
 ON THE ORTHOGONALIZATION OF OPERATOR

 REPRESENTATIONS.*

 By RICHARD V. KADISON.

 1. Introduction. The main problem with which we shall be concerned

 is that of finding conditions under which a group representation is similaT

 to a unitary representation and conditions for a representation of a self-

 adjoint algebra of operators on a Hlilbert space to be similar to an adjoint

 preserving representation (* representation). These situations are slightly

 different aspects of the representation orthogonalization process with very close

 interconnections. With regard to the algebra situation one can phrase the

 main question in the following way. Is an algebra of operators on a HIilbert

 space which is the isomorphic image of a CG-algebra (uniformly closed self-

 adjoint algebra of operators) similar to a CO-algebra in such a way that the

 composition of the isomorphism and the similarity is an adjoint preserving

 representation of the C*-algebra? The question for group representations

 takes the following form. Is every bounded representation of a group by

 operators on a Hilbert space similar to a unitary representation, where, by

 "bounded representation" we mean that there exists a constant such that

 each representing operator is, in norm, less than this constant? In this form,

 the group question has been raised before, notably in [1], [2], [5]. The
 question of when a group admits a mean (or Banach Limit) is the primary

 consideration of these papers and then, employing the technique of [4], it is
 shown that for such groups all bounded representations (continuous in the

 strong topology) are similar to unitary representations (this is done in [4]

 for the infinite cyclic group and the reals). We outline this technique. A

 (left, right) mean on a group G is a positive linear functional on the linear

 space B(G) of bounded continuous functions on G which takes the value 1

 at the constant function 1 and which is invariant under (left, right) transla-

 tions on the group. If G admits a right mean m and g -* Ag is a strongly
 continuous representation of the group by operators on a Hilbert space, then,

 for each x, y in the Hilbert space g -> (A,x, A,y) is a bounded continuous
 function on G and <x, y> = m ( (Agx, Agy) ) is an inner product on the Hilbert
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 space giving rise to a norm equivalent to the original norm and under which

 the operators Ag are unitary. It is then standard to find the similarity of

 the original lEilbert space which takes each Ag into a unitary operator.

 Continuity considerations do not enter into the question of whether all

 bounded representations of all groups are similar to unitary representations

 since it is obviously sufficient to settle this for discrete groups. With regard

 to the technique of means, it is well-known that many groups admit neither

 a left nor right mean (in the sense noted above, e. g., the free group on two

 generators; see [1], [2]) so that this method cannot, in itself, give the full
 answer.

 Onr concern is not with conditions on the group which imply that

 bounded representations are similar to unitary representations but rather

 with restrictions upon the representations which insure that they are similar

 to unitary representations. We feel that this approach gives hope of settling
 the full question one way or the other.

 The truth of the operator algebra proposition is trivially implied by the

 truth of the group statement (see the proof of Theorem 7). On the other

 hand, a bounded representation of a group (discrete) can be extended to a

 represenitation of its L1 algebra (as a self-adjoint algebra of operators acting
 by convolution on L2). This algebra of operators need not be closed in the

 uniform operator topology and the representation need not be extendable to

 the uniform closure of this algebra; so that it would appear that the truth

 of the algebra result would imply the group conjecture only for those bounded

 representations which are extendable to the uniform closure of the L, algebra.
 (The similarity which transforms the representation of the L1 algebra into

 a representation will transform the group representation into a unitary

 representation). However, it is possible to renorm the L1 algebra in such a

 way that the completion of the resulting * algebra is a C*-algebra to which

 each bounded group representation is extendable, by assigning to each element

 of the L] algebra the supremum of the norms of its images in each * repre-

 sentation. It follows from the existence of a Banach algebra norm on L,
 in which the * map is isometric (viz., the L1 norm) that this supremum is

 not greater than the L1 norm (and certainly finite). Our extended group

 representation, being a bounded algebra representation relative to the L1 norm

 on the L1 algebra of the group, is a continuous representation of the L1 algebra

 in the C* norm just constructed. Although the representation extended to

 this C*-algebra may not be an isomorphism, the kernel is a closed two-sided
 ideal so that the factor algebra is a C*-algebra [8], and the induced repre-
 sentationi on this factor C*(-agebra is an isomorpbism. Thus we have the
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 complete equivalence of the 'group and CO-algebra questions. We are indebted

 to I. Kaplausky for bringing to our attention the known renorming device

 used above. It is possible that a more incisive operator algebra result-would

 apply directly to the L1 algebra (acting by convolution on L2). In [6],

 Mackey proves the algebra result in the commutative case by direct methods

 (this result follows at once, as in the proof of Theorem 7, from the fact that

 commutative groups have means, in the sense defined above; see [5]).
 The origin of the group questionl can be found in the classical statement

 which says that each representatioll of a finite group by (complex, real)

 matrices is equivalent to a representation by (unitary, orthogonal) matrices

 and its extension to continuous representations of compact groups [7]. The

 technique used in these proofs, invariant integration over the group, is almost

 identical with the technique of means. Using this theorem for compact

 groups the operator algebra result follows for finite-dimensional operator

 algebras (applied to the (compact) group of unitary operators in the algebra).

 Perhaps a more natural way of concluding the algebra result in the finite-

 dimensional case is thru the semi-simplicity of the image algebra. In this

 case the various concepts of semi-simplicity coincide so that the semi-sim-

 plicity of the original C*-algebra, interpreted algebraically, is inherited by

 the image, and this, interpreted spatially, shows that this image is similar to

 a C*-algebra. In the infinite-dimensional case it is not at all difficult to

 construct an algebra of operators which is semi-simple in all the conven-

 tional senses but not similar to a C*-algebra. The following topological

 difficulty can occur: while each invariant subspace may have a complemiientary

 invariant subspace, the greatest of the angles between the given space anld all

 possible invariant complements may tend to 0 for some sequence of invariant

 subspaces, thus ruling out what we may call the "topological semi-simplicity "

 of the algebra. For a C*-algebra and a unitary group, the orthogonal com-

 plement of an invariant subspace is invariant. Our similarity problem for

 the given family of operators (group or algebra) amounts to an ortho-

 gonalization process. .

 In Section 2, we begin by defining concepts of local semi-simplicity and

 bounded local semi-simplicity of group representations. Theorem 1 states

 that bounded local semi-simplicity of a group representation is necessary and

 sufficient for the representation to be similar to a unitary representation.

