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1. Introduction. The investigation carried out in this paper finds its origin

in [2](2). While examining the possibility of constructing a "signed" de-

terminant theory in a factor(3) of type Hi, it was proved in [2] that there

exists no nontrivial uniformly continuous character on the group of unitary

operators in a factor not of type I„ (n finite). This raises the question of the

nature of the representations of the unitary groups of the various factors and,

indeed, the entire question of the structure theory of these groups. The de-

tailed study of the classical groups has yielded a beautiful and useful mathe-

matical regime; there is every reason to believe that the theory of the in-

finite-dimensional analogues of these groups will share, to a certain extent,

the beauty and usefulness of the classical theory. One might wonder whether

or not such a study was appropriate at this stage of mathematical develop-

ment. When viewed as topological groups, in the uniform (operator bound)

topology, these groups are not locally compact, and we are far from being

able to answer the natural questions about non-abelian locally compact

groups. Although their topology alone does not bring these groups within

the scope of such powerful tools as invariant integration, these groups have

special features which make them amenable to detailed investigation. One

has, for example, the maneuverability afforded by the underlying Hubert

space and by the knowledge that the given group is the full set of unitaries

of some factor. This last fact alone puts at our command the methods of

[5, 6], and, at least in the case of the groups of factors of type IL, makes

available to us the trace and determinant theory.

It seems more than likely that, in the case of a factor of type Hi, it may

eventually be possible to study the "neo-classical groups" in a manner similar

to that in which one deals with a Lie group and its Lie algebra. Indeed, our

results indicate a striking relation between the ideal-theoretic structure of a

factor (as determined in [3]) and the invariant subgroup structure of its

unitary group (the ideal-theoretic structure of the factor undoubtedly re-

flects itself in the Lie ideal structure of any natural Lie algebra one would

attach to the unitary group, e.g., in the Hi case, the skew-adjoint operators
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belonging to the factor). It is not in this general spirit, however, that we have

conducted our examination of the closed invariant subgroups of the unitary

group of a factor; nor have we done anything to carry the program indicated

by the preceding remarks past this examination. We have, rather, taken full

advantage of the special devices which this special situation provides. The

particular results may ultimately point the way to the general theory.

We deal only with the various unitary groups in this paper and not, as

might seem natural and appropriate, with the various general linear groups

(i.e., the full set of invertible operators in a factor). The question of the in-

finite-dimensional general linear groups will be treated in a subsequent pub-

lication. The investigation of the general linear groups leans heavily upon

the results of [2] whereas the study of the unitary groups does not require

these results (although it is motivated and directed by them). It is for this

reason that we present the two sets of results separately.

In §2 we collect various results needed to prove the principal theorems.

This section consists primarily of arguments in lemma form which would ap-

pear again and again in the individual investigations of the unitary groups of

the various types of factors. §3 contains the statements and proofs of the

main results. It is proved in this section that the only closed normal subgroups

of the unitary group of a factor of type IL or III are the closed normal sub-

groups of the center (cf. Theorem 2), and that the unitary group of a factor

of type IM or II„ has essentially one closed invariant subgroup, viz. the (uni-

form) closure of the set of unitary operators which act as scalars on the

complement of some subspace of finite relative dimension (all the other in-

variant subgroups are contained in this group and are constructed in a simple

fashion—cf. Theorems 3 and 4). Among the various groups discussed one is

shown to be topologically simple but not algebraically simple (i.e., it is

shown to contain proper invariant subgroups but no such closed subgroups).

In the final section a corollary on uniform approximation by certain classes of

unitaries is derived from the foregoing results. This section concludes with a

discussion of the problems arising in connection with the proved results and

an indication of the possible extensions.

2. Auxiliary results. We begin this section with a theorem which is, in

the main, superseded by the theorems in §3. The later theorems give precise

information concerning the invariant subgroups of the unitary group of a

factor, whereas Theorem 1 deals only with the possibility of finding invariant

subgroups with a compact factor group. Although the theorem below gives no

new information in the case of finite factors, it adds slightly to our knowledge

of Qj (cf. Definition 1) in infinite factors. It is used principally in connection

with the proof of Lemma 4, in which case, however, only the nonexisteiice

of characters is needed. This fact, by itself, was proved in [2].

Theorem 1. The unitary group Jtfu of a factor Vft, not of type I„ (n finite),
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admits no nontrivial, uniformly continuous, finite-dimensional, unitary repre-

sentation.

Proof. We shall show that a continuous, w-dimensional, unitary repre-

sentation <f> takes operators of the form \E-\-I — E, |X| =1, E a projection

in SW, into the identity matrix. This will complete the proof, for the group

generated by these unitary operators lies dense in the group Vííu (by the

spectral representation theorem).

