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1. Introduction. In this paper, we carry out the investigation, promised in

[4](2), of the general linear group 5W9 of a factor 5W(3), that is, the group of

all invertible operators in 9ïC. The results of this investigation have much in

common with the results of [4]; and, where there is some basis for com-

parison, namely, in the case where M is a finite factor, there is a great deal of

similarity between the present results and those of the classical finite-di-

mensional case. There is much greater resemblance between *Mg and 7^,

with M a factor of type IL and N a factor of type ln, than there is between

the corresponding unitary groups, M« and 7^u, of such factors. This circum-

stance results from the fact that the determinant function of [3] takes effect

on "M, but not on 5WU (cf. [3, Theorem 4]). The spectral theoretic and ap-

proximation techniques of [4] are stock methods in the present paper, and,

for this reason, many of the proofs appearing here are reminiscent of those in

[4]. There are, however, some striking differences in the methods required

for the investigation of the general linear groups and those required for the

investigation of the unitary groups. The most minor difference is the fact

that the scalars involved do not form a compact set. This, in combination

with the fact that the groups we handle are not locally compact, forces us,

occasionally, to detour around what we have come to regard, through our

experience with locally compact groups, as the most natural approach to the

results obtained. In the second place, as we remarked above, the positive

aspects of the determinant theory [3] come into play when studying the

general linear group of a factor of type Hi, whereas no positive aspect of the

determinant theory is to be detected in the study of the unitary group of such

a factor. Needless to say, the results of [3 ] must be used in the study of the

general linear group of a factor of type IL. Finally, we must, in the present

situation, deal with non-normal operators, since the general linear group of a

factor consists primarily of such operators. This we deem to be the chief diffi-

culty confronting the current investigation. In [4], of course, all the operators

occurring were unitary and a fortiori normal. To be sure, there were diffi-

culties, which could not be dealt with by spectral theoretic techniques, arising

from the need to handle, simultaneously, noncommuting unitary operators.
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use of the results of this memoir, as well as of the results of [3] and [4].
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The difficulties could be isolated however (cf. [4, Lemma 6]), and managed

by an approximation to the finite-dimensional case. The problems concerning

non-normal operators, as they arise in the present case, require us to treat

such operators as if they had a spectral decomposition, or, in analogy with

the finite-dimensional case, as if they had a Jordan canonical form. Present

day operator theory is not at the stage which allows one to come to grips

with the non-normal operator in this powerful a manner.

The opening lemma of §3 provides a means for circumventing the non-

normal operator difficulty in the Hi and III cases. This technique is only

partially effective in the I«, and II«, cases. The problem, after this lemma, is

left at the stage where the non-normal operators occurring satisfy an "ap-

proximate normality" condition (cf. Lemma 7). From this point the solution

is completed, with great effort, by means of a direct attack using an "approxi-

mate spectral theory," but only in the I«, case (cf. Theorem 4).

In §2 we list some preliminary results which are needed later. §3 contains

the main results. In this section, it is proved that each uniformly closed, non-

central, normal subgroup Ç of the general linear group 1Úa of a factor cNi of

type Hi is the inverse image under the determinant map (cf. [3]) of some

closed subgroup of the positive reals, and also that the subgroup of SïCg con-

sisting of those operators of determinant 1 is topologically simple (no proper,

closed, noncentral, normal subgroups). If Jit is of type III then each such

subgroup (^ coincides with Mg, and if M. is of type I«, or II«,, then (^ contains

TJi^d) the closed, normal subgroup of "Mg consisting of those operators the

constituents of whose polar decomposition each has 1 as its unique center of

infinite density (cf. [4, Definition 1, p. 393]). Each normal operator in Ç

is shown to lie in Jitgf, the direct product of the nonzero scalars with Víígfa).

The group 2tfe/a) is proved to be topologically simple (though clearly not alge-

braically simple). §4 contains an approximation result for invertible operators,

completely analogous to Corollary 1 of [4], together with some comments

concerning the results and proofs of the preceding section and possible exten-

sions.

As in [4], we continue the conveniently ambiguous practice of using the

same symbol for an orthogonal projection operator and its range, and speak-

ing of these objects as if they were the same. Some of the arguments are

long and rather involved. We preferred to keep them this way rather than

split them into short lemmas with the consequent loss of perspective. As

a consequence of this, however, and in order to keep the subscript-superscript

notation from becoming too cumbersome, we are forced to reuse, in other

portions of a proof, symbols which are used to designate auxiliary entities

appearing only in one portion of the proof. We hope that this warning will

serve to eliminate any difficulty which might otherwise arise from this

ambiguity of notation. As for our general notation, small Greek letters are

used to denote scalars. The letters £, P, P, Q, R with subscripts and primes
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denote projection operators; U, V, W denote unitary and partially iso-

metric operators; 77, K denote positive operators; and A, B, C, T are used

for arbitrary operators. Capital script letters refer to sets of operators. The

symbols à{A), D{E) refer to the determinant of A (cf. [3]) and the relative

dimension of the projection P (cf. [5]), respectively.

2. Preliminaries. In this section, we collect several facts which will be

needed in the succeeding sections. The next lemma gives a precise formula

for the determinant of a simple type of operator in a factor of type IL. This

formula is used in the study of the general linear group of such a factor.

Lemma 1. IfJiiis a factor of type IL and A is an operator in ÜÍÍ of the form

X1P1+ • • • +X„P„, where Pi, • • • , Pn are mutually orthogonal projections in

ÜÍÍ, then
n

A{A) = H\\i\D^'\
¿-i

Proof. According to [3, p. 521 ], we have

A{A) = exp P(log [{A*A)V2]) = exp 7(log [J Xt| Et + •... . •+ | X. | En])

= exp [(log | X! | )D{Ei) + ■■■ + (log | Xn | )D{En)] = f[ I X< \D(Ei)-
1=1

We recall, next, several results from the finite-dimensional theory. If Uït

is a factor of type I„, n finite, and VAtl is the subgroup of its general linear

group Uïtg consisting of those elements in ffrf, which have determinant 1

(determinant understood, for the moment, in the standard (non-normalized)

finite-dimensional sense), then each closed normal subgroup of ÍMS1 is con-

tained in the center of 5W9l (those scalars which lie in 9Httl). Suppose Ç is a

closed, noncentral, normal subgroup of 9á„. The first portion of the proof of

Lemma 4 is valid in this situation and implies that Ç contains a noncentral,

normal operator A. With U a unitary operator in JXt, U~xA~lUA is in 9ifei,

and it is easy to see, in this case, that, for some unitary operator U,

U~1A~1UA is noncentral. Thus <M0i intersects Ç in a closed, noncentral

normal subgroup of VXtgi and, hence, all of Jttgi. We can state:

Lemma 2. If "M is a factor of type I„ and Ç is a closed, noncentral, normal

subgroup of 'Mg, the general linear group of Vît, then Ç contains 5W?1, the de-

terminant 1 subgroup of "Mg. Moreover, if Ç is closed, normal, and noncentral in

9it0l, then Ç coincides with <Mgv

It will be convenient to have some terminology which distinguishes be-

tween the standard (non-normalized) determinant of an operator relative to a

I„ in which it lies and the determinant of this same operator relative to a IL

containing the I„. An operator A in any factor ÜÍÍ is said to have "complex

matrix determinant 1" when there exists, in !M, a finite set of orthogonal
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equivalent projections Pi, • • • , Pk and partial isometries F,-j- between these

projections which, together with the projections, form a finite set of matrix

units, PA is in the algebra generated by these matrix units and has standard

determinant 1 relative to this algebra while (7—P)A is 7 —P, where P is the

sum of the P.. With this terminology, we state:

Lemma 3. If Ç is a closed, normal subgroup of Í7iíe, the general linear group

of a factor "M, or of "Mgv the group of determinant 1 operators in Üííg when 5W is

of type Hi, and

A = 7iPi +-h JkPk + I - P

has complex matrix determinant 1 relative to Pi, • • • , P* and a fixed set of

partial isometries F,-y between them, A lies in Ç, and PA is noncentral in the

algebra generated by the Pi's and the associated partial isometries, then Ç con-

tains all operators in the set £ of operators which have complex matrix de-

terminant 1 relative to the Pi's and the Vy's.