 Several different forms of la conjecture concerning the group question are
 discussed, with the aid of Theorem 1. To study the operator algebra question,

 we develop a device for measuring the deviation of a set of vectors from being

 an orthonormal set. After stating a condition for a representation of a C*-
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 algebra to be similar to a * representation in terms of the group conidition
 (Theorem 1), we employ this device to give a more delicate criterion for

 topological semi-simplicity of an algebra of operators. In the concluding
 section, we discuss some extensions of the results stated, examples, aind a
 class of natural questions an affirmative answer to any of which would yield
 the fact that all bounded operators on a Hilbert space have non-trivial, closed,
 invariant subspaces.

 2. Conditions for topological semi-simplicity. The following defini-
 tioIn contains a description of local behavior of a group representation, which
 is necessary and sufficient for the group representation to be similar to a

 uniitary representation. The statement and proof of this fact are contained
 in Theorem 1.

 DEFINITION 1. A representation g-- Ag of th6 gr oup G by bountded
 operators A, on the Banach space 03 is said to be "locally semi-simple"

 when, for each finite set x,,, -, x, of vectors in 03 and g9 , * -, gn of
 elements in G, one can find a linear tra-tnsformation S defined on the finite-
 dimensional vector space i) generated by xl, , Xn, Ag1x,, , Agnx" such7
 thcat 11 Sxj 11=11 SAgxj 11J; i = 1, , n. If there exists a constant 31 such
 that S can always be chosen satisfying

 1/]JI < inf {II Sx 11 :x eV, x 1=1 ;
 31? sup {|| IS :XcTti, |f f =x 1,

 we say that the representationt is " boundedly locally semi-simple."

 THEOREM 1. A representation g --Ag of the group G by bounded
 operators Ag on a Hilbert space .9 is boundedly locally semi-simple if and
 only if it is similar to a unitary representationz.

 Proof. The necessity of the condition is quite easy. Indeed, suppose
 that S is a bounded invertible operator on 9 such that SAgS-1 is unitary
 for each g in G. Let x,* , Xn in St and g1, , gn in G be given. Since
 SAgS-1 is unitary we have

 11 SAgjxj SA,,S-1Sxi = Sxi i = 1 ,

 which establishes the bounded local semi-simplicity of the given representation.

 Suppose now that the given group representation is known to be
 boundedly locally semi-simple and that M1 is a bounding constant. AVe
 establish, in the succeeding lemmas, the existence of an invertible operator
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 P with 1I P ,P-1 1 not exceeding M and such that P-'AgP is unitary for
 each g in G.

 LEMMA 2. If 'V is a finite-dimensional subspace of 5ll there exists a

 Hilbert space norm 11 11' on 'V such that 11 Agx 11' 11 Ag,x 11' whenever Agx
 and A9,x are in 'V and such that 1/M 11 y 11 y 11 Y II' ? M 11 y 11 for each vector
 y in 'V.

 Proof. We endow the conjugate tensor product i) 0 'V (i. e., the tensor

 product which is conjugate linear in the second variable, x 08 ay = (x 0 y) )

 with the natural inner product derived from the inner product of 21, i. e.,

 we define <x 0 y, z 0 w> = (x, z) (w, y) and extend the domain of definition

 of this inner product to all of V 0) 0V by bilinearity. It is well-known that

 this process gives rise to an inner product (independent) of the representation

 of the elements involved as a sum of elements of the form x()y- (see [3],

 for example).

 Let 'V 0 be the subspace of V 0 'V generated by tensors of the form

 x 0 x, and let 6 80 be the subspace of 'V 0 generated by vectors of the form

 Agy 0 Agy - y 0 y, where y and Agy are in 'V. Choose a basis

 Aglyi g Agly- y- C)y, , Ag.ym0 Ag.ym ym 03 ym

 for 6 0. By the bounded local semi-simplicity of the representation g -A,

 we can find a linear transformation S such that || SAg|yj || 11 Syi 11;
 m, and

 1/M?f inf{I Sy 11 Y in V',Y 11 I 1};
 M:sup {Is Sy :y in V,IIyI== 1},

 where TV' is the subspace of 'V generated by yi, , Ymi, Agly1, * Amym.
 By defining S to be a suitable scalar (between 1/M and M) on )V E V',

 we obtain a linear transformation, which we denote again by S, defined

 on all of 'V and satisfying the same conditions as above with 'V replacing

 'V' (no difficulties can arise if we choose S so that S(iV') ='V' by com-
 posing the original S with a unitary transformation).

 n
 Let x S*xj ?S*xj, where x1, ,xn is an orthonormal basis for

 j=1

 S (V). Observe that
 n

 <x, Ag9y X Agyi- yi X9 yj> E (S*xj, Ag,yj) (Ag,yi, S*xj)
 j=1

 n n

 E (S*xj, yi) (yi, S*xj) = (xj, SAg1yi) 2 I (Xj, Sy,) 12
 j 1j=

 SAgyi 11y j2 Sy, 1j2==0
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 as follows from the fact that SA9,yj, Syi are in S (V), the Parseval equality,
 and the choice of S. Consequently x is orthogonal to 80. We define a

 new inner product on iV by means of (x, y)' = <x 0 y, x> so that the new

 Hilbert norm on TV satisfies

 n

 11Y 11 <Y X y > E (S*Xj, y) (Y, S*Xj)P j=1

 n

 = I (Xj, Sy) S2]= 11 Sy 11
 j=1

 It follows at once from this last equality that 1/M 11 y 11 y< 11 Y 1? M 1I y 11.

 If now y and A,y are in 'V then Agy 0 Agy -y 0 y is in 80 so that

 0= (Agy0Agy y0y,.x)= (Agy0Avy,) -(y0y,x)

 (11 ADy 11"') (1I y II')2

 or 1y '=11 Agy 11'. If A0x and Ag'x=Ag'A,_(Agx) are in IV, then
 Agx 11 ' 11 Ag'x 11', which completes the proof of this lemma.

 The following lemma allows us to pass from our finite-dimensional

 information to information about the full space on which the A. operate.

