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 1. Introduction

 The problem of finding natural conditions under which a C*-algebra (uni-
 formly-closed, self-adjoint algebra of operators on a Hilbert space) admits a
 faithful representation as a ring of operators (weakly-closed C*-algebra acting

 upon some Hilbert space) has been one center of attention in the study of
 operator algebras. We cannot claim to have analyzed rings of operators alge-
 braically before we are capable of distinguishing them among the C*-algebras.
 Much information has been gathered concerning this problem [1, 2, 4, 5, 7, 9,
 11]. Notably, Kaplansky in [4, 5] singles out a class of C*-algebras which imi-
 tates the rings of operators algebraically (but which, as Kaplansky notes, con-
 tains C*-algebras not isomorphic to rings of operators), and carries over much
 of the theory of rings of operators to this class of operator algebras. Based on
 the results of Stone [10], Dixmier provides a thorough analysis of the com-
 mutative situation in [1]. In the next section (Theorem 1), we answer the general
 question. The conditions we find are certainly as simple as any set of conditions
 for which we could have hoped, in view of the commutative case, and, indeed,
 yield a formulation of the commutative result which is slightly neater (i.e.,
 less measure-theoretic) than, though entirely equivalent to, the customary one.

 2. W*-algebras

 The following definition singles out the class of C*-algebras which we shall
 subsequently prove to be the class of C*-algebras which have a faithful, weakly-
 closed representation.

 DEFINITION 1. A C*-algebra 2f in which each bounded, monotone-increasing,

 directed sequence of self-adjoint elements (A,) has a least upper bound A in 2f
 and which has a separating family of states { al (i.e., a family such that a positive
 element B in 2I is zero if wX(B) = 0 for each a) such that { oa(A ,)} has the di-

 rected limit W a(A), for directed sequences such as (A,), will be called a W*-algebra.
 States such as c'a will be called normal states of 5 (following the terminology of [1]).

 A key to the proof of our main theorem is the:
 LEMMA 1. If W is a C*-algebra acting on the Hilbert space JC and the strong

 limit of each bounded, monotone-increasing, directed sequence of self-adjoint oper-
 ators in 2I lies in W1 then WX is a ring of operators.

 PROOF. Denote by 2F the weak (and, therefore, strong) closure of 2I. To
 prove our lemma, it suffices, by The Spectral Theorem, to show that each pro-
 jection in 217 lies in W. (Recall that W is uniformly closed and that each self-
 adjoint operator is a uniform limit of linear combinations of its spectral pro-
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 jections). Working with the directed sequence obtained by subtracting each
 term from the identity, we observe that bounded, monotone-decreasing, directed

 sequences in 2 have their strong limits in 2I. The projection on the closure of
 the range of an operator A in 2f lies in W. (We shall call this projection "the
 range projection of A"). Indeed, the range projection of A is the same as the

 range projection of AA* (since A* and AA* have the same null space). If f,
 denotes the continuous, real-valued function defined by fn(t) = 1 for t _ 1/n,

 fn(t) = nt for 0 ? t < 1/n, and fn(t) = 0 for t < 0 then fn(AA*) is a monotone-
 increasing sequence of operators in 2 (bounded above by I) whose strong limit
 is, by spectral theory, the range projection of AA*, which, by hypothesis, lies
 in W. If E and F are projections in Xf, the range projection of E + F is the union
 of E and F since the null space of E + F is clearly the intersection of I - E
 and I - F. Thus the union (and, hence, intersection) of any finite set of pro-
 jections in 2I lies in W. The projections obtained from the finite unions (inter-
 sections) formed from an arbitrary set of projections in 2I yield a bounded,
 monotone-increasing (decreasing) directed sequence of projection in Wf (di-
 rected by the finite subsets, partially-ordered by inclusion) whose strong limit
 is the union (intersection) of the given set of projections in WI. Thus the union

 and intersection of an arbitrary set of projections in 2I lie in W1. Since each pro-
 jection in 2F is a union of projections in 2F cyclic under the commutant of XJ,
 it suffices to show that each cyclic projection in 21- lies in WI. For this, it suffices
 to prove that for each vector in the orthogonal complement of the given cyclic
 projection there is a projection in 2I annihilating this vector and containing the
 cyclic projection (or, equivalently, containing its generating vector).