Proof. The group J^ is isomorphic to the determinant 1 subgroup of some

factor of type lk. Moreover, if *M is of type IL, J^is contained in M.gv Indeed,

each operator B in J^ is the product of a unitary operator U in Jf^ and a

positive operator 77 in J\ Now U is in Jïtgi as are all unitary operators in Jit,

and 77 is a unitary transform of a positive operator C in „£, where

C = «iPi + ■ • • + akPk + I - P.

According to Lemma 1,

* r-    k        -lD(J>i)

¿(o = n«iD(p<)= n«<     =1-
<-1 L <_i    J

Thus A(77) is 1, and B is in ifrf,,. It follows that, in any case, the group Ç

intersects £ in a closed, noncentral, normal subgroup of J^, and so, by

Lemma 2, contains £.

3. Main results. In this section, we list the information obtained concern-

ing the closed normal subgroups of the general linear group of a factor. The

first result of this section, Lemma 4, allows us to bring into play the results

of [4] concerning the unitary group ?Xtu of a factor 9xC when dealing with the

normal subgroups of its general linear group Vïtg. Portions of the proof of

this lemma, with slight alterations, are used at other points in this section.

Lemma 4 gives us sufficient information for dealing with the general

linear group of a factor of type IL, and the classification of the closed, normal

subgroups of this group is contained in Theorem 1, immediately following

Lemma 4. However, Lemma 4 alone is not sufficient for handling the general

linear groups of the infinite factors. A portion of the argument of Lemma 4

is incorporated in the proof of Lemma 5. This lemma is designed explicitly

for the infinite cases. As in the unitary case, a normal subgroup of the general
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linear group of a factor is obtained by considering those operators whose non-

trivial action is restricted to a subspace of finite relative dimension. The

operators in the uniform closure of this subgroup are completely described

in Theorem 2, and the relation of this subgroup to the general linear group of

the various factors is given there. On the way to describing the closed,

normal subgroups of the general linear groups of the factors, Lemma 6 con-

tains a proof of the fact that each noncentral such subgroup contains the

group VttgjiD, consisting of operators in the uniform closure of the group of

operators which act as the identity on the complement of a finite-dimensional

subspace. The closed normal subgroups of a factor of type III are then de-

scribed. Lemma 7 establishes the "approximate" normality of operators in a

proper, closed, normal subgroup of the general linear groups of an infinite

factor. With the aid of this lemma, the foregoing results, and some of the

geometry of infinite-dimensional subspaces of a Hilbert space contained in

[l], the closed normal subgroups of the general linear group of a factor of

type I«, are classified.

Lemma 4. If "M is a factor, "Mg its general linear group, and Ç is a closed

normal subgroup of Üítg not contained in the center of Vît, then Ç contains a

noncentral unitary operator. If Vat is of type IL or III, then Ç contains "Mu, the

full group of unitary operators of Vît.

Proof. We first show that Ç contains a noncentral normal operator. Sup-

pose that ¿777 is the polar decomposition of some nonscalar in Ç (cf. [5, p.

143]). Then H^U'1 and H{U-l{UH)U)H-1 are in Ç so that

A = {H-lU-l){H2UH-1) = H-lU-lH2UH-1

is in Ç. Now A is clearly positive definite. If A is not a scalar we are through;

if .¿4=0:7 then H2U = aUH2. Taking the norm of both sides of this last

equality, we have a=|o:| =1, so that 772 commutes with U and hence

with U2. But

H-\{U-\UH)U)UH)H = ¿72772

is in Ç'and is normal (since U2 and hence ¿7*2 commute with 772). If U2H2 is

a scalar, the positive operator 772 is a scalar multiple of a unitary operator

which can occur only if U2 is 7 or —I and 77 is a scalar. In this case Ç con-

tains UH, a scalar multiple of the unitary operator U, which is noncentral

by assumption. In any event we have our contention that Ç contains a non-

central normal operator. Let A be this operator and suppose first that A has

only point spectrum. If possible, choose points a, ß in the spectrum of A so

that a is distinct from ß and —ß. If this is not possible, then A =ßE—ß{I — E).

Since Sit may be assumed to be not of type L, I2, it is possible to choose

equivalent nonzero projections Pi, F2 in P and 7 —P respectively such that

one of Pi, F2 does not coincide with P or I—E, respectively. Let V be a par-
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tial isometry from Pi to F2, and let F be the unitary operator which is V

on Pi, V* on F2, and the identity on I—Fi — F2. Then

V^AVA-1 - - iFi + F2) + I -Fi- Ft,

a noncentral unitary operator, is in Ç. Suppose then that a, ß can be chosen

in the (point) spectrum of A so that a is distinct from ß and —ß. Let £, P

be the spectral projections for A corresponding to a and ß, respectively.

Choose equivalent, nonzero projections £1, Pi in £ and F respectively; let

V be a partial isometry from £1 to Pi, and let F be the unitary operator

which is V on £1, V* on Pi, and the identity on I — Ei—Fi. Then

V~lAVA~l = a-^Ei + aß^Fi + I - Ei - Fu

which is an operator in (J'with complex matrix determinant 1. This operator

is noncentral, for if a~1ß = aß~1 then a is ß or — ß contrary to choice. Thus Ç

contains, in particular, iEi — iFi+1 — Ei — Fi, by Lemma 3, a noncentral

unitary operator.

We may assume, therefore, that A has some continuous spectrum so

that, in particular, A has an infinite number of distinct points in its spectrum.

It follows that we can choose two points a, ß in the spectrum of A so that

either a and ß are both centers of infinite density for A (cf. [4, p. 393]) or

both are not centers of infinite density for A and so that a is distinct from

ß and —ß. If possible, select a and ß, satisfying the above conditions, so that

they are not centers of infinite density for A. If a, ß are centers of infinite

density for A, choose orthogonal infinite projections P, Q such that I — P — Q

is infinite; if a, ß are not centers of infinite density, choose P and Q to be

nonzero, orthogonal, equivalent, finite projections. Our aim now is to ap-

proximate, uniformly to within e, a unitary transform of <_/3-1P-|-a_1/3<2+7

-P-Q and hence aß-lP+arlßQ+I-P-Q, itself, by an operator in Ç. It

will follow then that aß~1P+a~lßQ+I — P — Q is in the closure of Ç and

hence in Ç. Now, whether P and Q are infinite or not, aß~1P+a~1ßQ+I — P

— Q has complex matrix determinant 1 and is not central in its complex matrix

ring since aß^l9ea~1ß. It follows from this that Ç contains the noncentral

unitary operator iP — iQ+I — P — Q. It remains to perform the approxima-

tion. For this purpose, choose nonintersecting circles of radius less than e

about a and ß, these circles being so chosen in case a, ß are not centers of

infinite density for A that the corresponding spectral projections £, F are

finite. Choose nonzero, orthogonal, equivalent projections £i, Pi in £ and F

respectively, which commute with A and such that £i has n copies in P

and Pi has n copies in Q for some positive integer n (i.e., P and Q are each the

sum of n orthogonal projections each equivalent to £i and Pi). If a and ß are

not centers of infinite density for A, the possibility of choosing E\, Pi as indi-

cated is guaranteed by [4, Lemma 5]. If a, ß are centers of infinite density,

they were selected because it was not possible to choose them otherwise,
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and this can be the case only if A has at most a finite number of points in its

spectrum which are not centers of infinite density. In this case, take w = l

and choose Pi, Pi as above so that I — Ei — Fi is infinite (choose them inside

spectral projections for disks about a, ß which avoid some disk about another

center of infinite density). Let V be a partial isometry from Pi to Pi, and F

be the unitary operator which is V on Pi, V* on Pi, and the identity on

7 —Pi —Pi. Then B=V~1AVA~1 is in Q. Choose 2m —2 orthogonal projec-

tions P2, • ■ • , P„; P2, ■ • • , Fn in 7 — Pi — Pi each equivalent to Pi, let VI

be a partial isometry from Pi to P;, V" a partial isometry from Pi to P.- and

let V, be the unitary operator which is Vi on Pi, V* on P.-, V" on Pi, V"*

on Fi, and the identity on 7 — Pi — P¿ — Pi — P< (let Fi = 7). Then

n

T = II VrlBVi
i-1

is in Ç. Moreover,

T -  ißa^i Z p) + r1«( ¿Pi) + 7 - Z (P + Fi)\ < t,

by construction, and

ßa-i ( Z p) + ß-1« ( Z p) + ' - Z íe< + Fi)

is equivalent to

ßa-^P + ß-^aQ + 7 - P - Q;

for, if S^rí is a finite factor, the fact that Z"=i Ei and Z"=i Fi are equivalent

to P and Q is sufficient to establish the equivalence; if Vît is infinite and

Pi, Pi are finite then 7— Z"-i iEi-\-Fi) is infinite as is I — P — Q, by choice,

and, finally, if Pi, Pi are infinite then n = \, and 7— Z"-i (P¿ + P¿)=7 —Pi

— Pi which is infinite, by construction, as is I — P — Q. Thus, in all cases, we

have performed the desired approximation, and the proof is complete. Of

course, the last statement of this lemma follows from the information we

already have and the results concerning Vîtu for Vît a factor of type IL or III

[4, Theorem 2].