 LEMMIA 3. If ?I3 is a Banach space and p is a partition function on a

 such that on each finite-dimensional subspace 31 of B one can introduce a

 norm 11 1i' in which c231 is a Hulbert space, each partition class intersected
 with 03 lies on the shell of some sphere center at 0 in the norm ', and

 there exists a constantt M1 (depending upon p) such that

 I/M 11 x 11 -C: 11 x 11' C< M x 11

 for each x in 031 (where 11 11 is the norm on 3); then the underlying vector
 space of 03 admits a norm, equivalent to the original norm, in which it is a

 Hi'lbert space and such that the partition classes of p each lie on the shell

 of some sphere center at 0 relative to the new norm.

 Proof. We form a product of intervals with 3 as the indexing family.

 To each point x in 3, we make correspond the closed interval [ 1f x 11/M, M 11 x 11]
 -(thus to 0 in 3 we make correspond the number 0). Denote by X the

 Cartesian product

 rl I$~ t [11 xII/M,M 11x 11].
 x.e'B xz e'B

 We consider X in its standard product topology, in which it is compact, where

 each Ix is given its usual metric topology. Let 03 be a finite-dimensional
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 subspace of B3, and let X (31) be the set of points of X which as functions
 restricted to B3 give rise to a Hilbert space norm on 63 which is constant

 on the partition classes of p intersected with 0. We shall show presently

 that X(03,.) is a closed subset of X. Assume, for the moment, that we have
 proved this fact. The sets X ( B3 1) have the finite intersection property

 ( *3 ranging over the finite-dimensional subspaces of i%3). Indeed, let

 S,, - * *nf, 0 be a (finite) set of finite-dimensional subspaces of &3 and let
 03, be the (finite-dimensional) subspace they generate. By assumption, we

 can find a Hilbert space norm 11 11o on S,0 which is constant on the partition
 classes of p intersected with 60, and which satisfies the inequality

 1/M 11 X ?Il - X 1XIo?lkMII X)

 f or each x in 30. The function which assigns to each x not in 03,0 the value

 31 1J x 11 and to each x in A, the value 11X llo lies in X(3o) which is clearly

 contained in n X(p3). It now follows from the compactness of X (and
 i=1

 our assumption that the sets X(61) are closed in X) that the intersection

 of all the sets X(031) is not empty. Let 11 11' be a function on l3 in this
 intersection. Then, on each finite-dimensional subspace of X3, 1 11' induces
 a lEilbert space norm. It is immediate that 11 11' satisfies the norm axioms
 and the Parallelogram Law on 3 as well as being constant on the partition

 classes of p, so that 11 11' is our desired Hilbert space norm on S. Of course

 1/37 1 x 1_ I x II' ? M1 x 11, since 11 11' is in X. It remains to prove that
 the sets X(031) are closed in X. We shall omit this proof, however, since

 it is a standard approximation argument of the type employed in the proof

 of the w*-compactness of the unit sphere in the conjugate space of a normed

 linear space.

 Proof of Theorem 1. As partition function p on X we take the map

 which assigns to each vector x in X the set of vectors {Agx: g in G}. Since

 the family of operators {Ag} forms a group, this map defines a partition
 function on S. Lemma 2 establishes the hypothesis of Lemma 3 with this

 partition function and 9 for X3, so that we can conclude the existence of a

 norm 11 11' on tl in which tl is a Hilbert space and such that 11 Ag,x 11'
 - 11 Ag2x 11' for each x in W4 and gl,g, in G. In particular 11 x 11 A0x 11' so
 that each operator Ag is isometric with respect to the norm 11 Moreover,

 c' an be so chosen that 11 x 11IM < 11 x 11' < M 11 x 11 for each vector x in 91.

 Let xl, - * be an orthonormal basis for 69 with respect to the norm 11 II
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 (and associated inner prodct ( , ) ), and let yi, be an orthonormal basis

 for &l with respect to the norm 11 11' (and associated inner product (, )').

 Define a linear transformation P of St into itself by Pxi = yi; i 1=
 Theni

 (x, y) = (E(x, xi)xi, (y, xi)xi) - E(x, x) (Xi, y)

 (E(x, xi)yi, E(y, xi)yi)' (Px, Py)'.

 Of course (P-1x, P-1y) = (x, y)', substituting P-1x for x and P-ly for y

 throughout the above equality. We assert that P-KAgP is a unitary operator
 on 69 with respect to the norm 1! for each g in G. Indeed,

 (P-1AgPx, P-1AgPy) = (AgPx, AgPy)' =-(Px, Py)' (x, y).

 We note in conclusion that 11 P P P1 11 do not exceed 31. In fact, if x E ixi

 with 1=11 x 11 2 I E 1 2 is given, then jPx Eiyi tjj'-1 and

 Px I/IM 1? Px 'M 11 Px 11, so that 1/1M ? 11 Px 11 M.
 There are several ways of formulating a conjecture concerning the classical

 question of whether or not each bounded representation of a group is similar

 to a unitary representation.

 CONJECTURE A. Every bounded representation of a group by operators

 on a Hilbert space is similar to a unitary representation.

 CONJECTURE B. There exists a function f from the positive reals to the

 positive reals with the property that for each bounded representation g -- Ag
 with bound M, of a group G by operators on a Hilbert space one can find an

 invertible operator P such that P-1AgP is unitary for each g in G and such

 that 11 P 11, p1 P-1 11 do not exceed f (M).

 CONJECTURE C. Same as B with f as the identity transform.

 Each of the above colnjectures is clearly stronger than the preceding one.

 We shall show that B is actually equivalent to A in the next lemma.

 LEMMA 4. Conjecture A is equivalent to Conjecture B.

 Proof. Clearly B implies A. Suppose now that A is true. If B is false

 there exists a sequence of groups G,, G2, * and a sequence of representations

 g(l) Ag9(, g(2) -*> A9(2), * of these groups, respectively, each with bound
 A1 and such that if N =- inf{max(jj Pi 11, Pi-l- 11 ) : P-1AgP unitary for
 each g(i) in Gj} then lim Ni = oo. Let G = G1 0 G2 0 . * be the weak direct

 i
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 sum of the groups G1, G2, , and let g - A. be the direct sum of the repre-
 sentations g(l) > A,ai, . The representation g->Ag of G has bound M.
 Assuming A, we can find an operator P such that P-1AgP is unitary for each

 g in G. Restricted to each direct summand, this similarity induces similarities

 of all the representations g(i) - Agm, each similarity with bound not greater

 than max(l P 11, 11 P-1 11)-a contradiction. Hence A implies B.