We observe first that if E is held fixed and X varies ( | X| = 1), then <p( U(\))

is an abelian group of unitary matrices, where U(k)=\E-\-I — E, and, as

such, is simultaneously reducible to diagonal form. The map from each re-

duced matrix to a particular diagonal coefficient provides a character on the

U(\) and hence of X. This character is continuous by assumption on <f>,

and therefore has the form X—*km (m some integer). Thus <f>(U(k))

= diag {Xmi, • • • , Xmn| (in reduced form) for all X such that |X| =1. If

D(F)=D(E) and D(I-F)=D(I-E), then V(\)=\F+I-F is equiva-
lent^) to U(K), and thus, in reduced form (new basis), (p(V(\))

= diag {Xml, • • • , \"">}. The numbers m,- depend only upon D(E)=a and

D(I — E) =ß (i.e., the set of numbers m¡ depends only upon a, ß, for a given

basis, not their arrangement). We write w¿(a, ß) for »<.

We consider two cases simultaneously, a^l/w! when "M is of type IL

and a=/3= oo when "M is an infinite factor. Suppose that in both these cases

we have shown wî,(a, ß)=0, t = l, • • ■ , n. Then, in the infinite case, if P is

infinite but I-P is finite, we have \P + I-P=[\(P-El)+I-P+Ei]

• \\Ei +1 — Ei] where Ex and P — Ei are infinite. Thus by assumption

<P(\P+I-P)=(b[\(P~Ei)+I-P+Ei](P[\Ei + I-Ei]=I. Hence, in this
case, if Pi is finite, <p(\Pi + I-Pi) =(p(\I)<p(X(I-Pi)+P1) =1, and in all

events <f>(\E-\-I—E) =1. In the IL case, if P is an arbitrary projection,

choose s orthogonal equivalent projections Pi, ■ ■ ■ , P, with sum P and each

of dimension not exceeding 1/nl. We have I = <p[(\Pi + I — Pi) ■ ■ •

(\Ps + I-Ps)]=<p(\P + I-P). It remains to prove that w,-(a, ß)=0 in the

two cases mentioned.

Choose &>max, {| m,(a, j3)| }, and let £ be a projection of dimension

n\a with I — E infinite if a= » (we make the obvious conventions about n\ »,

»¡k, etc.). We also choose n\k equivalent, orthogonal projections Ei, ■ ■ • ,

En\k with sum E. Sin^ce the £,'s all have the same dimension a/k and co-

dimension y, the <p(Ui(\)) have the same w< (as sets), where i/,(X) =X£, + 7

— Ei. Now the Ui(\) all commute (t = l, • • • , n\k; |X| =1) so that the

4>(Ui(X)) may be simultaneously brought to diagonal form. There are only n\

possible arrangements of the n numbers, mj(a/k, y), j = l, ■ ■ ■ , n, and each

<p(Ui(X)) corresponds to some such arrangement. Since there are n\k i/,(X)'s,

(4) We say that two unitary operators in a factor are equivalent when it is possible to

transform one into the other by means of a unitary operator in the factor. We use the phrase

"equivalent projections" in the standard manner defined in R.O. I.
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at least k of the <p(Ui(K))'s are the same. Renumber these as <p(Ui(X)), • • • ,

(p(Uk(\)), and let their diagonal form be diag {Xmi(a/i;'i'), • • • ,Xm,(""'1'»}.

But (7i(X) • • • Uk(\) = V(\)='\F+I-F, where F = Ei+ • • • +Ek, so that

<b(Ui(\)) ■ • ■ <p(Um(\)) =<p(V(\)) for all X, and thus kmj(a/k, y) =mTÜ)(D(F),

D(I—F))=mrU)(a, ß), where j—*r(j) is a permutation of the numbers

1, • • • , n. However, ¿>maxy {\mj(a, ß)\ } ̂  \mnj)(a, ß)\ , j = l, • ■ • , n;

and k, m¡(a/k, y), mr0)(a, ß) are integers. It follows that mt(a, ß)=0,

i—l, ■ ■ ■ , n.

If, in the foregoing proof, !M had been of type I„, the second paragraph

of the proof would still apply. If we assume, further, that <p is a character

(i.e., the representation is 1-dimensional) and let U(\) =\E-\-I — E be the

family of unitary operators corresponding to a fixed 1-dimensional projection

E, then <p( U(X)) =X™ (and m is the same no matter what 1-dimensional projec-

tion is chosen). It follows then that <b is the wth power of the determinant

and we have proved :

Lemma 1. Each (uniformly) continuous character of the unitary group of a

factor of type In (n finite) is a power of the determinant.

With the aid of this lemma and the fact that Mu/{\l\ is simple when *M

is of type In we prove:

Lemma 2. Each closed, normal, noncentral subgroup Ç of 7äi„, the unitary

group of a factor *M of type \„, is the inverse image under the determinant map of

a closed subgroup of {X:|X| =l}. In particular, each such subgroup Ç con-

tains the unitaries having determinant 1.

