ON THE ORTHOGONALIZATION OF OPERATOR
REPRESENTATIONS.*

By Ricmarp V. Kaprson.

1. Introduction. The main problem with which we shall be concerned
is that of finding conditions under which a group representation is similar
to a unitary representation and conditions for a representation of a self-
adjoint algebra of operators on a Hilbert space to be similar to an adjoint
preserving representation (* representation). These situations are slightly
different aspects of the representation orthogonalization process with very close
interconnections. With regard to the algebra situation one can phrase the
main question in the following way. Is an algebra of operators on a Hilbert
space which is the isomorphic image of a C*-algebra (uniformly closed self-
adjoint algebra of operators) similar to a C*-algebra in such a way that the
composition of the tsomorphism and the stmilarity is an adjoint preserving
representation of the C*-algebra? The question for group representations
takes the following form. Is every bounded representation of a group by
operators on a Hilbert space similar to a unitary representation, where, by
“bounded representation” we mean that there exists a constant such that
each representing operator is, in norm, less than this constant? In this form,
the group question has been raised before, notably in [1], [2], [5]. The
question of when a group admits a mean (or Banach Limit) is the primary
consideration of these papers and then, employing the technique of [4], it is
shown that for such groups all bounded representations (continuous in the
strong topology) are similar to unitary representations (this is done in [4]
for the infinite cyclic group and the reals). We outline this technique. A
(left, right) mean on a group G is a positive linear functional on the linear
space B(G) of bounded continuous functions on G which takes the value 1
at the constant function 1 and which is invariant under (left, right) transla-
tions on the group. If G admits a right mean m and g— 4, is a strongly
continuous representation of the group by operators on a Hilbert space, then,
for each z, y in the Hilbert space g — (4,, 4,y) is a bounded continuous
function on ¢ and <z, y> =m ((44z, Ayy)) is an inner product on the Hilbert
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space giving rise to a norm equivalent to the original norm and under which
the operators A, are unitary. It is then standard to find the similarity of
the original Hilbert space which takes each A, into a unitary operator.
Continuity considerations do not enter into the question of whether all
bounded representations of all groups are similar to unitary representations
since it is obviously sufficient to settle this for discrete groups. With regard
to the technique of means, it is well-known that many groups admit neither
a left nor right mean (in the sense noted above, e.g., the free group on two
generators; see [1], [2]) so that this method cannot, in itself, give the full
answer.

Our concern is not with conditions on the group which imply that
bounded representations are similar to unitary representations but rather
with restrictions upon the representations which insure that they are similar
to unitary representations. We feel that this approach gives hope of settling
the full question one way or the other.

The truth of the operator algebra proposition is trivially implied by the
truth of the group statement (see the proof of Theorem 7). On the other
hand, a bounded representation of a group (discrete) can be extended to a
representation of its I, algebra (as a self-adjoint algebra of operators acting
by convolution on L.). This algebra of operators need not be closed in" the
uniform operator topology and the representation need not be extendable to
the uniform closure of this algebra; so that it would appear that the truth
of the algebra result would imply the group conjecture only for those bounded
representations which are extendable to the uniform closure of the L, algebra.
(The similarity which transforms the representation of the I, algebra into
a * representation will transform the group representation into a unitary
representation). However, it is possible to renorm the L, algebra in such a
way that the completion of the resulting * algebra is a C*-algebra to which
each bounded group representation is extendable, by assigning to each element
of the L, algebra the supremum of the norms of its images in each * repre-
sentation. It follows from the existence of a Banach algebra norm on I,
in which the * map is isometric (viz., the L, norm) that this supremum is
not greater than the L, norm (and certainly finite). Our extended group
representation, being a bounded algebra representation relative to the L, norm
on the L, algebra of the group, is a continuous representation of the L, algebra
in the C* norm just constructed. Although the representation extended to
this C*-algebra may not be an isomorphism, the kernel is a closed two-sided
ideal so that the factor algebra is a C*-algebra [8], and the induced repre-
sentation on this factor ("*-algebra is an isomorphism. Thus we have the
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complete equivalence of the group and C*-algebra questions. We are indebted
to I. Kaplansky for bringing to our attention the known renorming device
used above. It is possible that a more incisive operator algebra result would
apply directly to the L, algebra (acting by convolution on L,). In [6],
Mackey proves the algebra result in the commutative case by direct methods
(this result follows at once, as in the proof of Theorem 7, from the fact that
commutative groups have means, in the sense defined above; see [5]).

The origin of the group question can be found in the classical statement
which says that each representation of a finite group by (complex, real)
matrices is equivalent to a representation by (unitary, orthogonal) matrices
and its extension to continuous representations of compact groups [7]. The
technique used in these proofs, invariant integration over the group, is almost
identical with the technique of means. TUsing this theorem for compact
groups the operator algebra result follows for finite-dimensional operator
algebras (applied to the (compact) group of unitary operators in the algebra).
Perhaps a more natural way of concluding the algebra result in the finite-
dimensional case is thru the semi-simplicity of the image algebra. In this
case the various concepts of semi-simplicity coincide so that the semi-sim-
plicity of the original C*-algebra, interpreted algebraically, is inherited by
the image, and this, interpreted spatially, shows that this image is similar to
a C*-algebra. In the infinite-dimensional case it is not at all difficult to
construct an algebra of operators which is semi-simple in all the conven-
tional senses but not similar to a C*-algebra. The following topological
difficulty can occur: while each invariant subspace may have a complementary
invariant subspace, the greatest of the angles between the given space and all
possible invariant complements may tend to 0 for some sequence of invariant
subspaces, thus ruling out what we may call the “topological semi-simplicity ”
of the algebra. For a C*-algebra and a unitary group, the orthogonal com-
plement of an invariant subspace is invariant. Our similarity problem for
the given family of operators (group or algebra) amounts to an ortho-
gonalization process. .