Making use of the above lemma and the determinant theory of [3], we

are able to completely classify the closed, normal subgroups of the general

linear group of a factor of type IL- This classification is contained in the fol-

lowing theorem.

Theorem 1. If Vît is a finite factor and A is the determinant function on Vît,

then all uniformly closed, noncentral, normal subgroups of Vîtg, the general linear

group of Vît, appear as the inverse images under A of closed subgroups of the range

of A. Moreover, Vîtgi, the subgroup of Vîtg consisting of those elements in Vîtg, with
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determinant 1, has as its closed normal subgroups the closed central iscalar) sub-

groups.

Proof. Suppose we can show that each closed, noncentral, normal sub-

group Ç oí "Mg contains MBl. Then, since 9ïtBl is the kernel of A in ?itg, A maps

<JttB/'MBl continuously, isomorphically onto the group of positive reals, so

that Ç maps into some subgroup AiÇ) of the positive reals. As soon as we

show that the map from cMg/cMai to the positive reals is a topological iso-

morphism, we shall know that A(Ç") is closed. Now a neighborhood of the

identity in 'Mg/'Mgi can be represented as rU'Mgv with V a neighborhood of 7

in *Mg; and TJ intersects the set of scalars in an open set S. Thus, since A(a7)

is a, for a positive, the image of 1JrN\{77} is an open subset of the positive

reals. Thus the closed noncentral, normal subgroups of 'M.g (which, we have

assumed, automatically contain Mffl) correspond, in 1-1 fashion, to the closed

subgroups of the positive reals.

It remains to prove that a closed normal subgroup of ?ííg or "M.ai which is

noncentral contains ?XSl. Let Ç be such a subgroup. We shall prove this

by showing that Ç contains all operators A of the form

A = aiEi + • ■ • + anEn

with t_i, • • • , an positive, the £,- mutually orthogonal projections with sum 7

and

n

ha) = n«iD(Bi> = i.
•-i

We then observe that these operators lie dense in the set of all positive

operators in ViiBl. If Ç is a closed, noncentral, normal subgroup of M.gi, the

proof of Lemma 4 remains valid for Ç, so that, in any case, Ç contains 9ïCu,

the unitary group of 'M. Since Ç contains ?áu and all positive operators in

MBl, Ç contains ÜítB1, for Ç contains the constituent parts of the polar de-

composition of each operator in Víígr

Suppose we have shown that Ç contains all operators having the same

general form as A but involving n — 1 or fewer projections («à3). Write

B = aiEi + ■■■ + an-2En_2 + a(£„_i + En),

where a is so chosen that A(P) is 1. By inductive assumption, B is in Ç"and

B-^A = orV-iPn-i + «-»«„£„ + 7 - £„_i - £n

has determinant 1. It suffices, therefore, to prove that G contains all oper-

ators C of the form

C = aE + ßF + I - E - F,

with £, P orthogonal projections and
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A(C)  = aDWßD(T) =  1,

in order to show that Ç contains all operators having the same form as A.

We may deal with the case where I—E — F is different from 0, for, if we

have the result in this case and aP+/3P is given with

P+P =  7, aD(E)ßD(F)   =   j

Choose Pi, P2 orthogonal, equivalent projections with sum P and Qu Q2

orthogonal, equivalent projections with sum P. By assumption, aPi-\-ßQi

-\-I — Pi — Qi and op2+/3<22+7 — P2 — Q2 are in Ç, so that their product

«P+/3P is in Ç. We show now that C, with I — E — F nonzero, can be ap-

proximated uniformly to within any preassigned positive 6 by an operator

in Ç. Observe first that Ç contains all operators of the form yP + 5<2+7

-P-Çwith

7d(p)0díq) = 1t       D{P)/D{Q) = m/n,

where m/n is some rational number. Indeed, decomposing P into m orthog-

onal equivalent projections and Q into n orthogonal equivalent projections

yields m-\-n orthogonal equivalent projections, and 7P + 5Ç+7 — P — Q,

viewed in this decomposition, has complex matrix determinant

ymfrn  —   fym/ntyn  —   (,yD(P)gZ> (Q)) n/ D(Q)   —   ^

Since Ç contains the unitary operators in Vît, Ç contains yP + 5Q+I — P — Q,

by Lemma 3. In the case of C, therefore, we may assume that D{E)/D{F)

is not rational. Choose an integer n so large and a projection Pi in P with

7J>(Pi) so close to D{E) that the following conditions are fulfilled: D{Ei)/D{F)

is a rational number,

| a"1'» - 1 | < e,        nD{E - Ex) ^ D{I - E - F),        | ai - a | < e,

where «i is ß-DvniD&d (note that a is ß~o(F)iD(E)-j_ With these choices made,

let Pi, • • • , P„ be n orthogonal equivalent projections in I—E — F, each

having the same dimension as P —Pi. Then, by our preceding remarks,

cdPi+j3P+7-Pi-P is in Ç, since D{Ei)/D{F) is rational and

aiDl.BußDt.F)   =   I

Moreover,

a{E - Ei) + a-^tPi + • • • + P„) + 7 - {E - £,) - Pi - • ■ ■ - P„

is in Ç, since it has complex matrix determinant 1 ; so that the product

T = a{E- Ei) + «i£i + ßF + «-^"(Pi + • • • + P„)

+ 7-P-P-P!- Pn

of these two operators is in Ç. But
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\\C - T\\ < e,

and we conclude that Ç contains all operators having the form of A.

If a positive 77 in "MBi is given choose

K = ai£i + • • • + anEn

with «i, • • • , an positive, £i, •••,£„ orthogonal projections,

11-7 - 7-H < 5/2,

where ô is a small, preassigned, positive number, and

| 1 - (A(7_))-i| < 5/4||77||.

The choice of such a K is made possible by the spectral theorem and the

uniform continuity of A on Ç (cf. [3, Theorem 1, (3°)]). Then

A(7-/A(70) = 1,

and

||77 - 2_/A(__)|| á \\H - J_1| + \\K - K/HK)\\ ^ 5/2 + ||__|| • | 1 - (A(__))-i i

á 5/2 + 2||77||5/4||77|| = 5.

How K/AiK) is in Ç so that 77 is in Ç and the proof is complete.

For the remainder of this section, we are concerned with the general

linear groups of the various infinite factors. The next lemma provides a means

of determining restrictions on the structure of an operator which can lie in a

closed, proper, normal, subgroup of the general linear group of an infinite

factor.

Lemma 5. If "M is an infinite factor, CMB its general linear group, Ça closed,

normal subgroup of "MB containing the noncentral operator A=aiEi+ • • •

+anEn, where £i, ••-,£„ are infinite orthogonal projections in ÜÍÍ, then Ç is

identical with SïtB.

Proof. The invertibility of A and the orthogonality of the £,- imply that

7 = £i+ • • • +£n- The fact that A is noncentral implies that w>l and not

all the a,- are equal.

With the following small adjustments, the first portion of the proof of

Lemma 4 shows that our ip contains VXtu. We have the noncentral normal oper-

ator A given us in the present situation, and it has pure point spectrum

consisting only of centers of infinite density. In the first case of the proof

of Lemma 4, when A has only the points ß, — ß in its spectrum, we choose

the Pi, P2 of this argument infinite such that I — F\ — F2is infinite, as can be

done in the present situation. The noncentral unitary, — (Pi + PO+7— Pi

— P2, has the two centers of infinite density 1,-1 and lies in Ç, as shown.