Proof. If Ç=9ïtu, the result is trivial; if not, then Ç does not contain(5)

jX7}, but ÇyJ[\l} = *MU. Now Çr\[\l} is a closed proper subgroup of

{X/}, say the èth roots of unity, so that Mu/Ç= {\l}/ÇC\ {\l} is iso-

morphic to {X/} under the map induced by the homorphism "raising

to the &th power" of {X/} onto {X/}. This, of course, gives rise to a non trivial

continuous character of 5WU with kernel Q. The description of all such char-

acters given in Lemma 1 completes the proof.

We shall need the following simple lemma on topological groups.

Lemma 3. If 13 is a topological group, A[ a closed normal subgroup of 13,

and Q a compact subgroup of 13, then J^SJQ is a closed subgroup of 13.

Proof. Since J<[ is normal, 7<[VJQ= [nein in J\[, c in Q}. Suppose b is a

limit point of J^yJQ; we wish to show that b is in J^\JQ, i.e., that(6) b =nc or

bQC\J^9i0. In fact, if bQi\J<[= 0, we can find a neighborhood Va(a) about

each point a in bQ such that Va(a)(~\}{ = 0. For this a and a, find p such

(5) If G\ and G¡ are subgroups of a group G, we denote by gAJGi the subgroup of G gen-

erated by G\ and G%.

(6) We denote the null set by 0.
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that if x, y are in Vp(c), then x is in Va(y), and consider the neighborhood

V~1(a) (i.e., the set of points x such that a is in V„(x)) about a. A finite

number of these neighborhoods V"¿l(ai), • ■ ■ , VJ*(an) cover bQ. Choose

V„(Zr\iVpi, and choose nc in V„(b). Then n is in V„(bc~l). But bc~l is in bQ

and hence in some F"1^,-) so that af is in Vp^bc1). Now n is in Fp(ôc_1)

and a fortiori in FPi(6c_1), so that, by choice of pt-, n is in Va¡(ai), contradicting

the fact that Vai(ai)i^?i = 0. Thus bQCsJ^^0, and the proof is complete.

Lemma 4. If a property p is such that ÇVJ {\I:\\\ — 1} has property p if

the subgroup Ç of "M,u (Vil not of type I„, n finite) has property p, and if the

only closed normal subgroup having property p and containing {XJ} is Uïtu, then

the only closed normal subgroup of 5W„ with property p is 9itu-

Proof. If Ç is a closed normal subgroup of Mu having property p, then

Ç\j{\l} has property p, by hypothesis, and is a closed normal subgroup of

9itu, by Lemma 3. Thus, by assumption, Ç{j{\I) =9ítu. But then ÏÏtu/Ç

= {\l}/Çr\{\l} and {\l}/Çr\{\l}, being locally compact and abelian,

has nontrivial characters, unless [\l\ =Çi^\{\l\. Since Vtíu, itself, has no

nontrivial finite-dimensional representations, by Theorem 1, it follows that

{\l}=Çr\{\l},sothatMu = Ç\J{'kl}=Ç.
In our applications of this lemma, p will be the property of not being a

subgroup of some fixed group.

The following lemma is an altered version of Lemma 3.2.3, R.O. II, suit-

able for our purposes.

Lemma 5. // M is a factor, A is a normal operator in "M, and F is a finite

projection which commutes with A, then there exists a smaller projection in M

which commutes with A and which has any given dimension (not exceeding D(F))

in the range of the dimension function D on "M.

Proof. The factor MF (cf. R.O. I, PP- 186-188) is a finite factor. If it is

discrete, it is all bounded operators on some finite-dimensional space, and the

result is trivial. If it is continuous, the result follows by application of Lemma

3.2.3, R.O. II (this lemma applies to positive definite operators, but we can

express our (restricted) normal operator A F as a bounded Baire function of

a positive definite operator in UïÎf).

3. The closed normal subgroups of the unitary groups. We begin this

section with the lemma which links the investigations of the unitary groups

of the various types of factors. It is, so to speak, the common concluding por-

tion of each of these investigations.

To say that a subgroup Ç is a closed normal subgroup of Vííu implies, in

particular, that, along with W, Ç contains WV*WV for all V in Mu. The

wide choice of V this totally noncommutative situation affords us makes

WV*WV a quite arbitrary unitary, so arbitrary, indeed, that only the dis-

tinction between finite and infinite can prevent Ç from being all of °MU. On
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the other hand, it is a difficult matter to capitalize on this arbitrariness (at

least in the case of the nondiscrete factors), and we are constrained, for

the most part, to stay within reach of the spectral theorem by choosing V

in such a manner that V*WV commutes with W. This tactic alone would

not suffice to give the final results concerning normal subgroups of 2)iu.

In the next lemma, WV*WV is studied in a situation where it is possible to

compute with finite (2X2) matrices.

Lemma 6. If 5W is a factor, not of type I„, n finite, JYCU the group of unitary

operators in the factor, W = \E + I—E, |X| =1, X^l a unitary operator in 5W

with E equivalent to I — E, and Ç a closed normal subgroup of Mu containing

XE+I-Eand {XV:|X'| =l}, then Ç=MU.