 THEOREM 5. If B is trute for the free groups on finitely many generators

 then B is true for all groups.

 Proof. Let g-->Ag be a representation of G with bound M. We shall

 show that this representation is boundedly locally semi-simple with bounding

 constant f (M). In fact, let x1, , x in & - and g1, * , g9 in G be given.

 The group Gn generated by g1, * g, gn is the homomorphic image of F1, the
 free group on n generators. Thus the representation g -> Ag of G restricted

 to Gn gives rise to a representation of F. with bound M which, by hypothesis,

 is similar to a unitary representation via an operator P with 11 P 1, 11 P-1 11
 not exceeding f (M). As in the proof of Theorem 1, we now conclude that

 11 PAg1xj 11 - 11 Px 11), i 1, * * *, n; so that the representation is boundedly
 locally semi-simple with bounding constant f (M). Hence, by Theorem 1,

 the representation g -> Ag is similar to a unitary representation via a T such

 that 11 T 11, 11 T-1 11 do not exceed f (M). Thus B follows for all groups.
 Note that the proof of Lemma 4 shows that assuming A for the class of

 groups generated by no more than a countable number of elements implies

 B for this class (since the group G constructed in the proof would be in this

 class). Now every group in this class is the homomorphic image of the free

 group on countably many generators, F,,, so that assuming A for F,, implies
 A for all groups with a countable number of generators and hence B for the

 free groups on finitely many generators. With the theorem just proved, this

 yields:

 COROLLARY 6. If A holds for the free group on a countable infinity of

 generators then A and hence B holds for all groups.

 We turn our attention now to the question of topological semi-simplicity

 of algebras of operators. In Theorem 8, we state a necessary and sufficient

 condition for a representation of a CG-algebra to be similar to a * represen-

 tation. Before stating this result, however, it is necessary to introduce some

 geometrical concepts. In particular we must associate to each configuration

 of vectors an object which measures its deviation from being an orthonormal
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 set. To this end, we introduce an "inner product" between two sets of n

 vectors in S9. This inner product has as its range of values, operators on S.

 DEFINITION 2. If X = (X1, X , * ), - =- (yi, , y,n) are two n-tuples

 of vectors in &4 with GV, 9{ the spaces generated by {x1, *, Xn}; {Yi< Yn},
 respectively, we denote by <x, y> the operator on 64 defined as follows. Let

 cn be the space of n-tuples of complex numbers with the usual inner product

 and let e1,, en be the basis (1, O, 0, O),. * , (0, ,0, 1). Let P be

 the map of Cn into 'V determined by P(e,) =xi, i =, *,n, and let Q be
 the map of Cn into 9 determined by Q (e,) = y,. By Q* we mean the adjoint

 map to Q, from 64 into Cn (characterized by (Q*x, a) = (x, Qa), where x is

 an arbitrary vector in 69, a in Cn, the first inner product is taken in Cn, and

 the second in ta). Then < x,y > = PQ*.

 We note some of the properties of < , >. As a function on the product

 of 69(n (the n-fold direct sum of 6V with itself) with 6k,, this inner product

 is conjugate bilinear. Indeed with v = (x1, * ,xn), x' (x1', x.n',

 Y= (y1 . *. yn) y' (yl',* .yn), and <xi,y> PQ*, <PQ
 <x,y'> PQ'* we have

 <c + x', ag> = (P + P')(4Q)* = (PQ* + P'Q*) = <x,> + <K', y>)

 and similarly

 < y + y'> y> + <x,y'>), <x, y> = PQ* - (QP*)* = <8,x>*

 With the notation as in the definition, we see that the range of <x,y> is

 contained 'V and that the range of <x, y>* <y, x> = QP* is contained

 in 9. Since the null space of an operator is the complement of the range

 of its adjoint, we have that the complement of 9 in 69 is the null space of
 <x, y>. Thus, effectively, <x, y> is a transformation from 94 to 'V.

 We compute the transformation <x, y> precisely. With the notation
 above we have, for z in 69(:

 (Q*z, ei) = (z, Qe) - (z, yj),

 so that Q*z E (z,y,)e,, hence PQ*z= (z,yi)xi. Thus <;,y> can be
 i=1 j=1

 expressed symbolically as ( ,y1)xi+ * *+ ( , Yn)x It is immediate from
 this, that <x, x> is a positive operator on t6( (as it is from the expression PP*
 for <x, x>), and as such has a (unique) positive square root. We denote

 this square root by <x'> and refer to it as "the geometrical norm of x (or of
 the configuration x,, ,x) ." The fact that <x> is the identitv operator
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 on the n-dimensional space iV (so that x,, x,, are linlearly inidependent,
 in particular) is equivalent to

 <-',>2 == <X,~ X> ~:( n Xi). Xl + * + Xn)Xit

 being the identity transformation on 'V, which is equivalent to x,, ,xn

 being an orthonormal frame. The spread of the spectrum of <fr>, in general,
 is a measure of how much x1, , -x deviates from being a scalar multiple

 of an orthonormal set. In the one-dimensional case, i.e., with x,y vectors

 in 9, we have <x, y> = ( , y)x. If we restrict this operator to the one-

 dimensional space generated bv x, it becomes m-ultiplication by (x, y), the
 usual inner product of x and y.

 Suppose, now, that SC is a C*-algebra and 4 is a representation (not
 necessarily * preserving) of A by operators on a Hilbert space W. Employing

 Theorem 1, we obtain the following criterion for 4 to be similar to a *
 representation.

 THEOREM 7. If 'U is the unitary group of the (C*-algebra Wf, a necessary
 and sufficient condition for a representation 4 of SC by operators on a Hilbert

 space 9 to be similar to a * representation of W is that 4 restricted to St be
 a boundedly, locally semi-simple group representation of 't.

 Proof. If 4 is similar to a * representation there exists an operator P

 on 9i such that P-14 (U) P is unitary, for each U in %l. Thus 4) restricted
 to 'it is similar to a unitary representation of 9t; and 4 is boundedly, locally
 semi-simple, by Theorem 1. On the other hand, if 4 is boundedly, locally

 semi-simple as a representation of 9t then, by Theorem 1, there exists an

 operator P on St such that P-1(U)P is unitary for each unitary operator U
 in W. It now follows that A --> P-1 (A) P is a * representation of SC.