In Section 2, we begin by defining concepts of local semi-simplicity and
bounded local semi-simplicity of group representations. Theorem 1 states
that bounded local semi-simplicity of a group representation is necessary and
sufficient for the representation to be similar to a unitary representation.
Several different forms of a conjecture concerning the group question are
discussed, with the aid of Theorem 1. To study the operator algebra question,
we develop a device for measuring the deviation of a set of vectors from being
an orthonormal set. After stating a condition for a representation of a C*-
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3

algebra to be similar to a * representation in terms of the group condition
(Theorem 1), we employ this device to give a more delicate criterion for
topological semi-simplicity of an algebra of operators. In the concluding
section, we discuss some extensions of the results stated, examples, and a
class of natural questions an affirmative answer to any of which would yield
the fact that all bounded operators on a Hilbert space have non-trivial, closed,
invariant subspaces.

2. Conditions for topological semi-simplicity. The following defini-
tion contains a description of local behavior of a group representation, which
is necessary and sufficient for the group representation to be similar to a
unitary representation. The statement and proof of this fact are contained
in Theorem 1.

DerINITION 1. A representation g—> A, of the group G by bounded
operators A, on the Banach space B s said to be “locally semi-simple™
when, for each finite set x,,- - -, x, of vectors in B and ¢i,- - *,¢n Of
elements in G, one can find a linear transformation S defined on the finite-
dimensional vector space U generated by i, * *,Tn, Agy, * -, Ay 2y such
that || Sz; || = || Sz |l; t=1,- - -,n. If there exists a constant M such
that S can always be chosen satisfying

I/ M=inf{|| Sz |:2eD, |z | =1};
M=sup {|Sz|:2e, || =1},

we say that the representation is “ boundedly locally semi-simple.”

THEOREM 1. A representation g—>A, of the group G by bounded
operators A, on a Hilbert space 34 is boundedly locally semi-simple if and
only if it is sumilar to a unitary representation.

Proof. The necessity of the condition is quite easy. Indeed, suppose
that S is a bounded invertible operator on § such that S4,8* is unitary
for each g in G. Let @;,- - -, 2, in ¥ and g,- - -, ¢, in G be given. Since
SA,8-* is unitary we have

IS4 || =1 844,878z | = || Sz | ; i=1- - ,m,
which establishes the bounded local semi-simplicity of the given representation.

Suppose now that the given group representation is known to be
boundedly locally semi-simple and that M is a bounding constant. We
establish, in the succeeding lemmas, the existence of an invertible operator
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P with | P |, || P*| not exceeding M and such that P*A,P is unitary for
each g in G.

Lemma 2. If U is o finite-dimensional subspace of 3 there ewists a
Hilbert space norm | |7 on U such that | Ayx | = | Agz |’ whenever Agz
and Ayz are in U and such that 1/M |y | = |yl'=M ||y | for each vector
y n 0.

Proof. We endow the conjugate tensor product W& U (i.e., the tensor
product which is conjugate linear in the second variable, @ ay =& (z®y))
with the natural inner product derived from the inner product of &, i.e.,
we define <z®y,2Q w> = (2,2) (w,y) and extend the domain of definition
of this inner product to all of W& U by bilinearity. It is well-known that
this process gives rise to an inner product (independent) of the representation
of the elements involved as a sum of elements of the form z® y—(see [3],
for example).

Let W& be the subspace of VW& U generated by tensors of the form
2@z, and let €® be the subspace of UV & generated by vectors of the form
Ay @Ay —yQy, where y and Agy are in U. Choose a basis

Ay @ Ao — 41 @y, Ay Ym® Aoy Ym— Ym @ Ym
for £€®. By the bounded local semi-simplicity of the representation g— 4,,
we can find a linear transformation S such that || S4,u:| =1 Svl;
t=1,- - -,m and
UM=mf{|Sy|:y in V,|yl=1};
M=sup{|8yl:y in UV, |yl =1},
where U’ is the subspace of U generated by 41, * *, Ym, Aot * 5 AgnYme
By defining 8 to be a suitable scalar (between 1/M and M) on U O U,
we obtain a linear transformation, which we denote again by §, defined
on all of ® and satisfying the same conditions as above with “U replacing
@’ (no difficulties can arise if we choose S so that S(UV') =<V by com-
posing the original § with a unitary transformation).
n
Let =2 S*z;® S*z;, where z,- - -,®, is an orthonormal basis for
j=1

S (V). Observe that
<5;} Amy'i ® Ag;yi‘— Yi ® y@> = 21 (S*zb Amyi> (A!Ityiy S*x.’l>
i=

— 2 (8%, 91) (ys, §%a) = 2 | (5 S 45,9:) |2—§ | (23 Sy) |?

— 18459 I*— I Sy [* =0,
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as follows from the fact that SA4,,y;, Sy; are in §(°V), the Parseval equality,
and the choice of S. Consequently £ is orthogonal to €®. We define a
new inner product on U by means of (2,y)’ =<z®y,z> so that the new
Hilbert norm on U satisfies

Iy ' =<y ®y, a4 = 2 (S*23,9) (3, S*ay) |

— [jz:m,swlﬂ*= | Sy |-

It follows at once from this last equality that 1/ M|y | =|y|I'=M|y]|.
If now y and A,y are in U then 4,y Q@ A,y —yQy is in £ so that

0= (Aa?/®Aa?/—?/®y,5)= (Agy@Aﬂy:i’) - (y®y35)
=41 — Uy l)?

or [[yl/=1[4|l’. If Az and Adgr=A,4,,(Adsx) are in U, then
| Agz "= | Agz ||/, which completes the proof of this lemma.