Proof. We show first that our group Ç contains all unitary operators of the

form yE+I — E, with y an arbitrary complex number of modulus 1. In fact,

let F be a partial isometry from(7) E to I — E, and let V(9) be the unitary

operator

(sin 0)E+ (cos 8)(V + V*) - (sin 8) (I - E).

If we let W(0) = WV(6)WV(8)*, a simple computation shows that T(W(8))

assumes all values on the segment between X and (X2 + l)/2 as 9 goes from

0 to tt/2 (although M may not have a trace, the operators W(6) all lie in the

type I2 factor generated by the 2X2 matrix units E, I—E, V, and V*—it

is with respect to this factor that we take the normalized trace, T(W(9))).

Now W(8) has spectrum consisting of two numbers a, ß (not necessarily dis-

tinct); the eigenspace of each is equivalent to E (if they are distinct). More-

over, aß=\2, T(W(8)) = (a-\-ß)/2 (so thata=/3 for only a finite set of values),

and the map from the set of unordered pairs (a, ß) to T(W(9)) is one-one

(i.e., the spectrum of a 2X2 matrix is determined by its trace and de-

terminant). Since T(W(8)) varies over an uncountable set (X^l), at least

one of a, ß is not a root of unity, say a, and they are distinct, for some 8i.

We write W(8X) =aF+ß(I-F). Then [W(0i)]n = anF+ßn(I-F) is in Ç'and

{a"} lies dense in the complexes of modulus 1. We shall be through with the

proof that Í/contains all yF-\-I—F, \y\ =1, if we can show that (^contains

some t]F-\-I — F with 77 not a root of unity; for then Ç contains (rjm)F+I—F,

m an integer, and these operators lie dense in all yF+I—F, since {77""} lies

dense on the unit circle. The same argument would apply to yE+I—E,

\y\ =1, if X were not a root of unity, so that we may assume that X is an

wth root of unity. Given r on the unit circle, we can clearly find an integer

k between 0 and n such that TF+(\k/r)(I-F) is a limit point of [W(0i)]m

= amF+(\2m/am)(I-F). Thus TF+(\k/r)(I-F), and hence (t/X*)(tF

+ (\k/r)(I - F)) = (r2/\k) F+(I - F) is in Ç. It is clearly possible to choose r

(7) We use the same symbol to denote both the projection and its range. The context will

make clear which is meant in any given instance.
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on the unit circle so that t2/X* is not a root of unity no matter what integer,

between 0 and n, k is. Thus Ç contains all unitary operators of the form

yF+I—F, \y\ =1, and, since Ç is normal, it contains all (equivalent)

operators of the îorm yE+I—E with £ equivalent to I — E. If 9á is an infinite

factor and P is an infinite projection in M with I — P finite, we write XP+I

-P=[\(P-Ei)+I-P+Ei][\Ei + I-Ei], where Ex is an infinite projec-

tion in P with P-Ei infinite. Thus \P+I-P is in Ç. If P is finite and I-P

is infinite, then \P+I-P = (XI) [\(I-P)+P] is in Ç. If M is a factor of

type IL and P is a projection in 73Í such that P is equivalent to a subprojec-

tion of I — P, we choose f an wth root of unity and n orthogonal equivalent

projections Fu ■ ■ ■ , Fn of dimension D(P)/n in F. Let F' be a projection

in I—F equivalent to F—Fi, under a partial isometry UÍ. Let Z7< be the

unitary operator which is UÍ on F—Fi, U¡* on F', and the identity on

I—(F+F' — Fi). The unitary operator

U = ft Ui¡ (fF + J - F)tf< = f ( ¿F,) + 1 - ¿F.-

is in Ç and is equivalent to ÇP+I — P. Thus ÇP+I—P is in Ç for all roots

of unity f, and all projections P equivalent to a subprojection of their comple-

ment I — P. If, on the other hand, I — P is equivalent to a subprojection of

P, then f (f(I — P)+P) =ÇP+I — P is in Q. Since the roots of unity are dense

in the complexes of modulus 1, and Ç is closed, yP + I — P is in Ç for all

7, J'y | =1, and all projections P in Tíí. Thus, by the spectral theorem and the

fact that Ç"is closed, we have Ç=Viiu.

We prove now the first main theorem.

Theorem 2. If "Mis a factor of type IL or III and ¡Mu is the group of unitary

operators in JïC, then the only proper, closed, invariant subgroups of M, are the

subgroups of the center }XJ: | X| = 1}.

