
THE GENERAL LINEAR GROUP OF INFINITE FACTORS

:BY RICHARD V. KADISON

1. Introduction. In [3], we determined all the uniformly closed, normal
subgroups of g the group of all invertible operators in the factor . Our
information was complete for factors of all types with the exception of those of
type II This note is devoted to supplying the missing information in the
// case. We defined g, to be the uniform closure in of the set of invertible
operators which act as a scalar multiple of the identity operator on the orthogonal
complement of a subspace of finite relative dimension and ;,(1) to be the uni-
form closure of the set of those operators for which this scalar is 1. We showed,
in [3], that i), is a closed, normal subgroup of (proper and non-central
when is of type I or II) and that );g is the direct product of (1) and
the group of non-zero, complex scalars. In Lemma 6 of [3], we showed that
each uniformly closed, proper, non-central, normal subgroup, 9, of i)Eo contains
(i) (and that each normal operator in 9 lies in ,,). We completed the
determination of the subgroups 9 for factors 9E of type I in Theorem 4 of
[3], by showing that each such subgroup, , is the direct sum of ,(1 and
some closed subgroup of the scalars. It was strongly presumed that this same
result holds for factors of type II However, the proof given, failed, at one
point, to encompass the II case. In the following section, we shall supply
a new proof which covers both the I and II cases, thereby completing the
determination of all the closed normal subgroups of the general linear groups
of the various types of factors.
We are indebted to I. Kaplansky for pointing out to us the advisability of

taking the quotient of our factor by the unique closed, two-sided ideal in the
I. and II cases.

2. The normal subgroups. The following result will be needed for the final
determination of the closed, normal subgroups. We give three proofs, the first
is based on Fuglede’s Theorem [1] and the second, due to I. Kaplansky, makes
use of Putnam’s generalization [6] of Fuglede’s Theorem. The result in question
does not lie as deep as Fuglede’s Theorem. The third proof avoids such con-
siderations and shows that the result is valid in a Banach algebra with a
symmetric *-operation (i.e., a*a has positive spectrum).

LEMMA 1. If is a C*-algebra, an operator A in I lies in the center of ?I if
and only if each inner transform of A, P-AP (P in I), is a normal operator.

Proof I. If A lies in the center of ?I then so does A*, so that AA* A*A and
A is normal as is P-AP A. Assume, now, that P-AP is normal for each
invertible operator P in I. Then P*A*P*- is normal for each invertible P
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in I, so that P-1A*P is normal. Moreover, A is normal (choosing P to be 1),
so that (P-lAP) (P-IA*P) P-AA*P P-A*AP (P-A*P) (P-lAP),
i.e., p-lAp and P-1A*P are commuting normal operators. Thus both P-A1P
and P-IA2P are normal, where AI (A + A*)/2, A2 (A A*)/2i (this
follows at once from Fuglede’s Theorem [1]). Now AI and A2 are self-adjoint,
and A At iA so that, if we had the result for self-adjoint operators, A
and A2 would lie in the center of as would A. We may assume, therefore,
that A is self-adjoint. Now with P self-adjoint and regular, P AP is normal
and has real spectrum (since A, being self-adjoint, has real spectrum). Thus
P-AP is self-adjoint, so that

P-AP PAP-,
and

AP= PA.
Hence A commutes with each positive, regular operator in . Now, the positive
regular operators in are dense in the set of positive operators in , so that A
commutes with each positive operator in [. But each self-adjoint operator in

is the difference of two positive operators in . Hence A commutes with
each self-adjoint operator in , so that A lies in the center of .

Proof II. P-AP B is normal, as is A. Thus AP PB and, by [6],
P*A BP* so that PP*A PBP* APP*. Again A commutes with each
positive, regular operator in , and, therefore, lies in the center of .

Proqf III. Let H be a regular self-adjoint element in . Then H-AH is
normal so that (H-AH) (H-AH)* (H-AH)*(H-AH) or AHA*H-HA*H-A. Thus AKA*K- KA*K-A for each positive, regular K in .
In particular, for all small real t, A(I tH)A* (I tH)- (I tH)A*
(I tH)-A or

0 0

and, eomparing eoeNeiengs of : AA*H AHA* A’HA HA*A. Thus
A(A*H HA*) (A*H HA*)A 0. If we denote by r: inner derivagion

by on g (i.e., c(B) B B), ghe lasg equagion can be rewriggen as

.(H) 0, for each self-adjoing H in A. Thus

0 ,(H) (,(H).H + H.,(H))= ,(H)..H

@ ,(H). (H) + (H). ,(U) + H. a,(H)

.(H). (H) + (H). .(H)

(AH- HA)*(AH- HA) (AH- HA)(AH- HA)*.