The following lemma allows us to pass from our finite-dimensional
information to information about the full space on which the A4, operate.

Lemma 3. If B is a Banach space and p is a partition function on B
such that on each finite-dimensional subspace B, of B one can introduce a
norm || ||” in which B, is a Hilbert space, each partition class intersected
with B, lies on the shell of some sphere center at 0 in the norm || |/, and
there exists a constant M (depending upon p) such that

UM|e|=lzl"'=H]|e|

for each « in B, (where | | ts the norm on B) ; then the underlying vector
space of B admits a norm, equivalent to the original norm, in which it is a
Hilbert space and such that the partition classes of p each lie on the shell
of some sphere center at 0 relative to the new norm.

Proof. We form a product of intervals with @ as the indexing family.
To each point z in B, we make correspond the closed interval [lzl/M,M|=z|]
(thus to 0 in B we make correspond the number 0). Denote by X the
Cartesian product

IL =11 [l=|/MM|=|].
zeB 2eB

We consider X in its standard product topology, in which it is compact, where
each [, is given its usual metric topology. TLet M, be a finite-dimensional
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subspace of B, and let X (#8,) be the set of points of X which as functions
restricted to B, give rise to a Hilbert space norm on #, which is constant
on the partition classes of p intersected with 8,. We shall show presently
that X (8,) is a closed subset of X. Assume, for the moment, that we have
proved this fact. The sets X (#,) have the finite intersection property
(8B, ranging over the finite-dimensional subspaces of #8). Indeed, let
By, - -, B, be a (finite) set of finite-dimensional subspaces of B and let
B, be the (finite-dimensional) subspace they generate. By assumption, we
can find a Hilbert space norm || ||, on B, which is constant on the partition
classes of p intersected with #,, and which satisfies the inequality

UMjzl=lzlo=M|=]|

for each & in B,. The function which assigns to each z not in B, the value
M| z| and to each z in B, the value || x ||, lies in X (#8,) which is clearly

contained in ﬁ X (8;). It now follows from the compactness of X (and
i=1

our assumption that the sets X (8,) are closed in X) that the intersection
of all the sets X (#,) is not empty. Let | |” be a function on B in this
intersection. Then, on each finite-dimensional subspace of B, | |’ induces
a Hilbert space norm. It is immediate that || || satisfies the norm axioms
and the Parallelogram Law on B as well as being constant on the partition
classes of p, so that | |’ is our desired Hilbert space norm on 8. Of course
/M||z|=lz|!=M|z]|, since | |/ is in X. It remains to prove that
the sets X (#8,) are closed in X. We shall omit this proof, however, since
it is a standard approximation argument of the type employed in the proof
of the w*-compactness of the unit sphere in the conjugate space of a normed
linear space.

Proof of Theorem 1. As partition function p on & we take the map
which assigns to each vector @ in 9 the set of vectors {4d,z:g9 in G}. Since
the family of operators {4,} forms a group, this map defines a partition
function on &. Lemma 2 establishes the hypothesis of L.emma 3 with this
partition function and % for 8, so that we can conclude the existence of a
norm | | on & in which & is a Hilbert space and such that | 4,z |’
= || Agx ||” for each z in ¥ and g¢,,9, in G. In particular |z |’ = | 4,z | so
that each operator 4, is isometric with respect to the norm || ||. Moreover,
| I’ can be so chosen that |z |/M = |z | =M | | for each vector z in 9.

Let @,,- - - be an orthonormal basis for & with respect to the norm | |
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(and associated inner product ( , )), and let y;,- - - be an orthonormal basis
for & with respect to the norm | ||* (and associated inner product ( , )’).
Define a linear transformation P of & into itself by Pri=y;; 1=1," - -.
Then

(2,y) = (Ei(% fﬂi)%g(% z)z) =2 (2, 21) (2 9)

= (E(a:; xi)yi; %(_7/, $¢)y¢)’= (P$:Py)/'

Of course (P, P'y) = (x,y)’, substituting Pz for « and Py for y
throughout the above equality. We assert that P-*4,P is a unitary operator
on & with respect to the norm | || for each g in G. Indeed,

(P1A,Px, P*A,Py) = (A4Pz, AjPy)’ = (Pz, Py) = (z,v).
We note in conclusion that || P ||, | P~ || do not exceed M. In fact, if 2 =2 oz
with 1=|z|*=2X|w|* is given, then [Pz| =|Z oy | =1 ' and
| Poll/M= | Po =M | Pol, so that 1/M= | Po) =M.
There are several ways of formulating a conjecture concerning the classical

question of whether or not each bounded representation of a group is similar
to a unitary representation.

CoNJECTURE A. LHuvery bounded representation of a group by operators
on a Hilbert space is similar to a unitary representation.

ConNJECTURE B. There exists a function f from the positive reals to the
positive reals with the property that for each bounded representation g— A,
with bound M, of a group G by operators on a Hilbert space one can find an
wmvertible operator P such that P*A,P is unitary for each g in G and such
that | P, || P | do not exceed f(IM).

ConNJECcTURE C. Same as B with { as the identity transform.

Hach of the above conjectures is clearly stronger than the preceding one.
We shall show that B is actually equivalent to A in the next lemma.

Lemma 4. Conjecture A s equivalent to Conjecture B.