Proof. By application of Lemma 4, with property p the property of not

being a subgroup of {X/|, we see that it suffices to consider groups con-

taining {X/}. Suppose, then, that Ç is a closed, invariant subgroup of *MU

containing [XI} properly, and let U be an operator in Ç not in {X/}. Since

the scalars are in Ç, we can assume that 1 is in the spectrum of U. If —1 is

the only other point in the spectrum of U, then U = —E+(I — E) ; and a

modified version of the last paragraph of the proof of Lemma 6 shows that

we may assume even that E is equivalent to I — E. But then, by Lemma 6,

Ç = MU. We assume that U has a point a^l, — 1 in its spectrum. Let e>0

and a2P + I — P, with P equivalent to I — P, be given. Let Qi, Q2 be spectral

projections for U corresponding to the arcs cut off by the closed disks of

radius 8 about 1 and a, respectively. Choose a positive integer m so that

l/2m^min [D(Qi), D(Q2)] (if 5W is of type III, we choose m = 0 and agree
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that 1/0= oo ), and let £i and Fi be projections in Qlt Q2 respectively, each

of dimension l/2m and commuting with U (see Lemma 5). Let Vx be a partial

isometry from Ei to Fi, and let V be the unitary operator which is Vi on Ei,

Vt on Fi, and the identity on I-(Ei + Fi). Then W=U*V*UV is in Ç'and

is close to a£i + äFi+7-(£i + Fi), for both W and aEi+âFi + I-(Ei + Fi)

are the identity on I— (Ei+Fi), U* is close to 1 and V*UV is close to a on

£i, and U* is close to 5 and V*UV is close to 1 on Fi (for small 8). Let

E2, • ■ • , Em; F2, ■ ■ ■ , Fm be 2m —2 orthogonal equivalent projections with

sum I— (Ei + Fi) (each of dimension \/2m) and let £/,-, Vi (i = 2, ■ ■ • , m)

be partial isometries from £i to £,• and Fi to F¿ respectively. If X¿ is the uni-

tary operator which is £/,-. on £i, U* on £,-, Vi on Fi, V* on F,-, and the

identity on I-(Ei+Ei+Fi+Ft), then Y=YL7=iX*iWXi is in Ç and (for
small 8)

/       m vt \   ii

F-(aZ£, + aI>%)   <€.
\  t-i i=i   / II

Now £= XI™ i -S¿ is equivalent to F= ^T-i Fi, so that ffE + ai1 is equivalent

to aP + a(I — P). It follows that aP + a(I—P) is approximable to within e

by an operator in Ç, so that aP + ä(I — P) and a(«P-|-ä(/-P)) =a2P

+ (I—P) are in (7. An application of Lemma 6 completes the proof.

Definition 1. A number a in the spectrum of a normal operator C in a factor

"M is said to be "a center of infinite density" if the spectral projection of C

corresponding to any open set about a has infinite relative dimension.

Strictly speaking, we should use the phrase "a center of infinite density

relative to SW" to describe a. Indeed, if A is a normal operator in a factor "M

of type IL, then no point of the spectrum is a center of infinite density;

whereas relative to the factor consisting of all bounded operators, every point

of the spectrum is a center of infinite density. However, we shall maintain

the terminology of Definition 1, trusting to the context to make our meaning

clear.

Theorem 3. If "M is a factor of type l„ or ll„, the set Ç; of all unitary

operators in "M. with exactly one center of infinite density is a closed, proper,

normal subgroup of Mu, the group of unitary operators in Víí.

We shall need the following lemma for the proof of this theorem.

Lemma 7. If 55Í is an arbitrary factor and P and Q are projections in Vit

such that D(Q)>D(I — P), then Pr\Q, the intersection of P and Q, is not 0.

Proof. The assumption D(Q)>D(I — P)>0 implies, in particular, that

D(I—P)7¿x>. Thus we can choose a finite projection Qi in Q such that

D(Qi)>D(I-P). Let E = Qi\J(I-P). By R.O. I, Lemma 7.3.5, £ is a finite
projection. We have:
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D(E) + D[QiC\(E- (I - P))]

2£ D[Qi VJ(E-(I- P))] + D[Qi n (E - (I - P))]

= D(Qi) + D[E- (I- P)]> D(I - P)+D[E- (I - P)]= D(E).

Thus D[ÇiH(E-(I-P))]>0. Since Qi is contained in Q, (E-(I-P)) is
contained in P, and Qii^(E-(I-P)) is nonzero; QHP^O.

Proof of Theorem 3. We prove this result by showing that Q't, the set

of all unitary operators in Vit which act as XI on the complement of some sub-

space of finite relative dimension, is an invariant subgroup of VKtu, and that

Ci is its closure(8). If Ui, U2 are in Ç/ and £1, £2 are finite projections on the

complements of which Ui, U2 are XiJ, X2/, respectively, then Uï1Uz is XiXzI

on the complement of Ei\JE2, a finite projection. Thus UfUz is also in Ç/,

which is therefore a subgroup of VYtu. Clearly Qj is an invariant subgroup

of 5W„.
Every normal operator C in Vît has at least one center of infinite density in

each closed subset of the spectrum whose corresponding spectral projection

has infinite relative dimension; for otherwise we could cover each point of

the set with an open set whose spectral projection is finite, and, by compact-

ness, we could cover the entire set with a finite number of these sets. The

spectral projection for this closed set would then be contained in a finite

union of finite projections. But the former projection is assumed to be in-

finite and the latter projection is finite. It follows, in particular, from this

that each normal operator in Vît has at least one center of infinite density, for

the spectral projection corresponding to the total spectrum is I.

