
Report on Operator Algebras

By Richard V. Kadison

The Arden House Conference was concerned with recent research in operator
theory, group representations, and their interconnections. In addition to the
formal twenty and forty minute addresses, there was considerable informal
discussion. It would be difficult to report accurately on the informal portion
of the conference and the results arising therefrom.

This section of the conference report will be devoted to a survey of the
theory of operator algebras and to the relation of those formal addresses which
dealt primarily with operator algebras to the broader aspects of this theory.
We shall omit all bibliographical references, since we could not hope to include
reference to all the papers which have directly contributed to the state of our
present knowledge about operator algebras in a report of reasonable size.

A C∗-algebra is an algebra of operators on a Hilbert space which is closed
under the operation of taking the adjoint and closed in the operator bound
(uniform) topology. A C∗-algebra is the natural infinite-dimensional analogue
of a finite-dimensional algebra of complex matrices closed under the operation
of taking the conjugate transpose (the topological conditions which might be
imposed, in the finite–dimensional ease, are automatically satisfied by virtue
of the finite–dimensionality). These finite-dimensional matrix algebras are, of
course, special cases of C∗-algebras. Their structure is completely described
by the Wedderburn theory (algebraically they are direct sums of total complex
matrix algebras of various orders and, with regard to their specific action on
the underlying spare, they are direct sums of ni-fold copies of total matrix
algebras of order mi, i = 1, · · · , k). In general terms, the central problem in
the study of C∗-algebras is that of finding a structure theory which will do for
these algebras what the Wedderburn theory does for the finite-dimensional
C∗-algebras.

Aside from their intrinsic interest as a natural class of infinite–dimensional,
semi–simple algebras, C∗-algebras find application in the study of group
representations, mathematical formulations of physical situations, and certain
phases of ergodic theory. If we denote by G a locally compact group (assumed
unimodular, for the sake of simplicity), by L1(G), L2(G) the integrable and
square integrable functions on G relative to Haar measure, respectively, then
the functions of L1(G) acting by (left) convolution on L2(G) give rise to a
family of bounded operators on the (Hilbert) space L2(G) closed under the
adjoint operation. This family of operators and its closures (all of which are
C∗-algebras) in the various operator topologies serve as generalizations of the
complex group algebra of a finite group. These group algebras play a crucial
role in the study of the group representations of G. The measure-theoretic
properties of groups of measurability preserving transformations on a measure
space, can be studied by investigating the structure of the various C∗-algebras
obtained from the operators derived from the action of the group on the Hilbert
space of square integrable functions over the measure space together with
the operators arising from multiplication by essentially bounded measurable
functions on this space of square integrable functions.

The methods used in the study of C∗-algebras are quite diverse. Of course,
the techniques derived from modern algebra are employed extensively. While
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algebraic techniques are sufficient, almost exclusively, for dealing with the
finite-dimensional situation, they don‘t begin to give the full picture in the
case of infinite-dimensional C∗-algebras. The continuous as well as the discrete
(e.g., with regard to spectra) arises in the infinite-dimensional case, while it
is not present in the finite-dimensional situation. These considerations make
the tools of analysis, notably, complex function theory and abstract measure
theory, invaluable for the investigation of C∗-algebras. In addition to these
methods, a special brand of point set topology which fashions a topological
structure to the algebraic and intrinsic geometrical structure has proved quite
useful in the study of C∗-algebras.

It should be remarked that we seem to be not too close to a final structure
theory for C∗-algebras. We have no guesses as to how the general C∗-algebra
is constructed from a “canonical set” of fully understood C∗-algebras. Aside
from this lack of a general theory, however, the subject bristles with simply
phrased, quite specific, “yes” or “no” questions for which we have neither the
answer nor reasonable guesses as to the answer.

