduce from this that 4)' was an isomorphism contrary to con-
 struction. We proceed to

 EXAMPLE 5.2.1. As 3C1 we take [0, 1] under Lebesgue measure and as 3C2 the
 open, everywhere-dense subset S of [0, I] obtained by the Canto. process of tak-
 ing the centered open quarter of [0, 1], together with the centered open intervals
 of lengths T1I- in the remaining pieces, and so forth. We observe that S has Lebes-
 gue measure 2. For our first C*-algebra 91 we choose the algebra consisting of
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 those operators Tf defined by Tf (g) = f. g for each g in L2([0, 1]) and f some fixed
 continuous function on [0, 1]. We define q5(Tf) to be the operator "multiplica-
 tion by the restriction of f to S on L2(S), S taken with Lebesgue measure."

 Clearly q5(Tf) is a bounded operator on L2(S) and 4) is a *-homomorphism of
 2[i onto an (abelian) C*-algebra %2. The mapping q5 is an isomorphism for if
 q5(Tf) 0 then f is 0 almost everywhere on S. Now, f being continuous and S
 being open, if f is non-zero at some point of S then f is non-zero on some interval
 in S, contradicting the fact that f is 0 almost everywhere on S. Thus f is 0 on So
 and this, together with the everywhere denseness of S and the continuity of f
 imply that f is 0 on [0, 1], whence Tf = 0 and 4) is an isomorphism. The weak
 closure 2I1 of 2f is the algebra consisting of the multiplication operators Th
 on L2([O, 1]) where h is an essentially-bounded, measurable function on [0, 1].
 The isomorphism q5 has the obvious extension 4)' to 2[P with the desired continu-
 ity and homomorphism properties. That 4)' has non-zero kernel is apparent;
 for example, the characteristic function of the complement of S corresponds to a
 non-zero operator in W1-, since this complement has Lebesgue measure a, which
 maps under 4) into 0.

 In The Extension Theorem, we employed the hypothesis that the kernel of a
 mapping being studied was generated by its positive elements as well as the
 critical hypothesis that a null ideal band of both mappings coincided. It is nat-
 ural to inquire whether the kernel of an order representation of one C*-algebra
 onto another is necessarily generated by its positive elements, and, at any rate,
 does not the coincidence of the null ideals of two such mappings entail the coin-
 cidence of their kernels? The following simple example of order-representations
 (states) of an abelian C*-algebra onto the factor of type I1 (the complex numbers)
 illustrates the possibility of the kernel of an order representation (with the
 property that the inverse image of a positive operator contains a positive opera-
 tor) not being generated by its positive elements, the null ideals coinciding with-
 out the kernels coinciding, without the possibility of map extension (in the sense
 of The Extension Theorem), and without the unitary (or semi-unitary) equiva-
 lence of the mappings (despite the perfect matching of coupling).

 EXAMPLE 5.2.2. As our abelian C*-algebra Xf, we choose the algebra of con-
 tinuous, complex-valued functions on [0, 1]. For the map 4)1 we choose the state

 1

 f a f dmn, with m Lebesgue measure on [0, 1], and for 42 the state
 o~~~~~~~~~~~~~~~~~~~

 f-+( i) ffdm+ (3) ffdm.

 Thus our image algebra is the same in both cases, namely, the complex numbers

 (acting by multiplication on the 1-dimensional Hilbert space of complex num-

 bers). The null ideals 9101, 910, are both the Borel sets in [0, 1] of Lebesgue meas-
 ure 0. The kernels of both mappings are non-zero, distinct and contain no positive
 functions. The unitary equivalence of 4) and 42 would imply that one is equal to
 the other.
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 Our next example contains an instance of a pair of order-isomorphisms of a

 function system as concrete operator algebras, in fact, abelian algebras, for which

 the null ideal of one is contained in the null ideal of the other without an ex-

 tension being possible. As must be expected from The Extension Theorem, the

 image algebra of the first representation does not have a countably-decomposable

 weak closure. This example illustrates that the null ideal itself does not serve as

 an extension invariant in the general case, but that something of the nature of

 the null ideal band is necessary.
 EXAMPLE 5.2.3. Let 3C1 be a Hilbert space with a complete orthonormal

 basis { XT } indexed by the real numbers r in the closed interval [0, 1]. Let A be the

 linear transformation on 3C1 defined by AXr = rxr . For 3C2 choose L2(0, 1) (under
 Lebesgue measure) and let B be the operator on 3C2 defined by B(f) = xf. Both

