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I 1 E 2[ (2/a) - 1 ]k
G(x) = 2 k _ log z,,x 1 + 22k/a X = 0 (14)

t-G(-x), x . 0.

An easy calculation shows that

00cos t2k/a - 1
log (Pa(t) = 1,6a(t) = E 2k (15)

If a= b = (1/2)1/a, the hypotheses of the conjecture are certainly satisfied, but
the distribution implied by equation (15) is not stable.
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1. Introduction.-The additivity of the trace has always seemed to those of us
familiar with the technical details of the subject of rings of operators to be the most
difficult single point in the basic theory. The proof of this fact given by Murray
and von Neumann,' mysteriously enough, seems to require much more effort than
so basic a point merits; and the fact that several other natural attempts to define
the trace and establish its additivity lead to simple statements which appear to re-
quire the additive trace itself for their proofs only serves to deepen the mystery.

In the next section we present a completely natural and elementary proof of the
additivity of the trace. In fact, our point of departure is the dimension theory of
projections in a factor-we establish the existence of the trace and its additivity
independently of the "semi-authenticated" trace.2 Our proof was inspired by that
of Murray and von Neumann,' the last paragraph of our proof being a direct adap-
tation, in modern dress, of their "local linear approximability" argument.3

2. The Trace.-If so is a state of a factor M of type II, such that (p(B*B) =
(p(BB*) for each B in M, then (p is the trace on ilI. In fact, so is the same on equiva-
lent projections from the foregoing equality, and this, combined with the state prop-
erties of (p, implies that so is the dimension function on projections in M; whence
our assertion. It suffices, of course, to establish that (p(B*B) < 'p(BB*) for each
B in M (substituting B* for B, we conclude equality). If we can locate a state
<o,, of M, for each positive integer n, such that (pn(B*B) < (n + 1/n) pon(BB*), for
each B in M, then, by weak compactness of the set of states, we cbn choose a weak
limit so of some subsequence of ((ps) which will of course satisfy so(B*B) < 4p(BB*),
for each B in M. Suppose now that we have located a positive, linear functional p
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onM such that p(A *A) < (n + l /n)p(AA *), for each A in EME, with E some non-
zero projection in M. We may assume that D(E) = 1/m, with m some positive
integer (choosing a subprojection of E in place of E, if necessary). Let E = E1,

Em be m, orthogonal, equivalent projections in M, and let V, be a partial
isometry in M such that V,*Vi = E1, V1V* = Et. We define sn by Von(B) =
m
Z p(V1*BVt). Then
i= 1

SOn(B*B) = Z p(Vi*B*(EEj) BVi) = E p(Vi*B*VjVj*BVi)
i j 1,j

= fj p[(ElVi*B*VjE,)(ElVi*B*VjE,)*] < Z+ p[(Vj*BVi) (Vi*B*Vj)]
n i

n+1 n+1
= ZE p(Vj*B(E Ei)B*V1) = + Pn(BB*).

n i i n

Clearly son is a positive, linear functional on M, and multiplying it by a positive
scalar does not change its properties, so that we may assume that spn is a state.

It remains to locate a projection such as E and a positive, linear functional such
as p. Suppose that we have found a positive, linear functional p and a nonzero
projection E such that

D(F) < p(F) < D(F) (*)
n

for each projection F in E. We write M in place of EME. Then we may replace
F by an equivalent projection G in the left and right terms of (*) and conclude that

p(F) < + D(G) < + p(G). (**)
n n

Of course, (**) holds if F and G are replaced by a positive, linear combination of
mutually- orthogonal projections and its transform via a unitary operator in M,
respectively. The Spectral Theorem, uniform continuity of p, and this last remark
imply that p(A) < (n + 1/n)p(U*A U), for each positive A and unitary U in M.
In particular, p(A*A) < (n + 1/n)p(AA*), since A*A and AA* are unitarily
equivalent inM (use the polar decomposition of A, and recall that partial isometries
in finite factors have unitary extensions).
We locate E and p such that (*) holds. Let v be any normal state of M (such as

a vector state), and define s(G) and i(G) to be sup tq(F)/D(F) and inf -1(F)/D(F),
respectively, as F ranges over the nonzero subprojections of G. There exists a non-
zero subprojection F of G such that i(F) > I(G)/D(G) (and, by precisely the same
proof with each inequality sign reversed, there exists a subprojection F' such that
s(F') < I(G)/D(G)). In fact, choose, by Zorn's Lemma, a maximal orthogonal
family of projections (Ga) such that q(Ga)/D(Ga) < q(G)/D(G). If (Ga) is void,
G may be taken as F. If not, G - G,Ga $ 0, for otherwise

rn(G) Mn(G.) 2D(G.)n1(G)1D(G) n(G)
D(G) 2D(Ga) 2D(Ga) D(G)

a contradiction. Clearly G - E Gat serves as the desired F in this case. Since
at
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I(I) = 1 = D(I), we can, from the above, find a nonzero projection G with i(G) =
a > 1. Choose a nonzero projection F in G with I(F)/D(F) < (n + 1)a/n. Once
more, we can find a nonzero projection E in F such that s(E) < (n + 1)a/n. Cer-
tainly a < i(E), so that, for each nonzero projection P in E, D(P) < 77(P)/a <
(n + 1)D(P)/n. Taking p to be 7i/a, the proof is complete.

* The author is a Fulbright grantee.
1 F. J. Murray and J. von Neumann, "On Rings of Operators. II," Trans. Am. Math. Soc., 41,

208-248, 1937; see, especially, pp. 210-217.
2 F. J. Murray and J. von Neumann, "On Rings of Operators," Ann. Math., 37, 116-229, 1936.
3 It has come to the author's attention that J. Dixmier has made an analogous remark in a

forthcoming book on "rings of operators," which, incidentally, introduces many elegant simplifica-
tions in the subject.
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This note is a review of results obtained from a new approach to the study of
certain time-homogeneous Markoff processes. The processes studied are of three
types: (a) random walks, (b) birth and death processes, and (c) diffusion processes.
Only the one-dimensional cases have been considered, although the method is not
limited to these. The property which is common to the above processes and
which makes them all amenable to the same treatment is the local nature of the
changes that occur. This property can be characterized in terms of the semigroup
of operators related to the process. Specifically, the infinitesimal generators of
the semigroups in question are second-order differential or difference operators.
A random walk is the motion along a line executed by a particle which at each unit

time can either stand still, or move one unit to the right, or move one unit to the
left, the probabilities of these transitions depending perhaps on the position of the
particle but not on the time. The set of possible positions (or states) of the particle
is thus identifiable with a finite or infinite set of integers. The probability that if
the particle starts at position i, it will be at position j after n units of time is de-
noted by PijQ. The fundamental matrix P = (Pijl) is given, and one wishes to
know various statistical properties of the motion.
A birth and death process is essentially a random walk in which the time param-

eter has been made continuous. Let Pij(t) be the probability that if the particle
was initially in state i, it will be in state j at time t. The process is called a birth
and death process if, as t -> 0,

Pi, i+() = Sit + o(t),
Pi,il1(t) = pit + 0(t),
Pi, i(t) = 1 - (XA + g i)t + o(t),

where Xi and i are constants which may be thought of as the rates of absorption
from state i into states i + 1 and i - 1.
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