If, now, U is in Qt and a is the unique center of infinite density for U,

then || U— (aFe + (I— Fe) U\\ ^e, where F, is the spectral projection for the

open arc T of the unit circle cut off by the circle of radius e about a (by the

spectral representation theorem). The projection I—Ft is the spectral projec-

tion for the complement T' of the arc T on the unit circle. If D(I — Ft) were in-

finite, r" would contain a center of infinite density for U, by the result of

the preceding paragraph. This would contradict the uniqueness of a, so that

D(I-Ft) is finite and aFt + (I-Fe)U is in Ç/. It follows that U is in the

closure of Ç/ and thus C¡ is contained in the closure of ÇJ.

Suppose V in VKtu has at least two distinct centers of infinite density ß, y.

We assert that || V-W\\ à \ß~y\ /2 for all W in Cf. Indeed, let e>0 be as-
signed, and let £ be a subspace on which W acts as XI and whose comple-

ment has finite relative dimension. If Fe is the spectral projection defined

for V as it was for U above with ß replacing a, then, since ß is a center of

infinite density, D(Ft)= 00 >D(I-E). Hence, by Lemma 7, Ef^F^Q. Let

(8) We are indebted to I. Singer for a stimulating conversation at the most preliminary

stage of this investigation. It was Singer who pointed out the existence of the normal subgroup

Çj,m in the I„ case (see the definition following the proof of Theorem 3).



1952] INFINITE UNITARY GROUPS 395

x be a unit vector in the range of EC\F€; then

||Vx - ßx\\ = \\VFtx - ßFtx\\ ^ ||FF« - ßF<\\ ̂  e,

moreover Wx=Xx. Thus

||IF - F|| ^ \\Wx - Fx|| = \\Wx - ßx + ßx - Vx\\

^ ||\x - ßx\\ - \\ßx - Fx|| ê | X - ß\ - c

foralle>0, so that || W- V\\ ̂  \X-ß\. By symmetry, || IF- F|| ^ | X-y[, and

thus 2||lF-F||è|7-X|+|X-/3| ^\y-ß\. We conclude from this that Fis

not in the closure of Çf and hence Çf is exactly the closure of Çf.

The following theorem completes the determination of the closed normal

subgroups of the infinite factors. Before stating the theorem, we introduce

the following notation: C¡w is the subgroup of Çf consisting of those unitary

operators in Vit whose unique center of infinite density is 1 ; Çf(1) is the sub-

group of Çf consisting of those unitary operators in Vit which act as the

identity on the complement of a subspace of finite relative dimension.

Theorem 4. If Vit is a factor of type lx or II«, and Vitu is its unitary group,

then the only proper closed normal subgroups of Vitu are the closed normal sub-

groups of Çf. The closed normal subgroups of Çf are those generated by ÇfW

and the finite subgroups of {XI: \X\ =1}, and these finite subgroups themselves.

Proof. In this case, we take property p to be the property of not being a

subgroup of Çf, and again we see that it suffices to consider closed normal

subgroups containing {Xl}. Suppose that ^ is such a subgroup and that Ç

is not contained in Çf. Choose U in Ç but not in Çf and let 1, a be two of its

centers of infinite density (since U is not in Çf, we know that it has at least

two centers of infinite density, and, since the scalars are in Ç, we may as-

sume that one of these centers is 1). If possible, we choose a distinct from

— 1. Assume first that ay* — 1, and let F be a projection in Vit such that P is

equivalent I —P. Let e>0 be assigned. We shall approximate the unitary

a2P + I — P to within e uniformly by operators in Ç. Since Ç is closed, it

will follow from this that a2P + I — P is in Ç, and hence, by Lemma 6, that

Ç=Vitu (then, of course, we must deal with the case where a= —1).

Let £ and F be the spectral projections for U of the open arcs Ti, T2 cut

off from the unit circle by small circles of radius 8 about 1 and a respectively.

Since 1 and a are centers of infinite density for U, D(E) =D(F) = =o. Let Fi

be a partial isometry from £ to F and let F be the unitary operator which is

Vi on £, V} on F, and the identity on /-(£ + £). We write IF= U*V*UV.