A well-known result of Gelfand-Neumark tells us that a C∗-algebra has an
independent algebraic existence, viz., a Banach algebra with a ∗-operation ha-
ving the usual formal algebraic properties and satisfying, in addition, ‖aa∗‖ =
‖a‖2 is isometrically ∗-isomorphic with a C∗-algebra. Some years ago, M.
H. Stone proved a theorem about commutative C∗-algebras which gave the
algebraic portion of the spectral theorem a very cogent form. He showed that
each commutative C∗-algebra is algebraically isomorphic to the algebra of
all continuous, complex-valued functions on some compact-Hausdorff space
(derived from the algebraic structure of the C∗-algebra) with the *-operation
in the C∗- algebra going into complex-conjugation of functions. He showed,
moreover, that the C∗-algebra is determined to within algebraic isomorphism
by the homeomorphism type of the associated compact-Hausdorff space. The
function ring on each compact-Hausdorff space is easily seen to be a (com-
mutative) C∗-algebra, so that the distinct classes of algebraically isomorphic,
commutative C∗-algebras are in 1−1 correspondence with the homeomorphism
classes of compact-Hausdorff spaces. For the purposes of operator theory,
this is an adequate algebraic description of such operator algebras. To a
non-commutative C∗-algebra. one can again associate a structurally derived
compact-Hausdorff space and, this time, a distinguished linear subspace of
continuous, complex- valued functions on this compact-Hausdorff space. Howe-
ver, in this case, we do not know canonical forms for the linear subspace taken
together with the compact-Hausdorff space, although the system characterizes
the C∗-algebra.

A commutative C∗-algebra together with its action on its underlying
Hilbert space can be described by its associated compact space and a well-
ordered chain of ideals of Borel sets in the space (each, the family of null
sets of some measure). Again, we do not have canonical forms for such a
construct, but the problems involved in obtaining such canonical forms are in
the province of pure measure theory and are already inherent in the classical
unitary equivalence description of the action of a single self—adjoint operator
on a Hilbert space by Hellinger- Hahn (of which the commutative C∗-algebra
result is an extension). Aside from the original Hellinger-Hahn theory, Wecken,
Plessner, Rohlin, Segal, Nakano, and Halmos have contributed important
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techniques to this final formulation of commutative multiplicity theory. It
has become possible, recently, to make an analogous study of the action of
a not necessarily commutative C∗-algebra on its underlying Hilbert space,
assuming the algebraic structure known. This theory inherits, of course, all
the problems of the commutative theory, but seems, at this stage, to have no
others.

The class of C∗-algebras has several important subclasses which have
received special attention. Notable among these is the class of “rings of
operators” (also called “W ∗-algebras”—those closed in the weak operator
topology, i.e., the weakest (coarsest) topology on the bounded operators in
which all the linear functionals of the form A 7→ (Ax, y) are continuous). The
assumption that a C∗-algebra be weakly closed produces deep effects upon
its structure, and the additional algebraic and geometrical properties visible
enable us to subject this class of C∗-algebras to a much more detailed analysis
(though, by no means, a definitive analysis, at this point of development of the
subject). In particular, rings of operators (containing the identity operator)
contain, along with each self-adjoint operator, its complete spectral resolution.
J. von Neumann has exhibited rings of operators as “direct integrals” (measure-
theoretic generalization of direct sum) of basic constituents called “factors”
(rings of operators whose center consists of scalar multiples of the identity
operator). Murray and von Neumann have studied these factors in detail. By
comparing the relative sizes of the ranges of orthogonal projections in a given
factor, M , a relative dimension function D is defined on the projections in M
(having the customary properties of a dimension function) and is shown to
be unique to within a positive multiplicative constant. With the aid of this
dimension function, the factors are separated into three classes. The first class
comprises the factors of type In, those having minimal projections in which
the (normalized) dimension function takes the values 1, 2, · · · , n (n finite or
infinite). The second class constitute the factors of type II1 and II∞, in
which the dimension function takes all values in [0, 1] and [0,∞], respectively.
These are the factors having no minimal projections and containing a non-zero
projection of relative dimension different from ∞. The final class consists of
the factors of type III in which the dimension of each non-zero projection
is ∞. The factors of type In are shown to be algebraically ∗-isomorphic
to the algebra of all bounded operators on an n-dimensional Hilbert space.
Associated with each factor on a Hilbert space, one has the set of operators
which commute with it, which is again a factor of type I, II, or III according
as the original factor is of type I, II, or III, respectively. If M is of type
In, M ′ (the commutant of M) of type Im, N is of type In, and N ′ of type
Im, then M and N are unitarily equivalent. In general, if M is a factor of
type I or II with commutant M ′ there is associated with M a con- stant,
the so called “coupling constant”. If x is a non-zero vector in the under-
lying Hilbert space upon which M acts, the orthogonal projections E and
E′ on the closures of the linear manifolds spanned by the images of x under
operators in M ′ and M , respectively, lie in M and M ′, respectively. The
ratio of the dimensions of E and E′, relative to M and M ′, respectively, is
the coupling constant just mentioned (it is shown to be independent of the
vector x chosen). If N is another factor algebraically ∗-isomorphic to M , with
commutant N ′ and coupling constant equal to that of M and M ′, then M and
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N are unitarily equivalent, and, moreover, the given algebraic isomorphism
can be implemented by a unitary transformation. This result does not apply
per se to the case where M is of type II∞ and M ′ of type II1 . This last case
can be handled, however, by suitable modifications of the above mentioned
techniques. Recently, E L. Griffin has shown that (at least in the case of
separable Hilbert space) each ∗-isomorphism between factors of type III can
be implemented by a unitary transformation between the underlying Hilbert
spaces. The problems then, in the study of factors and rings of operators, are
largely ones of the algebraic nature of these operator algebras.

