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 1. Introduction

 In a series of fundamental memoirs on rings of operators [6, 7, 8, 9], F. J.
 Murray and J. v. Neumann classified factors (i.e., central rings of operators)
 by means of a "relative dimension function." They studied, extensively, those
 factors for which this dimension function has a finite range ("finite factors")
 and showed that these factors (and these factors alone) admit a trace function'
 with the standard algebraic properties.

 In an attempt to establish, what seems to us to be a further important algebraic
 property of the trace, viz., the trace of a generalized nilpotent operator is zero,
 and, more generally, the trace of an operator lies in the convex hull of its spec-
 trum, we were led to the introduction of a determinant theory for finite factors.
 This paper will be concerned, principally, with the development of this theory.

 We might note that it is a simple algebraic matter to prove that the trace
 T(N) of a proper nilpotent N is zero. In fact, if N' = 0 and E is the projection
 on the closure of the range of N, then EN = N so that (NE)'-' = N'-'E = 0.
 Then T(N) = T(EN) = T(NE) = 0, by induction on n. That the normalized
 trace lies in the convex hull of the spectrum of a finite-dimensional matrix follows
 at once by bringing the matrix to super-diagonal form, whereby the normalized
 trace appears as the "center of gravity" of the spectrum. This fact together with
 the theory developed in R.O. IV, Chapter IV, yields the same result for operators
 in an approximately finite factor. Furthermore, it is an immediate consequence
 of the spectral theorem that the trace of a normal operator in an arbitrary finite
 factor lies in the convex hull of its spectrum. None of these easily proved facts
 enabled us to conclude the result for arbitrary non-normal operators in non-
 approximately finite factors. However, the general result was established as a
 byproduct of the determinant theory.

 In ?2 we define the determinant on regular operators in a factor of type II1,,
 and establish the properties of this determinant. The proof that the trace lies
 in the convex hull of the spectrum is given in ?3 as an application of the results
 of ?2. The uniqueness of the determinant is established in ?4 by means of an
 algebraic characterization. The final section, ?5, begins with a discussion of the
 normalization which has taken place in the definition of the determinant. A

 * The results of this paper were outlined in a note by the same authors [4].
 t The second named author is a National Research Fellow.
 1 The term "trace" refers, throughout this paper, to the normalized trace which takes

 the value 1 at the identity operator. For a complete account of the theory of factors, the
 reader is referred to the original papers on this subject [6, 7, 8, 91. In making reference
 to these papers, we shall use the abbreviation R.O., I, II, III, and IV.
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 justification for considering only a positive-valued determinant is given in the
 form of various results on the non-existence of characters on the group of unitary
 operators in a factor. The paper concludes with a study of the possible extensions
 of the determinant of ?2 to singular operators in the factor.

 2. Definition and properties of the determinant

 Let i be a factor of type I1, ,let T and D be the normalized trace and dimen-
 sion function, respectively, in Y (cf. R.O. I and II), and let X be a regular
 operator in Y (i.e., X has a bounded inverse). Then X has a unique decomposi-
 tion, X = UH, where U is unitary and H = (X*X)* is positive and regular;

 U and H both belong to M (cf. R.O. I, Lemma 44.1).
 DEFINITION. With X and H as above, we define "determinant of X" by2

 \(X) = A(H) = exp [T(log H)] = exp [flog X dD(Ex)

 where f X dEx (=H) is the spectral representation of H.

 We establish, in the following lemma, the most elementary properties of the
 determinant.

 LEMMA 1. The determinant satisfies the following relations:

 (10) 11 X-' < A(X) < II X jj, for regular X, and, in particular A(I) = 1.
 (20) A(XX) = ] X i A(X), for non-zero X and regular X.

 (30) A(exp A) = ] exp T(A) I = exp Re T(A), for normal A.

 (40) A[f(A)] = exp [flog I f(z) I dD(E,)], where A ( = fz dEz) is normal and

 f(z) is continuous and non-zero on the spectrum of A.

 (50) A(AB) = A(A)A(B), for normal, commuting, regular A and B.
 (60) A(U1XU2) = A(X), for unitary Ui and U2 and regular X.

 (70) A(X*) = A(X) = [A(X*X)]+, for regular X.
 (80) A(X'1) = 1/A(X), for regular X.