In the other case of the proof of Lemma 4, where a, ß can be chosen in the
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point spectrum of A so that a is distinct from ß and —ß, choose the Pi, Pi

of this argument infinite with 7 —Pi —Pi infinite. The noncentral unitary

operator constructed in this case, îPx — ¿Pi+7 — Pi — Pi, has i, —i as centers

of infinite density and lies in Ç. Thus, in any event, the Ç of the present

situation contains a unitary operator not in Çf, the group of unitary operators

in Vît which have exactly one center of infinite density so that Ç contains

Mu, by [4, Theorem 4].

Our remaining task is to show that Ç contains all positive invertible

operators in Vît whence the lemma will follow from the fact that each operator

in Ç has a polar decomposition as the product of a unitary and a positive

invertible operator. It will be sufficient to show that Ç* contains all operators

of the form |8iPi+ • • • +/3mPm with Fu • • • , Fm orthogonal projections with

sum 7 and ßi, ■ ■ ■ , ßm positive numbers, by the spectral theorem and the

uniform closedness of Ç, and, to show this, it suffices to show that (7 contains

all operators of the form ßP+7—P with F an arbitrary projection in Vît and

ß positive.

Suppose, first that I —F is infinite. Let a positive e be given and choose n

so large that

I 1 - /3-1'" I < e.

Let Pi, • • • , P„ be n orthogonal projections contained in I—F each equiva-

lent to F. Since Ç contains the unitary operators in Vît, and

P = ßF + /3-1/n(Pi + • • • + Fn) + 7 - P - Pi-Fn

has complex matrix determinant 1, B lies in Ç, by Lemma 3. But

\\ßF+I-F- B\\ < e

so that ßF+I—F is in Ç. Choose P so that P and 7 —P are infinite. Then

ßE+I — E and P+/3(7 —P) are in Ç, by the foregoing, so that their product

ßi is in Ç. If now I—F, above, is finite, then ßi and F-\-ß~1{I—F) are in Ç,

so that their product /3P+7 — F is in Ç; and the proof is complete.

As in the case of the unitary group, Vîtu, of a factor Vît, we should expect

that those operators in Vîtg which are scalars on the complement of some

subspace of finite relative dimension (denote this set by Vntg>f) forms a normal

subgroup of Vîtg. It is easy to see that this is the case (cf. [4, Theorem 3]).

The group Vîtg>f is, of course, not uniformly closed (in the IM, II,*, cases). In

[4] we were able to identify the closure of the corresponding group, Q'¡,

in Vîtu as the set of those operators in Vîtu which have at most one center of

infinite density in their spectrum (cf. [4, Definition l]). In order to define

"center of infinite density" for a normal operator, it was necessary to make

use of the spectral decomposition of the operator. Of course, no such proced-

ure is available to us in the case of operators in Vîtg, since they are, for the



1954] INFINITE GENERAL LINEAR GROUPS 77

most part, non-normal. In this situation, however, the polar decomposition

works very nicely to our advantage, and we can state:

Theorem 2. The uniform closure, Vitg/, of Vitg>f in Mg, the general linear

group of a factor Vit, is a closed normal subgroup of VitB and consists of those

operators in VitB the constituents of whose polar decomposition each have at most

one center of infinite density. In the case of a finite factor VU, Vitgf = VitB ; if Vit is

of type III, VitBt ={\l};if Vitis of type I«, or II«,, Vitg{ is proper and noncentral.

Proof. Suppose A = UH, U unitary, 77 positive invertible, is the polar de-

composition of an operator A in Vitg; and suppose U has f as its only center

of infinite density, 77 has a as its only center of infinite density. Then

||U - (f£e + (7 - E.)U)\\ < e,        ||77 - (oPe + (/ - Ft)H\\ < e,

where Ef and Pe are spectral projections for U and 77, respectively, corre-

sponding to open disks of radius less than e about f, a, respectively. Now

[ap + (7-P«)77][f£e + (7-£e)t7] is in Vitg,f, so that 7777 is a uniform limit

point of Vitg'f and, therefore, in Vitgf.

Let VK, V unitary, K positive, invertible, be the polar decomposition of

an operator B in Vitg/, and suppose that Bn in Vitg>f tends uniformly to B. If

V„Kn is the polar decomposition of Bn, then 7_„( = (P*P„)1/2) tends uni-

formly to Ki = iB*By2) and 7s( = 2ïJ_B-1) tends uniformly to 7(=5i_-1).

Now Fn and 7_„ are in Vitg>f, so that F and K are in Vitg/. But F and K are

normal operators, and, for normal operators, the last paragraph of the proof

of [4, Theorem 3] may be carried over verbatim to show that F and K each

have at most one center of infinite density.

If Vit is finite, it is immediate from the definitions that Vitg>t = Vitg, and, if

Vit is of type III, that VitB>f = {X7J, from which our assertion concerning these

factors is immediate. If Vit is of type I«, or II«,, Vitg/ certainly contains more

than the scalars. On the other hand, the unitary operator £ —(7 —£), with

£ and 7 —£ infinite, has the two distinct centers of infinite density 1 and —1

so that it is not in Vitg/, which is, accordingly, proper.

We denote by Vitg¡a) the normal subgroup of Vitg consisting of the uniform

closure of those operators which act as the identity on a subspace whose

complement has finite relative dimension.

Lemma 6. If Vit is an infinite factor and Q is a uniformly closed, proper,

noncentral, normal subgroup of Vitg, then Ç contains Vitg/m, 5Wí/(d is topo-

logically simple, and each normal operator in Ç lies in Vitgf.

Proof. According to Lemma 4, Ç contains a noncentral unitary operator

and therefore, by [4, Theorems 2 and 4], all of Çf\ the group of unitary

operators which have 1 as their unique center of infinite density. Let a finite

projection £ be given. The group of operators which act as the identity on

7 —£ and are invertible is topologically isomorphic to the general linear
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group of the finite factor VîtE (cf. [5, pp. 186-188]). The intersection of Ç

with this group of operators in Vîtg is a closed, normal subgroup of this group

and is noncentral (when imbedded in VîtE) unless Vît is type I«, and P is 1-di-

mensional; for this intersection contains any operator which is unitary on P

and the identity on I—E. Thus, in any event, Ç contains those operators

which act as the identity on I — E and have determinant 1 on P (i.e., have

determinant 1 when mapped into VîtE), by Theorem 1. Let a positive scalar

7 be given and choose n so large that 11 —y-1'»! <e, where e is a preassigned

positive number. Let Pi, • • • , P„ be n orthogonal projections in 7—P each

equivalent to P (this choice is possible, of course, since 7 —P is infinite). Now

the operator

B = yE + 7-i/»(Pi + • • • + En) + 7 - (Pi + • • • + En)

is in Q, by the result immediately preceding, since it has determinant 1 on

the finite projection P+Pi+ • • • +P„. Moreover

||JJ - yE - (7 - £)|| < e.

Since Q is uniformly closed, yP+7 —P is in Ç, for each positive scalar, and,

since Ç contains the determinant 1 operators on P, Ç contains all operators in

Vîtg which act as the identity on I — E, by Theorem 1. Since P was an arbi-

trarily chosen, finite projection in Vît, Ç contains Vîtgfa).

In order to show that Vîtgim is topologically simple, we need only estab-

lish the fact that 3C, a closed, noncentral, normal subgroup of Vîtg^n, con-

tains a noncentral, unitary operator. In fact, in [4, Theorem 4] we showed

that Ç^ is topologically simple; so that 3C would then contain all of Çf\

and the above argument could be repeated verbatim for 3C to show that 3C

contains Vîtgfm, and hence is identical with Vîtg/m. It remains to show that 3C

contains a noncentral unitary operator if it is noncentral. We observe, first,

that the argument of the first portion of Lemma 4 is valid for this situation

and 3C contains a noncentral, normal operator (for the operator A of Lemma 4

has a polar decomposition, in the present case, whose constituents lie in

Vîtgfd), according to Theorem 2, so that the inner transforms of A required

for the argument of that lemma all lie in 3C). Let A be this noncentral,

normal operator in 3C. If A has at most three points in its spectrum, certainly

one of these is 1. Let the others be a, ß and letP be a projection in Vît which

is the sum of the following three orthogonal projections: the spectral projec-

tions for a, ß, and a finite-dimensional subspace of the spectral projection

corresponding to 1. Now A leaves P invariant and is not a scalar on P. Thus,

we can find some product of inner transforms of A and its inverse as close

to — 1 on P as we desire by Theorem 1. Each element by which we take an

inner transform of A (or A~l) is 1 on 7 —P and hence in Vitgf(D, so that the

resulting product is in 3C. Since 3C is closed, it contains —P+7—P which is

a noncentral unitary. We may suppose, therefore, that the spectrum of A
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contains more than three points, so that it is possible to choose a and ß

distinct from 1, in the spectrum of A, and such that a is distinct from ß and

—ß. From this point, it is possible to follow the last paragraph of the proof

of Lemma 4 verbatim (simplifying it, indeed, by omitting those portions

which refer to the case where a and ß are centers of infinite density for A,

since they cannot be so in the present situation), and we conclude that 3C

contains a noncentral unitary. Thus Vitg/d) is topologically simple.