 Let E be a cyclic projection in 2V with unit generating vector x, and let y
 be a unit vector in I - E. According to [6], there is a sequence of self-adjoint
 operators Al , A2 , ** in 2I with norm not exceeding 1 such that A' x tends
 strongly to Ex (= x) and A' y tends strongly to Ey (= 0). With e > 0 given,

 there exists a a > 0 such that if B is a self-adjoint operator, 11B t < 2, and
 11 Bz 11 < a for a unit vector z, then 11 B+z 11 < e, where B+ is the 'positive part'
 of B (i.e., B+ - '(B + i B i) and B = 2(B B I) is the 'negative part' of
 B). In fact, with f continuous and 0 at 0, by the Weierstrass Approximation
 Theorem, we can choose a polynomial p(t) = ant + * * * + alt approximating f

 uniformly to within 4e on [-a, a]. Let k = a. I a` + I an-, I an-2 + +
 a, . Choose a equal to c/2k. Then fl f(B) -p(B) fl < E with B self-adjoint

 and B 11 < a; so that, if Bz 11 < a and 11 z < 1, then

 ||p(B)z 11 < k 11 Bz 11< le,

 and

 f(B)z f-< _ f(B)z - p(B)z || + p(B)z fl < ?.
 Denote by A the a corresponding to E = (1) n, f(B) = B+, and a = 2, just con-
 structed. Choose N1, N2,*** a monotone-increasing sequence of positive
 integers such that 11 A z - A z 11 < ah if n, m > Nh , where z denotes either of
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 the vectors x, y. Let An = ANnQX and let B1 = A1, Bn = An -An-1 for n=
 2, 3, . . . We assert that E B+z is absolutely convergent. Indeed,

 fl Bnz = fl A'z- A1l z < An-l

 so that II B+z I < (2n-)l which establishes the assertion. Choose A a weak
 limit point of {An}, and observe that Ax = x, Ay = 0 since (Anx) and (Any)
 converge strongly (and hence, weakly) to x and 0, respectively.

 Let Tk = (I + En=i B+)', and note that since 0 < T-1 < Tk-1 , 0 < Tk+l <
 Tk , so that the strong limit T of (Tk) lies in A and is positive. For
 each k, T(Z n= B+)T' < I. In fact, for fixed z, (T"(Z.1 B+)T'z, z) is approxi-
 mated by

 ({Zn=' B7n} (I + Zn=l B+) -Z, (I ? Zr= Bn+) z)

 ? ({I + n B+}(IZ=1 B+)(I + Z=1 B+)-7z, z) < (z, z)
 for all suitably large r, the last inequality following from spectral theory once

 we observe that (I + Zr=, Bn+)- and Ejn=i Bn+ commute. Moreover,

 T! ek=1 B+n )TI

 is monotone-increasing with k, and so has the strong limit C1 in A. The same

 is true for T1(Z t B7+))T2, of course, and we denote its strong limit in W by
 Ct . We have

 TI( =1 B+)T! + Ck+l = C,

 so that

 C1 + T"(Z=1 Bn)TI - TZ k= B+ + Bn)TZ + Ck+1

 - TI(Zkn Bn)T1 + Ck+l = TIAkTI + Ck+l

 which is monotone decreasing and bounded, since both T?AkT1 and Ck+1 are
 uniformly bounded with respect to k. Now T?AkT" has the weak limit point
 T AT" and C, is clearly positive and monotone decreasing with t and so has a
 strong limit in W. Thus, in particular, TkAkTi + Ck+1 has a strong (and hence,
 weak) limit in W which must be the sum of TkA T1 and the strong limit of Ck+1
 (which lies in 21), so that T1AT' lies in W.

 Note next that (T(x + E B+x), z) = ({x + Z B+x}, Tz) is approximated as
 closely as we wish by ({ x + Zk= B+x} , (I + EkZ= B+)-lz) = (x, z) for each
 z, and T(x + E B+x) = x. Similarly T(y + E B+y) = y, so that the range pro-
 jection F of T, lies in W and contains x and y. If W is commutative then AT lies
 in W and has AT(x + E Bn+x) = Ax = x in its range, while ATy = TAy = 0,
 so that the range projection of AT lies in 9,, contains x, and annihilates y. From
 the previous work then, our result follows for W commutative. In particular,
 the maximal abelian (self-adjoint) subalgebras of 2f are weakly closed, so that,
 along with each self-adjoint operator which W contains, the weakly-closed
 algebra (spectral projections, and so forth) generated by this operator lies in 2I.
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 Now TAT is in W as is R. = gn(T), where gn is the real-valued function de-
 fined by gn(t) = 1/t for t _ 1/n and gn(t) = 0 for t < 1/n. Thus RnTATRm =
 FnAFm lies in Xf, where Fj is a projection in W (the spectral projection for T
 corresponding to the half-infinite interval with left end-point 1/j). We have

 that (Fm) is a monotone-increasing sequence with strong limit F. Let G1 = F1

 and Gn = F, - F,,- for n = 2, 3, * * , so thatZ Gn = F, and note that GnAGm
 lies in W. Now,

 (GmAGn + Gn)(GnAGm + Gn) = GmAGnAGm + GmAGn + GnAGm + G, _ 0,

 and (GmAGn + Gn)(GnAGm + Gn) lies in W, so that

 Zn {GmAGnAGni + GmAGn + GnAGm + Gn}

 = GmAFAGm + GmAF + FAGm + F

 lies in W. Moreover, GmAFAGm = en GmAGnAGm lies in W, since GmAGnAGm
 is positive and lies in W. Thus GmAF + FAGm and Gm(GmAF + FAGm) =
 GmAF + GmAGm lie in W. Since GmAGm is in W, GmAF and hence FAGm lie in W.
 As before, Bum FAGmAF = FAFAF lies in WI. But, FAFAFx = x and FAFAFy
 = FAFAy = 0, so that the range projection G of FAFAF contains x, anni-
 hilates y, and lies in W. Thus G is a projection with the desired properties, and
 the proof is complete.