 PROOF. Ad (10): Let H = (X*X)*, a = X- X' jj-' = 11 H-' 11 -1 j =I X 1

 H ,and H = fXdEx(= X dEx). Then log A(X) = T(log H) -

 f log X dD(Ex); so that log a < log A(X) < log A.

 Ad (20): A(XX) = A{[(XX)*XX]X} = A(I X I H) = exp T[log (I X I H)] =
 exp [T(log IX I I) + T(log H)] = I X I A(H).

 Ad (30): Put A = Al + iA2(AlA2 = A2A1, A1 and A2 self-adjoint). Then
 exp A = exp iA2 exp A1 is the polar decomposition of exp A; so that A(exp A) =
 A(exp A1) = exp T(A1) = exp Re T(A).

 2Throughout this paper, "log" refers to the principal value of the logarithm.
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 Ad (40): Since f(A) is normal, we have A[f(A)] = A(I f(A) 1). Now log I f(A) I =

 Ilog I f(z) I dE2, so that

 A(I (A) 1) = exp [T(f log I f(z) I de,)] = exp flog I f(z) I dD(E,).

 Ad (50): Since AB = BA, we have AB* = B*A (cf. [3]), and hence there

 exist functions f, g and a self -adjoint operator H = f X dEx such that A = f(H),

 B = g(H). Then AB = (fg)(H), from which the statement follows by applica-
 tion of (40).

 Ad (60): Note first that A(W*XW) = A(X) for unitary W in X, since all
 operations (notably the trace) employed in forming the determinant are in-
 variant under unitary transformations from the factor. Now

 [(U1XU2)*(UlXU2)]i = U-*(X*X)*U2-

 so that A(U1X U2) = A[U2 *(X*X)* U2] = IA(X).
 Ad (70): Let X = UH be the polar decomposition of X. Then X* = HU*,

 hence, by (60), A(X*) = A(H) = A(X). Further, A(X*X) = A(H2) = [A(H)]2
 by (5?).

 Ad (80): As above, X = UH, so that X-' = H-'U*. Thus A(X-l) = A(H-') =
 1/A(H), by (50) and (60).

 THEOREM 1. The determinant has the following properties in addition to those
 listed in Lemma 1:

 (10) A(XY) = A(X)A(Y), for arbitrary regular X and Y.

 (20) A (exp A) = I exp T(A) I = exp Re T(A) for arbitrary A in M.
 (30) The determinant is continuous on regular elements, in the uniform topology.
 (40) A (H1) > A (H2) if H1 > H2 > 0 and H2 is regular.
 (50) A(X) does not exceed the sprectral radius of X.
 Before beginning the proof of this theorem, we establish the lemma which is

 the basic tool for dealing with the non-commutative situation. We view M as

 a Banach algebra with the operator bound "II 11" as norm, and consider
 certain aspects of the theory of analytic functions from M to the complex
 numbers (cf. [2]).

 LEMMA 2. Let f(X) be analytic in a domain3 A bounded by a curve r in the com-
 plex X-plane, and let X(t), 0 < t < 1, be a differentiable family of operators in M,
 such that the spectrum of each X(t) lies in A. Then f[X(t)] is differentiable with
 respect to t, and4

 T {d f [X(t)]} = T { g[X(t)] * X(t)}

 where g(X) = df(X)/dX and X'(t) = dX(t)/dt.

 3For our purposes, we need only deal with the simplest types of domains A, for example,
 rectangles; our considerations are valid, however, in much more general circumstances.

 4 The formula obtained from that of this lemma by omitting the trace, T, is not, in
 general, valid, as illustrated by the example f(X) = X2.
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 PROOF. The Cauchy formula yields (cf. [2, p. 641])

 f[X(t)] = 2 f(X) (X -X(t))-' dX

 for each t, 0 < t < 1. By the second resolvent equation [5, p. 11a] and the fact
 that (X - X(t))-' is uniformly continuous in the uniform topology on the (com-

 pact) product space of the boundary curve r and the interval 0 < t < 1, we
 obtain

 d ff[X(t)] = r X -X(t))-'X1(t) (X-X(t))_1 dX

 In fact,

 kf[X(t + h)] -f[X(t)] = SAr f(X) [(X -X(t + h)) -(X -X(t))'] dX

 =2ii ff(X) (X -X(t + h))' (h) (X(t + h) -X(t)) (X -X(t)) I dX.

