
VOL. 43, 1957 MATHEMATICS: R. V. KADISON 273

If d > 0 and y1' e C,'(En), there exists T > 0 such that for t > T. jP' e Cc-(t(v)
(Nd -x)). We then have l[J_, t, F(jt')] - [(2ir)-n/2/a, F(jt6')] < Ec7I F(/')IIH1.
Since J., has bounded norm in HI as t - co, it follows that, as t a, Jt, con-
verges weakly to (27r) -/2(1/a) in H' But then [J., t1/a] -. (2r) -n/2 11/aII2HI,
i.e. ,t1-vg10)(I) -- (27r) -n f d{/a(t). If xo were A point outside N, a similar argu-
ment would show that t'-g,901(x) -O 0. By suitable choice of N this is true for
any xo $ x. Applying a Tauberian theorem of Hardy and Littlewood,7 we obtain
THEOREM 1. Let x, y e G. Then, as X -P + oo, ex, x(y) = (2r) nwA,(x)(Z6.v, +

n
O(l))Xb, where b = q'( E m>), WA,(X) = f d (6x = 1 if x = y, 0 if

j =1 Ao(x;, t) < 1

X # y).
AI is said to be regular if (AI + ii)-I is compact. In the regular case ex, A (y) =
E uj(x) uj(y) (us an orthonormal set of eigenfunctions with eigenvalues Xj).

Xi 5 X
For the general set of elliptic variational boundary-value problems for which the
writer has shown the regularity of solutions on the boundary,8 we have t' |gX, t(P)
(x) < f(x), f summable. Interchanging limits by dominated convergence, we have
THEOREM 2. Let G be a bounded domain of class C"', Al defined with respect to a

smooth elliptic boundary-value problem on G. Then N(z) E 1 = (1 + 0(1))
Xi < t

(27 n If WAo(x) dx} tb, as t -- + co.
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1. Introduction.-One of the classical results of the theory of operator algebras
states that each C*-algebra (operator-bound and adjoint closed algebra of operators
on a Hilbert space) has a separating family of representations as irreducible C*-
algebras (those with no closed invariant subspaces other than (0) and the entire
space)-a corollary of which is the existence of a separating family of strongly
continuous, irreducible, unitary representations of a locally compact group.
In this note we shall prove that each irreducible C*-algebra is algebraically

irreducible (has no proper invariant linear manifolds-closed or otherwise) and
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develop some of its consequences.' We shall prove, in fact, the n-fold transitivity
of irreducible C*-algebras.

2. Transitivity and Irreducibility.-The main result is contained in
THEOREM 1. If 21 is a C*-algebra acting irreducibly upon the Hilbert space SC

and I Xi }, { yi } are two sets containing n vectors each, the first set consisting of linearly
independent vectors, then there exists an operator A in 2l such that Axi = yi. In
particular, al acts algebraically irreducibly upon XC. If Bxi = yi for some self-adjoint
operator B, then a self-adjoint operator A in 2f may be chosen such that Axi = yi.

Proof: Choosing an orthonormal basis for the space generated by x}, there
will be a set of n vectors such that the class of operators mapping the basis onto
this set coincides with the class mapping the x's onto the y's. It suffices, therefore,
to deal with the case where {x } is an orthonormal set.
We note that if zi, .. ., Znare vectors such that l|z4l < r, there is an operator B

of norm not exceeding (2n) "r (and seif-adjoint, in case zi = Tx,, for some self-
adjoint operator T) such that Bxi = zf. In fact, let xi, ..., Xn), xn+ , ...,9Xm be
an extension of the set xi, ..., xn to an orthonormal basis of the space V generated
by xi, .. ., Xn, Zi,.Z.., Z With T and S linear transformations on V, the mapping
which assigns trace (S*T) to the pair (T, S) defines an inner product and hence a
norm-the norm, [T] = [trace (T*T)]'/, of T is (E ia,,1j2)'/2, where the ajj's
are the matrix coordinates of T relative to any orthonormal basis of 0. The
matrix whose first n columns (and conjugate first n rows, in the self-adjoint case)
are zi, ..., z.-or, rather, their co-ordinate representation, relative to xI, ....
xm-and zeros elsewhere represents an operator B such that Bx, = z,, and [B] <
(2n)'/2r. It is an elementary fact, however, that ||Bit < [B ], where IBI denotes
the usual operator bound of B. Defining B to be 0 on the orthogonal complement
of V, we have an operator with the desired properties.
We proceed now to the construction of an operator A in 21 such that Axi = yi.