 THEOREM 1. A C*-algebra 21 has a faithful representation as a ring of operators
 if and only if it is a W*-algebra.

 PROOF. Let {cod in r be the family of normal states of XI, and let 04X be
 the representation [3, 8] due to cw, on the Hilbert space 3Ca with wave function
 Xa (in 3CE). Let 4 be the direct sum of the representations {4a} (4 represents
 2I as operators acting upon 3C = E E3 C~R and +(A) is defined by 4(A)ya =
 4'cr(A)yr for each ya in RCa and each a). With W a W*-algebra, the family {CJa}
 is separating, by hypothesis, so that 4 is a *-isomorphism. Indeed, if +(A) =
 o then wa(A*A) = (40(A*A)xa, xA) = 0 for each a, and, since {coo} is separating,
 A*A, and hence A, is zero.

 Suppose that {4(A,)} is a bounded, monotone-increasing, directed sequence
 of operators in +(S). Since 4 is a *-isomorphism, the same properties hold for
 the directed sequence {As} in W, and, by hypothesis, {As} has a least upper
 bound A in W. Now, by definition of 'normal state',

 lim,(y(A,)xa, Xa) = limzco,,(Aa) = co,)(A) = (4(A)Xa, Xa),

 for each a. Since the map B --+ T*BT is an order-isomorphism of W1, with T
 an invertible element in W, { T*A T I is a bounded, monotone-increasing, di-
 rected sequence with least upper bound T*A T in W1, so that

 limT(k(Ay)4(T)xa, 4(T)xa) = (40(A)qS(T)xa, 4(T)X.),

 for each a. The properties of the directed sequence {4(A,)} imply that it has a
 strong (and hence weak) limit B, whence ({+(A) - BI40(T)xa, O(T)xa = 0
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 for each a and each invertible operator T in W. In particular, taking T to be I,
 we conclude that ({+(A) - B}Xa , x) = 0 for each a. With S an arbitrary oper-
 ator in 21 there is a positive integer N such that S + nI is invertible for all
 n > N so that

 o = (1{O(A) -B } (Q(S)xa + nxa), O(S)xa. + nx) = (1{(A)-B B}(S)Xa, 4(S)Xa)

 + 2n Re ({+(A) - B}4(S)xa, Xa) + n2({4(A) - B}Xa, XA),

 for n > N. Since 0 = n2({cp(A) - B}xa, xA) and ({+(A) - B}4(S)xa , O(S)Xa)
 is independent of n, we conclude, from the possibility of choosing n arbitrarily

 large, that ({+(A) - B}4(S)xa,, 4(S)xa) = 0. But, as S ranges through XI,
 4(S)Xa ranges through a dense subset of Xa (from the properties of the wave
 function xa); so that ({+(A) - B}z, z) = 0 for each z in X, and +(A) = B.
 Thus +(9S) satisfies the hypothesis of Lemma 1, so that +b(SI) is a ring of operators,
 and the proof is complete.

 In general, the statement of the preceding theorem will not hold true if the
 definition of 'W*-algebra' is weakened so as to encompass only sequences (rather
 than directed sequences). In fact, the C*-algebra consisting of those operators
 whose range has countable dimension acting on an inseparable Hilbert space
 generates, together with the identity operator, a C*-algebra W which has the
 property that bounded, monotone-increasing sequences in 2 have least upper
 bounds (in fact, strong limits) in 2, and each vector state is a 'normal state' of
 21, yet 2 is not strongly closed nor does it have a faithful representation as a
 ring of operators. In fact, if 2f had such a representation each family of projec-
 tions in 2f would have a projection in W as least upper bound which would be
 orthogonal to each projection in 2 which was, itself, orthogonal to each pro-
 jection of the family. Thus, if E is a projection such that E and I - E have
 inseparable ranges, then E is not in 2 yet E is the only possible least upper
 bound of the one-dimensional projections contained in E (each of which lies
 in 9k), since E is the only projection containing these one-dimensional projec-
 tions and orthogonal to all the one-dimensional projections contained in I - E.

 It is possible, however, to restrict attention to sequences if a countability
 assumption is made on our W*-algebra.