 A and B have simple spectrum equal to [0, 1]. Denote by ?L, and %2 the algebras
 generated by A and B, respectively, and let 01 and 42 be the canonical isomor-
 phisms of the representing function system C([0, 1]) onto 2Ii and ,2, respectively
 (so that, if X denotes the identity transform on [0, 1], 01(X) = A and 42(X) = B).
 The state f - (40i(f)Xr, Xr) is a pure state of C([0, 1]), since Xr is an eigenvector
 of A (see [15]); and its value at X is r, whence, it corresponds to the point r and
 induces the measure which is 1 on Borel subsets of [0, 1] containing r and 0 on

 all others. Thus r does not lie in a permanent null set of 4i, and no, = {I 1.
 (We see from this that if the null ideal extension result held in general, 21f would
 be a "universal" algebra for representation extensions of C([0, 1]); i.e., each

 representation of C([0, 1]) would be factorable through 2iW by a representation
 which was extendable to 2U.) Though it is not needed for the following, we re-

 mark that MO2 consists of the Borel subsets of [0, 1] having Lebesgue measure 0.
 Define c on 2f by 441(f) = +2(f), so that 0 is a *-isomorphism of 2f onto %2
 We show that o does not have an extension to 2fL which is weakly continuous on
 the unit sphere of 2U. In fact, let fnr be a sequence of functions in C([0, 1])
 which lie between 0 and 1, and are monotone-decreasing with pointwise limit
 1 at r and 0 elsewhere on [0, 1]. Then (4i(fnr)Xt X t) is monotone-decreasing to 1
 if t = r and to 0 otherwise, so that 4i(fnr) tends weakly to Er, the projection
 operator on iC1 with 1-dimensional range { aXr}; while

 (Q2(fnr)g, g) = fnr(X)I g(X) 12 dX -* 0,
 0o,1]

 since fur g 12 is monotone-decreasing to 0 almost-everywhere on [0, 1], so that
 tk2(fnr) tends weakly to 0. Thus an extension of 0 to 21L which is weakly continu-
 ous on the unit sphere of 217 must map each Er into 0 and I = . E, into 0,
 so that no such extension exists.

 Following Definition 2.2.1, we remarked that the distinction between o,6
 the normal state null sets, and OT, the vector state null sets, is not vacuous. We

 discuss an example in which OZO is properly smaller than OZo .
 EXAMPLE 5.2.4. Let B be the algebra of all bounded operators on the Hilbert

 space at, and let X be the full state space of GB with 2 the representing function
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 system for 6s on X and 0 the canonical isomorphism of ? onto B. Each point p
 corresponds to a state wp of 63 and wp is a normal or vector state of 63 if and only if

 {p} is not in no or D, respectively, by Lemma 2.2.2. Thus, if p corresponds to a
 normal state of (B which is not a vector state, for example, half the sum of two
 vector states corresponding to orthogonal unit vectors, then {p} lies in N4O
 but not in 910 .
 We present an example, promised in the introduction, of two C*-algebras which

 are isomorphic and have unitarily equivalent weak closures but which are not
 themselves unitarily equivalent. Such an example underscores the contention
 that a set of unitary invariants for C*-algebras will necessarily be more detailed
 than such a set for rings of operators. From the preceding developments we see
 that there are actually two possible types of example for which we can ask. We
 can ask for two unitarily-inequivalent representations of a C*-algebra as con-
 crete C*-algebras with unitarily-equivalent weak closures or we can ask for two
 isomorphic, unitarily-inequivalent (concretely-represented) C*-algebras with
 unitarily-equivalent weak closures. This second question can be expressed in
 our representation terminology as follows. We ask for two isomorphisms 01, 42
 of an abstract C*-algebra 9A as concrete C*-algebras 91i, 92 , respectively, acting
 on Hilbert spaces 3C1, 3C2, respectively, such that 91 is unitarily equivalent to

 2 and such that 01 is unitarily equivalent to no isomorphic representation of 2
 as 912. Indeed, having produced an example of the second type, we can let 21
 stand for the abstract C*-algebra whose elements are the operators in one of the

 C*-algebras with 01 as the "identity isomorphism" and O2 the given algebraic
 isomorphism, so that, if 01 is unitarily equivalent to some isomorphic representa-
 tion of 2t as 912 then 91i and 912 are unitarily equivalent contrary to assumption.
 On the other hand, if we have the representations 01, 42 described above, then
 2I and 212 are unitarily inequivalent, for a unitary equivalence 4 of 91i onto 92
 gives rise to the isomorphic representation ?14 of 21 as %2 which is unitarily equiv-
 alent to 01, contrary to construction.

