Vol. 43, 1957

If d > 0 and $\psi' \in C_c^{\infty}(E^n)$, there exists T > 0 such that for $t \ge T$, $\psi' \in C_c^{\infty}(t^{(v)})$ $(N_d - x)$). We then have $l[J_{x,t}, F(\psi')] - [(2\pi)^{-n/2}/a, F(\psi')]| \le \epsilon c_l ||F(\psi')||_{H^1}$. Since $J_{x,t}$ has bounded norm in H^1 as $t \to \infty$, it follows that, as $t \to \infty$, $J_{x,t}$ converges weakly to $(2\pi)^{-n/2}(1/a)$ in H'. But then $[J_{x,t}, 1/a] \to (2\pi)^{-n/2} ||1/a||^2_{H^1}$, i.e., $t^{1-v}g_{x,t}^{(p)}(I) \to (2\pi)^{-n} \int d\xi/a(\xi)$. If x_0 were a point outside N, a similar argument would show that $t^{1-v}g_{x0,t}^{(p)}(x) \to 0$. By suitable choice of N this is true for any $x_0 \neq x$. Applying a Tauberian theorem of Hardy and Littlewood,⁷ we obtain

THEOREM 1. Let $x, y \in G$. Then, as $\lambda \to +\infty$, $e_{x,\lambda}(y) = (2\pi)^{-n} w_{A_0}(x) (\delta_{x,y} + O(1))\lambda^{\delta}$, where $b = q^{-1} (\sum_{j=1}^{n} m_j)$, $w_{A_0}(x) = \int_{A_0(x,\xi) < 1} d\xi (\delta_{xy} = 1 \text{ if } x = y, 0 \text{ if } x = y)$

$$x \neq y$$
).

 A_1 is said to be regular if $(A_1 + iI)^{-1}$ is compact. In the regular case $e_{x,\lambda}(y) = \sum_{\substack{\lambda_i \leq \lambda \\ \lambda_i \leq \lambda}} \overline{u_j(x)} \ u_j(y) \ (u_j$ an orthonormal set of eigenfunctions with eigenvalues λ_j).

For the general set of elliptic variational boundary-value problems for which the writer has shown the regularity of solutions on the boundary,⁸ we have $t^{1-v}|g_{x,t}(y)| \leq f(x)$, f summable. Interchanging limits by dominated convergence, we have

THEOREM 2. Let G be a bounded domain of class C^{pq} , A_1 defined with respect to a smooth elliptic boundary-value problem on G.⁸ Then $N(z) = \sum_{\lambda_1 \leq t} 1 = (1 + 0(1))$

$$(2\pi)^{-n} \{ \int w_{A_0}(x) \ dx \} t^b, \ as \ t \rightarrow + \infty.$$

¹T. Carleman, Proc. 8th Scand. Math. Congr. (1935), pp. 34-44; Ber. Sachs. Akad. Wiss., 86, 119-132, 1936.

² L. Gårding, Förh. Kgl. Fysiograf. Sallskap. Lund, Vol. 24, No. 21, 1954.

³ L. Gårding, Math. Scand., 1, 237-255, 1953. An extension to other boundary conditions for order A > n was given by G. Ehrling, Math. Scand., 2, 267-285, 1954.

⁴ F. E. Browder, Compt. rend. Acad. sci. (Paris), 236, 2140-2142, 1953.

⁵ L. Gårding, Förh. Kgl. Fysiograf. Sallskap. Lund, Vol. 21, No. 11, 1951.

⁶ This is the class of operators discussed in F. E. Browder, these PROCEEDINGS, Vol. 42, 234-236 (February, 1957).

⁷ G. H. Hardy and J. E. Littlewood, Proc. London Math. Soc., 30, 23-27, 1930.

⁸ F. E. Browder, Communs. Pure and Appl. Math., 9, 351-361, 1956.

IRREDUCIBLE OPERATOR ALGEBRAS

By Richard V. Kadison*

COLUMBIA UNIVERSITY AND MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Communicated by Paul A. Smith, December 14, 1956

1. Introduction.—One of the classical results of the theory of operator algebras states that each C^* -algebra (operator-bound and adjoint closed algebra of operators on a Hilbert space) has a separating family of representations as irreducible C^* -algebras (those with no *closed* invariant subspaces other than (0) and the entire space)—a corollary of which is the existence of a separating family of strongly continuous, irreducible, unitary representations of a locally compact group.

In this note we shall prove that each irreducible C^* -algebra is algebraically irreducible (has no proper invariant linear manifolds—closed or otherwise) and

develop some of its consequences.¹ We shall prove, in fact, the *n*-fold transitivity of irreducible C^* -algebras.