By considering the weakly closed group algebras of various locally compact
topological groups, examples can be constructed of each of the various types
of factors. In point of fact, however, factors of type III were constructed,
only after much effort, by considering groups of measurability preserving
transformations acting on measure spaces which do not admit group invariant
measures.

In terms of the dimension function constructed, a trace function with the
usual properties can be introduced in factors of types In and II1 . In terms of
this trace function a topology can be imposed on the factor which is useful for
the study of its structural properties.

Current research in the theory of operator algebras centers about the
study of factors of type II1. A broad class of factors of type II1, the socalled
“approximately finite factors” in which any finite set of operators can be
approximated as closely as desired in the trace topology by operators lying
in a subring of finite linear dimension, have been shown to be algebraically
∗-isomorphic to each other. On the other hand, it has also been shown
that there are factors of type II1 which are not of the same algebraic type
as the approximately finite factors. This is effected by showing that the
approximately finite factors of type II1 possess an approximate (relative to the
trace topology) commutativity property which the weakly closed group algebra
of certain groups does not have (e.g., the free group on two generators).

With regard to the study of factors and, more generally, rings of operators,
one of the important projects involves the analysis of the structure preserving
maps. At the Arden House Conference, I. M. Singer presented some of
his recent results concerning the automorphisms of factors of type II1. He
considered factors of type II1 arising from groups of measure-preserving
transformations acting ergodically upon a finite, non-atomic measure space.
Roughly speaking, the measure preserving transformations induce unitary
operators on the Kronecker product of the Hilbert space of square integrable
functions on the group with the Hilbert space of square integrable functions on
the measure space. This group of unitary operators taken together with the
algebra A of operators obtained from the multiplication action of essentially
bounded measurable functions on the measure space generate a factor M
of type II1. The subalgebra A of M can easily be shown to be a maximal
abelian subalgebra of M . Singer studies the group G of ∗-automorphisms of
M which leave A setwise-invariant and its normal subgroup Ga consisting of
these automorphisms in G which leave A elementwise invariant. He describes
G in terms of the original group of measure-preserving transformations. In
particular, he proves that G is the semi-direct product of G0 and another
group described in terms of the original constructions. A neat statement of
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these results in cohomological terms was presented. By these means, Singer
can show that, in many cases, where the outer automorphisms themselves are
not apparent, the factor in question must admit ∗-automorphisms which are
not inner. The present author had raised the question of whether or not a
factor of type II1 (or, more generally, a ring of operators) obeys some sort of
Galois theorem relative to its group of ∗-automorphisms (such is the case for
rings of type I). Singer answers this question negatively on the basis of his
general techniques with specific examples.