Proof. Clearly B implies A. Suppose now that A is true. If B is false
there exists a sequence of groups (1, G»,- - - and a sequence of representations
9O — Agw, ¢g®— A o, - - of these groups, respectively, each with bound
M and such that if N;=inf{max(|P;|, || P*|):Pi*4,0P; unitary for
each g in G;} then liim Ni=ow. Let =G, ® G, & - - be the weak direct
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sum of the groups G4, Gy, - -, and let g— A, be the direct sum of the repre-
sentations g™ —> A,w, - -. The representation g— 4, of G has bound M.
Assuming A, we can find an operator P such that P-*4,P is unitary for each
g in G. Restricted to each direct summand, this similarity induces similarities
of all the representations g — A w, each similarity with bound not greater
than max(|| P |, || P-*|)—a contradiction. Hence A implies B.

TurorEM 5. If B is true for the free groups on finitely many generators
then B s true for all groups.

Proof. Let g— A, be a representation of G with bound M. We shall
show that this representation is boundedly locally semi-simple with bounding
constant f(M). In fact, let @, - -, @, in H and gi,- * -, ¢gn in G be given.
The group G, generated by g¢i,* - -, gn is the homomorphic image of F,, the
free group on n generators. Thus the representation g — 4, of G restricted
to G, gives rise to a representation of ¥, with bound M which, by hypothesis,
is similar to a unitary representation via an operator P with | P |, || P*|
not exceeding f(M). As in the proof of Theorem 1, we now conclude that
| PAga: | = | Px;|l, t=1,- - -,n; so that the representation is boundedly
locally semi-simple with bounding constant f(M). Hence, by Theorem 1,
the representation g — 4, is similar to a unitary representation via a 7' such
that | T}, | 7-* | do not exceed f(M). Thus B follows for all groups.

Note that the proof of Lemma 4 shows that assuming A for the class of
groups generated by no more than a countable number of elements implies
B for this class (since the group G constructed in the proof would be in this
class). Now every group in this class is the homomorphic image of the free
group on countably many generators, F, so that assuming A for F, implies
A for all groups with a countable number of generators and hence B for the
free groups on finitely many generators. With the theorem just proved, this
yields:

CoroLLARY 6. If A holds for the free group on a countable infinity of
generators then A and hence B holds for all groups.

We turn our attention now to the question of topological semi-simplicity
of algebras of operators. In Theorem 8, we state a necessary and sufficient
condition for a representation of a C*-algebra to be similar to a * represen-
tation. Before stating this result, however, it is necessary to introduce some
geometrical concepts. In particular we must associate to each configuration
of vectors an object which measures its deviation from being an orthonormal
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set. To this end, we introduce an “inner product” between two sets of n
vectors in & . This inner product has as its range of values, operators on ¥.

DrriNtTION 2. If 2= (%1," * *,Tn), §= (Y1," * ", Yn) are two n-luples
of vectors in ¥ with U, W the spaces generated by {1, -, Tn}; {Y1," * *, Yn},
respectely, we denote by <&, §> the operator on ¥ defined as follows. Let
Cn be the space of n-tuples of complex numbers with the usual inner product
and let e, - -, e, be the basis (1,0,- - -,0),- - -, (0,- - -,0,1). Let P be
the map of O into <V determined by P(e;) =i, t=1,- - -, n, and let Q be
the map of C™ into W determined by Q (e;) =yvy;. By Q* we mean the adjoint
map to Q, from ¥ into C* (characterized by (Q*z,a) = (x, Qa), where x is
an arbitrary vector in ¥, a in C*, the first inner product is taken in C*, and
the second in H). Then (T, 7> =PQ*.

We note some of the properties of ¢ , >. As a function on the product
of 3, (the n-fold direct sum of ¥ with itself) with &,, this inner product
is conjugate bilinear. Indeed with &= (21, * -, 2s), &= (', - -, %),
7= (45" - Yn)s G = (v, - -, ya"), and <53: 7> = PQ*, <5/: 7> =PQ*,
&, §"> = PQ’* we have

&+, oy = (P + P)(aQ)* = &(PQ* + P'Q*) = a(<&, > + <&, )

and similarly

<“5;: 7+ g,> = “(<§79 >+ <57: f/">); <£} = PQ* = (QP’k):'< =<7, fi>*'
With the notation as in the definition, we see that the range of <z,§> is
contained “U and that the range of <Z, #* = (§,z> = QP* is contained
in 9. Since the null space of an operator is the complement of the range
of its adjoint, we have that the complement of Y in ¥ is the null space of
<&, §>. Thus, effectively, <&, 7> is a transformation from 9 to V.

" We compute the transformation <z, §> precisely. With the notation
above we have, for z in :

(Q*za ei) = (Z, Qel) = (z: ?/1),

so that @Q*z2=73 (2,¥:)e; hence PQ*z=§ (2,y;)@;. Thus (&, 7> can be
=1 =1

expressed symbolically as ( ,y:)@+- 4 ( ,Yn)@s It is immediate from

this, that <z, 2> is a positive operator on ¥ (as it is from the expression PP*

for <z,z)»), and as such has a (unique) positive square root. We denote

this square root by <Z> and refer to it as “the geometrical norm of z (or of

the configuration z.,- - -,2,).” The fact that <Z> is the identity operator
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on the n-dimensional space U (so that z,,- - -, 2, are linearly independent,
in particular) is equivalent to

<£>2=<5;’§:>=( ’xl)‘rl+‘ : —l'( ;xn)fvn

being the identity transformation on U, which is equivalent to z,, - -, 2,
being an orthonormal frame. The spread of the spectrum of <z>, in general,
is a measure of how much =,,- - -,, deviates from being a scalar multiple
of an orthonormal set. In the one-dimensional case, i.e., with z,y vectors
in 9%, we have <(z,y>=( ,y)x. If we restrict this operator to the one-
dimensional space generated by a, it becomes multiplication by (z,v), the
usual inner product of z and y.

Suppose, now, that % is a C*-algebra and ¢ is a representation (not
necessarily * preserving) of 9 by operators on a Hilbert space . Employing
Theorem 1, we obtain the following criterion for ¢ to be similar to a *
representation.