 Indeed, the given map is an algebraic isomorphism of Al. Suppose A is a
 self-adjoint operator in W of norm not exceeding 1. Then A = I (U1 + U,)
 where U, =-A + i (I-A2) and U2 =A -i(I-A2 )i are unitary operators

 in W. Thus P-1p (A ) P = 12[P10 (Ul) P + P-10 (U2) PI with P-14 (Ul) P and
 P-14(U2)P unitary, so that

 P-1, ( Ui) pI= [P-14 ( Ut) P] -1 =Pl1) ( Ui-') P P-14) ( Uj*) P; i = 1, 2.
 Thus

 [P-10 (A ) P] * 'P-1? ( 1 ( U1* +F P2' ) - )p_ -10 (A ) p _= P-10 (A ) P,

 so that A -P-1 (A) P takes self-adjoint operators in SC into self-adjoint
 operators, and, therefore, is a * representation of W.

 Making use of the foregoing concept of inner product between sets of
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 n vectors, it is possible to give a more delicate analysis to the question of

 which representations of C*-algebras are similar to * representations. If 4

 is a representation of a C*-algebra W by operators on a Hilbert space N9'

 (t acts on S9) and O (A) x' O for some unit vector x' in 9', then for
 each positive E one can find a unit vector x in N such that 11 Ax I <,E.
 Indeed, if 4 (A) x'-=O0, i = 1, -, n one cani choose the unit vector x so

 that 11 Aix 11 <E, i = , * * *, n, i. e., the relations 4 (Ai) x' = 0 can be " approxi-
 mately duplicated" with A and tI via 4. In fact, the set of operators A
 such that 4 (A) x' O forms a proper left ideal ak in W (proper, since

 +(I) =I). If for each unit vector x in 3 one of Aix has norm not less
 than E then T = E A .*Aj> EJ. But T is then invertible and in a. This
 contradiction implies the existence of the desired unit vector x. Given e > 0,

 n

 vectors x1, , Xn in 61' such thatE 11 X,' 112 =1, and relations E O(Ahi)x!' = 0,
 j=1

 h 1, m in; it is even possible to finid vectors x1, ' Xn in 31 with
 n

 11 xi 1l21 such that 11 IAhi,Xt <e, h=1, ,m. This can be done by
 j=1

 working with the n X n matrix algebras over W and + (A) as we did above

 with W and 4 (W) themselves. On the other hand, suppose the relations
 n

 E (Ah;) x" =_ O, h = 1, , i, subsist with xl', , xn' an orthonormal set

 in 9'; is it possible to choose xl, n aln orthonormal set in 31 such that
 n

 N, A hixi 11 < E, h 1, , ,n? This is not necessarily possible on two
 i=1

 grounds; a miultiplicity consideration, or more simply, the dimension of 31

 mayr not be large enough to accommodate an orthonormal set with n vectors,

 secondly, it is too much to ask for orthonormality of xl, , x,n in light of

 the fact that 4 ma.y not be a * representation (Theorem 8 shows that if it is

 possible to choose x1, , x? an orthonormal set then 4 is already a * repre-

 sentation). The multiplicity question can be avoided by asking whether or not
 n

 a * representation 4 of W can be found (once the relations N 4) (A hi) x' =- 0
 n =1

 and e > 0 are given) such that 11 E) (A hi) Xi 1 < 6. As for the orthonormality
 j=1

 question, can we at least find bounds, dependent upon the representation 4

 alone, for the distortion of x1, - ,xn from being an orthonormal set? The

 technique for measuring this distortion has juist been developed. It is not

 difficult to see that if 4) is similar to a * representation 4t via an operator P,
 then 4 will serve for the exact duplication of all relations with the distortion

 bounded by max( 1( P 11, 1f P-' 1 ) (this will be done in detail in the necessitv
 portion of Theorem 8). These considerations lead us to:
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 DEFINITION 3. Let b be a representation of the C*-algebra AS by

 operators on the Hilbert space S9, and let x = (xl, *, xn) be an n-tuple

 consisting of vectors x1, , ,x, which forqm an orthonormal set in 59 such
 that ((p(Aij) ) = 0, where (p(A11)) is an n X n matrix whose entries are

 operators in ( (%). Let VI be a * representation of W by operators on a
 Hilbert space ', and let ' =- (xi, - - ,x1') be an n-tuple of vectors in 29'
 such that 11 (1(Aj,7x' 11 < E, where e is some positive number and the spectrum
 of <x>, as an operator on the space generated by xl', * ,x'n, is contained

 in the interval [kc, K]. We say, then, that " 11 (,j(Ajj) )F' < e is a self-adjoint
 e cover of the relations (o (Aij) )x = 0 with distortion in [Ic, K]." If there
 exist constants 7k, K, (K > I > 0) such that each relation of the form

 (c (Aij) ) , 0, with x as above and (A1j) a positive operator (in the C*-
 algebra consisting of n X n matrices over W), has, for each positive c, a self-
 adjoint E cover with distortion in [ic,K], we say that "the representation (

 has a self-adjoint cover (with distortion in [Ic, K] )."

 We have not made the definition of a representation having a self-adjoint

 cover as restrictive as we might, in that we require only relations coming from

 positive n X n matrices to have self-adjoint e covers. This is all that is

 needed for each relation to have a cover. It might seem more natural to

 use the phrase "( has a self-adjoint cover" to mean that for each e there
 is a self-adjoint representation which serves as a self-adjoint E cover of ( for

 all relations. That this actually follows from the weaker condition used and,

 indeed, that there is a self-adjoint representation which works for all positive

 e and all relations is the substance of:

 THEOREM 8. A necessary and sufficient condition for a representation (

 of a CG-algebrac W by operators on a Huilbert space 9 to be similar to a *
 representation is that (p have a self-adjoint cover. If the distortion is in

 [c, K] then a similarity can be effected by a positive operator with spectrum
 in [k, K].