 DEFINITION 2. A countable W*-algebra is a C*-algebra in which each bounded,
 monotone-increasing sequence of self-adjoint operators has a least upper bound in
 the algebra, each orthogonal family of projections is at most countable, and which
 has a separating family of normal states ("normal" relative to sequences).

 THEOREM 2. A C*-algebra 21 has a faithful representation as a countably de-
 composable ring of operators if and only if it is a countable W*-algebra.

 PROOF. We note first that if 21 is assumed to be countably decomposable in
 the hypothesis of Lemma 1, then the conclusion of this lemma holds with the
 hypothesis changed to apply only to bounded, monotone-increasing sequences.
 In fact, in the proof of Lemma 1, the only point at which directed sequences
 were employed was in concluding that the union and intersection of families of
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 projections in W are in 2(. Under the monotone sequence hypothesis it follows
 that unions and intersections of countable families of projections in W lie in W,.
 We show that this fact together with countable decomposability of 2 imply
 that arbitrary unions (and intersections) of projections in 2 lie in 2, so that
 the altered version of Lemma 1, noted above, is true. Suppose that there is

 some family of projections in 2 whose union does not lie in W, and let {Ea,
 be a family with the least cardinality b in the class of such families. We may

 assume that the index a runs through the ordinals preceding the initial ordinal

 with cardinal b. If we denote the union of Ep, for : not exceeding a by Fa,
 then Fa, lies in Xt, since Fa, is the union of a family with cardinality less than b.
 Letting Gar denote the orthogonal complement in Fa, of the union of Fe with
 a less than a and noting that {F,,} is well-ordered by the usual inclusion rela-
 tion among projections, while the mapping a -+ Fa, is order-preserving, we
 conclude, from elementary considerations, that {G, } is an orthogonal family
 in W (reasoning as with the Far) with sum (union) equal to the union of Far
 which is, of course, the union of the Ea. However, countable-decomposability
 of W implies that there are at most a countable number of non-zero Gar, so that
 their sum, and hence the union of the Ear, lies in 21, contrary to assumption.
 Thus arbitrary unions and intersections of projections in WI lie in 21, and the
 modified version of Lemma 1 holds.

 To complete the proof of the present theorem, one simply notes that the proof
 of Theorem 1 applies verbatim with the term 'directed' removed, the modified
 version of Lemma 1 employed in place of Lemma 1, and the statement that,
 since W is countably decomposable and 4 is a *-isomorphism, +(a1) is countably
 decomposable, added.

 A more easily proved but less cogent abstract characterization of rings of
 operators is the following:

 THEOREM 3. A C*-algebra 2I has a faithful representation as a ring of operators
 if and only if it possesses a separating family 8 of states such that if co is in 8 and
 T is an invertible element in WI then the positive linear functional co' on W defined
 by co'(A) = cw(T*A T) is a multiple of some state in 8, and such that the unit sphere
 of 2 is compact in the weak S-topology on W.

 PROOF. We proceed exactly as in the proof of Theorem 1, constructing a
 faithful representation 4 of W by taking the direct sum of the representations
 engendered by each state coa in S. (We adopt the notation of the proof of Theorem
 1.) Now, according to [6], each operator A' of norm 1 in +(2S) , the weak closure
 of + (9S), is a strong (and hence, weak) limit point of the unit sphere in + (S,).
 Let X be the direct product of intervals [-1, 1] indexed by {a}, the indexing
 family for 8, taken in the product topology, so that X is a compact-Hausdorff
 space, and let Y be the image in X of the unit sphere of W under the mapping

 B + I coa(B) } . By definition of the weak S-topology, this mapping is a homeo-
 morphism, so that Y is compact and hence closed in X. Since A' in +(Sf)- is a

 weak limit point of the unit sphere in +(2a) and (O(B)xaX Xa) = (oa(B),

 I(A'ax , xa)}a
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 lies in Y, so that there is anl operator A in 21 such that (q(A)xa , xa) = (A'xa , xa)
 for all a. Let T be an invertible element in 2I, and, for some fixed a, let

 Wa(T*BT) = two(B). Choose a directed sequence of operators {A ,} in the unit
 sphere of 2f such that {I(A,) } tends weakly to A'. Then

 (O(A -)O(T)x. X O (T)x.) = t(0(A,)x0 , Xx)

 tends to (A'0(T)xa X, (T)xa,) and to

 t(A'xo , xf) = t(0(A)xf , x:) = (4(A)O(T)xa , O(T)x.)

 for each invertible T in 2f and all a. We conclude now, exactly as in Theorem
 1, that +(A) = A', and the proof is complete.

 With regard to the relation between Theorems 1 and 3, we remark that the
 set of normal states of a W*-algebra has the required invariance property of
 Theorem 3 and that the least upper bound condition of Theorem 1 replaces
 the compactness assumption of Theorem 3.
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