TrrOREM 7. If U is the unitary group of the C*-algebra A, a necessary
and sufficient condition for a representation ¢ of A by operators on a Hilbert
space 3 to be similar to a * representaiion of U is that ¢ restricted to U be
a boundedly, locally semi-simple group representation of U.

Proof. 1f ¢ is similar to a * representation there exists an operator P
on & such that P'¢(U)P is unitary, for each U in U. Thus ¢ restricted
to U is similar to a unitary representation of U; and ¢ is boundedly, locally
semi-simple, by Theorem 1. On the other hand, if ¢ is boundedly, locally
semi-simple as a representation of U then, by Theorem 1, there exists an
operator P on H such that P-*(U)P is unitary for each unitary operator U
in %. It now follows that 4 —P'¢(A)P is a * representation of 9.
Indeed, the given map is an algebraic isomorphism of 9. Suppose 4 is a
self-adjoint operator in % of norm not exceeding 1. Then 4 — (U, + U.)
where Uy =4 +44(I —A?)% and U, =4 —i(I — A?)? are unitary operators
in %. Thus P*¢(A)P =4[P¢(U,)P + P1¢(U,)P] with P-¢(U,)P and
P-'¢(U,)P unitary, so that

[P7¢(Ua) P1* = [P¢(U) P]7 =P ¢ (Ur*) P =P (Us*)P; i=1,2.
Thus

[P (4) P]* = P'¢ (3 (Us* + U*) ) P=P1¢(4*) P = P*¢(4) P,
so that 4 — P'¢(A)P takes self-adjoint operators in 9 into self-adjoint

operators, and, therefore, is a * representation of 9.
Making use of the foregoing concept of immer product between sets of
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n vectors, it is possible to give a more delicate analysis to the question of
which representations of C*-algebras are similar to * representations. If ¢
is a representation of a C*-algebra 9 by operators on a Hilbert space ¥’
(U acts on H) and ¢$(4)2"=0 for some unit vector &’ in ', then for
each positive e one can find a unit vector « in ¥ such that |4z | <e
Indeed, if ¢(4;)2" =0, ¢=1,- - -,n one can choose the unit vector z so
that | Az || <e i=1, - -, n, i.e., the relations ¢ (4;)2" =0 can be “approxi-
mately duplicated” with U and & via ¢. In fact, the set of operators 4
such that ¢(4)a’=0 forms a proper left ideal & in 9 (proper, since
¢(I)=1). If for each unit vector = in ¥ one of 4;x has norm not less
than e then T=A4;*4;=¢l. But T is then invertible and in &. This
contradiction implies the existence of the desired unit vector z. Given e > 0,

n
vectors z,/,- - -, z,/in @’ such that X | #” |2 =1, and relations >, ¢(A )z =0,
=1
h=1,- - +,m; it is even possible to find vectors z,,- - -,2, in K with
2| @ |*=1 such that | ¥ Arz; | <e, A=1,- - -,m. This can be done by
=1

working with the n X n matrix algebras over % and ¢ (U) as we did above
with 9 and ¢(A) themselves. On the other hand, suppose the relations

n

Sé(Adn)z/ =0, h=1,- - -, m, subsist with ", - -,2,” an orthonormal set

i=1

in &’; is it possible to choose z;,- - -, 2, an orthonormal set in & such that

I iAMxi | <e h=1,- - -,m? This is not necessarily possible on two
i=1

grounds; a multiplicity consideration, or more simply, the dimension of %
may not be large enough to accommodate an orthonormal set with n vectors,
secondly, it is too much to ask for orthonormality of x,- - -, 2, in light of
the fact that ¢ may not be a * representation (Theorem 8 shows that if it is
possible to choose @y, - -, x, an orthonormal set then ¢ is already a * repre-
sentation). The multiplicity question can be avoided by asking whether or not

a * representation ¢ of U can be found (once the relations é¢(Am-)xi’=O
i=1

and € > 0 are given) such that | é\b(dhi)xi | <e As for the orthonormality
i=1

question, can we at least find bounds, dependent upon the representation ¢
alone, for the distortion of a4, - -, 2, from being an orthonormal set? The
technique for measuring this distortion has just been developed. It is not
difficult to see that if ¢ is similar to a * representation ¢ via an operator P,
then ¢ will serve for the exact duplication of all relations with the distortion
bounded by max (|| P |, || P-*|) (this will be done in detail in the necessity
portion of Theorem 8). These considerations lead us to:
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DeriniTION 3. Let ¢ be a representation of the C*-algebra A by
operators on the Hilbert space 3, and let T= (1, - -, Tn) be an n-tuple
consisting of vectors ., - +,x, which form an orthonormal set in X such
that (¢ (4y))T=0, where ($(4y)) 1s an n X n matriz whose entries are
operators in ¢ (N). Let ¢ be a * representation of A by operators on a
Hilbert space 3, and let & = (z//,- - -, z,) be an n-tuple of vectors in X’
such that | (¢ (Ay)2 || < e, where e is some positive number and the spectrum
of <&, as an operator on the space gemerated by ", - -,2’s, 18 contained
in the interval [k, K]. We say, then, that “ | (¢ (44))& | < € is a self-adjoint
e cover of the relations (p(Ay))& =0 with distortion in [k, K].” If there
exist constants k, K, (K >k >0) such that each relation of the form
(p(44))z=0, with z as above and (As) a positive operator (in the C*-
algebra consisting of n X n matrices over N), has, for each positive e, a self-
adjoint € cover with distortion in [k, K], we say that ““the representation ¢
has o self-adjoint cover (with distortion in [k,K]).”

