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If d > 0 and ¢’ ¢ C,”(E"), there exists T > 0 such that for ¢ > T, ¢’ ¢ C.°(t™
(Ns — x)). We then have 1[J,,,, F(¥)] — [@m)~"*/a, F¥")]| < ecllF(")zn.
Since J,, ; has bounded norm in H! as t - o, it follows that, as t > =, J,,, con-
verges weakly to (27)~*/%(1/a) in H'. But then [J,, ,, 1/a] = (27)~/%|1/a|?m,
ie., ¢~ gfrf’),(I) — 2m)" [ dt/a(t). If x, were & point outside N, a similar argu-
ment would show that ¢!~ gﬁ.’f’,(x) — 0. By suitable choice of N this is true for
any z, # x. Applying a Tauberian theorem of Hardy and Littlewood,” we obtain

THEOREM 1. Letz,y e G. Then,as X = 4+, e, \(y) = (27) "wa,(2) (8, y +
0N, where b = ¢=1( X my), wa(®) = S dE(, = 1if z = y, 0 4f
j=1

Aoz, ) <1
z # y).
4, is said to be regular if (4; 4 ¢7) ~!is compact. In the regular case e, » (y) =
> u;(x) u;(y) (u; an orthonormal set of eigenfunctions with eigenvalues X\;).
A S
For the general set of elliptic variational boundary-value problems for which the
writer has shown the regularity of solutions on the boundary,® we have t‘“"[ gz, P
(x)' < f(z), f summable. Interchanging limits by dominated convergence, we have
THEOREM 2. Let G be a bounded domain of class C*?, A, defined with respect to a
smooth elliptic boundary-value problem on G2 Then N(z) = Y. 1 = (1.4+0(1))

NSt
@ S way(z) de}tt, ast > + .
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1. Introduction.—One of the classical results of the theory of operator algebras
states that each C*-algebra (operator-bound and adjoint closed algebra of operators
on a Hilbert space) has a separating family of representations as irreducible C*-
algebras (those with no closed invariant subspaces other than (0) and the entire
space)—a corollary of which is the existence of a separating family of strongly
continuous, irreducible, unitary representations of a locally compact group.

In this note we shall prove that each irreducible C*-algebra is algebraically
irreducible (has no proper invariant linear manifolds—closed or otherwise) and
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develop some of its consequences.! We shall prove, in fact, the n-fold transitivity
of irreducible C*-algebras.

2. Transitivity and Irreducibility.—The main result is contained in

TrEOREM 1. If A 2s a C*-algebra acting irreducibly upon the Hilbert space 3C
and {z.}, {y.} are two sets containing n vectors each, the first set consisting of linearly
independent veciors, then there exists an operator A in N such that Az; = y,. In
particular, N acts algebraically trreducibly upon 3. If Bx; = y; for some self-adjoint
operator B, then a self-adjoint operator A in A may be chosen such that Ax; = y,.

Proof: Choosing an orthonormal basis for the space generated by {x,}, there
will be a set of n vectors such that the class of operators mapping the basis onto
this set coincides with the class mapping the z's onto the y’s. It suffices, therefore,
to deal with the case where {z,} is an orthonormal set.

We note that if zi, .. ., 2, are vectors such that ||z,|| < r, there is an operator B
of norm not exceeding (2n)"*r (and self-adjoint, in case z; = Tz, for some self-
adjoint operator T') such that Bzx; = 2, In fact, let z1, ..., Zn, Tnt1, ..., Tm be
an extension of the set 1, ..., z, t0 an orthonormal basis of the space U generated
by z1, ..., Zn, 21, ..., 2e. With T and S linear transformations on U, the mapping
which assigns trace (S*T') to the pair (T, S) defines an inner product and hence a
norm—the norm, [T] = [trace (T*T)]”, of T is (T |ay|?)”?, where the a,’s

2]

are the matrix coordinates of T relative to any orthonormal basis of V. The
matrix whose first n columns (and conjugate first n rows, in the self-adjeint case)
are z;, ..., 2,—or, rather, their co-ordinate representation, relative to z1, ...,
zn,—and zeros elsewhere represents an operator B such that Bz, = z; and [B] <
(2n)"r. Tt is an elementary fact, however, that ||B|| < [B], where ||B|| denotes
the usual operator bound of B. Defining B to be 0 on the orthogonal complement
of U, we have an operator with the desired properties.

We proceed now to the construction of an operator A in % such that Az, = y..
Choose By such that Box; = y;, and Ao in A such that “oni — Box,H = ”on, -
y,[ | < [2(2r)"*]~1. (Recall that since ¥ is irreducible, its strong closure is the set
of all bounded operators on 3¢.) Next choose B; such that Bix; = y; — Aoz,
with ||By|| < /.. Kaplansky’s theorem? guarantees the existence of an operator
Ay in % with || 44| < !/2such that || 4w, — Buz,|| < [4(2n)*]71. Suppose now that
B, has been constructed with HBkH < Yk Buxy = y; — Aoxy — Ay — ... —

1
A1z, Choose A, in A with || 4,]| < 1/5* such that |4z, — Be < 26+1(2n)",
a,nd Bk+1 With ||Bk+ll| S 1/2k+l, Bk+1xi =Y — oni - ... Akxi. NOte that if

Tz, = y,, for some self-adjoint operator T, the results of the preceding paragraph
allow us to choose self-adjoint B;’s and hence, by Kaplansky’s theorem, self-adjoint

©
A,’s. The sum Y, A, converges in norm to an operator 4 in ¥, and
£=o

Yy — Az, =y, — kZ_IO Ayr; = li;n (yi — Aoy — ... — Ajxy) = li;n Btz = 0.