 Now, if the C*-algebra 91l is unitarily equivalent to 212 then it follows from ele-
 mentary considerations that there is a homeomorphism y of X, the pure state
 space of X1, onto itself, which induces a map on 0(X) carrying ?, the representing
 function system for 21, onto itself and such that -YfO2 = fo, . In fact, if 4 is the uni-
 tary equivalence of 91i onto 912 then 42Y1'4 is an automorphism of 21 which induces
 the desired homeomorphism y. On the other hand, if there exists a homeomor-
 phism y of the type just described then, according to [17], y induces a C*-auto-
 morphism O of 21 such that fo, =1 fo, so that 01 and 414 are semi-unitarily
 equivalent (see ?2.4). To get unitarily equivalent algebras 21, 22 rather than
 semi-unitarily equivalent ones, we can make the algebraic assumption that 21
 admits an automorphism inducing a homeomorphism such as y.

 After these preliminaries, we proceed to our example, which consists of two
 concrete abelian C*-algebras on separable Hilbert spaces whose weak closures
 are maximal abelian algebras with pure point spectra (i.e., each is the algebra
 of all diagonal matrices relative to some orthonormal basis).
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 EXAMPLE 5.2.5. Let X be the compact Hausdorff space consisting of the points

 I ln, 01 n~,2, ... in the usual metric topology, and let 91 be the abstract (commu-
 tative) C*-algebra C(X) (i.e., the algebra of convergent sequences). We define

 two measures on X. The first Al is determined by assigning to the point 1/n
 the measure 6/ir2n2 and to the point 0, the measure 0, so that /1l(X) = 1. Note
 that each point of X is both a closed and measurable set and that each subset

 of X is a countable union of single-point sets, so that all subsets of X are Borel

 and Ail-measurable. Moreover, Al is clearly a regular Borel measure. The measure
 /12 defined by A2(1/n) = 6/r2n2 for n - 2, 3, and 42(0) = 42(1) = 3/7r
 enjoys these same properties. Let 01, 02 be the isomorphic representations of 2t
 which associate with each continuous function on X the multiplication operators

 (cf. Example 5.2.1) on L2(X, All) and L2(X, /12) respectively, corresponding to this
 function. Now W1 and 92 are the algebras of multiplication operators correspond-

 ing to essentially-bounded (measurable) functions on (X, /1l) and (X, 42), respec-
 tively. Thus 9p and 9W are unitarily equivalent as follows by mapping the nat-

 ural basis for L2(X, 1l) upon the natural basis for L2(X, /12), or from the general
 theorem of Segal [40], since in one case the measure algebra is the Boolean o-al-
 gebra of all subsets of X modulo an ideal consisting of the null set and a set with

 one point, and in the other, the o-isomorphic Boolean a-algebra of subsets of X.
 On the other hand, according to our preliminary remarks, we need only show

 that no homeomorphism of X can carry fo, onto fO2, in order to show that l
 and 12 are not unitarily equivalent. Since 9WV and 9G are maximal abelian, that

 is 21j = W , 2 = 92, all are of type I1 and the discussion of ?5.1 shows us that
 fo, and fO2 are equal to the ideal of all Borel subsets of X at each point less than
 1 and equal to No, 9402, respectively, at each point not less than 1. (We need not
 consider ideal bands since 9A1 and 9G are countably-decomposable.) Our task

 then is to determine 94?, ,f2 and show that no homeomorphism of X carries
 94?, onto X2 . We show that No, 0102 are the ideals of measure 0 sets relative to
 Al A2, respectively, i.e., {0, (0) I and {0 }. Since the vector states due to the func-
 tion 1 (in L2(X, Al) and L2(X, /2)) induces A1 and /2 integration, respectively,
 on 0(X), the null ideals of these states are precisely {0, (0) I and { 0}, respectively,
 so that 91 I1 C {0, (0) }, c 02 {0} . On the other hand, if hn is the function which
 is 1 at 1/in, m > n; 1 at 0 and 0 elsewhere on X, then hn > xo , where Xo is the
 characteristic function of the set (0), and h, is in C(X). Now W1 has the separating
 vector 1, so that each normal state of W1 is a vector state [3]. Let us take such a
 state arising from the function f with L2(X. ,ul)-norm 1 and consider the measure
 ji which this state induces upon X. From the preceding remarks