 As h tends to 0, (X - X(t + h))'1 tends to (X - X(t))-', uniformly with respect
 to X on r, and (l/h)[X(t + h) - X(t)] tends to X'(t).

 On the other hand, a partial integration establishes

 g[X(t)] L Jr 9g(X) (v -X(t))1 dX = 2 Jr f(X)(X-X(t)X-2 dX

 for each t (note that d(X -X)-X/dX = -(X _ X)-2 for X in the resolvent set of
 X, by the first resolvent equation [5, p. 99]).

 The application of the trace to the integral expression for df[X(t)]/dt and
 g[X(t)]X'(t) can be performed under the integral sign by virtue of the continuity
 of the trace (in the uniform topology). Moreover,

 T[(X - X(t))-1X'(t)(X - X(t))-1] = T[(X-X(t))-2X'(t)]

 and the proof of the lemma is complete.
 We shall derive statements (10) and (20) of Theorem 1 from the following

 Lemma:

 LEMMA 3. If H is self-adjoint, then A(exp A* exp H exp A) = exp T(A* + A).
 exp T(H) for arbitrary A in M.

 PROOF.5 For 0 < t < 1, define X(t) = exp(tA*) exp H exp(tA). Each X(t)
 is positive and regular. Moreover, X(t) is differentiable in t. The functions

 I The formal mechanism behind this lemma, and, in fact, behind the multiplicativity
 of the determinant is contained in the Campbell-Baker-Hausdorff formula (cf., for example,
 H. F. Baker, Alternants and continuous groups, Proc. London Math. Soc., (2) 3 (1905), pp.
 24-47) exp x exp y = exp z, where z = x + y + commutators (note that the trace of a
 commutator is zero). The convergence precaution necessary to apply this formula to our
 situation makes the approach we indicate as short, however, and preferable in the sense
 that it does not rely upon this algebraic result.
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 1f X(t)-' l-' and 1t X(t) 11 are positive, continuous functions of t. Thus we can
 choose constants a and fi such that 0 < a < 11 X(t)'l j-, < 11 X(t) 11 < 3 < X
 for all t. In other words, the interval (a, #) contains the spectrum of each X(t).

 We now apply Lemma 2 with f(X) = log X, which is analytic in some (rec-
 tangular) neighborhood of (a, A). Since X'(t) = A*X(t) + X(t)A, we conclude

 T d log X(t)] = T[X(t)Y1X'(t)] = T[X(t)-1A*X(t) + A] = T(A* + A);

 whence,

 T[log X(1)] -T[log X(O)] = f d T[log X(t)] dt

 -ji~ Tdt log X(t)J dt = T(A* + A);

 i.e., log A(exp A* exp H exp A) - T(H) = T(A* + A).
 PROOF OF THEOREM 1. Ad (10): Write X = U1Hi, Y H2U2 with U1, U2

 unitary, H1 , H2 positive, and introduce the self-adjoint operators Al = log H1,
 A2 = log H2 . By application of Lemma 3, we see that A(XY) = A(UlHlH2 U2) =
 A(H1H2) = [A(H2HIH2)]1 = [A(exp A2 exp (2A1) exp A2)]1 = [exp T(2A2)
 exp T(2A1)]' = A(exp A2)A(exp Al) = A(X)A(Y).

 Ad (20): Put H = 0 in Lemma 3 and note that ? (exp A) = [A(exp A* exp A)]*
 by Lemma 1, (70).

 Ad (30): The continuity of the determinant is implied by the following in-
 equality:

 I A(Y) - A(X) I -< 11 X X-1 Y - X I.

 We deal first with the special case, X = I, and prove that i A(I + A) - 1 I <
 A 11 . This follows from Lemma 1, (10), since 11 I + A 11 < 1 + 11 A 11, and
 (I + A)1 I-' > 1 - I A I (note that, for arbitrary x in Hilbert space 3C,

 (I + A)x I _ lx fl- A lx In ).nthe general case, put A = (Y- X)X-1.
 Then, by (1), I A(Y) - A(X) I = I A(YX-1) - 1 A A(X) = l(I + A) -
 1A(X) < A1II A(X) < IiY -X IilX- Xll K I

 Ad (40): One has H 1H2H i < I, so that, by Lemma 1, (10), A(H-'H2HIi) ? 1,
 and thus, by (10), A(H1) _ A(H2).