Suppose now that A is a normal operator in Ç, a proper, closed, normal

subgroup of Vitg. We wish to show that A lies in Vitgf. Suppose that the spec-

trum of A contains exactly two centers of infinite density a and ß, and let P

be an infinite projection with 7—P infinite. Let £ and F be orthogonal

spectral projections for A corresponding to disks of radius e about a and ß,

respectively. Then I — E — F is finite, since a and ß are the only centers of

infinite density for A, so that ßA~1iI — E — F)+E + F is in 9Jfs/(i) and hence

in Ç. Thus

A [ßA-\I - E - F) + E + F] = AE + AF + ßil - E - F)

is in Ç. But

\\AE + AF + ßil - E-F) - [aE + ßil - E)]\\ < e,

and aE+ßil — E) is a unitary transform of aP+ßil — P). Thus, since Ç is

uniformly closed, aP+ßil — P) is in Ç which is all of Vitg, according to

Lemma 5.

Suppose now that A has three or more centers of infinite density. Let a

and ß be two such centers for A, and let Pi and P2 be given infinite projections

with I — Pi — P2 infinite. Let a positive e be given, and let £', F' he orthogonal

spectral projections for A corresponding to disks of radius less than e about

a and ß, respectively, and such that I — E' — F' is infinite (this is possible,

since A has at least three centers of infinite density). Let V be a partial

isometry from £' to P', and let F be the unitary operator which is V on £',

V* on P', and the identity on I-E'-F'. Then

||.1-1K*-17 - icrlßE' + aß~lF' + I - £' - P)|| < e

and a~lßE' +aß~lF'+1 - E' - F' is a unitary transform of a-1ßPi+otß~1P2

+I — Pi — P2 which is accordingly in Ç, since Ç* is uniformly closed. The ap-

plication of Lemma 5 completes the argument and the proof of the lemma.

There is little difficulty, now, in describing the closed, normal sub-

groups of the general linear group of a factor of type III. This is done in the

following theorem.

Theorem 3. If Vit is a factor of type III, then its general linear group VitB

contains no proper, uniformly closed, noncentral, normal subgroups.

Proof. Suppose Ç is a closed, normal subgroup of VitB. If Ç is not contained

in the center of VitB then Ç contains Vitu, the unitary group of Vit, according to
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Lemma 4. Thus, with P and 7 —P nonzero, the normal (unitary) operator

P—(7 —P) lies in Ç and has two centers of infinite density, 1 and — 1.

Thus, by Lemma 6, Ç coincides with Vîtg.

Having obtained the information that each normal operator in a proper,

closed, normal subgroup Ç of Vîtg, with Vît an infinite factor, lies in Vîtg/, we

proceed to establish this fact for the non-normal operators in Ç. Of course,

in this case, the spectral theory is not directly available to us. We shall

show, however, that the operators in Ç have "large" portions which are

"approximately normal," and then we apply the spectral theory in an ap-

proximate form.

The next lemma establishes the "approximate normality" of "large" por-

tions of operators in Ç.

Lemma 7. If Ç is a proper, closed, normal subgroup of Vîtg, the general linear

group of the infinite factor Vît, and UH, U unitary, H positive, is the polar de-

composition of an operator in Ç, then UHU~*H~l and U~lH~1UHare in Wtgfm.

Proof. Suppose that both A and A * are in Ç. Then A *A is in Ç, and, being

self-adjoint, A*A is Vîtg/, by Lemma 6. It follows that {A*A)1'2 is in Vîtg/, for

if A *A is the uniform limit of Bn with Bn in Vîtg-f, then A *A is the uniform

limit of {Bn+B*)/2 which is in VKtg>f. We may assume, therefore, that Bn is

self-adjoint and, indeed, positive since A*A is positive, invertible, so that Bn

is positive for all but a finite number of n. It is clear that Bn/2 is in Vttg>f, and

{A*A)112 is the uniform limit of P„/2. Thus some nonzero scalar multiple of

{A*A)112 lies in Vîtgfa) and hence in Q. If we express A in its polar decomposi-

tion ¿777 with H={A*A)112 and ¿7 unitary it follows that U{=A{A*A)-1'1)

has a scalar multiple which lies in Ç. This scalar multiple is certainly normal,

so that, by our preceding results, it lies in Vttaj. Now suppose A in Ç is ex-

pressible as the product of two self-adjoint invertible operators 77 and K (not

necessarily in Ç). Then A—HK is conjugate to its adjoint A* = KH =

= 77_1(77P)77, so that A* is in Q, and A is in VKtg/, from the foregoing.

Suppose now that A is an arbitrary operator in Ç with polar decomposi-

tion ¿777. Then A^-HrW-1 is in Cas is Ef-iff-»- ¿7-1(77"1¿7-1)¿7, so that
( ¿777t7-1)77-1 is in Ç. But UHU-1 and 77"1 are positive, invertible, so that,

by the above, UHU~lH~l is in Mgf. We shall show now that UHU~lH~l is

actually in VîtBim. Indeed, let UHU~lH~l be the uniform limit if Bn in

Vîtg'f where Bn is scalar multiplication by X„ on a subspace Pn whose comple-

ment has finite relative dimension. Since |X„| ^||P„|| and {||Pn||} is a

bounded set, {X„} has at least one limit point. Let X be such a limit point.

We assert that X is in the spectrum of ¿777¿7_177_1. It will suffice to show that

given e>0 there exists a unit vector x such that ||(¿777¿7_177_1— X7)x|| <e.

To this end, choose n so that

||i/77i/-177-1-P„||<6/2,  |X„-X|<e/2,
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and choose x a unit vector in P„. Then

||(7/77U-'H-1 - \I)x\\ ^ WiUHU-'H-1 - Bn)x\\ + ||(73„ - \nI)x\\

+ ||(X»-X)/äc|| <6/2 + «/2 = í.

Now the product TS of two positive operators one of which is invertible, say

T, has real, non-negative spectrum, for such a product is conjugate to a posi-

tive operator,

f(¡   —   rpll2(J<ll,i¡¡ll2\(J,lliC;ll2\*'p—ll2

Thus X is a positive number (nonzero since UHU~1H~1 is invertible).

Let k be a (large) positive integer, and let a positive 8 be assigned. Choose

n so that

| K-\  | < 8/(2||_H|)

and

|| 77777/-177-1 - P„|| < 5'

where

5' = 5/(2Jfe||77-1||\')

and X'>max {l, |X„|, • • • , |X„| *} (clearly, X' need not depend on

the Bn chosen for if X„ is suitably near X we may choose X' to be

max {2, 2X, • • • , 2\k}). For y a unit vector in Pn, we then have

|| UHU'1 H-1 y - X„y|| < 5'

so that

||77-1C/-1(7/777/-177-iy - XBy)||

= ¡{U^H^y - KH-W-'-yW ̂  &'\\H-1\\.

Now the spaces U'iPn), i = 0, ■ ■ ■ , k — 1, each have a finite-dimensional

complement so that the complement of their intersection, being a finite union

of finite subspaces, is finite. Thus fljl1 -/'(P») is infinite. Let x be a unit vector

in this intersection. Then

II      —k     —1 k     —1     — k    h

|| U   H   x-\nH   U   x\\

k
En    k—i     —i     —1     —k+i k—1+1     —í-4-l     —1     — k+i— 1    ¡i

\\\n   UHUx-\nUHU x\\

h k
Zl     k—i i m     — 1_—1     — k+i _—1     —1     — k+i   u ^—\ i     k—i i     ,ti „,—1m

|\B     || 77   77   U      x-\nH   U   U      x\\ <  XI X„    | 5'||77   ||,
«=i ¿=i

from (*), since U~k+ix is a unit vector in PB, for i— 1, • • • , k. But then
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\\U~kH~\ - X*P~V**|| < Z I X^'l Ô'||P_1|| < 5/2
t=i

by choice of ô'. Moreover,

\[U~hH~Xx - XW"**|| á ||C7~*£r_1* - x£#~V~**|| + ||(X* - X*)ff~V**||

<S/2 + |xí-X*|||P_1|| <ô.