 0 < A1(0) < inf{I (Q1(h.)f, f)1 _ inf, \ (f(1/r))/r j2 = 0,

 since M=i I (f(1/r))/r 2 = 7r2/6. Thus (0) is in Rol, and XYL4 = {0, (0)1.
 Clearly 0 is in I so that 0f02 = {01, and, of course, no homeomorphism of X
 carries 9l40 onto l2 -

 Concerning this example, we may remark that there is no difficulty in establish-

 ing the equality of No and DI' in the case of representations of commutative
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 C*-algebras. This example illustrates a general technique for constructing a class

 of such examples. We introduce regular Borel measures 2 on the compact-

 Hausdorff space X with null sets 911, 912, respectively, whose measure algebras
 are isomorphic and such that no homeomorphism of X onto itself carries Dzi

 onto 9Z2. Then the multiplication representations of C(X) on L2(X, Al) and
 L2(X, /12) are unitarily inequivalent but have unitarily equivalent weak closures.

 5.3. Applications

 Many investigations in modern physics and modern analysis are concerned

 with the unitary classification of representations of certain structures such as

 groups, Lie algebras, commutation relations, etc., by self-adjoint families of

 operators acting on Hilbert spaces. We hope to have developed a general frame-

 work around which to build such investigations, in the preceding chapters. One

 will expect to take advantage of the special features of the particular structure

 being studied to locate the appropriate representing function system and asso-

 ciated family of null ideal bands-these invariants being described in the nat-

 ural parameters of the structure. It is in this area that we envisage the main

 applications of the theory. In the present section, we describe a certain abstract

 application of our general theory-viz., the unitary classification of an operator
 (not necessarily normal) acting upon a Hilbert space.

 The question of classifying non-normal operators being a focal point of in-

 terest in the subject of operator theory and being a question which is not well-
 set, it seems worthwhile to begin with some comments concerning the problem.
 The natural criteria of easy and effective general computability of the invariants

 involved will not do for determining the acceptability of a purported solution,
 for the problem is usefully (abstractly) settled for self-adjoint operators while
 even the spectrum of a particular self-adjoint operator is not easily or effec-
 tively computable-much less so, the multiplicity structure on the spectrum as
 related to its action on the underlying Hilbert space. The solution we present
 reduces to the classical solution when applied to the case of a self-adjoint oper-

 ator and has components which are natural extensions of those appearing in
 that classical solution.

 We begin with the trivial observation that the problem of unitary equivalence
 of non-normal operators is the same as the problem of (simultaneous) unitary
 equivalence of pairs of self-adjoint operators (simply consider the unique de-
 composition of the given non-normal operator as a sum of a self -adj oint and skew-

 adjoint operator). Suppose then that Al, B1 and A2, B2 are pairs of self-adjoint
 operators acting on the Hilbert spaces XCi and 3C2, respectively, and that Wi
 and 2f2 are the C*-algebras they generate. If the pair Al, B1 is (simultaneously)
 unitarily equivalent to the pair A2, B2, certainly p(Al, B1) = 0 implies

 p(A2, B2) = 0,

 with p a (non-commutative) polynomial in two variables, and, since the unitary

 operator effecting the equivalence carries p(A1 , B1) onto p(A2, B2), the map-
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 ping 0' defined by 4'[p(Ai, B1)] = p(A2, B2) extends to a *-isomorphism 0
 of W, onto W2. This can be concisely formulated by requiring that

 fl p(Al, B1) || = || p(A2 , B2) 11,

 for each polynomial p. The condition stated corresponds to the (algebraic)

 assumption for single, self-adjoint operators that their spectra be identical.