 Ad (50): By application of (10) and Lemma 1, (10),

 A(X) = [A(X)]nlln < 11 Xn Il/ n

 for all positive integers n, so that A(X) < lim 11 Xn ti/1n, the spectral radius
 of X.

 3. Location of the trace

 In this section we shall apply the theory developed above to establish the
 following result.
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 THEOREM 2. The trace T(A) of an arbitrary operator A in 'I is located in the
 convex hull of the spectrum of A. In particular, T(A) = 0 when A is a generalized
 nilpotent operator in DR.

 PROOF. It suffices to prove that T(A) lies in each closed half-plane H which
 contains the spectrum z of A. We may even assume that H is the left half-
 plane (Re X < 0). Indeed, consider in place of A the operator aA + ,3, where

 the complex numbers a and 3 are so chosen that the transformation X -* ax + 3
 maps H onto the left half plane, Re X < 0. Then T(A) and z are replaced by
 the trace aT(A) + ,3 and the spectrum ad + f, respectively, of the operator
 aA + ,.

 In order, now, to prove that Re T(A) < 0 when Re z < 0 we introduce the
 regular operator exp A, whose spectrum is exp z (cf. [1, p. 195]) and hence lies
 in the unit disc. It follows from this remark, by Theorem 1, (20) and (50), that
 exp Re T(A) = A(exp A) < 1, and hence Re T(A) < 0.

 As immediate consequences of this result, we have I T(A) < r, the spectral
 radius of A, and, in particular, a generalized nilpotent operator in on% has trace 0
 (since its spectrum consists solely of the number 0).

 4. Uniqueness of the determinant

 In this section we shall characterize the determinant in a factor M of type II,
 by means of some of the algebraic properties listed in ?2.

 THEOREM 3. A numerically valued function Al, which is defined on the group of
 regular operators in a factor CMt of type II, and which possesses the properties:

 (10) A1(XY) = A1(X)A1(Y), for regular operators X and Y,
 (20) A1(X*) = A1(X), for arbitrary regular X,
 (30) Ai(XI) = X, for some positive X 5 1,
 (40) A1(X) < 1 if 0 < X < I and X is regular,

 coincides with the determinant A defined in ?2.
 PROOF. From (10) and (30) it follows that A1(I) = 1. If U is unitary then

 [,,(U)]2 = Al(U)Ai(U*) = Ai(UU*) = A1(I) = 1.Sinceeveryunitaryoperator

 U ( e dEo has a square root, for example V ei012 dEo, we have

 A1(U) = [A1(V)]2 = 1. For an arbitrary regular operator X, introduce the polar
 decomposition X = UH, where U is unitary and H is positive and regular.
 Then A1(X) = z,(U)Ai(H) = A1(H). Hence, it remains to prove that 51(H) =
 A(H) for arbitrary positive regular H in DR.

 Condition (10), and the fact that zj(I) = 1, implies that the set of positive
 numbers X for which A1(XI) = X, is a subgroup of the positive reals. This sub-
 group differs from { 1}, by (30), and contains, therefore, arbitrarily small num-
 bers. For any given positive regular H, we can choose a number X in this sub-
 group such that XH < I. One has z1(XI)A1(H) = A1(XH) < 1, by (10) and
 (40). In particular, A1(H) is real. Thus A1(H) = [A1(Hl)]2 > 0. Moreover
 1 = /,(I) = A1(H)A 1(H-) so that A1(H) > 0.

 Since each positive, regular operator H has the form exp A, A self-adjoint,
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 it remains to prove that Al(exp A) = A(exp A), (= exp T(A)). To prove this,
 we consider the function T1(A) = log A1(exp A), defined on the self-adjoint

 operators A in ont. We shall show that T1(A) = T(A). For this purpose, we

 appeal to the uniqueness of the trace (cf. R.O. I, Theorem XIII, p. 219). In
 fact, if A and B are commuting, self-adjoint operators, then exp (A + B) =

 exp A exp B, so that, by (10),

 T1(A + B) = log Al[exp(A + B)]

 = log A1(exp A) + log Al(exp B) = T1(A) + T1(B).