 Proof. The necessity presents little difilculty. Suppose that there exists

 an invertible operator T on 9 such that A -> To (A) T-1 is a * representation
 of , and let M=max(ll T 11, 11 T-1 II). If ((p(Aj1)x=-O is some relation,
 with x = (x1, * *, xn), x1, , x n an orthonorTnal set, then (T(p (Aj)T-1)F' 0
 is a self-adjoint E cover for this relation (all E> 0), where x' = (Tx1, * *, Tx,),

 and where the distortion lies in [1/M, M1. Indeed, that (T0(Ajj)T-1)'= 0
 with the given x;' is immediate. Let P be the linear transformation from Cn
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 into X9 defined by Pe,= xi (see Definition 2), and let E be the projection
 on the space generated by x1, , x,. Then

 <x7 c'>=?TPP*T* ThET* - (TE) (TE)*.

 Thus 11 <x', > T = TE 12 ? T 1 2 ? j2*. Moreover

 inf{(<x',x'>x,x):1I x 11 =1,x in TE9}M=inf{11 (TE)*x 112}

 -inf{I 1ET*Ty l2 :y in EB , 11 Ty 1 }>inf{ (T*Ty, y/l 1y y11)'}

 -inf{11 Ty 11/l1 y 11} ==inf{1/I1 y 112: y in EN9, 11 Ty 11 1} ?/> AIl2.

 Thus the spectrum of <x', '> as an operator on TEB lies in [1/A'2, A2] so

 that the spectrum of <x'> lies in [1/1l, MI, and (T((Aj)T-)x' -O0 is a
 self-adjoint e cover (all E> 0) for (( (Aij) )x -= 0 with distortion in [1/I, M].
 In connection with foregoing inequalities, note that y is in E3( so that the

 length of the projection of T*Ty upon EN9 is not less than the length of the

 projection of T*Ty upon the subspace generated by y (this length beinig

 ,(T*Ty, y/ 11 Y 1 ) ).

 Suppose now that the map ( has a self-adjoint cover. As in Theorem 1,

 we show that each finite-dimensional subspace i) of Xl admits a iHilbert.

 space norm 11 II' such that 11 (p(U)x II'= II ((V)x {1' when U, V are unitary
 operators in W with qp(U)x, p((V)x in GV, and such that 7c 11 y 11- 1y Y' K 11 y 111
 for each y in 'V. Following Theorem 1, form the conjugate tensor product

 'V 0 'V of V) with itself and endow it with the unitary structure describedl
 in that theorem. Let 'V 0 be the subspace of T) 0 'V generated by tensors
 of the form x 0 x and 6 0 the subspace generated by elements 4 (U) x 0 p (U) x
 - x 0 x, where U is a unitary operator in A and x, (p (U) x are in i). Choose
 a basis ((U1,) y, 0p (U1) y1-y, 1 yi, - n, (Um)ym i0 (Um)ym ym ym for
 ,6 0 and an orthonormal basis x1, , x,n for qV. We have

 n 7b
 0(') yb z 3 tjX and y' 8ijxj; i=1, ,

 j1=1 j=l
 so that

 n

 0 =z (p3t1p(UT) -,&'i1)x1== , c(/311Uc-/3'i1I)x; i 1, * m.n
 j=1 j=1

 Let a positive integer r and a positive number 8 be given. We wish to establish

 the existence of a * representation / of W as operators on a Hilbert space X9V
 and vectors xl', ,x,' in S9' such that <i'> has its spectrum in [I, K]
 with ' == (x,', * ,xn'), and such that

 II E01 (flijU -A 18'j|) Xi" || < 8; M. nS
 j=1

 14
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 We write Ahj for j/hjUh-/ 8hj'; h== 1 ,m and k(A)- for the n X n
 m

 matrix whose i, j enitry is the operator E (Ahi*)> (Ahj). Now .p(A) x 0,
 h=1

 where x= (xi, *x,), for

 7p(Ahl*) 0 ..07 (A hi) .. P(Ahn)

 Lq(Ahn*) 0 0

 and

 rt (Ahl ) -(Ahn)
 0 0

 0 . m. 0 1

 h m 1, , m. By hypothesis on +, the relation p (A ) =0 has a self-
 adjoint S cover with distortion in [k, K]. Let + be a representation of Al by
 operators on the Hilbert space &4' and let F'= (xi', * * *, x.') be a vector such

 that <x'> has spectrum in [c, K] and I f(A )xT? <82/nbK where + (A) is
 m

 the n X n matrix whose i, j entry is , /(Ahi*) (Ahi). In particular then,
 h=1

 (ql(AJ7,x) _ qi(A)> ' K II < 82
 for

 n

 X' I1 = ( 11 X,' 11 2) ?< (K2)1=nlK.
 t=1 ~~~i=l

 In fact, since <.xF> has spectrum in [ki, K], <', x'> = <Z>2 has spectrum
 in [k2, K2], so that

 I ',~> 1= II PP* I p lP 2 ?K2 and xi'ff = fj Pef ?K

 (notation as in Definition 2). Now (q(A )7',') =

 S (A 711' 0 ..O- F! +(Al. . . +(A
 f(A714*) 0 ' ? L ? '. . ' 0

 h=l..0
 ~~(Ah1) ( .t
 Lo 01
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 Thus I (Ah)Xi' 11 <8; h=1, m,. Let V' be the subspace of 9'
 j=1

 generated by x1', . . ., xn', and let yi'< , y.' be an orthonormal basis for IV'.
 Denote by S the linear transformation determined by Syi'= xi'. We assert

 n

 that SS* - <X X"> - (, xi') xi'. Indeed, (S*xj', yj') (xi', Syj') (xx',jx'),
 n j=1

 so that S*x1 = Y (x4, xj')yj' and
 j=l

 n

 SS*x~' =z (x/', xj')Syj' =E (.', X')x= <x', x'> (x/).
 j=1 j=1

 Thus, since xl',* . .x ' span CV', SS* - <,',x> as asserted. It follows that
 SS* has its spectrum in [k2, K2] from which, S-1*S-l has its spectrum in

 n

 [1/K2, 1/k2], so that 1 S ? K ancd 11 S-1 1I/l. Let S*yj( E=aijy&,~ so
 j=1

 that the matrix of the transformation S* relative to orthonormal basis {y/}

 is (ojj). In TV define yf' =Y acijxi. We set up a unitary transformation
 i=l

 between i) and 'V' by means of the map xi-- yi'. Under this map, we see
 that yf"S*yf, so that