We have not made the definition of a representation having a self-adjoint
cover as restrictive as we might, in that we require only relations coming from
positive n X n matrices to have self-adjoint e covers. This is all that is
needed for each relation to have a cover. It might seem more natural to
use the phrase “¢ has a self-adjoint cover” to mean that for each ¢ there
is a self-adjoint representation which serves as a self-adjoint e cover of ¢ for
all relations. That this actually follows from the weaker condition used and,
indeed, that there is a self-adjoint representation which works for all positive
e and all relations is the substance of:

THEOREM 8. A necessary and sufficient condition for a representation ¢
of a C*-algebra % by operators on a Hilbert space 4 to be similar to o *
representation is that ¢ have a self-adjoint cover. If the distortion is in

[k, K] then a similarity can be effected by a positive operator with spectrum
n [k, K].

Proof. The necessity presents little difficulty. Suppose that there exists
an invertible operator 7" on & such that 4 — T'¢(A4)7T-* is a * representation
of A, and let M =max(||T |, | T*|). If (¢(Ai))&=0 is some relation,
with & = (21, - +, @), @1, - -, 2, an orthonormal set, then (T'¢(4y;)T-)# — 0
is a self-adjoint e cover for this relation (all € > 0), where &’ = (T'zs, - - -, Tw,),
and where the distortion lies in [1/M,M]. Indeed, that (T'¢p(Ay)T-*)# =0
with the given Z’ is immediate. Let P be the linear transformation from C»
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into ¥ defined by Pe;=ua; (see Definition 2), and let & be the projection
on the space generated by w;,- - -, 2,. Then

&, %> =TPP*T* =TET*= (TE) (TE)*.
Thus | &, &> | =|TE||?= | T|*= M> Moreover

inf{ (7, &> 2,2): | ¢|| =1,2 in TEH} —inf{| (TE)*z |}
— inf(| BT*Ty |*:y in BS,| Ty | =1} Zinf{(T*Ty,y/| y |)*)
—inf (|| Ty |/ y |2 =int{1/] y[*:y in B, | Ty| =1} = 1/M"

Thus the spectrum of <z’,z’> as an operator on TES lies in [1/M? M?] so
that the spectrum of (&' lies in [1/M,M], and (T¢(Ay)T*)Z =0 is a
self-adjoint e cover (all € > 0) for (¢(4y) )z =0 with distortion in [1/M, M].
In connection with foregoing inequalities, note that y is in E& so that the
length of the projection of T*T'y upon E¥ is not less than the length of the
projection of T™*Ty upon the subspace generated by y (this length being
(T*Ty,y/ly 1))-

Suppose now that the map ¢ has a self-adjoint cover. As in Theorem 1,
we show that each finite-dimensional subspace U of % admits a Hilbert
space norm | || such that | ¢(U)z|"=|¢(V)x|” when U, V are unitary
operators in ¥ with ¢(U)z, $(V)z in “U, and such thatk |y | = |y '=K | v ||
for each y in “U. TFollowing Theorem 1, form the conjugate tensor product
VR of U with itself and endow it with the unitary structure deseribed
in that theorem. Let “U® be the subspace of UV ® U generated by tensors
of the form ¢ ®z and € ® the subspace generated by elements ¢ (I7)z ® ¢ (U)x
—2®ua, where U is a unitary operator in % and «, ¢ (U)x are in <U. Choose
a basis ¢(U1)y: @ ¢ (U)y—11®@ys, + +, ¢(Un)ym @ $(Un)Ym— Y ® 4, for

€® and an orthonormal basis @, - -, 2, for W. We have
n n
¢(Ui)yi=2118,i:ix:i and y¢=21ﬂu93,-; t=1," - -, m,
j: A:
so that !

0 =J§n1 (Bijp (Us) — B'i) = %Mﬁu%—ﬁ%ﬂ)@; i=1," -, m.

Let a positive integer r and a positive number 8 be given. We wish to establish
the existence of a * representation y of 9 as operators on a Hilbert space "
and vectors @/, - -, 2, in &’ such that <(&’> has its spectrum in [k, K],
with & = (2., - -, z,), and such that

| 29 (BsUi—Bul)af | <8; i—1, - -, m.
P
14
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We write Az; for BaUn—pBal; h=1,- - -,m and ¢(4)” for the n X n
matrix whose 4, ] entry is the operator X ¢ (4n*)¢(4r;). Now ¢(4)Z=0,
h=1

where Z=(21," * ", %), for
¢(An*) 0- -0 ¢(‘gh1)_’ :¢(§hn)
¢MY=§
Lé(An*) 0- - -0 : :
and
r—¢'(Ah1)' ' .d)(Ahn)
F—0,

h=1,- - -,m. By hypothesis on ¢, the relation ¢(4)Z=0 has a self-
adjoint § cover with distortion in [k, K']. Let ¢ be a representation of ¥ by
operators on the Hilbert space ¥’ and let &' = (2,/,- - -, @) be a vector such
that <&’> has spectrum in [k, K] and |y (4) @ | <8 /nEK where y(A4) is

the n X n matrix whose ¢,j entry is §¢(AM*)¢(AM). In particular then,
h=1

(WY&, &) = |y(A)y &[] <&

for
nﬂ%4§MMM§a§mﬁ=ﬁK

In fact, since <¢Z’> has spectrum in [k, K], <&, &) ==<@’>* has spectrum
in [k2 K?], so that

1<Z, &> |=IPP*|=|P|*=K* and |2/ =|Pe|=K
(notation as in Definition 2). Now (y(4)7,7') =

* Ahl e A”
‘p(liihl )0 O lrll’(o ) ' ‘//(Oh)

