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tensor T),,, appears as a function of the velocity vector uv and its deriva-
tive. Finally the equation (15) corresponds to the principle of the con-
servation of momentum and energy. Following still the analogy with the
old general theory of relativity we may regard - Tx,,hx = - Qx,,h' as the
mass and get in this way a physical interpretation of g/h.5

* Prepared under Army Contract DA-33-008-Ord-224.
1 Hlavatk, V., "The Elementary Basic Principles of the Unified Theory of Rela-

tivity," these PROCEEDINGS, 38, 243-247 (1952). This paper will be denoted in text
by UI. Its notation is used also here and in particular g(.x) = hx,\. g[ x, = kx, S Is =
r[,\,][ while V, is the symbol of the covariant derivative with respect to h)xi.

2 All metric notions as well as the lowering or raising of indices are based on hx,\,.
We assume gh 5,# 0, where g and h are the determinants of gx,, and h)k,,, respectively.
The determinant of k),, will be denoted by k.

3 Substituting for p from (9) into (5) one obtains four conditions for gx,p in terms
of u',j.

4 The law of inverse squares cannot be applied here.
5 The requirement Fx, 0 0 is essential for this unified theory. If F,. = 0 then
r= { ,} . While (13b) is identically satisfied in this case, (13a) leads to Hx,, = 0.
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1. Introduction.-The purpose of this note is to bring to light a fact
which has escaped notice, viz., in the direct integral reduction of the regular
representation of a connected separable' locally compact group, factors of
Type II, occur almost nowhere2 (cf. Corollary 3). This proof is carried out
by the following scheme of argument. We show first that a connected
locally compact group which has sufficiently many unitary representations
which generate rings of finite type is the group direct product of a compact
group and an abelian group' (cf. Theorem 1). From this it follows quite
easily that a unitary representation of a connected locally compact group
generates a ring of operators which has no summand of Type II, (cf. Theo-
rem 1) and, in particular, is not itself a factor of Type II1. Employing a
theorem of Mautner,4 to the effect that, for almost every factor in the direct
integral reduction of the regular representation of a group, there exists a
strongly continuous representation of the group which generates the fac-
tor, we obtain the final result.
The theorem of Segal and von Neumann5 stating that a real or complex

connected semisimple Lie group without compact constituents has no non-
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trivial strongly continuous representations in a finite factor follows easily
from our results (cf. Corollary 2) as does a recent result of the second named
author6 which states that a connected Lie group which has a faithful uni-
formly continuous representation is the direct product of a compact and
abelian group (cf. Corollary 4).

2. Representations.-The following theorem contains the main argu-
ment.
THEOREM 1. A connected locally compact group G which has sufficiently

many strongly continuous unitary representations into rings of finite type (I,,
and II,) has theform K X E. with K a compact connected group and En a vec-
tor group. Each strongly continuous unitary representation of a connected
locally compact group generates a ring of operators which has no summand of
Type II,.

Proof: We show that G possesses a fundamental system of neighbor-
hoods of the identity e which have a compact closure and which are invari-
ant under inner automorphisms of G. In fact, let go be an element of G dis-
tinct from e and let g U, be a unitary representation of G into a ring of
operators 51l of finite type such that U0, $ I (there exists such a represen-
tation by hypothesis). We shall,employ the results of Dixmier7 as regards
the existence of a trace in M. Then for A in M, AO is the trace of A and
is an operator in the center of M. We impose the following topology on
the group Mu of unitary operators in MZ: a subbasic open neighborhood of
I is given by a vector x and a positive e and consists of all operators U in
M such that [[I-Ul]] < e where [[A]], = ((A, A)).l/2 and ((A, B)) =
((B*A)# x, x). Note that ((A, B)), is a positive semi-definite "inner prod-
uct" so that [[A]]_ behaves like a Hilbert space norm with the exception
that [[A]]. may be 0 without A being 0. Observe that