Choose Bo such that Boxi = yi, and AO in 2l such that Aoxi- Box4il = IAoxi -
yWI < [2(2n) /2>1 (Recall that since S is irreducible, its strong closure is the set
of all bounded operators on 3C.) Next choose B, such that Blxi = yi - Aoxi)
with Bil < 1/2. Kaplansky's theorem2 guarantees the existence of an operator
A, in WI with ||A1A < 1/2 such that |IA1xi - Bixil < [4(2n)1/']-1. Suppose now that
Bk has been constructed with IIBkII < 1/2, Bkxi = yi - Aoxi - Axi -

1

Ak-lxi. Choose Ak in 2f with ||AkI| < 1/2k such that IIAkxi -BkxiII < 2k+1(2n)'/2,
and Bk+l with IIBk+1II < 1/2k+1, Bk+lXi = yi - A0xi - ... -Akx1i. Note that if
Txi = yi, for some self-adjoint operator T, the results of the preceding paragraph
allow us to choose seif-adjoint Bk's and hence, by Kaplansky's theorem, self-adjoint
Ak's. The sum E Ak converges in norm to an operator A in Xf, and

k =O

Yi -A.,x i - E AkXi = liM (Y - Aoxi - . Ak~i) = lim Bk+1Xi = O.
k=O k k

3. States and Ideals.-A state of a C*-algebra is a linear functional which is 1
at the identity operator I and non-negative on positive operators. The set of
states of a C*-algebra is a convex set whose extreme points generate the set. These
extreme points are called "pure states." Each state p of aI gives rise to a representa-
tion3 sp of 9f by means of the following process. The set of elements A in 5Y such
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that p(A *A) = 0 is a left ideal 4 in 91-the so-called "left kernel of p"-it is the
largest left ideal in the null space of p. Let 3C0 be the vector-space quotient W/4.
The mapping which assigns p(B*A) to the pair (A + g, B + 4) is well defined and
a positive-definite bilinear form on 3Co, so that the completion 3C of 5CO relative to
the metric induced by this inner product is a Hilbert space. The operator P(A)
defined on JCo by so(A) [B + 4 ] = AB + 4 is continuous and has a unique extension
as a bounded operator on 3C (which we again denote by so(A)). The mapping
A -< p(A) is the desired representation of 91 as a C*-algebra. It is well known'
that p is a pure state if and only if so(91) is an irreducible C*-algebra. With the
notation just established, we can state
COROLlARY 1. If p is a pure state, 91/4 is complete relative to the inner product

induced by p.
Proof: From Theorem 1, so(af) acts algebraically irreducibly upon SC, whence

fCo = {Ip(A)[I + 4]:A in 91} = x
COROLLARY 2. The null space 91 of p is g + 4* if and only if p is a pure state.
Proof: If DI = 4 + 4* and p = (pi + pf)/2, with P1 and P2 states of 91, then,

for A in 4, 0 = p(A*A) = pl(A*A) = p2(A*A); and pi(A) = p2(A) = 0, by
Schwarz's inequality. Thus Pi and P2 annihilate 9X, and Pi = P2 = p, so that p is a
pure state.
Assume now that p is a pure state. In the Hilbert space 91/4, the subspace

OT + 4 is the orthogonal complement of the vector I + 4. The ideal 4 is the set
of elements A in 91 such that so(A) annihilates this same vector. With B in M,
Theorem 1 tells us that there exists a self-adjoint operator p(A) in so(S) (so that
A may be chosen self-adjoint) which annihilates I + 4 and leaves B + 4 fixed;
i.e., A lies in 4 and AB - B = -C, with C in 4. If B is seif-adjoint, then B =
C* + BA, so that B lies in 4 + 4*, Since aT = * it follows that 4 + 4* con-
tains DI. Clearly, t contains 4 + 4*, whence OZ = 4 + 4*.
THEOREM 2. The left kernel 4 of p is a maximal left ideal in 9 if and only if p

is a pure state, in which case p is the unique state whose null space contains 4. Each
closed left ideal in 91 is the intersection of the maximal left ideals containing it.