L N L 4
Y(A*) 0+ 0 L . .
4’(Ah1)' : "/’(Ah-n)
0 “ .. O
=2 Z AR
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Thus ||§¢(Ah,-):v,-’ | <8&; h=1,- - -,m. Let WV be the subspace of H’
j=1

generated by z,/,- - -, z,/, and let y,",- - -, vy, be an orthonormal basis for “U’.
Denote by S the linear transformation determined by Sy/=uz/. We assert

that S8* =</, &> = 2” ( ,a!)z/. Indeed, (S*z/,y/) = (z/, Sy/) = (z/, =),
i=1

so that S*z/ = é (z/,z{)y/ and
j=1
n n
88*z =3 (af, 2/ )8yf == (i, a]) ) = &, &) ().
j=1 j=1

Thus, since z/,- - -, 2, span V', S8* = (&', 7> as asserted. It follows that
S8* has its spectrum in [k?% K?2] from which, S-**S-* has its spectrum in
[1/K%1/k*], so that | S| =K and | S| =1/k. Let S*y/= éaﬁy{, 80
that the matrix of the transformation S* relative to orthonormal il:;sis {y/}
is (@y). In U define yj”=i§1 oz We set up a unitary transformation

between “U and U’ by means of the map z;—y/. Under this map, we see
that y/”— S*y/, so that

(R4 @4/ 4 (V3@ (V)i —y: @)
= | (;: S*y/ ® 8*yy, [gﬂm’yh’] ® [é Ban'yn'] — [Enlﬂmyh’] ® [gﬁmyh’] '
=13 (3797, 3 guw) (2 a'w's $*41)
—é (8*y/, g Binys”) (Enlﬂmyh’, 8*y/)|
=1 2 (1w, 3 Ba'an') P ], Z B} ) |
— 11 S 8a'e 17— | S 8o |2 | — | | 2 'ar’ 1*— | (TS Baan)|?|
=112 W00 Baes' —Ba'e )| [ Z e’ | 4+ 1 Z29(U0) B |]
=1 2v(da)ar’ | (2nBK) = 2mBKS,

where g=max {|Bu|,|Bua’|; i=1,- - ",m; h=1,- - -,n}.

In connection with the above inequality, note that we have proved that
| =/ || = K, and that ¢ (U;) is a unitary operator on ¥’ since ¢ is a * repre-
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sentation (with ¢(I) =1). We now specify the choice of § as 1/2n8Kr
(all the constants that appear in this choice were determined before the
introduction of 8). Our inequality becomes then:

l(%y/’@yxc¢(U@-)y¢®¢<m>y@-—-y¢®y¢>lél/r; i=1," -, m.

We write y;(r) for y;” to indicate the dependence of the y;/” upon 7. Observe
that g;(#) lies in the sphere of radius K and outside the sphere of radius %,
center at 0, in “U since y;(r) is the image of S*y/ under our unitary map
between “U and U’ (and ||y/ | =1, |S*| = K, |S**|=1/k). By com-
pactness, one can choose a subsequence {r;} of ’s such that lim y;(r) =2;;
j=1,- - -,n. Clearly "

(E%@Z:‘,¢(Ui)yi®¢(Ui)yi"—*yi®yi)x(); / i1, m,

and the z; lie between the spheres of radii k¥ and K with center at 0 in “U.
We consider the norm | |” induced on “U by means of the definition:

(U1 = (55®2200) =3 | (5,2) ]2

" ‘
We have just proved that X z;®z; is orthogonal to E® so that | ¢(U)y |’
j=1

=y if both ¢(U)y and y are in V. Thus, if ¢(U)y and ¢(V)y
=¢(VU*)¢(U)y are in U then | ¢ (U)y "= ¢(V)y |". For « an arbitrary
vector in U, we have (|| z|)2=

lim (35,(n) @ (), = ©) —lim (3, 53%/(1) @ 8479/ (1), #(h) @ (1))
j=1 o j=1

= lim 3 3/ (h), Sy’ () |* = lim | Sy’ (),

where y(h) are the vectors corresponding to y; in the foregoing discussion
(with 7, now replacing r) S is the S of that discussion and «’(h) is the
image of # under the unitary map between U and “V,’ of the present dis-
cussion. Now

lim | Sy’ (h) | S lim K2 | o (h) | =lim K* | & | = K* | 2|,
h h
lim || Sy (1) |* = lim k* | /(1) |2 = lim * | & |* = I* = |,
. . h .

sothat bz | =2 =K |«].
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If we take as partition classes in ¥ the sets {¢ (U)2: U a unitary operator
in 9}, we arive at a situation satisfying the hypotheses of Lemma 3, so that
& admits a Hilbert space norm in which ¢(U) is unitary for U a unitary
operator in ¥ (this norm equivalent to the original norm with constants
k, K). Thus, as at the end of the proof of Theorem 1, we can find an operator
P with P-¢(U)P unitary for each unitary operator U in % and | P |, || P~*|
do not exceed max (K,1/k). It now follows, as in the proof of Theorem 7,
that the representation 4 — P*¢(4)P is a * representation of . Writing
the polar decomposition HU, U unitary, H= (PP*)% for P, we have
A—>H'$(A)H is a * representation of ¥ with H positive and having
spectrum in [k, K].

3. Concluding remarks. The discussion preceding Theorem 8 and
Definition 3, concerning the approximate duplication of relations draws very
heavily upon the fact that the initial algebra is a C*-algebra (in particular,
is uniformly closed) for the fact that an invertible operator in the algebra
has its inverse in the algebra. On the other hand, Definition 3 and Theorem 8
apply as they stand to self-adjoint (not necessarily closed) algebras (although
they are not stated this way). It follows immediately from this that:

CoroLLARY 9. A representation of a group by bounded operators on a
Hilbert space is similar to a unitary representation if and only if the extension
of this representation to the (finite, translation) group algebra (acting on L,
of the group) has a self-adjoint cover.