If possible choose 8 so small that I— (E + F) is infinite. In this case, let Pi, Pz

be orthogonal equivalent projections of infinite relative dimension such that

Pi+Pz — I—(E + F), and let Ui, U2 be partial isometries from £ to Pi and
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F to P2, respectively. If X is the unitary operator which is i/i on £, U* on

Pi, U2 on F, and C/2* on P2, then

||«JFX*IFX - a2(£ + Pi) - (P2 + F)|| < e

(5 chosen suitably small, dependent on €—this inequality follows from the

spectral representation theorem). Now aWX*WX is in Ç and a2(£+Pi)

+ (Pz+F) is equivalent to a2P + I — P. Thus the same inequality holds for a

suitable conjugate of aWX*WX and a2P+I—P. We suppose now that it is

not possible to choose 8 so that I— (E+F) is infinite (or equivalently, that a,

1 are the only centers of infinite density for U). The ensuing argument also

handles the case a= — 1 (this case was forced on us by the fact that —1,1

were the only two centers of infinite density). In this situation, the spectral

projection for U corresponding to any closed arc of the unit circle which

contains neither 1 nor a has finite relative dimension. If 1 and a are the

only points in the spectrum of U, then, by Lemma 6, Ç=Vitu, and we are

through. If not, let X be another point of the spectrum of U, and let Fi be a

spectral projection for U corresponding to a small closed arc about X. We

have D(Fi)yi =o. Let r be a point very near 1, and consider small arcs start-

ing at r and going towards 1 (we choose t so that the small closed arc (r, 1)

has infinite relative dimension). The spectral projections for U corresponding

to these arcs have a finite relative dimension which tends toward oo, unless 1

is in the point spectrum of U and has an eigenspace of infinite relative dimen-

sion. In any event, we can choose a projection £i which commutes with U

and has relative dimension D(Fi), in a spectral projection with relative dimen-

sion greater than D(Fi) corresponding to one of the arcs, by Lemma 5, in

one case, and in the eigenspace of 1, in the other. Let lFi be a partial isometry

from Fi to £i, and let IF' be the unitary which is Wi on Fi, IF* on £i, and

the identity on I- (Ei + Fi). Then U*W'*UW is the identity on I- (£i + Fi),

close to X on £i, and close to X on Fi. Let Pi be a finite projection contained

inl-CEi + Fi). It follows that U*W'*UW is the identity on I- (Ei + Fi+Pi)
and a unitary operator on £i + Fi+Pi which is not a multiple of I (really,

of £i +Fi+Pi). Now the set 3C of unitary operators in Vit which act as the

identity on I— (Ei + Fi+Pi) is a group topologically isomorphic to the unitary

group of the factor Vit(El+Fl+Pl) (cf. R.O. I, pp. 186-188). Since £i + Fi + Pi

is finite, VitiBl+Fl+Pl), the restricted factor, is finite. If Vit is of type I«,, the

restricted factor is of type I„; if Vit is of type II«,, the restricted factor is a

IL. Now the intersection of Ç and 3C is a closed invariant subgroup of 3C

not contained in the center, by virtue of the foregoing construction. In the

Hi case, it follows that Ç contains 3C, by Theorem 2; and, in the I„ case, that

(^ contains the unitary operators in 3C with determinant 1 (call this set 3C„),

by Lemma 2. By invariance, we see that Ç contains all unitary operators

which are the identity on the complement of a space of dimension

D(Ei + Fi+Pi) (and have determinant 1 on the finite space in the In case).
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Since Pi was of arbitrary positive dimension, we may drop the restriction on

the dimension of the finite subspace. We assert that the uniform closure of

the set of unitaries in a I„ having determinant 1 on a finite subspace and

acting as the identity on the complement contains the set of unitaries which

act as the identity on the complement of some finite-dimensional subspace.

In fact, it suffices to show that this closure contains those unitaries which are

X on a finite-dimensional subspace and the identity on the complement;

for then this closure contains the sum of the scalars and the special unitary

group (which is the full unitary group) on each finite subspace. Let £o be an

»«-dimensional subspace and let X, | X | = 1, be given along with a small positive

€. Suppose Xm = eie. Choose an integer k so large that \ß — l|<e, where

j8 = e~»<"*>. Let Fo be a ¿-dimensional subspace of I — Eo, and consider the

unitary operator X£o+|8F0 +1— (E0+Fo). This unitary has determinant equal

to Xmßk = 1, moreover

||\£o + ßF0 + I - (£o + Fo) - (X£o + I - £„)|| = \\ßF, - F„|| - | ß - 11 <«.

Thus XEo + I—£o is in the closure, and we have our assertion. It follows

that Ç contains the set of unitary operators which act as the identity on

the complement of some finite-dimensional subspace whether Vit is of type

Iw or II«,.

With this information we return to the study of U. Let e>0 and aP+I — P

be given, P equivalent to I—P. Let £ and F be as before, with 5 <e. By what

we have just proved, Ç contains (I — E — F) U*+E + F (since 1 and a are the

only centers of infinite density for U, I — E — F is finite). Thus Ç contains

U[(I-E-F)U* + (E + F)] = I-E-F+(E + F)U. This last operator, how-
ever, is within e of aF+I—F which is equivalent to aP+I — P. Thus aP

+I—P is in Ç, and, by Lemma 6, Ç=Vitu.
The argument which serves to show that Ç contains ÇJP shows that C¡X)

is topologically simple. In fact, if U in C¡1) is different from the identity,

we can find IF in Ç^ (in fact in Ç'/*1) such that WUW* U* is not a scalar on

some finite-dimensional subspace and is the identity on the complement of

this subspace, unless the spectrum of U consists of 1 and — 1 alone, in which

case we can assert the same property for U itself as we did for WUW*U*.