 (If A and B are the self-adjoint operators in question, the assumption that their

 spectra be identical is precisely the assumption that the C*-algebras they gener-

 ate are isomorphic via a mapping which carries A onto B.) Taking 2f to be the

 abstract C*-algebra whose elements are the elements of 211, 01 to be the "iden-
 tity" representation of 2f upon 211, and k2 to be 4xk (where 4 is the isomorphism
 of 21 onto 2f2 described above), we find that fAl and f02 (the assignment of null
 ideal bands in the pure state space of 2t to non-negative reals and infinite cardi-
 nals) are the unitary invariants in question-i.e., the pair Al, B1 is (simultane-

 ously) unitarily equivalent to A2, B2 if f,6, is equivalent to fA2 and only if fA1 is
 identical with f02 . Of course, fs1 , If2 correspond to the multiplicity functions on
 the spectra in the case of a single self-adjoint operator.

 There is nothing in the preceding discussion which prevents the obvious ex-

 tension from pairs to arbitrary sets of self-adjoint operators. The major dis-
 tinction between the unitary classification of self-adjoint and non-normal oper-
 ators lies in the algebraic portion of the classification. The spectrum is a canonical
 form for the algebraic system comprised of the C*-algebra generated by a self-
 adjoint operator with that operator distinguished in the algebra. We do not have
 such a canonical form for the corresponding situation in the case of two non-
 commuting self-adjoint operators.

 5.4. Computing null ideals

 In this section we deal with matters related to the actual computation of

 null ideals of representations. The abelian case presents the most favorable
 circumstances for computing null sets-in the countably-decomposable case,

 the null sets of a single vector state are those of the representation. We begin
 by sketching a proof of this classical fact.

 To recall-if p is a representation of C(X) as a C*-algebra of operators 2f act-
 ing on the Hilbert space 3C, then there is a Borel (projection) measure on X,

 S > @9(S), whose range consists of projections in 2- such that +(f) = f odG

 for each f in C(X). (This is a variation of the decomposition theorem for unitary
 representations of locally compact abelian groups [1, 37, 48] and may be found

 in the form stated in [24].) If 21- is countably-decomposable, then, by Lemma
 3.3.1 (cf. [32]), there is a separating vector x for 2F. The definition of 6P is such

 that the regular Borel measure induced by wo4 on X is S -* (G(S)y, y) for each
 vector y in 3C. In particular, and since x is a spearating vector for 2A7, it follows

 that 91 coincides with null sets of (P. Thus, if S lies in S1, ((P(S)y, y) = 0 and
 S lies in 1, so that 91 = 91' . With 2- countably-decomposable, each normal
 state is a vector state [3], whence 91> = .
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 Of course one wonders now if anything as fortunate occurs in the general

 case; i.e., if 4 is a representation of a function system (S, X) as a concrete opera-
 tor system (Sf, 3C) such that 21- has a separating vector x is it true that by40 =
 9. This must be answered negatively, even with 2t commutative, as we shall
 show. This indicates that the question, although interesting, from a computa-

 tional viewpoint, is not fairly set; for, in the commutative case, the substance

 of the preceding paragraph is that it is "approximately" correct that the null
 sets of some one vector are all that need be computed. The missing condition is

 the "minimality" of the representing function system; i.e., the question above

 should be asked with X the pure state space of 2f and p a representation of W
 composed with the canonical isomorphism. In this case and with 2f non-commu-
 tative the question must still be answered negatively, as we shall show in the
 example following our commutative example.

 For our examples, we note that if the points p and q in X correspond to normal

 states wp and wq; and if {p} is not a permanent null set of w~, then wcp is domi-
 nated by a positive multiple of wc. In any event, { p } is not a permanent null

 set of cop. (These facts follow from the comments in the proof of Lemma 2.2.2.)