2. Transitivity and Irreducibility.-The main result is contained in

THEOREM 1. If \mathfrak{A} is a C*-algebra acting irreducibly upon the Hilbert space 3C and $\{x_i\}, \{y_i\}$ are two sets containing n vectors each, the first set consisting of linearly independent vectors, then there exists an operator A in \mathfrak{A} such that $Ax_i = y_i$. In particular, \mathfrak{A} acts algebraically irreducibly upon 3C. If $Bx_i = y_i$ for some self-adjoint operator B, then a self-adjoint operator A in \mathfrak{A} may be chosen such that $Ax_i = y_i$.

Proof: Choosing an orthonormal basis for the space generated by $\{x_i\}$, there will be a set of *n* vectors such that the class of operators mapping the basis onto this set coincides with the class mapping the *x*'s onto the *y*'s. It suffices, therefore, to deal with the case where $\{x_i\}$ is an orthonormal set.

We note that if z_1, \ldots, z_n are vectors such that $||z_i|| \leq r$, there is an operator B of norm not exceeding $(2n)^{1/2}r$ (and self-adjoint, in case $z_i = Tx_i$, for some self-adjoint operator T) such that $Bx_i = z_i$. In fact, let $x_1, \ldots, x_n, x_{n+1}, \ldots, x_m$ be an extension of the set x_1, \ldots, x_n to an orthonormal basis of the space U generated by $x_1, \ldots, x_n, z_1, \ldots, z_n$. With T and S linear transformations on U, the mapping which assigns trace (S^*T) to the pair (T, S) defines an inner product and hence a norm—the norm, $[T] = [\text{trace } (T^*T)]^{1/2}$, of T is $(\sum_{i,j} |\alpha_{ij}|^2)^{1/2}$, where the α_{ij} 's are the matrix coordinates of T relative to any orthonormal basis of U. The

matrix whose first *n* columns (and conjugate first *n* rows, in the self-adjoint case) are z_1, \ldots, z_n —or, rather, their co-ordinate representation, relative to x_1, \ldots, x_m —and zeros elsewhere represents an operator *B* such that $Bx_i = z_i$, and $[B] \leq (2n)^{1/2}r$. It is an elementary fact, however, that $||B|| \leq [B]$, where ||B|| denotes the usual operator bound of *B*. Defining *B* to be 0 on the orthogonal complement of \mathcal{V} , we have an operator with the desired properties.

We proceed now to the construction of an operator A in \mathfrak{A} such that $Ax_i = y_i$. Choose B_0 such that $B_0x_i = y_i$, and A_0 in \mathfrak{A} such that $||A_0x_i - B_0x_i|| = ||A_0x_i - y_i|| \leq [2(2n)^{1/2}]^{-1}$. (Recall that since \mathfrak{A} is irreducible, its strong closure is the set of all bounded operators on \mathfrak{K} .) Next choose B_1 such that $B_1x_i = y_i - A_0x_i$, with $||B_1|| \leq 1/2$. Kaplansky's theorem² guarantees the existence of an operator A_1 in \mathfrak{A} with $||A_1|| \leq 1/2$ such that $||A_1x_i - B_1x_i|| \leq [4(2n)^{1/2}]^{-1}$. Suppose now that B_k has been constructed with $||B_k|| \leq 1/2^k$, $B_kx_i = y_i - A_0x_i - A_1x_i - \dots -$

 $A_{k-1}x_i$. Choose A_k in \mathfrak{A} with $||A_k|| \leq \frac{1}{2^k}$ such that $||A_kx_i - B_kx_i|| \leq \frac{1}{2^{k+1}(2n)^{1/2}}$, and B_{k+1} with $||B_{k+1}|| \leq \frac{1}{2^{k+1}}$, $B_{k+1}x_i = y_i - A_0x_i - \ldots - A_kx_i$. Note that if $Tx_i = y_i$, for some self-adjoint operator T, the results of the preceding paragraph allow us to choose self-adjoint B_k 's and hence, by Kaplansky's theorem, self-adjoint

$$A_k$$
's. The sum $\sum_{k=0}^{\infty} A_k$ converges in norm to an operator A in \mathfrak{A} , and
 $y_i - Ax_i = y_i - \sum_{k=0}^{\infty} A_k x_i = \lim_k (y_i - A_0 x_i - \ldots - A_k x_i) = \lim_k B_{k+1} x_i = 0.$