Exactly as in the second preceding paragraph, we conclude that the closed

normal subgroup of Ç[fl) generated by WUW* U* (or U, as the case may be)

is all of ÇfX). Since Çf is the direct sum of Çf^ and {XI: \X\ =1}, we have
the fact that the Çf> coordinates of the elements of a closed normal subgroup

S of Çf is a closed (since {XI} is compact) normal subgroup of Ç® and

therefore either the identity or Çfv. If it is the identity, then S is a closed

subgroup of {Xl}. Suppose it is Ç^\ and let (b be the map from {Xl} to

Ç^ defined by XF—>t/ where (U, XI) is in S • The map <f> is defined on that

subgroup of {Xl} which appears as coordinates in S and is a homomorphism

if it is single-valued (i.e., if (Uo, XI), (F0, X7) in S implies U<¡= Fo). But this
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would imply that Çf* is abelian, which is absurd. Suppose that (Uo, XI),

(F0, XI) both appear in S with U0t* F0; then (f/0F*, 7) is in S with U0V*

y*I, so that the set of IFo's in ÇJV such that (IFo, 7) is in S contains more

than the identity. This set is, however, a closed normal subgroup of Çfl)

and hence all of Çf\ If (U, XI) is in S, then (U*, I)(U, XI) =X7 is in S, and
thus S is generated by Ç^ and a closed subgroup of {X7| (closed, since C¡x)

and a nonclosed subgroup of {X7j generate a nonclosed subgroup of Çf).

It is interesting to note that Ç^ is a (complete) topological group which

while topologically simple is not algebraically simple (Çf1'* is a dense normal

subgroup as well as the determinant 1 subgroup of Ç'/u).

4. Concluding remarks. It is a simple consequence of the theorems of

the preceding section that each unitary operator in a factor is uniformly ap-

proximate by finite products of unitary operators chosen from almost any

invariantly defined class of operators in the factor. More precisely we can

state :

Corollary 1. If Vit is a factor and p is a property of unitary operators

which is invariant under unitary equivalence (by unitary operators in the factor)

such that a unitary operator has property p only if its inverse has property p

and such that some noncentral unitary operator of the factor has property p

(in the case of factors of type I«,, II«, we assume that some unitary operator not

iu Çf has property p), then, for each unitary operator U in Vit and each positive

e, there exists a finite set of unitary operators Ui, ■ ■ ■ , Un in Vit each with

property p such that || U — U\ • • • U„\\ <e.

Proof. Under the given assumptions on p, the set of all finite products of

unitary operators in Vit having the property p is a normal noncentral sub-

group of Vitu (not contained in Çf, in the I„, II«, cases), and thus, by the

theorems of §3, the uniform closure of this group must be all of Vitu.

One can conclude from this corollary, for example, that products of self-

adjoint unitaries, or products of unitary operators with continuous spectrum,

or products of unitary operators with three points in their spectrum, etc.,

lie uniformly dense in the group of all unitary operators in the factor.

It is appropriate to remark that, although we have made heavy use of

the techniques and constructions of R.O. I, and R.O. I deals with separable

Hubert space, there is very little imagination needed to see what happens

in the nonseparable case. The situation in the IL case remains the same,

and the proof given in this paper remains valid. More closed invariant sub-

groups appear in the case of infinite factors because of the now distinct

equivalence classes of infinite projections.

The situation becomes quite complicated when we pass to arbitrary rings

of operators. Keeping in mind von Neumann's reduction theory [7], we may

for the moment conceive of the arbitrary ring as a direct sum of factors.

Even if we deal only with the case of rings purely of type IL (cf. [4]), we
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have to contend with all the complications inherent in taking an algebraic

direct sum of simple groups. To add to these difficulties, there are the meas-

urability problems which must be dealt with if the general results of [7] are

to be applied. It is likely, in view of these considerations, that there is

nothing very elegant which can be said in the general case. In connection

with [4], it should be mentioned that the results we obtain are applicable

to Kaplansky's A-W* algebras (the central ones).

As far as the topological results are concerned, those we present are the

strongest possible (it is a simple matter to deal with the weaker topologies,

for the groups then are, in particular, uniformly closed). A problem which

seems to be of a higher order of difficulty (and interest) than the extensions

indicated above is the question of the algebraic nature of the unitary groups

considered. Specifically, the question of whether or not the unitary group of a

factor of type IL is algebraically simple seems particularly important be-

cause of the Lie group, Lie algebra connections mentioned in the introduction.

One can probably clear up the algebraic situation in the case of factors of

type I«,, and, in fact, Kakutani has recently communicated to us the fact

that each unitary operator in a factor of type I«, can be expressed as a product

of four self-adjoint unitary operators in the factor (Halmos has shown that

wl can't be expressed as a product of three such unitary operators, where

w is a primitive cube root of unity). The essential features of Kakutani's

proof are such, however, that no light is thrown on the IL case.
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