 In order to prove that Tl(aA) = aTj(A) for arbitrary real a, consider first
 the case where A is positive. The real-valued function +(a) = Tl(aA) satisfies
 the functional equation, 4(a + b) = +(a) + +(b), and is monotone, since, for

 a < 0, +5(a) = log A1(exp aA) < 0 = +5(O) (note that exp aA < I, so that
 Al(exp aA) < 1). Thus 45(a) = p(1)a, i.e., Tl(aA) = aT,(A). Since T1(-A) =
 - T1(A), we have the same relationship if A ? 0. For arbitrary self-adjoint A,

 write A = A1 + A2 with A1 > 0, A2 < 0, and use the additivity of T1 to obtain

 Tl(aA) = aT,(A).

 From the monotonicity of ct(a), choosing a =-1, we have ct(- 1) = T1(-A) < 0
 for positive A, i.e.,

 T1(A) ? 0 if A > 0.

 By (30), we can choose a positive number X, X # 1, such that A1(XI) = X. Hence
 (log X)T1(I) = T1[(log X)I] = Tl[log(XI)] = log A1(XI) = log X. Since log X # 0
 this implies that

 T1(I) = 1.

 Finally, for arbitrary unitary U in on,

 T1(U*A U) = log A1[exp (U*A U)]

 = log Ai(U*(exp A) U) = log Al(exp A) = T1(A).

 From the properties of T1, noted above, it follows, now, that T1(A) = T(A),
 for arbitrary self-adjoint A in on, and we conclude that A1(X) = A(X) for
 arbitrary regular X in on.

 5. Related questions

 In this section we shall indicate the reasons which compel one to consider
 positive-valued determinants. We shall also discuss the possibilities of extending

 the determinant to the singular operators in MZ.
 Concerning the first of these questions, it is natural to ask whether or not a

 notion of determinant can be developed which, in the classical finite-dimensional
 case reduces to the usual determinant. Clearly one must introduce a normaliza-
 tion in order to avoid having an infinite determinant for, say, 21. In a manner
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 analogous to the normalization of the trace, such a normalization for deter-
 minants, in the n-dimensional case, should be accomplished by passing to an
 nth root of the usual determinant. One encounters, at this point, the difficulty
 of making a coherent selection of nth roots.

 Even if we ignore the problems arising in connection with this normalization,

 we are faced, in the development of a "signed" determinant theory, with the
 problem of constructing a non-trivial character, viz., the signum of the deter-

 minant, on the group of unitary operators in the factor. This character must
 satisfy certain additional conditions if the determinant theory is to be at all
 reasonable.

 The following theorem demonstrates the impossibility of constructing a
 character satisfying the barest minimum of such conditions.

 THEOREM 4. In a factor l of type II, or In (n > 2) there exists on mur, the
 group of unitary operators in M, no character x with the property x(G U) = X %(U),
 for all X of modulus 1.

 If M is a factor not of type In , n finite, then 1 is the only character on Mu,
 which is continuous in the uniform topology.

 PROOF. Let x be a character on M u such that x(X U) = X * x( U) for all complex
 numbers X of modulus 1. Write I = E1 + *** + En, where E1, * **, En are
 equivalent, orthogonal projections in M; and consider the unitary operator

 U = DEl + 2E2 + ... + nEn X

 where r is a primitive nth root of unity. The operator V = r U is clearly equivalent

 to U, i.e., V = W-'UW, for some W in MWu . Hence %(V) = x(W'l)x(U)x(W) =
 %(U). But, by assumption, x(V) = X(DU) = . X(U), which is impossible since
 t 51.

 Let M be a factor not of type In, n finite, and let t be a uniformly continuous
 character on Mu . Choose a projection E in M and consider the unitary operators

 U(X) = XE + (I - E), I X I = 1. The function +5(X) = t(U(X)) is a continuous
 character on the unit circle, and hence O(X) = Xm for some integer m. The integer
 m depends only on the relative dimensions of E and I - E (write m(E) in

 place of m). In fact, if F has the same relative dimension and co-dimension as E,
 then F = W'EW, W in MYru so that W-'U(X)W = XF + (I - F) (= V(X)),
 and therefore t(V(X)) = t(U(X)). We show that m(E) = 0. Choose an integer
 p > I m(E) I and decompose E into p equivalent, orthogonal projections
 E1, **,Ep in M (in case M is of type I.,, we assume D(E) to be infinite).
 Then, U(X) = U1(X) * U,(X), where U,(X) = XE, + (I - Eu). Since the E,
 all have the same relative dimension and co-dimension,

 Xm(E) = t(U(X)) = t(U1(X)) ... U(X)) = (XM(E),

 for each complex number X of modulus 1. This implies that p m(El) = m(E).