3. States and Ideals.—A state of a C^* -algebra is a linear functional which is 1 at the identity operator I and non-negative on positive operators. The set of states of a C^* -algebra is a convex set whose extreme points generate the set. These extreme points are called "pure states." Each state ρ of \mathfrak{A} gives rise to a representation³ φ of \mathfrak{A} by means of the following process. The set of elements A in \mathfrak{A} such

that $\rho(A^*A) = 0$ is a left ideal \mathfrak{s} in \mathfrak{A} —the so-called "left kernel of ρ "—it is the largest left ideal in the null space of ρ . Let \mathfrak{K}_0 be the vector-space quotient $\mathfrak{A}/\mathfrak{s}$. The mapping which assigns $\rho(B^*A)$ to the pair $(A + \mathfrak{s}, B + \mathfrak{s})$ is well defined and a positive-definite bilinear form on \mathfrak{K}_0 , so that the completion \mathfrak{K} of \mathfrak{K}_0 relative to the metric induced by this inner product is a Hilbert space. The operator $\varphi(A)$ defined on \mathfrak{K}_0 by $\varphi(A)[B + \mathfrak{s}] = AB + \mathfrak{s}$ is continuous and has a unique extension as a bounded operator on \mathfrak{K} (which we again denote by $\varphi(A)$). The mapping $A \to \varphi(A)$ is the desired representation of \mathfrak{A} as a C*-algebra. It is well known³ that ρ is a pure state if and only if $\varphi(\mathfrak{A})$ is an irreducible C*-algebra. With the notation just established, we can state

COROLLARY 1. If ρ is a pure state, $\mathfrak{A}/\mathfrak{s}$ is complete relative to the inner product induced by ρ .

Proof: From Theorem 1, $\varphi(\mathfrak{A})$ acts algebraically irreducibly upon \mathfrak{K} , whence $\mathfrak{K}_0 = \{\varphi(A)[I + \mathfrak{g}]: A \text{ in } \mathfrak{A}\} = \mathfrak{K}.$

COROLLARY 2. The null space \Re of ρ is $\vartheta + \vartheta^*$ if and only if ρ is a pure state.

Proof: If $\mathfrak{N} = \mathfrak{g} + \mathfrak{g}^*$ and $\rho = (\rho_1 + \rho_2)/2$, with ρ_1 and ρ_2 states of \mathfrak{A} , then, for A in \mathfrak{g} , $0 = \rho(A^*A) = \rho_1(A^*A) = \rho_2(A^*A)$; and $\rho_1(A) = \rho_2(A) = 0$, by Schwarz's inequality. Thus ρ_1 and ρ_2 annihilate \mathfrak{N} , and $\rho_1 = \rho_2 = \rho$, so that ρ is a pure state.

Assume now that ρ is a pure state. In the Hilbert space $\mathfrak{A}/\mathfrak{G}$, the subspace $\mathfrak{N} + \mathfrak{G}$ is the orthogonal complement of the vector $I + \mathfrak{G}$. The ideal \mathfrak{G} is the set of elements A in \mathfrak{A} such that $\varphi(A)$ annihilates this same vector. With B in \mathfrak{N} , Theorem 1 tells us that there exists a self-adjoint operator $\varphi(A)$ in $\varphi(\mathfrak{A})$ (so that A may be chosen self-adjoint) which annihilates $I + \mathfrak{G}$ and leaves $B + \mathfrak{G}$ fixed; i.e., A lies in \mathfrak{G} and AB - B = -C, with C in \mathfrak{G} . If B is self-adjoint, then $B = C^* + BA$, so that B lies in $\mathfrak{G} + \mathfrak{G}^*$. Since $\mathfrak{N} = \mathfrak{N}^*$, it follows that $\mathfrak{G} + \mathfrak{G}^*$ contains \mathfrak{N} . Clearly, \mathfrak{N} contains $\mathfrak{G} + \mathfrak{G}^*$, whence $\mathfrak{N} = \mathfrak{G} + \mathfrak{G}^*$.

THEOREM 2. The left kernel \mathfrak{s} of ρ is a maximal left ideal in \mathfrak{A} if and only if ρ is a pure state, in which case ρ is the unique state whose null space contains \mathfrak{s} . Each closed left ideal in \mathfrak{A} is the intersection of the maximal left ideals containing it.

Proof: If ρ is a pure state, $\varphi(\mathfrak{A})$ acts algebraically irreducibly upon $\mathfrak{A}/\mathfrak{s}$, and a proper left ideal containing \mathfrak{s} would give rise to a proper, invariant, linear manifold in $\mathfrak{A}/\mathfrak{s}$ under $\varphi(\mathfrak{A})$. Thus \mathfrak{s} is maximal.