* [[UA]]x = ((A*U*UA)#x, X)/2 = ((A*A)#x, X)'12 [A]]X
and that

[[B*]]x = ((BB*)#x, X)'/2 = ((B*B)#x, X)/2 = [[B]],,
so that

[[A U]]x = [[U*A*]]x = [[A*]]x =[[]]x,
for all unitary U in M1Z. It is easy to verify, though we shall not need the
fact, that Mu is a topological group in the given topology.
We shall prove now that the function [[U, - I]]_ is a continuous func-

tion on G (which shows that the map g U, is a (continuous) representa-
tion of G into Mu in the given topology). Indeed [[U - I]]_ is a strongly
continuous function of U at I, for U -- U* is strongly continuous at I on
unitary operators (| U*x - x| = | Ux - xli), AB is strongly continuous
jointly in A and B on the sphere of radius 2, and the trace is strongly con-
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tinuous on the sphere of radius 4 (cf. Dixmier7). The continuity of
[[U0 - I]]x follows from this fact and the strong continuity of the represen-
tation g -- U., for

[[U,I- -[[UU2-I]]s . [[U0, - U02]]X = [[Uo0a21 -l-]
The functions we have just shown to be continuous are real non-negative,

O at e, constant on conjugate classes (i.e., [[Uglg l-I]] = [[Ug -]]),
and, for our given go, Ug0 $ I. Since the trace of a positive operator is 0
only if the operator is 0, there exists a vector x such that [[Ug, - I]]. $ 0.
These functions form a family 3f satisfying the conditions of the following
lemma, so that the proof of this lemma completes the proof of the first
part of the theorem.
LEMMA 1. If G is a connected locally compact group which possesses a

family a of continuous functions which (1) are constant on conjugate classes,
(2) for g 5 e there exists a function Spg in 5 such that V. (g) # (op(e), then G
is the direct product of a connected compact group and a vector group.

Proof: We establish this result by proving the existence of arbitrarily
small compact invariant neighborhoods of the identity e and then em-
ploying a well-known result8 to the effect that a connected group with such
neighborhoods is the direct product of a connected compact group and a
vector group.

In fact, let N be a neighborhood of e in G with compact closure N-.
For each point g on the boundary of N, choose a function p.p in f such that
(pg(g) $ 0 = (p,(e) (we can normalize so that so(e) = 0 for all functions so
in 3F by subtracting constants). Let Na be the (open) set of points g' in G
such that .pg(g')I > j pg(g) 1. The sets N. form an open covering of the
boundary of N (which is compact). Select a finite subcovering N,,,
N..; and let m = min,{I pgi(gi) > 0. Let M be the set of points g of N
such that J(pgi(g)l < m/2 for i = 1, ..., n. Then each conjugate to an
element of M lies in N, for if g'hg'-' lies outside of N, with h in M, there
exists a g such that ghg-1 lies on the boundary of N. Indeed, the map
g -- ghg-1 is continuous, so that the image of our connected group G under
this map is connected. But this image contains the point h in N and g'hg'-1
outside of N, so that this image must meet the boundary of N. Since
ghg-' is on the boundary of N, it lies in some Ng,i and, thus,

| $pg (ghg-1) > | (agi(gi)J| 2 > m/2.
But

I pgi(ghg-1)J = | pgi(h)I < m/2,
since h is in M. From this contradiction, it follows that the transforms of
M lie in N. The union N1 of all the transforms ofM is then an open invari-
ant neighborhood of e contained in N, and the lemma is proved.
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Suppose now that G is a connected locally compact group with a strongly
continuous representation g -- Ug which generates a ring 51Z, and suppose
that J contains a direct summand 9l of Type II, (as a ring). The projec-
tion of M into OZ gives a strongly continuous representation of G which
generates 9.. Let G1 be the kernel of this last representation. The in-
duced representation of G/G1 into 9Z is faithful, strongly continuous, and
generates OZ. Now GIG1 is connected so that, by our preceding argument,
G/G1 = K X E. with K compact connected and E. a vector group. How-
ever, the subring of OZ generated by the image of K is of Type I, since the
Hilbert space decomposes into a direct sum of finite dimensional invariant
subspaces under the image of K (Peter-Weyl theory), while the subring
generated by En is abelian, in the center of 9l, and is therefore of Type JL.
These two commuting subrings of Type I generate OZ which, consequently,
is not of Type II1.9 This contradiction shows that 5 cannot have a sum-
mand of Type II,, and the proof is complete.

Since the regular representation of a group is faithful, we can state:
COLLARY 1. If G is a connected locally compact group and the weakly

closed group algebra of G (i.e., the left or right regular representation of G) is of
finite type then G = K X En, K compact connected and E. a vector group.