 Now m(E), m(El) are integers and p > I m(E) I, so that m(E) = 0. If M is
 of type I. and D(E) is finite, write XE + I - E = (XI)(X(I - E) + E). The
 above results show that t(XI) = t(X(I - E) + E) = 1 so that t(XE + I - E) = 1.
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 Thus t is 1 on the group generated by all U(X) ( I X I = 1, E in A). This
 group is dense in Mu yin the uniform topology, by the spectral theorem. Since
 t is uniformly continuous, t(U) = 1 for each U in Mu .

 With regard to the question of extending the notion of determinant to the
 singular operators in X, two different possibilities present themselves. On the
 one hand, guided by classical determinant theory, we can extend the determinant
 "algebraically" merely by requiring that it be zero on all singular operators
 in M. On the other hand, we can extend the determinant in an analytical manner
 by maintaining the definition in ?2 with the understanding that A(H) = 0

 when f log X dD(Ex) = - cc; in particular, A(H) = 0 if H has a nullspace.

 Except for continuity, both of these extensions preserve all the properties
 of the determinant noted in ?2 (with obvious modifications). The relation
 A(XY) = A(X)A(Y), for arbitrary X and Y in M, is proved with the aid of
 the following lemmas, the first of which refers to the algebraic extension, the
 second to the analytic extension.

 LEMMA 4. In a factor M of type II,, the product of two operators is singular
 unless both operators are regular.6

 PROOF. Suppose A'A = C with C regular. Then BA = I, with B = C-'A'.
 We show that A and hence A' are regular. Clearly A has nullspace { 0 } so that the
 range of A* is dense. Now the closure of the range of A is equivalent (in M)
 to the closure 3C of the range of A* (cf. R.O. I, Lemma 6.2.1). Since M is a
 finite factor, the closure of the range of A is 3C. Observe, moreover, that for

 each element x in 3C, fl B 11 11 Ax 11 _ 1f BAx 11 = 11 x 11 . Thus A is regular.
 LEMMA 5. For the determinant A, extended to singular operators by application

 of the definition in ?2, we have the following continuity properties:
 (10) limE to+ A(H + EI) = A(H), for H > 0.
 (20) A(Hi) _ IA(H2), when H1 ? H2 _ 0.
 (30) limn ,A(Xn) < A(X), when Xn tends to X uniformly.
 (40) limn,- A(Hn) = A(H) if Hn > H ? 0 and Hn tends to H uniformly.
 PROOF. Statement (10) is proved by applying Lemma 1, (40) to f(X) = X + E

 and observing that log (X + c) tends to log X, monotonically as E 0+, X > 0.
 If HI > H2 ? 0 and E > 0, then H1 + Ei ? H2 + Ei and H2 + Ei is regular,
 so that, by Theorem 1, (4?), A(H1 + Ei) ? A(H2 + Ei). Letting E -* 0+ we
 arrive at statement (20), by means of (1?). When Xn tends to X uniformly then
 X*Xn tends to X*X uniformly. If statement (3?) holds for positive operators,
 we see that

 lim A(Xn) = lim [A(XnX,)], < [A(X*X)] = A(X).
 n-xoo n--oo

 If, now, Xn > 0 and E > 0, then Xn + EI is regular and tends uniformly to the
 regular operator X + EI, so that A(Xn + EI) tends to A(X + cI). In view of
 statement (20), this implies that limn A(Xn) ? Jimn A(Xn + EI) = A(X + EI)

 6 In an infinite factor, there are singular operators whose product is regular; for example,
 one can find U such that U*U = I but UU* = E, a projection different from I.
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 for every positive E. Now let - tend to 0+ and apply statement (10). Finally,
 statement (40) is an immediate consequence of statements (20) and (3?).

 With the aid of the above lemma, we can prove that A(XY) = A(X)A(Y)
 unrestrictedly (for the analytic extension of A). By an argument employed in
 the proof7 of Theorem 1, it suffices to prove A(HKH) = A(H)A(K)A(H) for
 positive H and K. For this purpose, note that, for E > 0,

 A(c) = (H + E2(K + cI)-')(K + cI)(H + E'(K + El)')

 = HKH + cH2 + 2E2H + E4(K + EI)f > HKH.