 Let SC be L2(0, 1) under Lebesgue measure; let af be the algebra of multiplica-
 tions by essentially bounded measurable functions; let X be the full state space
 of Xf, ? its representing function system on X and p the canonical isomorphism of

 ? onto Wf. Let (f(x) = (2x1)-1, for 0 < x < 1, so that f is a unit vector in 3C.
 The constant function 1 is a separating vector for Xf, however 9Tf does not con-
 tain 91i. Since both col and wo, correspond to points of X, this comment will
 have been established, according to our initial remark, when we show that cof <
 Kw1 holds for no K (in which case wo,, as a point of X, is a null set of co1 but
 not of wof4). Suppose K > 0 is given, and let A be the multiplication operator
 corresponding to the characteristic function of the interval [0, 'K2]. Then

 Cwf(A) = (Af, f) K > 4K = Kwi (A),

 whence wf $ Kw, , since A is a positive operator in Wf.
 Our non-commutative example will employ the free group 9 on two gener-

 ators a and b and deal with the uniform closure 2h of the set of operators &I

 arising from the left-convolution action of functions in L1(q) on L2(9). Assign-
 ing to each operator in &I the supremum of the norms of its images under each
 *-representation of 2f, we arrive at a normed *-algebra whose completion 21
 is a C*-algebra with the property that each *-representation of &t is extendable to
 such a representation of W (since each such representation is norm-decreasing by
 definition of the norm) [38; Theorem 1, p. 49]. In particular, let 4 be the extension

 to W of the "identity" representation p' of &t as &t acting on aC (= L2(9)), so
 that 4(21) = W1, since the image of a *-representation of a C*-algebra is uni-
 formly closed [44]. According to [50], there is a *-representation '/' of &t as an
 algebra of operators %2 acting irreducibly on 3C2 such that the family of states
 of the form w4', x a unit vector in 3C2, of &f is (w*-) dense in the family of vector
 states of o . Let ^,1 be the extension of s1' to W . Since 2 acts irreducibly on 3C2,

 Wc is a pure state of %2, whence wA is a pure state of W. With y a unit vector in
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 ic, it follows now that coo is a limit of the pure states of 21 of the form cowt. In

 fact, let E > 0 and , A , A$' in 2 be given, and choose Al, , A. in0-1(9o)
 such that As-Ai < E/3, i = 1,... , n. Let x be a unit vector in C2

 such that w - x4/[,(Ai)]- wy[(Ai)] I < e/3, i = 1, , n. Now 4"qk(Ai) =
 {(As), i = 1, , n; so that

 It(AI'C.4')- |< x4(A$) - cox4Y'[VI(Ai)]

 wx coy'[o(Ai)] -wA (A) + wyo (A ) - w(A') < <,

 w-hich establishes our assertion.

 We consider s now as a mapping of the representing function system 2 on the
 pure state space X of Xf, and draw from the foregoing computation the fact that
 cow appears as a point of X. According to our initial remarks, if we locate a sepa-

 rating vector x and a vector y in xC such that no positive multiple of cox majorizes
 coy then {cwyo is a null set of co4 but not of c.yo; whence, our example of a "mini-
 mal" representation with a separating vector whose null sets are not those of the

 representation. As x we choose the function which is 1 at the identity of 9 and 0
 elsewhere (a generating and separating trace vector for the factor of type II1,
 AU, [30]). Let a, be the (maximal) abelian subring of 2t-i generated by the left-
 translation operator on L2(9) due to a, and let E' be the projection on [ax].
 Then GtE' restricted to [ax] is maximal abe]ian and unitarily equivalent to the 2f
 of our preceding commutative example. Indeed, identifying the group element
 an with the integer n, the Fourier-Plancherel transform of the square summable
 sequences carries [aix] unitarily onto L2 of the circle under Haar-Lebesgue meas-

 ure and carries Gt onto the multiplication algebra of this measure which algebra
 is clearly unitarily equivalent to the algebra 2f of our commutative example).
 Moreover, this unitary transformation carries x onto the constant function 1,

 so that there is a unit vector y which maps onto (2x2)-[ of that example. It
 follows at once that no multiple of cox majorizes cow,, since this is true of the cor-
 responding vector states in our commutative example, and our construction is

 complete.

 Expressed in slightly different terms, the desirable situation, from the com-

 putational viewpoint, is the one in which equivalent normal states p and r of
 '- acting on XC have identical families of null sets relative to the representation
 o of (S, X) as 2a (wA-here "equivalence" means that p(A) = 0, for a positive oper-
 ator A in 2- if and only if r(A) = 0). We have seen that we cannot expect

 this in general. Nevertheless, several positive results in this direction hold. In
 the first, we establish a converse to this.