Thus, AH HA, and A lies in the center of .
We proceed to the proof of the main theorem.
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THEOREM l. If ’J is a factor of type I or II g its group of invertible
operators, ad :g(1) the uniform closure in 9Eg of the set of invertible operator
which act us the identity operator on the orthogonal complement of some subspace
of fini.te relative dimension, then each uniformly closed, non-central, proper, norma
subgroup, , of 9g is the direct product of 9() and some closed subgroup of the
group of non-zero, complex scalars hl

Proof. In view of the last paragraph of the proof of Theorem 4 of [3], and
’[3; Lemma 6], we need only prove that is contained in Let be the
uniform closure of the "set of operators in 9 the projections on the closure of
whose ranges have finite relative dimension. According to [2; Theorem 2],
is the unique, closed, two-sided ideal in 9, and, by [5; Theorem 3], i)/g ?l is
again a C*-algebra. Since g is closed under the adjoint operation, it is also
the closure of the collection of operators in the orthogonal complements of
whose null spaces have finite relative dimension. It is easy to see that
is contained in I + . In fact, if A is in 9g() then A is the uniform limit of
a sequence of operators An such that An acts as the identity operator on a sub-
space En, where I En has finite relative dimension. Thus A.
and tends to A I. Since g is closed, A lies in I - g. Under the natural map,
v, of onto , 9() therefore, maps onto I, and 9 maps onto {hi/, the
group of non-zero scalars in (since 9 is the direct product of this group of
scalars and 9g(1)). Now, according to Lemma 7 of [3], UHU-H
for each A UH in 9, where U unitary, H positive is the polar decomposition
of A. Thus v(A) (U),(H)and (A*)= v(HU-) (H)(U)-= (A)*
commute; for I (U)(H)(U)-(H)-, so that (U) and (H) commute,
and hence (U)- and (H) commute. With T an invertible operator in 9r and
A in , we have T-IAT is in 9 so that (T)- (A)(T) is normal. We assert
that T’-(A)T is normal for each invertible operator T’ in . It suffices to.
establish this for positive, invertible T’, for if K-I?(A)K is normal, with T’ KV,
the polar decomposition of T’, then T’-Iv(A)T is normal, being a unitary
transform, V-K-v(A)KV, of K-(A)K. Note that, with T’ positive, it is
possible to choose Tin 9 such that T is positive and (T) T’. In fact, choose.
To in 9 such that (To) T’. Then, with T 1/2 (To
]1/2 (,(To) + v(T0)*) T’I T’. Now ,(T + I) -1

(T’ eI)-q(A)(T eI) is normal, for each e > 0. Taking the limit, which
exists, as e tends to 0, we have T’-(A)T is normal (for the set of normal
operators in a C*-algebra, being the inverse image of 0 under the continuous mp,
B BB* B*B is uniformly closed). It now follows from Lemma 1 that
v(A) lies in the center of . But /is simple, for if ?I contained a proper, two-
sided ideal, the closure of this ideal would be proper and the inverse image of
this closure under would be a proper, closed, two-sided ideal containing
properly. But there are no such ideals [2]. Now , being simple, has center,
consisting of scalars [4; Theorem 5.10], and, thus, v(A) hi for each A in
For such an A, then, A hi is in so that A lim (hi Bn) where B has as
null space a subspace Fn whose complement has finite relative dimension. With
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A invertible, hi -- B is invertible for large n, and, from the description of B,
is clearly seen to lie in. Hence A lies in, and the proof is complete.

Dixmier has communicated to me a modification of the proof of Theorem 4
in [3] which makes that proof valid for factors of type II From ’Suppose
that ...’ on the last line of [3;83] to ’... is infinite’ on the first line of [3; 85],
replace by:
’We show that some P, contains an infinite subspace such that E’ acting on

this infinite subspace has a bounded inverse (i.e., II E’x II stays above a fixed
positive constant as x ranges over the unit vectors in the subspace). In fact,
let g be the unique closed two-sided ideal in . Then, since E has infinite
relative dimension, E E’P -t- + E’P is not in , so that some E’P is
not in , say E’P Let E’P VK be the polar decomposition of E’P
Since is an ideal, K is not in . Now K >_ 0, so that K is a uniform limit" of
finite linear combinations of its spectral projections corresponding to intervals
bounded below by a positive constant. Since K is not in , one of these spectral
projections must have infinite relative dimension. But K (PE’P)/
so that this spectral projection is contained in P Moreover, with x a unit
vector in the range of this spectral projection II E’x II (P1E’P1 x, x)
i[ Kx 11 , so that E’ has a bounded inverse on this spectral projection. Thus
E acting on some infinite subspace of some Pt has a bounded inverse.’
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