3. States and Ideals.—A state of a C*-algebra is a linear functional which is 1
at the identity operator I and non-negative on positive operators. The set of
states of a C*-algebra is a convex set whose extreme points generate the set. These
extreme points are called ‘‘pure states.” Each state p of % givesrise to a representa-
tion3 ¢ of %A by means of the following process. The set of elements 4 in U such
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that p(A*A4) = 0 is a left ideal g in A—the so-called “left kernel of p”’—it is the
largest left ideal in the null space of p. Let 3¢, be the vector-space quotient A/g.
The mapping which assigns p(B*A4) to the pair (4 + 9, B + 9) is well defined and
a positive-definite bilinear form on 3C, so that the completion 3¢ of 3¢, relative to
the metric induced by this inner product is a Hilbert space. The operator ¢(A4)
defined on 3¢, by ¢(A)[B + 9] = AB + 4 is continuous and has a unique extension
as a bounded operator on 3¢ (which we again denote by ¢(A4)). The mapping
A — ¢(A) is the desired representation of ¥ as a C*-algebra. It is well known3
that p is a pure state if and only if ¢(%) is an irreducible C*-algebra. With the
notation just established, we can state

CoroLIARY 1. If p is a pure state, A/9 is complete relative to the inner product
induced by p.

Proof: From Theorem 1, () acts algebraically irreducibly upon 3¢, whence
3 = {o(A)[I + 9]:4 in A} = 5.

CorOLLARY 2. The null space N of p is 9 + 9* if and only if p is a pure state.

Proof: If 9 =g+ 9*and p = (p1 + p2)/2, with p; and p, states of ¥, then,
for Ain g,0 = p(A*4) = p(A*4) = p(4*4); and p(4) = p(4) = O, by
Schwarz’s inequality. Thus p; and p. annihilate 9T, and p; = p; = p, so that p is a
pure state.

Assume now that p is a pure state. In the Hilbert space /9, the subspace
9N + 9 is the orthogonal complement of the vector I + 9. The ideal g is the set
of elements A in ¥ such that ¢(A4) annihilates this same vector. With B in 9,
Theorem 1 tells us that there exists a self-adjoint operator ¢(4) in () (so that
A may be chosen self-adjoint) which annihilates I 4+ g and leaves B + d fixed;
ie, A liesin d and AB — B = —C, with C'in 4. If B is self-adjoint, then B =
C* 4+ BA, so that B liesin 9 + g*. Since T = N* it follows that 9 + 9* con-
tains 9. Clearly, 9 contains § + 9*, whence 9t = 9 + g*

TaEOREM 2. The left kernel 9 of p is a maximal left ideal in N if and only if p
s a pure stale, in which case p is the unique state whose null space contains 9. Each
closed left ideal in U 1s the intersection of the maximal left ideals containing .

Proof: If pis a pure state, () acts algebraically irreducibly upon /g, and a
proper left ideal containing 9 would give rise to a proper, invariant, linear manifold
in A/9 under o(A). Thus g is maximal.

If £ is a closed left ideal and X a left ideal (possibly 2) containing £ which is
annihilated by each state which annihilates £, then & = £. In fact, with 4 a
positive operator in X, the set S of states at which A is not less than 1/n? is w*-
compact. The hypothesis, compactness, and the definition of the w*-topology

guarantee the existence of a finite open covering {U,}, i=1, ..., mof Sand
elements A; in £ such that A, (and hence A,;*4,, by the Schwarz inequality) does
not vanish on U;. Some positive multiple T2 of A1*4; + ... + A,*A,, exceeds

A on S, whence T2 + I/n? = A, where T,, the positive square root of 7,2 being a
uniform limit of polynomials in 7T',2 without constant terms, by the Weierstrass
approximation theorem, lies in £. Now

|A(Tw + I/n)= T — A2 = ||(Ta + I/n)"'A(Tw + I/n)~Y|/n? <
(T + I/n)~%(Ta? + I/n?)||/n* < 1/m2

Thus A"*, and hence 4, lies in £ With B an arbitrary element in X, B*B and
(B*B)'* lie in £, from the above, while
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|BU(B*B) + I/n]-(B*B)* — B|| < 1/n,
as above, so that B liesin £ and X = &£.

From the foregoing, it follows, in particular, that if £ is a proper ideal, the set
8 of states which annihilate £ is non-null—this set is convex and w*-compact and so
the closed, convex hull of its set & of extreme points. The points of & are trivially
seen to be extreme in the set of all states, i.e., pure states, and the hull property
guarantees that an operator which annihilates & annihilates 8. The intersection
of the left kernels of states in & is a left ideal, containing £ and annihilating 8, so
that this intersection is £. The first paragraph of the proof assures us, however,
that these left kernels are maximal left ideals, and the last assertion of the theorem
is proved.

1f g is a maximal left ideal, there is a pure state y which annihilates it and for
which it must therefore be the left kernel. Corollary 2 tells us that 9 + 9* is
the null space of 5, hence of p, so that p = 5 and the proof is complete.

* The research for this note was conductéd with the aid of a National Science Foundation
Contract. .
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1. A Lemma.—The functions g(z) and f(z) are holomorphic throughout the closed
disk A, = {z.‘ lz — ¢ I £ p} on which f(2) has the sole zero {o, and that of order p >
1. Let '

0<m< |fGo+ | <M (0<6<2m), 1

and define

If = oll, = max () — 9(2) . @)

So soon as 1t satisfies the inequality H f— gH < m, g(z) ts assured of having exactly p