 THEOREM 5.4.1. If 0 is an order-homomorphism of the function system (S, X)
 as a concrete operator system (Sf, IC) and p, r are normal states of 2F such that

 sp, = 91, , then p and r are equivalent. on 9F.
 PROOF. Let G be the complement of the union of all projections in 2F which

 are annihilated by both p and r. If {GGal is an orthogonal family of projections
 in 2F with sum G, then p(G) + r(G) = La (p(Ga) + r(Ga)) and p(Ga) =
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 T(Ga) = 0 for all but a countable number of Ga . If Ga. is annihilated by p and

 r, however, it is orthogonal to G (and in G), hence equal to 0. Thus G is count-
 ably-decomposable in W-.

 From The Extension Theorem, it follows that G01"G = GW-G and, indeed,
 that if A' is a positive operator in A- there exists a positive operator S in CS
 such that GSG = GA'G (using the notation of the proof of that theorem).

 Thus, if we have the equivalence of p and -r on C, and 0 = r(A') = r(GA'G) =
 r(GSG) = r(S), then 0 = p(S) = p(GSG) = p(GA'G) = p(A'); and we have
 the equivalence of p and r on A-. Suppose then that A is a positive operator

 in As and that T(A) = 0. From the proof of The Extension Theorem, there is a
 unique positive J in Lm such that ?(f) = A, and rT has a unique extension

 rq from L to Lm (since r is normal). Thus ?(fJ) = 0, and if S' is the set of points

 p in X such that f(x) > 0, then S' lies in 9o,0 and hence in 9p, . It follows that
 0 = p~(J) = p(A), and the proof is complete.

 Our next result indicates that the computation of null sets may be restricted
 to vectors which generate maximal, cyclic projections.

 THEOREM 5.4.2. If 0 is an order-representation of the function system (Z, X)
 as a concrete operator system (2L, C), then each null ideal 9Ad contains a null ideal
 1ix for which [2L'x] is a maximal, cyclic projection in AF, so that 9> is the intersec-
 tion of such null ideals, where V,- is assumed to have a countably-decomposable
 center.

 PROOF. We shall show that there exists a vector x, with [W'x] maximal cyclic
 in 2- and such that B'x = y for some B' in sf'. Suppose, for the moment, that
 we have demonstrated this fact. Then, with f a positive function in 2,

 (O(f)y, y) = (B'*BfO(f)x, x) ? B' 2 (0(f)x, x),

 so that w4 < 11 B' 12w4 It follows that each extension of coo to C(X) is major-
 ized by some extension of 11 B' 16y which is the II B' I2 multiple of an extension
 of wmy6 (all extensions being positive, of course). Thus the family of null sets of
 the regular Borel measure induced by the first extension contains the family of
 null sets corresponding to the second extension, from which it follows that 91x

 is contained in ty
 It remains to show that an x and B' of the described type exist. Let E = [21'yj

 and let [21'z] be a maximal, cyclic projection containing [2L'y], the existence of
 which is guaranteed by Lemma 3.3.7. According to [28; Lemma 9.2.1], there
 exists a bounded operator A' in, and a closed, densely-defined operator T'
 affiliated with, the ring 21 such that y = A'T'z. By [28; ?4.4, 36; Theorem 7],
 T' has a polar decomposition, T' = U'H', with U' a partial isometry in 2I'
 and H' a positive hypermaximal operator affiliated with .' We can write y =
 A'U'H'z = C'H'z, with C' = A'U', a bounded operator in .' If we can find
 a hypermaximal operator K', affiliated with 21, which has a densely-defined
 (hypermaximal) inverse K'-1 with z in its domain, affiliated with 21 and such that
 H'K' is bounded on a dense linear manifold, then y = C'H'K'K'-'z, with
 C'H'K' = B' a bounded operator in 2. Now K'-'z (= x) generates a cyclic
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 projection F' in 2' such that G' - F', where G' = [2z], by [28; Lemma 9.3.1],
 since x = K'-'z and z = K'x. Thus, by [28; Lemma 9.3.3], [21'x] - [2f'z], and
 [21'x] is a maximal, cyclic projection in 2F, so that y = B'x is the desired repre-
 sentation of y.