COROLLARY 2. There are no strongly continuous, non-trivial, uni-
tary representations of a connected locally compact group G, which is (topolog-
ically) generated by non-compact connected simple Lie groups, into a finite
factor.

Proof: Since G is generated by non-compact, connected, simple Lie
groups, the representation of G must be non-trivial on some such subgroup,
say G1. The kernel G2 in G1, being an invariant subgroup of G1, is discrete,
in the center of G1, and G1/G2 is a connected simple Lie group. The in-
duced representation of G1/G2 is faithful, so that, by Theorem 1, G1/G2 is
the product of a connected compact group and a vector group. Since
G1/G2 is simple, the vector group must be trivial and G1/G2 is a compact
simple Lie group. Thus G1, being a covering group of G1/G2, is compact,
by Weyl's Theorem, contradicting the nature of G1.
We note, in passing, that the condition that G be generated by connected

simple Lie groups can be altered so that G is generated by non-compact
simple locally compact groups if we now understand "simple" to mean
"'no closed invariant subgroups."
COROLLARY 3. If G is a connected locally compact group there is no part

of Type 11, in its weakly closed group algebra. If G is, in addition, separable,
the direct integral reduction of the weakly closed group algebra contains factors
of Type II, only on a set of measure zero.

Proof: The first statement is an immediate consequence of the last
statement of Theorem 1. Suppose G is separable. If factors of Type II,
occurred at a set of measure greater than zero, then G would have a strongly
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continuous, unitary representation into one of these factors which gener-
ates the factor by Mautner's theorem,4 contradicting Theorem 1.
COLLARY 4. If G is a connected locally compact group which has suf-

ficiently many unitary representations continuous in the uniform operator
topology, then G = K X E with K a compact connected group and E. a vector
group.

Proof: The function II U,- II for each of the given representations form
a family ff of continuous functions satisfying (1), (2) of Lemma 1.

* The first named author worked under an ONR contract.
l The reduction theory of rings of operators to factors is carried out only in the case of

a separable Hilbert space. There is, however, a global study of rings of operators (car-
ried out without recourse to the factor reduction) which is valid for non-separable spaces
(cf. Kaplansky, I., "Projections in Banach Algebras," Ann. Math., 53, 235-249 (1951)).
The corresponding global statement for non-separable groups is also contained in Corol-
lary 3.

2 von Neumann, J., "On Rings of Operators. Reduction Theory," Ann. Math., 50,
401-485 (1949); Mautner, F. I., "Unitary Representations of Locally Compact Groups
I," Ibid., 51, 1-25 (1950).

3 It was pointed out to us by I. E. Segal, after our results were obtained, that the first
part of our Theorem 1 is very closely related to R. Godement's, Theoreme 6, "Menoier
sur la theorie des caract&res dans les groupes localement compacts unimodulaires," J.
Math., 47 (1951). In fact, Godement's theorem is essentially our Theorem 1 applied to
the particular case where the regular representation of the group is of finite type (cf.
Corollary 1). Even the proofs are similar; however, the slightly more general proce-
dure we employ allows us to conclude the interesting corollaries following Theorem 1.

4 Mautner, F. I., "Unitary Representations of Locally Compact Groups II," Ann.
Math., 52, 528-556 (1950); see, especially, pp. 520-535.

6 Segal, I. E., and von Neumann, J., "A Theorem on Unitary Representations of Semi-
simple Lie Groups," Ibid., 52, 509-517 (1950).

6 Singer, I. M., "Uniformly Continuous Representations of Lie Groups," to appear in
Ann. Math.

7 Dixmier, J., "Les anneaux d'operateurs de classe finie," Ann. Acole Norm. Sup., pp.
209-261 (1949).

8 The clearest reference to this result in the non-separable case seems to be Theorem 3
in K. Iwasawa's, "Topological Groups with Invariant Compact Neighborhoods of the
Identity," Ann. Math., 54, 345-348 (1951). The result we desire follows trivially from
Iwasawa's much stronger result. The result was first obtained by H. Freudenthal,
"Topologische Gruppen mit genugend vielen fastperiodischen Funktionen," Ibid., 37,
57-77 (1936); in the separable case.

I If 9Z, and 912 are of Type I and commute, an abelian projection for the ring generated
by 9Ol and &t2 is obtained by taking the product of an abelian projection in 91, and an
abelian projection in M2. All such products cannot be 0, since 9tl and 9l2 are generated
by their abelian projections.
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