It follows that

\k\\H-1U-kx\\ < 5 + ||¿/"»P-1*!! = 8 + IIP-^H

and that

||ff-ix|| = ||t/-*ff-i*|| < 5 + \k\\H-1U-"x\\,

where, it should be noted, x depends on 5 and k. However, since ¿7_*x is a

unit vector,

IIpII-1 g \\n-*u->x\\,

from the relation

||^||- = inf {||r,||:||2|| = 1}

for T a bounded operator (where ||P_1||_1 has its natural meaning, 0, when

T~l does not exist as a bounded operator). Thus, combining this with the first

inequality,

\h\\H\\-1 < s + IIp-^H ̂  3 + Up-1!!,

and this for arbitrary positive 5 independent of k. Fixing k and letting 5 tend

to zero, we have

x*||p||-i =s ||p-i,

for arbitrary positive integral k. This, of course, insures that X does not ex-

ceed 1. Employing the above noted relation again, we have

NI-1 â ||P-1*|I < S + \k\\H-lU-kx\\ ^ 5 + X^P-1!!,

with 5 and k independent. Fixing k and letting S tend to zero, we have

l|p|h ̂  x*i|p-i||,
for arbitrary positive integral k, so that X is not less than 1. Thus X, an arbi-

trary limit point of the bounded sequence (X&), is 1, so that the sequence (X^)

has a limit and this limit is 1. Suppose now that we replace each of the

operators Bn by the operators P„' with Bl scalar multiplication by 1 on Pn

and equal to P„ on 7— P„. Clearly

||Pn-Pl||   á|XB-   l|-»0,
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so that 7/77C/-177-1 is the limit of (_?„'). Thus UHU~lH~l lies in VitÇ,a) for

arbitrary A = 7777 in Ç. Since U~1H~1 is in Ç as well as 7777, we may assert

that U-lH~lUH is in VitÇ/a) as well as UHU~lH-\

We have shown, in effect, that there exist subspaces with finite comple-

ments on which UH and HU agree to within any preassigned degree of

accuracy. It was this to which we referred when we asserted that operators

in (^ have "large" portions which are "approximately normal."

The next theorem describes the situation with respect to the closed

normal subgroups of the general linear group of a factor of type IM.

Theorem 4. If Vit is a factor of type I«, and Ç is a closed, noncentral normal

subgroup of Vitg, the general linear group of Vit, then Ç is the direct sum of

VitBfd) and some closed subgroup of the scalars.

Proof. When we have completed the proof, it will follow from the theorem

that Ç is contained in VitBf. We must establish this first, however. Suppose,

then, that Ç contains an operator A, with polar decomposition 7/77, which

does not lie in Vit„f. If either of 77 or 77 were in VitBf, a nonzero scalar multiple

of the other would lie in Ç. This scalar multiple, being normal, would,

by Lemma 6, lie in VitB/ so that A would lie in Vitgf contrary to our assumption.

We may assume, therefore, that both U and 77 have more than one center of

infinite density. In particular, 77 has at least two such centers a, ß. Suppose

we can approximate to the set of operators {arlßl-Po+ß~lauiI — Po): Po

equivalent to I —Po, \i;\ = [>u{ =l} as closely as we wish with operators in

Ç. This set of operators is compact (being the continuous image of a 2-torus)

so that Ç contains one of the operators in the set. Since a, ß are positive and

unequal, a2^ß2, so that

0 < I a-tß - ß~*a I ^ I a-ißt - ß~lau \

for all £, p such that |£| = \p\ =1. Thus the given set of operators contains

no scalars, and Ç contains a noncentral operator of the form pP0+7-(7 — Po).

It follows, from Lemma 5, that Ç is all of VitB, so that, if Ç is to be proper,

Ç is contained in VitBr

Given e > 0, it remains to approximate an operator of the given set (or a

unitary transform of such an operator) to within e, by an operator in Ç. To

this end, let a, a' be intervals containing a in their interior, a open, a' closed,

a at positive distance from ß, a' contained in a, and the length of a less than

t, where r is a small positive number depending upon e, ||77||, ||77_1||, a, ß;

to be specified later. Let £, £' be the spectral projections for 77 corresponding

to a, a', respectively. Let P, F', b, b' be in the same situation with respect to

the center ß for 77, taking care that £P = 0. Let Pi, • • • , Pk be spectral pro-

jections for 77 corresponding to disjoint open or closed arcs which cover the

unit circle, each arc of length less than r. Thus P,Py = 0 and XP« = ^- Sup-

pose that for none of the Pt can one find an infinite subspace such that £'
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acting on this infinite subspace has a bounded inverse (i.e., ||P'x|| stays above

a fixed positive constant as x ranges over the unit vectors in the subspace).

In this case, each infinite subspace of P¡, disjoint from E', contains a unit

vector x such that ||P'x|| is small. Each such subspace is therefore asymptotic

(cf. [l, §4, 5, 6] for terminology and results) to I — E', and Pt is, accordingly,

completely asymptotic to I — E'. If T is an arbitrary subspace, we define

d{T, I - E') = sup {||£/a;||:ii; in T, \\x\\ = l).

We assert that given S >0 there exists a subspace P/ of Pt such that Pt — P¡

is finite and d{P't , I — E') S=5. Indeed, if Pt is finite choose P/ = (0), otherwise

suppose that each P/ satisfying P/ CP¡, and Pt — P[ is finite, is such that

d{Pi, I — E') >5. Then, in particular, since P¡ itself satisfies these conditions,

d{Pt, I — E') >5 and we can choose a unit vector Xi in Pt such that ||p'xi|| >5.

Suppose xi, ■ • • , x„_i have been chosen in P, subject to the conditions that

they are mutually orthogonal, each have norm 1, and, for each x,-, ||P'x,|| >ô.

Then, denoting by [xi, • • • , x„_i] the subspace generated by Xi, • • • , x„_i,

Pt— [xi, ■ • • , x„_i] has the finite complement [xi, • • • , x„_i] in Pt and,

therefore, contains a unit vector x„ such that ||P'x„|| >S. In this fashion, we

construct an infinite orthonormal sequence (x,) in P( such that ||p'x,||>ô.

But this is impossible since (x.) tends weakly to 0 and, in the notation of

[l, p. 10], a{X{, I — E') does not tend to 0, contradicting [l, Théorème 1, 5].

Then with 6<l/k choose PI in P, so that Pt-P[ is finite and d{P[, I-E')

<8. Then

/ - ¿Pi = ¿P« - llP't = ¿P« - Pi
<=i (_i (=i <=i

is finite. We assert that E' and Z< Pt have a nonzero intersection. Suppose

for the moment that this is so, and let x be a unit vector in this intersection.

Say x = Xi+ • • • -\-Xic with x¡ in P[. Then

1 = ||P'x|| = ||£'xi + • • • + £'*4| S \\E'xi\\ + • • • + ||P'*t||

á ||*i||d(PÍ, 7 - E') + ■ • • + \\xk\\d{P'k, I - E') =g ko < 1.

This contradiction would show that E' acting on some infinite subspace of

some Pt has a bounded inverse. Call this P¡, P' and the infinite subspace on

which E' has a bounded inverse P". It remains, however, to show that the

intersection of Z-f « and E' is not (0). We shall show that if P is a projec-

tion with finite complement and Q is infinite (both in the same factor), then

Pf~\Q is infinite. In fact, in [4, Lemma 7] it is proved (as is our case) that if

D{Q) >D{I — P), then PC\Q is nonzero. A glance at the proof of that lemma

shows that what is actually proved is that

D{Pi\Q) > D{Qi) - D{I - P)

where Qi is an arbitrary finite projection in Q. Consequently, Q being in-
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finite and 7—P finite, P(~\Q is infinite.