 Now A (E) tends to HKH uniformly as E tends to 0. Thus, by (4?) of the preceding
 lemma and the regularity of H + E2(K + El)-', K + Ei;

 A[A(c)] = A(H + 2(K ? l)-'1)A(K + cI)A(H + E2(K + cI)') -> A(HKH)

 as E -*0+. Again, by (4?), A(H + c2(K + El)-') - A(H) and A(K + El) -* A(K)
 as E -* 0+, since H + E2(K+ ?l) -' > H and K + EI > K. Thus A(HKH) =
 A(H)A(K)A(H) as we wished to prove.

 We should remark, at this point, that the two extensions introduced above

 actually differ from one another. In fact, let H = f X dEx where D(Ex) = X

 (cf. R.O. II, Lemma 3.1.3). Then, for the analytic extension, A(H) =

 exp flog X dX = le, whereas A(H) = 0 for the algebraic extension, since H is

 singular.

 Although, for extensions other than the algebraic extension, the determinant
 is non-zero on some singular operators, we shall show:

 LEMMA 6. If Al is an arbitrary extension of the determinant from regular operators
 to all operators in a, and X is an arbitrary operator with a nullspace, then A,(X) = 0

 (in fact, we shall only use that Al(XY) = Al(X)Al(Y), and that Al i 1).
 PROOF. Let E be the projection on the orthogonal complement of the nullspace

 of X. Then E is in M and E $ I. Moreover, X = XE, so that A,(X) =
 A,(X)A,(E). Thus it suffices to prove A,(E) = 0 for all projections E in T
 which differ from I. Since A,(E) = A1(E2) = [A,(E)]2, we see that A,(E) equals
 0 or 1. Observe that A,(E) = A,(F) if E - F (i.e., E = U-FU for some unitary
 operator U in M). Thus A1 has the same value d(a) for all projections of dimen-
 sion a. Moreover, d(a) = 0 if a < -, since, in this case, we can choose two
 orthogonal projections E and F, each of dimension a, so that d(a)2 =
 A,(E)A,(F) = A,(EF) = A1(O). But A1(O) = 0; for we can choose X in M such
 that A,(X) $ 1, whence A1(O) = A,(OX) = A1(0)A1(X). We show, now, that
 d(1 -lA) = d(1 -2A) when 0 < ( < -, by repeated application of which,
 we obtain d(1 -d) = d(v) for some v in the interval (0, 2), so that d(cv) = 0
 for all a less than 1. In fact, choose E and F such that F _ E, D(E) = 1- 3

 In a finite factor every operator X has a decomposition X = UH with H = (X*X)i
 and U unitary (recall that, in a finite factor, any partially isometric operator has a unitary
 extension).
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 D(F) = 1 - 2,. Let G = (I -E) + F, and observe that

 D(G) = ,3 + (1- 2,) = 1 -

 and that F = EG, so that d(1 - 2,#) = [d(1 -)]2 = d(1 - ,) (recall that
 d(a) is 0 or 1).

 With the aid of the above lemma we can prove:
 THEOREM 6. No extension of the determinant A from the regular operators to all

 operators in E, is continuous in the uniform topology.
 PROOF. Among all singular operators in X, those with a nullspace lie dense,

 in the uniform topology.8 For positive singular operators, the necessary ap-

 proximation follows from the spectral theorem. For arbitrary singular X in A,
 write X = UH, where U is unitary and H > 0. Since X is singular and U is
 regular, H is singular. Determine an operator K in A, with a nullspace, such
 that 1 K - H 11 < c. Then 11 UK - X 11 < a, and UK has the same nullspace
 as K.

 If A1 is a uniformly continuous extension of the determinant then A1 is zero
 on all singular operators by the above remark in conjunction with the preceding
 lemma. In other words, A1 would have to be the algebraic extension of A. This
 extension is, however, not continuous. Indeed, let H be positive and singular
 and such that the analytically extended determinant is a($ 0) on H (cf. the
 example preceding Lemma 6). The regular operators H + (1/n)I tend to H
 in the uniform topology. Lemma 5, (10), shows that A(H + (1/n)I) -* a. Hence
 the algebraic extension of A is not continuous, from which the theorem follows.

 We may remark, in conclusion, that the proof of Theorem 3 contains a proof
 of the fact that no determinant with properties (1?)-(4?) of Theorem 3 exists
 in an infinite factor; since only finite factors admit a trace, and, by the proof,
 the existence of such a determinant implies the existence of a trace.
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