Proof: If p is a pure state, sp(9) acts algebraically irreducibly upon 91/4, and a
proper left ideal containing 4 would give rise to a proper, invariant, linear manifold
in 91/4 under so(9). Thus 4 is maximal.

If £ is a closed left ideal and 3C a left ideal (possibly 91) containing £ which is
annihilated by each state which annihilates £, then 3C = £. In fact, with A a
positive operator in ac, the set S of states at which A is not less than 1/n2 is w*_
compact. The hypothesis, compactness, and the definition of the w*-topology
guarantee the existence of a finite open covering I U }, i = 1, . . ., m, of S and
elements Ai in £ such that Ai (and hence Ai*Ai, by the Schwarz inequality) does
not vanish on Ui. Some positive multiple Tn2 of A1*Ai + ... + Am*Am exceeds
A on S, whence Tn2 + I/n22> A, where Tn, the positive square root of T 2, being a
uniform limit of polynomials in T 2 without constant terms, by the Weierstrass
approximation theorem, lies in £. Now

lA"1/2(Tn + I/n)-IT, - A1/21 2 = I(T + I/n)-1A(TN + I/n)-I/n2 <
II(T, + I/n)-2(T2 + I/n2)II/n2 < 1/n2.

Thus Al/2, and hence A, lies in £. With B an arbitrary element in 3X, B*B and
(B*B)'/2 lie in £, from the above, while4
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-|B[(B*B)1/2 + I/n]-h(B*B)l/2 - B|I < 1/n,
as above, so that B lies in £ and 5C = S.

From the foregoing, it follows, in particular, that if £ is a proper ideal, the set
8 of states which annihilate £ is non-null-this set is convex and w*-compact and so
the closed, convex hull of its set 3 of extreme points. The points of 3 are trivially
seen to be extreme in the set of all states, i.e., pure states, and the hull property
guarantees that an operator which annihilates 3 annihilates S. The intersection
of the left kernels of states in g is a left ideal, containing £ and annihilating 8, so
that this intersection is £. The first paragraph of the proof assures us, however,
that these left kernels are maximal left ideals, and the last assertion of the theorem
is proved.

if 9 is a maximal left ideal, there is a pure state t7 which annihilates it and for
which it must therefore be the left kernel. Corollary 2 tells us that 4 + 4* is
the null space of a, hence of p, so that p = v and the proof is complete.

* The research for this note was conducted with the aid of a National Science Foundation
Contract.

1 Few technicians would have entertained seriously the possibility of the truth of the results
contained in Theorem 1 and Corollary 1, and even the validity of the results of Corollary 2 and
Theorem 2 seemed highly doubtful. R. Prosser has been developing a duality theory for C*-
algebras, by topological linear space methods, which, when complete, should put the results of
Theorem 2 in its appropriately general setting. It was the convincing nature of Prosser's program
which led the author to re-examination of this area and thence to the results of this note. The
author wishes to record his gratitude to R. Prosser for many stimulating discussions about operator
algebras.
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1. A Lemma.-The functions g(z) andf(z) are holomorphic throughout the closed
disk AP = {:Zl -0 Z p} on which f(z) has the sole zero ¢o, and that of order p 2
1. Let

0 < I< f(o +peio) < M (O< < 27r), (1)
and define

flf -g1P = max f(z) - g(Z) I (2)
zeo<

So soon as it satisfies the inequality f - gj <in, g(z) is assured of having exactly p
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