 I (y2"eyj", (U0 yi +(Ui y yi yi)I
 j=1
 n n n n n

 ( S*y! 0 S*yj', [ /ih'yh'] 0D [ ih'Yh'] 8i [h /ihyh']
 j=1 h=1 h=1 h=1 h=1
 n n n

 | (S*yf L /Sih'yh') (E /3ih Yh S*yf)
 j=1 h=1 h=1

 n n n

 - (S*yf, E /ihyh') (N jihYhZ S*yjf)
 j=1 h=1 h=1

 n n n

 {E (Yji', E 'ihX') 12|.... f (Yj'i ih}h )1
 j=f h=1 h=1
 n n n n

 = I f/ih Xh 1112_| Ej ihXh|2 - 2 1| Eflih Xh 112 --|(Ui)( fihXh') 11 |
 h1=1 h=1 h=l h=1
 n nn

 C (|| ( Ui)I3ihxh' - /3ihXh) | [i | /3ih Xh |I + || ( Ui) /ihXh |]
 h1=1 h=1 h=l

 n

 C_ 1 t(Aih)Xh' 11 (2nj3K) ? 2n/3K8,
 h=l

 where / max { I 3ih I | ,/3ih' |; il ,m; h=i n}.
 In connection with the above inequality, note that we have proved that

 1I Xi' 11 <K, and that b(Uj) is a unitary operator on 9' since i is a * repre-
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 sentation (with i (1) -I ). We now specify the choice of 8 as I /2n/3Kr

 (all the constants that appear in this choice were determined before the

 introduction of 8). Our inequality becomes then:

 n

 |( yj" 0 yj3tt n+( U0,)ya, 3U0,)yi - Yi 0 YO I 1/r; -1 ,z
 j=1

 We write yj(r) for yj" to indicate the dependence of the y"' upon r. Observe
 that yj (r) lies in the sphere of radius K and outside the sphere of radius 7e,
 ceniter at 0, in ;V since yj(r) is the image of S*y! under our unitary map
 between ) and iV' (and yf Ii = 1,S 11 K, 11 S*-1 1/k). BV com-
 pactness, one can choose a subsequence {rh} of r's such that limyj(rh) =Z;
 j]= 1, * *, n. Clearly h

 n

 CYzj &zj, (A(U0 i 0 0 (i) Yt- yi yi)Z? == 07 *p ...p
 j=1

 and the zj lie between the spheres of radii Ic and K with center at 0 in V.
 We consider the norm jj jj' induced on ') by means of the definition:

 n

 5=1 5=1

 We have just proved that Y zj 0 zj is orthogonal to 60(D so that I p(U) y 11'
 j=1

 = y Y' if both p(U)y and y are in TV. Thus, if 4(U)y and q5(V))y
 ===(p(VU*)O(U)y are in 'V then 1i p(U)y j O' II 4(V)y 11'. For x an arbitrary
 vector in iV, we have (X 2 x')2==

 n n

 lim (N yj(rh) 0 yj(rh), x 0 x) lim ( Sh*yjf(h) 0 Sh*yf (h), x'(h) 0 x'(h))
 A j=1 h j=1

 n

 = lim Y (y5'(h), ShX'(h)) 2 lim S7hx'(h) ff2,
 h j=1 h

 where yj'(h) are the vectors corresponding to yj' in the foregoing discussion
 (with rh now replacing r) Sh is the S of that discussion and x'(h) is the
 image of x under the unitary map between iV and TVh' of the present dis-
 cnssion. Now

 liin 1f ShX'(h) 112 2 lim K2 ff x'(h) 112 = lim K2 1f x f 2 K2 1f x f1 2,
 h hs h

 lim 1f Shx'(h)lf2? lim k2 f x'(h) f2 lim k2 ff x ff2 k2 ff x ff2,
 h h h

 so that 'c 1xj ? < 11'x ?K 11ff.



 OPERATOR REPRESENTATIONS. 617

 If we take as partition classes in t the sets { ( U) x: U a unitary operator

 in I}, we arive at a situation satisfying the hvpotheses of Lemma 3, so that

 9 admits a Hilbert space norm in which + (U) is unitary for U a unitary

 operator in SC (this norm equivalent to the original norm with constants

 k, K). Thus, as at the end of the proof of Theorem 1, we can find an operator

 P with P-10 (U) P unitary for each unitary operator U in W and 11 P 11, 11 P-1 11
 do not exceed max (K, 1/k). It now follows, as in the proof of Theorem 7,

 that the representation A -* P-l4 (A) P is a * representation of A. Writing

 the polar decomposition HlU, U unitary, H = (PP*) ' for P, we have

 A - H-14 (A)H is a * representation of W with H positive and having

 spectrum in [k,K].

 3. Concluding remarks. The discussion preceding Theorem 8 and

 Definition 3, concerning the approximate duplication of relations draws very

 heavily upon the fact that the initial algebra is a C*-algebra (in particular,

 is uniformly closed) for the fact that an invertible operator in the algebra

 has its inverse in the algebra. On the other hand, Definition 3 and Theorem 8

 apply as they stand to self-adjoint (not necessarily closed) algebras (although

 they are not stated this way). It follows immediately from this that:

 COROLLARY 9. A representation of a group by bounded operators on a

 Hilbert space is similar to a unitary representation if and only if the extensio't

 of this representation to the (finite, translation) group algebra (actinzg ont L,
 of the group) has a self-adjoint cover.

 Despite the applicability of Definition 3 and Theorem 8 to self-adjoint

 algebras which are not uniformly closed, it should not be felt that the general

 conjecture about operator algebras has application to the non-closed, self-

 adjoint algebras. That is, examples are easily constructed of algebras which

 are not similar to self-adjoint algebras bnt are algebraically isomorphic to

 non-closed, self-adjoint algebras (not the continuous image, of course). In

 fact, let x1,x, h - * be a sequence of linearly iildependent unit vectors which

 tend (strongly) to x and which span the Hilbert space S9. Let W be the

 algebra of bounded operators A on W which have the form Ax- == ixi for
 some sequence {f} of complex numbers, and let A be the set of sequences
 which arise in this manner (A contains all sequences which have only a finite

 number of non-zero terms). Let y1,y2, * * be an orthonormal basis for 59(

 and let f' be the algebra of operators B of the form By, = aiyj where {c4} is
 in P. Then SC' is a self-adjoint algebra containing I, for B*yi = iyi and
 {i} is in A if and only if {fi} is in A (the xi's being so chosen that the
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 transformnation ax, + * ix, + x - - + **+ nxn is bounded). More-

 over the map A -- B of l onto A' where Axi =o cx* and Byi = ayi is an
 algebraic isomorphism (which is continuous, since 11 A jj ? sup I = li B II).