We apply the foregoing, now, with F' in place of £' and conclude that

there exists a spectral projection Q' for U corresponding to an arc of length

less than r which contains an infinite subspace Q" on which F' has a bounded

inverse. Say ||£'x|| ^t'>0 for x a unit vector in P" and \\F'y\\ S:e">0 for y

a unit vector in Q". Let the arcs to which P', Q' correspond be c', d', respec-

tively, and let c, d with corresponding spectral projections P, Q, respectively,

be open arcs of length less than r containing the closures of c', d', respec-

tively. Let f, n be interior to c', d' respectively, and let/, g, h, k be continu-

ous, real, non-negative-valued functions which are 1 on a', 0 outside a; 1 on

b', 0 outside b; 1 on the closure of c', 0 outside c; and 1 on the closure of d',

0 outside d, respectively. The spectral theory tells us that

(7 - £)/(77) = (7 - F)giB) = (7 - P)A(_7) = (7 - Q)KU) = 0

and

£'/(77) = £',       F'giH) = F',       P'hiU) = P\       Q'kiU) = Q'.

We now construct a subspace R with finite complement such that for x a

unit vector in R

\\fiH)hiU)x - hiU)fiH)x\\ < a

and

\\giH)kiU)x - KU)giH)x\\ < a,

where a is some small positive constant depending upon e, e', e", ||7J||, ||77_1||,

a and ß; to be specified later. It will suffice, of course, to perform the con-

struction so that the first inequality holds on the constructed subspace; for,

by symmetry, we can find a subspace on which the second inequality holds

and then take for R the intersection of the two spaces so constructed. Choose

p and q, polynomials of degree m, n, respectively, so as to approximate/, h,

respectively, uniformly to within ô on intervals containing the spectra of U

and 77. Since U~1H~1UH and 77_17/7777~1 are in 5Jie/(i), we can find a sub-

space R' with finite complement such that

||7777* - 7777*11 < 5',  \\u~lHx - HU-lx\\ < 5'

for x a unit vector in R'. Let R be the intersection of all the subspaces

P_1(P'), where Pruns through the monomials in U, U*, Hoi degree not exceed-

ing m in H nor n in U, 77*. Since R is the intersection of a finite number of sub-

spaces with finite complements, R itself has a finite complement. Clearly,

now, if ô' is chosen sufficiently small depending upon p, q and 5", then we

have

\\piH)qiU, U*)x - qiU, U*)piH)x\\ < 5"
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for x a unit vector in P. Thus

\\f{H)h{U)x - h{U)f{H)x\\ < <r

for x a unit vector in P, if ô" and 5 are chosen suitably small depending now

upon o- and the norms of f{H), h{U).

We know that P", Q" are infinite, and that R has a finite complement.

Applying our previous remark to P", Q", and P, we have that P'T\R,

Q"f\R are infinite. It is easy to see that/(77), g (77) have bounded inverses on

P"(~\R, Q"C^R, respectively. Indeed, if x is a unit vector in P'T\R,

\\f{H)x\\2 = \\f{H)E'x + f{H){I - E')x\\2 = \\E'x + (7 - E')f{H)x\\2

= \\E'x\\2+\\{I-E')f{H)x\\2,

and we know that ||p'x|| cannot be less than e'. Thus e'^||/(77)x||, and, simi-

larly, e"^||g(77)y|| for all unit vectors y in Q'T\R. It follows from this that

the ranges M and N of f{H){P'T\R) and g{H){Q'T\R), respectively, are

closed and infinite. In fact, if/(77)x„ has a limit with (x„) a sequence of vectors

in P'T\R, then ||/(77)x„— f{H)xm\\ tends to 0 as n and m tend, jointly, to oo.

But

||/(P)(x„ — xm)|| = ||/(P)(x„ — xm)/||x„ — xm|| || -||x„ — xm|| ^ e'||x„ — xm||

so that x„ is a Cauchy sequence and has a limit x in the closed subspace

P'T\R. Of course,/(77)x is the limit of (/(77)x„), so that the ranges in question

are closed. Let T be the operator defined on M as the inverse to/(77) and on

I —M as 0. The operator T is uniquely characterized by the equations

TM = T,        Tf{H){P" r\R) = P" C\R

so that T is in Vît, for, with ¿7' in Vît'

U'-lTU'M = U'-lTMU' = U'-^TU',

U'-lTU'f{H){P" r\R) = P'-1P/(P)(P" f\ R)U'

= u'-^p" r\R)u' = p" n R.

Thus U'~XTU' = T, and TG{Vît')' = Vît. Now TM= Tso that P* = M7*. Thus
the closure of the range of T* is contained in M, and is, by [l, p. 142],

equivalent to the closure of the range of T (which is P"C\R). Therefore, Ü7

is infinite as is N. Let V be a partial isometry from M to N, and let F be the

unitary operator which is V on M, V* on N, and the identity on 7— M—N.

The operator A~lV~lA V = A~lVA V is in Ç, and

(**) m-^F - {o-ißr'vM + aß~^r,~lN + I - M - N)\\ < 3e.

In order to verify this inequality, we test it on unit vectors in the three

orthogonal subspaces M, N, and I—M—N. First, for x a unit vector in

M, x —f{H)z where z is a vector in P"f~\R of norm not exceeding 1/V. We have
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||/i-1 F/IF* - ia~^r*vM + aß-^n^N + I - M - N)x\\

= H/1-1 F/1 F* - «-»/SrVll = \\A-WAigiH)y) - a-^t-ynx\\

where y is a vector in Q"C\R of norm not exceeding 1/e", since Fx( = g(77)y)

is a unit vector in N. Now:

\\A-WAgiH)y - a-W-Vll 3_ \\A-WUiUgiH)y) - ßA-WUgiB)y\\

+ \\ßA-WUigiH)kiU)y) - ßA-WUikiU)giH)y)\\

+ \\ßA-WiUkiU)giH)y) - ßnA-WikiU)giH)y)\\

+ \\ßvA-WikiU)giH)y) - ßnA-WigiH)kiU)y)\\

+ WßnH-W^fimz - ßr,H-lU-KhiU)fiB)z)\\

+ \\ßr,H-KU-lhiU)fiB)z) - ßrlnE-KhiU)HH)z)\\

+ \\ßrlvH-\hiU)fiH)z) - |3r1)777-1(/(77)A(77)-)||

+ ||^r4(77-1/(77)Â(77)2) - crVr^xW < *■

Reading from left to right, on the right-hand side of the above inequality,

we label the terms appearing there with Roman numerals corresponding to

their position. We have

I = \\A-WU\\  \\HigiH)y)-ßgiH)y\\=\\H-i-\\HFgiH)y ~ ßFgiH)y\\

è\\H-i\\-\\HF - ßF\\-\\giH)y\\ í\\H-i\\t,

II ^ \\ßA-WU\\-\\igiH)kiU) - kiU)giH)y\\

-Î ß\\H-

III á \\ßA-W\\-\\UQkiU)giH)y - vQkiU)giH)y\\

a\\y\\ g ß\\H->\\<ril/e"),

■\\UQ- nQ\\-\\kiU)giH)y\\ =g 2^||77-1||r,

V\\-\\ikiU)giH) - giH)kiU))y\\

a\\y\
< is||_sr-*||o-ci/-='0.

_? ß\\p-1

IV g WßnA-

=_ ß\\B~l

V = \\ßt,H-

= 011p-1,

VI g \\ßnH-

= ß\\H->

= 2^||P-1||r,

VII g pr1lP-1|NlK77)/(P)--/(P)Ä(77)2|| .MM'IMI ^ß\\H-i\\o-il/t'),

VIII g ß||P-1/(P)Ä(77)2 - a-1*!! = ßWH-tEfiffiz - a-lEfiH)z\\

_á/3||_.->£-a-i_S||.||/(_7)_|| ußr'.

Regarding I and II, note that

U-%-\\fiH)z-hiU)fiH)z\\

■\\fiH)KU)z - KU)fiH)z\\ ú ¿¡IMMMI _S ß\\H-io-il/e'),
|H|_/-iA(£0/(27)_ - rlKU)fiH)z\\

• ||(ü-ip - f-ip)A(_7)/(2_f)a|| < /S||?-1|H|A(_/)/(-7)-ll''
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g{H)y = g{H)Q'y = g{H)k{U)Q'y = g{H)k{U)y.

For IV and V, note that

V{g{H)k{U)y) = V{g{H)y) = V{Vx) = x = /(P)z.

In V we use

f{H)z = f{H)P'z = f{H)h{U)P'z = f{H)h{U)z.