 To construct an operator K' with the properties noted, let f be the function

 defined on the non-negative real axis as, 1 on the interval [0, 1] and 1/x for x ? 1;
 and let K' be f(H'). If g is the function which is 1 on [0, 1] and x for x > 1, then
 g(H') is inverse to K'. Clearly H'K' is bounded and g(H')(= K'-') has z in its
 domain, since g(H') = E1 + (I - E1)H', and z is in the domain of H', where
 E1 is the spectral projection for H' corresponding to the interval [0, 1]. The proof
 is complete.

 To aid in the computation of null sets, we may also take advantage of the
 comment established at the beginning of the preceding proof; viz., if y B'x
 with B' in 2', then only the null sets of x need be taken into account.

 While the null sets of equivalent vector states need not agree, a very helpful
 limitation of the computation necessary, may be supplied in certain cases by our
 next result.

 THEOREM 5.4.3. If 4 is an order-homomorphism of the function system (2, X)
 onto the concrete operator system (21, aC) and x and y are unit vectors in 3C which

 induce equivalent states wc. and xv, respectively, of 2F, then 9T1 , = 910 F' and
 1'= 9E IF', where E' = [2[x] and F' = [2[y].
 PROOF. If 4/(AE') = AF' for each A in 2F then A/ is a *-isomorphism of 2FE'

 onto 2FF', by Lemma 3.1.3; for CE' = CF', by Lemma 3.3.1, since [?f'x] =

 [2['y] (an obvious corollary of the equivalence of coA and coy). Moreover, Ai is weakly
 bicontinuous on the unit spheres of 2FE' and 2-F' (since A/ preserves unions of
 orthogonal sums of projections and, hence, carries completely additive states

 onto completely additive states), so that EROIE' = WAv F, from The Extension
 Theorem (of course, AXo I E' = 0 I F', by definition of A/).

 The rings 2FE' and 2F-F' restricted to E'aC = [2[x] and F'3C = [2[y], respec-
 tively, have x and y as generating vectors with E'2['E' and F'2['F' as commu-
 tants, respectively. Thus by [28; Lemma 9.3.3], [E'2['x] (= E'[x'x]) and [F'21'y]

 (= F'[y'y]) are maximal, cyclic projections in 2-E' and 2-F', respectively.
 Now A1 preserves equivalence of projections and maps [E'2['x] onto [F'?f'y], by
 definition, so that A1 preserves maximal cyclicity (since maximal, cyclic projec-

 tions are equivalent). Lemma 4.1.6 is now applicable, and 41 is unitarily imple-
 mented. In particular, 9tI+1E' = IF' , and the proof is complete.

 We conclude with a derivation of the canonical vector null sets of the algebra
 of all bounded operators 63 acting on some Hilbert space 3C. From ?2.3, we know
 that the pure state space of GB and the closure of the set of vector states coincide,
 since (3 acts irreducibly upon aC. Let X be the pure state space of 63, ? its repre-
 senting function system and 4) the canonical isomorphism of ? upon (B. If p is a
 pure state of 63 which does not annihilate the set of completely continuous oper-
 ators e then the representation of (B induced by p is an irreducible *-isomor-
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 phism, hence wleakly bicontinuous on the unit sphere of 63 (as follows from the
 special nature of 63), and p is a vector state. On the other hand, a vector state of

 63 which lies in X is not a vector null set of q. Let X1 be the complement of the
 set of vector states in X. We assert that 9n is the ideal of Borel subsets of X in
 X, . In fact if S is such a subset, its measure relative to any state extension of a
 vector state from 2 to C(X) is the supremum of the measures of its closed sub-
 sets, by regularity of the measures involved. It suffices, therefore, to deal with
 the case in which S is closed (hence w*-compact). If S is not in n , then, accord-
 ing to Lemma 2.2.2, there is a unit vector x such that @(f) = w(fxs), for each
 bounded Borel function f, where Xs is the characteristic function of S and cu
 is the regular integration process induced by some state extension of any from

 ? to C(X). If a state of 63 takes the value 1 at E, the one-dimensional projection

 with x in its range, then this state is xx (since it has the same null space as an)
 Thus ?-'(E) takes its maximum a on S and a is less than 1. Of course c[-'(E)] =
 w[c'(E)xs] ? a < 1, while wx4[44'(E)] = wx(E) = 1. It follows that S lies
 in 91' and 91 is precisely the ideal of Borel subsets of X contained in X, .
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