Relating to the question of structure preserving maps of operator algebras,
I. Kaplansky presented results concerning derivations of certain classes of
C∗—algebras. It is appropriate, at this point, to note another trend in
current research on operator algebras. Various subclasses of C*-algebras more
accessible, structurally, than the general C∗-algebra are considered. One of
the main proponents of this approach is I. Kaplansky who has developed
a reasonably detailed structure theory for a class of C∗-algebras he calls
“CCR algebras"(these admitting sufficiently many representations by algebras
of completely continuous operators). He has introduced a class of algebras
he calls AW ∗-algebras (abstract W ∗-algebras). This class of C∗-algebras
embodies the main algebraic features of W ∗-algebras while being algebraically
defined (it is a broader class than the W ∗-algebras). Kaplansky and others
have pursued the program of carrying over to the AW ∗-algebras the known
algebraic properties of W ∗- algebras, as well as trying to extend the known
theory of W ∗-algebras in terms of AW ∗-algebras. In his conference talk, I.
Kaplansky introduced a construct which he calls a “C∗-module”. It is a module
with an abelian C∗-algebra as operator ring and an “inner product” with values
in the abelian C∗-algebra This construct may prove to be a very convenient
tool for the investigation of operator algebras and for providing new examples
of operator algebras (especially, if the general theory can be extended to not
necessarily commutative rings of operators). Kaplansky discussed the general
theory of his C∗-modules but specialized, in a short time, to the case where his
C∗-algebra was an AW ∗- algebra and the module over this algebra satisfies two
additional algebraic assumptions. Such C∗-modules, he calls AW ∗-modules,
and, for these, he carries the general theory much further. With the aid of
this new device. Kaplansky then settles an open existence question for certain
classes of AW ∗-algebras. Among other things, he proves that each derivation
of an AW ∗-algebra of type I is inner, basing his argument on a lemma due to
Singer.

The study of factors leads one to the study of various algebraic structures
attached to these factors. In particular, the group of all unitary operators in
a factor and the group of all invertible operators in a factor have attracted
a certain amount of attention recently. Henry A. Dye talked on the unitary
group in a factor of type II1, and showed that certain isomorphisms between
the unitary groups of such factors give rise to ∗-isomorphisms or ∗-anti-
isomorphisms between the factors. In this connection, I. Singer has shown
that a Lie algebra isomorphism between factors of type II1 satisfying certain
slight continuity conditions implies the existence of a ∗-isomorphism between
the factors. I. Kaplansky has relaxed these conditions somewhat. The present
author talked on the structure of the unitary and general linear groups of a
factor. A complete list of the uniformly closed normal subgroups was given.
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It might be remarked that these groups are a natural generalization of the
classical groups. L. Loomis talked on a general ordered structure resembling
the order structure of the projections in a factor. For such structures, Loomis
is able to develop a dimension theory, but, without the added structure of a
factor, his techniques must be more delicate than those employed by Murray
and von Neumann to define a dimension function on factors.

Another important trend in current research on operator theory is the
global investigation of rings of operators. As noted earlier, a ring of operators
admits a type of measurable decomposition into factors, relative to its center.
This focuses attention on the study of factors. In reality. however, the passage
from information about the factors in a decomposition to information about
the ring from which they derive is rarely smooth, involving, as it generally
does, thorny difficulties of a measure-theoretic and operator-theoretic nature.
Since rings rather than factors arise in applications, it is desirable to have
some global techniques for dealing with them rather than passing to the factor
decomposition. Dixmier, Dye, Godement, Griffin, Kaplansky, Segal, and
others have developed such techniques. Dixmier systematically investigated
the center- valued trace in rings of operators. Kaplansky’s work on AW ∗-
algebras contributed heavily to our global techniques. The methods used are
a rather interesting mixture of classical measure theory and modern operator
theory, which have their roots in the early work of Murray and von Neumaun.
I. E. Segal formalized this interrelation between measure theory and operator
theory in a non-commutative integration theory. It should be noted that
the measure space rather than the range of values is the non-commutative
object (the measurable sets corresponding to the projections in a ring of
operators and the integration process corresponding to a trace like, linear
functional). Surmounting considerable technical difficulties, Segal proves non-
commutative analogues to the Riesz-Fischer and Fubini Theorems as well as
other classical measure-theoretic theorems. At the conference, Segal talked
on an extension of dimension theory to arbitrary rings of operators without
a finiteness assumption. He discussed a cardinal-valued integration theory
appropriate to this extension. Segal also discussed non-commutative extensions
of probability theory. He defined a (not necessarily commutative) abstract
probability space and proved, among other things, the (non-commutative)
analogue of the Kolmolgoroff theorem concerning the existence of random
variables having preassigned joint distributions (satisfying certain necessary
consistency conditions). In the process, Segal, gives a systematic treatment of
direct limits of rings of operators.

It would be rash to say that we are confident of an early solution to the
central problems still facing us. Nevertheless, though these problems seem
quite difficult and recent progress slow, many of us have hope for a useful
structure theory for self-adjoint operator algebras in the not too distant future.
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