The t' appearing in VIII is the maximum of the lengths of the two intervals

about ar1, ß*1 obtained by taking the inverse of each of the numbers in a and

b respectively. Because of the continuity of inversion at nonzero numbers,

t' can be made as small as we please by choosing r suitably small, depending

upon a and ß.

By symmetry, we obtain the inequality (**) for x a unit vector in N.

Clearly we can realize the inequality (**) by making suitable choices of t

and a, r dependent upon e, ||77||, HT?-1!!, a, ß, and cr dependent upon e, e',e",

||77 , ||77_1||, a, ß. However, we reserve the final choice of r, cr until we have

determined the conditions engendered by the satisfaction of (**) for x a unit

vector in I—M—N.

Before checking (**) on unit vectors in I—M — N, we need some addi-

tional information. In the following set of inequalities, we show, successively,

that A* acts very much like a scalar on both M and N and, from this, that

A leaves I— M—N "almost invariant." Suppose then that y is a unit vector

in 717 with y=f{H)z, where z is in P'T\R and ||z|| ^1/e':

\\A*y - «r^H = \\HU-lf{B)h{U)z - ar'yW

It ||Pi/-1/(P)Ä(C/)z - HU-xh{U)f{H)z\\

+ \\HU-lh{U)f{H)z - rlH h{U)f{H)z\\

+ \\rxHh{U)f{B)z - r'Hf{H)h{U)z\\

+ \\rlHf{H)z - arxy\\

á INI -|Mk + \\Hl\\h{U)f{H)z\\T + \\H\\-\\z\\c + r
^ (2||ff||<r/e') + r(2||77|| + 1) g e2/(16||p-i||2-||77||)-

Thus, if x is a unit vector in I—M,

||(7 - M)Ax - Ax\\2 = ||AL4x||2 = {MAx, Ax) - {A*MAx, x)

= {A* M Ax - at-1 MAx, x) + {at-1 M Ax, x)

= {A*MAx — afxMAx, x)

Û \\A*MAx- a^MAxW-WxW

g llM^xHeVílóllP-^IIPll)
g ||p||eV(16||p-i||2-||P||) = e2/16||77-i||2
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so that

||(7 - M)Ax - Ax\\ ̂  e^llP-'H.

Similarly, for x a unit vector in I—N:

\\{I-N)Ax-Ax\\ áí/^P-1!!,

and, thus, for x a unit vector in I—M—N { = {I—M){I — N)):

||(7 - M - N)Ax - Ax\\ = ||(7 - M){I - N)Ax - Ax\\

¿ ||(7- M)[{I - N)Ax- Ax]\\

+ ||(7 - M)Ax - Ax\\ g ||(7 - N)Ax - Ax\\

+ ||(7 - If)Ax - Ax\\ g e/2\\H-1\\.

We are now prepared to check the inequality (**) on the unit vector x in

I-M-N:

\\A-WAVx - {a-^ßr'vM + aß^t^N + I - M - N)x\\

= \\A-WAx - x\\ ̂  I^F^x - A~W{I - M - N)Ax\\

+ \\A-\I - M - N)Ax - A-\Ax)\\ Ú 2||P-1||6/2||P-1|| = e.

All of the foregoing estimates may be achieved by suitable choices of t and cr

dependent upon the quantities previously mentioned.

Let B^a^ß^nM+aß-^v^N+I-M-N, and let a-1^ be that one of

a~lß, aß~l which does not exceed 1. Suppose, first, that I—M — N is finite.

The operator T = a~1ßC-1r){I-M-N) + M+N has norm 1 and lies in Vîtg,m

and hence in Q. Thus TA~XVA V lies in Ç,

TB = a-xßrlvil - N) + aß-^-hV,

and

|| TA-WAV - TB\\ á Hrll-IM^F^F - P|| Ú 3e.

But TB is a unitary transform of an operator in the set {a-1/3£Po

+aj3_1ju(7 —Po) }• We would, therefore, have the desired approximation, and

the proof would be complete. We may assume that I —M—N is infinite. In

this case choose Pi, P2 orthogonal infinite projections in I—M—N with sum

I—M—N. Let IFi be a partial isometry from M to Pi and IF2 be a partial

isometry from A'' to P2. Let IF be the unitary operator which is IFi on il7,

IFi* on Pi, IF2 on N, and IF2* on P2. We have then

PIFPIF = a-ißt-^M + Pi) + aß-^v'KN + P2)

which is a unitary transform of an operator in the set to which we wish to

approximate by operators in Ç. On the other hand it is clear that

||(^-1F^F)IF(^-1F^F)IF - BWBW\\
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is small (so long as e is made sufficiently small, dependent upon a and ß).

Now (/l-1F/_ V)WiA~xVA V)W is in Ç so that, in any event, we have our

desired approximation and Ç is contained in VitBf.

Suppose, now, that 3C is a closed, normal subgroup of 7iCBf. The same proof

which showed that the 3C of Lemma 6, which was normal in Vitgfm, contains a

noncentral unitary operator shows that the X of our present argument

contains a noncentral unitary operator (with the minor modification that,

once the noncentral normal operator A is constructed in 3C, we must use its

center of infinite density in those places of the proof of Lemma 6 where 1

was used as the center of infinite density for the A of that proof). It follows

from [4, Theorem 4] that 3C contains Çf, so that 3C contains VitBiW, by Lemma

6. It follows, immediately, that 3C is the direct product of Vitg/m and the sub-

group of the scalars in which it intersects the scalars. This scalar subgroup

must, of course, be closed, since 3C is closed, and the proof is complete.

4. Conclusion. We state a corollary to the foregoing results, on approxima-

tion by invertible operators, which is completely analogous to Corollary 1 of

[4]-

Corollary 1. Let Vit be a factor and p a property of invertible operators

which is invariant under similarity iinner transform) and such that an operator

has property p only if its inverse has property p. If some noncentral, invertible

operator A has property p (/I not in Vitgf in the I«,, II«, cases, A normal in the

II«, case), then for each invertible operator B in M and each positive e there exists

a finite set Bi, ■ • ■ , B„ of invertible operators in Vit, each with property p, and

some positive scalar a such that

\\aB - Bi- ■ ■ Bn\\ < 36.

If Vit is not of type 111, a may be taken as 1.

Proof. Immediate, from the results of the preceding section.

Almost all the concluding remarks of [4] are applicable to the present

situation. Again the purely algebraic question remains untouched. Does

Theorem 1 hold without the topological assumption of uniform closedness on

the normal subgroups considered? As topological results, those we present

are the strongest possible. The extension of our results to the nonseparable

case is a routine matter.

In connection with Theorem 1, several remarks are of interest. In the first

place, the topological commutator subgroup of Vitg, the general linear group

of a factor of type Hi, coincides with Vitgi, the determinant 1 subgroup of Vitg.

Indeed, the topological commutator subgroup of Vitg is a closed, normal sub-

group of Vitg and so contains VitBl, according to Theorem 1. On the other

hand, each operator in the topological commutator subgroup has determinant

1, from which our assertion follows. Another immediate consequence of Theo-

rem 1 is the fact that each character of Vitg, Vit of type Hi, which is continuous
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in the uniform topology is the composition of the determinant map and a

character of the positive reals. This follows at once from the fact that the

kernel of the given character contains Vítg¡.

Finally, with regard to the lack of complete information in the II«, case,

it should be observed that the proof of Theorem 4 fails for the II«, situation

at only one point. We require some results of infinite-dimensional geometry

to establish the existence of an infinite-dimensional subspace F' of a spectral

projection P for a unitary operator ¿7 corresponding to an arc of the unit cir-

cle of length less than some preassigned positive number such that some

other infinite projection P, with infinite complement, has a bounded inverse

on F'. All subspaces must lie in the given factor, of course. We establish the

existence of such an F', in the I«, case, by means of the result: if P is an in-

finite subspace completely asymptotic (cf. [l, p. 13]) to F, then F contains

a projection Pi such that F—Fi is finite and the angle between any vector in

P and the subspace Pi is less than a preassigned 5(>0). It seems likely that

this statement holds in the II«, case, with the obvious extension of "completely

asymptotic" to this situation; and, with this result, Theorem 4 can be stated

for both I«, and II«,. The proof of this geometric result relative to a II«, re-

quires an, as yet, undeveloped infinite-dimensional geometry relative to a II«,.
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