Despite the applicability of Definition 3 and Theorem 8 to self-adjoint
algebras which are not uniformly closed, it should not be felt that the general
conjecture about operator algebras has application to the non-closed, self-
adjoint algebras. That is, examples are easily constructed of algebras which
are not similar to self-adjoint algebras but are algebraically isomorphic to
non-closed, self-adjoint algebras (not the continuous image, of course). In
fact, let @y, @,,- -+ - be a sequence of linearly independent unit vectors which
tend (strongly) to 2 and which span the Hilbert space $. TLet 9 be the
algebra of bounded operators A on & which have the form Az;= au; for
some sequence {o;} of complex numbers, and let 8 be the set of sequences
which arise in this manner (3 contains all sequences which have only a finite
number of non-zero terms). Let 4,9, - - be an orthonormal basis for ¥
and let 9" be the algebra of operators B of the form By; = a;y; where {a;} is
in 4. Then 9’ is a self-adjoint algebra containing I, for B*y;— dy; and
{&)} is in B if and only if {a;)} is in B (the z’s being so chosen that the
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transformation oy, + - - - 4 @&y —> & -+ - - 4 Gpz, is bounded). More-

over the map 4-—>B of U onto A’ where Ax;=ow; and By;=ay; is an

algebraic isomorphism (which is continuous, since | 4 || =sup | o |=| B|).
i

For each invertible operator P and each operator 4 in 9, the operator P-4 P
has P-'z; as eigenvectors and these converge to P-*z. Now the algebra U is
commutative (as is P-19[P) so that, if P[P is self-adjoint then P-*AP is
normal for each 4 in 9. Given 154 we can easily find a sequence {a,} in &
with a;5%~a; (let a;=1, ap=0 for ps41). Let A be the operator in A with
sequence {ap}. If P*AP is normal then P-'z; and P-'z; are orthogonal.
Thus if PP is self-adjoint it follows that Pz, 1=1,2,- - - is a set of
mutually orthogonal vectors, which we have just seen cannot be the case.

We commented briefly, in the introduction, on the topological difficulty
present in the infinite-dimensional case concerning the geometrical interpre-
tation of semi-simplicity. By making suitable corrections for this difficulty,
one arrives at a geometrical condition which might suffice for an algebra of
operators to be similar to a self-adjoint algebra of operators. The conjecture
obtained is quite natural in that it corrects for all the immediately visible
difficulties which occur in passing from the finite to the infinite-dimensional
case. For the moment, we specifically avoid describing the topology in which
the operator algebra in question is closed.

Let A be an algebra of operators on a Hilbert space with the property
that there exists a positive 8 such that if “O is a closed subspace (setwise)
invariant under the operators of U then there exists a complementary closed
invariant subspace W (i.e., U + W is the whole space and UV N Y= (0))
which makes an angle greater than § with V. Is A similar to a self-adjoint
algebra?

Note that since the angle between 9 and €U is assumed to be positive their
linear sum is closed. Let us assume that the answer to this question is yes
(with any closure assumption on %) and that A is a bounded operator on
the Hilbert space $ with no closed invariant subspaces other than (0) and ¥.
Let U be the (commutative) algebra generated by A and the identity operator
(the closure taken in the appropriate topology). Since 9 has no closed
non-trivial invariant subspaces, the hypothesis is vacuously satisfied and
there exists an operator P such that P[P is self-adjoint. Since PP
is commutative, it consists of normal operators. In particular P-AP is
normal and has an abundance of non-trivial, closed, invariant subspaces.
If “U is such a subspace then PU is non-trivial, closed and invariant under
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A—a contradiction. Again, if 9 is an irreducible algebra of operators then
the hypothesis are trivially satisfied, and an affirmative answer to the question
would imply that 90 is similar to a self-adjoint algebra. Making use of this
remark, we can answer the question in the uniformly closed case negatively.
Our own approach to this counter-example rested upon producing a uniformly
closed irreducible operator algebra containing an invertible operator whose
inverse didn’t lie in the operator algebra (mote that this can’t occur in an
algebra which is similar to a C*-algebra). A much more cogent device was
suggested to us by I. Kaplansky. TUsing the completely continuous operators
as a basic irreducible set of operators, build a closed operator algebra over it
whose quotient by the completely continuous operators is a (finite-dimen-
sional), non-semi-simple algebra. The larger algebra is not even the iso-
morphic image of a C*-algebra, for a quotient algebra of a C*-algebra is again
a C*-algebra [8] and therefore semi-simple. A concrete example is obtained
by taking as our algebra the algebra generated by the completely continuous
operators, the identity operator, and a nilpotent operator of index two (say a
partial isometry between an infinite-dimensional subspace and its orthogonal
complement).

In conclusion, we note the simple fact that a representation of a group
by uniformly bounded operators each of which is normal is itself a unitary
representation. In fact, an invertible normal operator all of whose powers
form a set which is uniformly bounded in norm must have its spectrum on
the unit circle and is therefore unitary.

Added in proof (June 1, 1955): In a recent note, (Proceedings of the
National Academy of Sciences, vol. 41 (1955)) F. Mautner and L. Ehrenpreis
announce that the group question has a negative answer, i.e., they produce a
group and a bounded representation of it which is not similar to a unitary
representation. Presumably, then, the “distortion continuity” condition of
Theorem 8 cannot be removed. Restricting attention to relations involving n
or fewer vectors, we can discuss representations satisfying an “n-distortion
continuity ” condition—the boundedness of a group representation (or con-
tinuity of a C'*-algebra representation) amounts to “1-distortion continuity.”
We feel that there are groups and representations of them which have n but
not n 41 distortion continuity.
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