 For each invertible operator P and each operator A in SC, the operator P-1AP

 has P-lx, as eigenvectors and these converge to P-1x. Now the algebra a is

 commutative (as is P-1%P) so that, if P1-fiP is self-adjoint then P-1AP is

 normal for each A in SC. Given i :& j we can easily find a sequence {ap} in 23

 with ai, aj (let a, =1, a =O for p + i). Let A be the operator in W with

 sequence { ca,}. If P-'AP is normal then P-lxi and P-lxj are orthogonal.
 Thus if P-19XP is self-adjoint it follows that P-lx,, i = 1, 2, - - * is a set of
 mutually orthogonal vectors, which we have just seen cannot be the case.

 We commented briefly, in the introduction, on the topological difficulty

 present in the infinite-dimensional case concerning the geometrical interpre-

 tation of semi-simplicity. By making suitable corrections for this difficulty,

 one arrives at a geometrical condition which might suffice for an algebra of

 operators to be similar to a self-adjoint algebra of operators. The conjecture

 obtained is quite natural in that it corrects for all the immediately visible

 difficulties which occur in passing from the finite to the infinite-dimensional

 case. For the moment, we specifically avoid describing the topology in which
 the operator algebra in question is closed.

 Let 9l be an algebra of operators on a Hilbert space with the property
 that there exists a positive 8 such that if 'V is a closed subspace (setwise)

 invariant under the operators of W then there exists a complementary closed

 invariant subspace 94 (i. e., CV + 94 is the whole space and iV n 94 (0) )
 which maakes an angle greater than 8 with TV. Is Wt similar to a self-adjoint
 algebra?

 Note that since the angle between % and T) is assumed to be positive their
 linear sum is closed. Let us assume that the answer to this question is yes

 (with any closure assumption on W) and that A is a bounded operator on

 the iilbert space N with no closed invariant subspaces other than (0) and N.
 Let W be the (commutative) algebra generated by A and the identity operator

 (the closure taken in the appropriate topology). Since I has no closed
 non-trivial invariant subspaces, the hypothesis is vacuously satisfied and

 there exists an operator P such that P-l1P is self-adjoint. Since P-l%P
 is commutative, it consists of normal operators. In particular P-1AP is

 normal and has an abundance of non-trivial, closed, invariant subspaces.

 If 'V is such a subspace then PT) is non-trivial, closed and invariant under
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 A-a contradiction. Again, if % is an irreducible algebra of operators then

 the hypothesis are trivially satisfied, and an affirmative answer to the question

 would imply that f is similar to a self-adjoint algebra. Mlaking use of this

 remark, we can answer the question in the uniformly closed case negatively.

 Our own approach to this counter-example rested upon producing a uniformly
 closed irreducible operator algebra containing an invertible operator whose
 inverse didn't lie in the operator algebra (note that this can't occur in an

 algebra which is similar to a C*-algebra). A much more cogent device was

 suggested to us by I. Kaplansky. Using the completely continuous operators

 as a basic irreducible set of operators, build a closed operator algebra over it

 whose quotient by the completely continuous operators is a (finite-dimen-

 sioiial), non-semi-simple algebra. The larger algebra is not even the iso-

 morphic image of a C*-algebra, for a quotient algebra of a C*-algebra is again
 a C*-algebra [8] and therefore semi-simple. A concrete example is obtained
 by taking as our algebra the algebra generated by the completely continuous

 operators, the identity operator, and a nilpotent operator of index two (say a

 partial isometry between an infinite-dimensional subspace and its orthogonal
 complement).

 In conclusion, we note the simple fact that a representation of a group

 by uniformly bounded operators each of which is normal is itself a unitary
 representation. In fact, an invertible normal operator all of whose powers

 form a set which is uniformly bounded in norm must have its spectrum on
 the unit circle and is therefore unitary.

 Added in proof (June 1, 1955): In a recent note, (Proceedings of the
 National Academy of Sciences, vol. 41 (1955)) F. Mautner and L. Ehrenpreis

 announce that the group question has a negative answer, i. e., they produce a
 group and a bounded representation of it which is not similar to a unitary

 representation. Presumably, then, the "distortion continuity" condition of

 Theorem 8 cannot be removed. Restricting attention to relations involving n

 or fewer vectors, we can discuss representations satisfying an "n-distortion

 continuity" condition-the boundedness of a group representation (or con-
 tinuity of a C*-algebra representation) amounts to "1-distortion continuity."
 We feel that there are groups and representations of them which have n but
 not n + 1 distortion continuity.

 COLUMBIA UNIVERSITY.



 620 RICI-IARD V. KADISON.

 BIBLIOGRAPHY.

 [1] M. M1. Day, " Means for the bounded functions and ergodicity of the bounded

 representations of semi-groups," Transactions of the American Mathe-

 matical S?ociety, vol. 69 (1950), pp. 276-291.

 [2] J. Dixmier, " Les moyennes invariantes dans les semi-groupes et leurs applications,"

 Acta Szeged, vol. 12 (1950), pp. 213-227.

 [3] F. J. Murray and J. von Neumann, " On rings of operators," Annals of Mathematics,

 vol. 37 (1936), pp. 116-229.

 [4] B. Sz. Nagy, " On uniformly bounded linear transformations in Hilbert space,"

 Acta S?zeged, vol. 11 (1947), pp. 152-157.

 [5] M. Nakamura and z. Takeda, " Group representations and Banach limits," T6hoku
 Mathematical Journal, vol. 3 (1951), pp. 132-135.

 [6] G. Mackey, Commutative Banach algebras, Mimeographed lecture notes, Harvard,
 1952.

 [7] F. Peter and H. Weyl, " Die Vollstandigkeit der primitiven Darstellungen einer
 geschlossenen kontinuierlichen Gruppe," Mathematische Annalen, vol. 97
 (1927), pp. 737-755.

 [8] I. Segal, "Two-sided ideals in operator algebras," Annals of Mathematics, vol. 50
 (1949), pp. 856-865.