If \mathfrak{L} is a closed left ideal and \mathfrak{K} a left ideal (possibly \mathfrak{A}) containing \mathfrak{L} which is annihilated by each state which annihilates \mathfrak{L} , then $\mathfrak{K} = \mathfrak{L}$. In fact, with A a positive operator in \mathfrak{K} , the set S of states at which A is not less than $1/n^2$ is w^* compact. The hypothesis, compactness, and the definition of the w^* -topology guarantee the existence of a finite open covering $\{U_i\}$, $i = 1, \ldots, m$, of S and elements A_i in \mathfrak{L} such that A_i (and hence $A_i^*A_i$, by the Schwarz inequality) does not vanish on U_i . Some positive multiple T_n^2 of $A_1^*A_1 + \ldots + A_m^*A_m$ exceeds A on S, whence $T_n^2 + I/n^2 \ge A$, where T_n , the positive square root of T_n^2 , being a uniform limit of polynomials in T_n^2 without constant terms, by the Weierstrass approximation theorem, lies in \mathfrak{L} . Now

$$\frac{\left\|A^{1/2}(T_n+I/n)^{-1}T_n-A^{1/2}\right\|^2}{\left\|(T_n+I/n)^{-1}A(T_n+I/n)^{-1}\right\|/n^2} \leq \frac{1}{n^2}$$

Thus $A^{1/2}$, and hence A, lies in \mathfrak{L} . With B an arbitrary element in \mathfrak{K} , B^*B and $(B^*B)^{1/2}$ lie in \mathfrak{L} , from the above, while⁴

$$||B[(B^*B)^{1/2} + I/n]^{-1}(B^*B)^{1/2} - B|| \le 1/n,$$

as above, so that B lies in \mathfrak{L} and $\mathfrak{K} = \mathfrak{L}$.

From the foregoing, it follows, in particular, that if \mathcal{L} is a proper ideal, the set S of states which annihilate \mathcal{L} is non-null—this set is convex and w^* -compact and so the closed, convex hull of its set \mathcal{E} of extreme points. The points of \mathcal{E} are trivially seen to be extreme in the set of all states, i.e., pure states, and the hull property guarantees that an operator which annihilates \mathcal{E} annihilates S. The intersection of the left kernels of states in \mathcal{E} is a left ideal, containing \mathcal{L} and annihilating S, so that this intersection is \mathcal{L} . The first paragraph of the proof assures us, however, that these left kernels are maximal left ideals, and the last assertion of the theorem is proved.

If \mathfrak{g} is a maximal left ideal, there is a pure state η which annihilates it and for which it must therefore be the left kernel. Corollary 2 tells us that $\mathfrak{g} + \mathfrak{g}^*$ is the null space of η , hence of ρ , so that $\rho = \eta$ and the proof is complete.

* The research for this note was conducted with the aid of a National Science Foundation Contract.

¹ Few technicians would have entertained seriously the possibility of the truth of the results contained in Theorem 1 and Corollary 1, and even the validity of the results of Corollary 2 and Theorem 2 seemed highly doubtful. R. Prosser has been developing a duality theory for C^* -algebras, by topological linear space methods, which, when complete, should put the results of Theorem 2 in its appropriately general setting. It was the convincing nature of Prosser's program which led the author to re-examination of this area and thence to the results of this note. The author wishes to record his gratitude to R. Prosser for many stimulating discussions about operator algebras.

² I. Kaplansky, "A Theorem on Rings of Operators," Pacific J. Math., 1, 227-232, 1951.

³ I. Segal, "Irreducible Representations of Operator Algebras," Bull. Am. Math. Soc., 53, 73-88, 1947.

⁴ In essence, this inequality establishes that a closed left ideal is generated by its positive elements—a fact which seems to have been proved first by I. Segal in "Two-sided Ideals in Operator Algebras," Ann. Math., 50, 856–865, 1949, using a similar estimate.

ZEROS OF NEIGHBORING HOLOMORPHIC FUNCTIONS

By T. P. G. LIVERMAN

UNIVERSITY OF PENNSYLVANIA AND THE GEORGE WASHINGTON UNIVERSITY

Communicated by Einar Hille, November 24, 1956

1. A Lemma.—The functions g(z) and f(z) are holomorphic throughout the closed disk $\Delta_{\rho} = \{z: |z - \zeta_0| \leq \rho\}$ on which f(z) has the sole zero ζ_0 , and that of order $p \geq 1$. Let

$$0 < m \leq |f(\zeta_0 + \rho^{e^{i\theta}})| \leq M \qquad (0 \leq \theta \leq 2\pi), \tag{1}$$

and define

$$\left\| f - g \right\|_{\rho} = \max_{\substack{z \in \Delta_{\rho}}} \left\| f(z) - g(z) \right\|.$$
(2)

So soon as it satisfies the inequality ||f - g|| < m, g(z) is assured of having exactly p