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 1. Introduction

 In [2]2 we classified the isometric mappings of one C*-algebra (uniformly
 closed, self-adjoint operator algebra) onto another. It was remarked in that
 paper that the results obtained were a non-commutative extension of results of
 Banach [1] and Stone [7]. While this was true in spirit, we were well aware that
 it was not accurate to the letter. Banach and Stone deal with the algebra of real
 continuous functions on a compact-Hausdorff space, and our results concerning
 C*-algebras are actually the non-commutative analogue of results concerning
 the complex function algebra. The strict non-commutative analogue of the real
 function algebra is the Jordan algebra of self-adjoint elements in a C*-algebra
 (Jordan C*-algebra). The complex and real theorems follow very easily from
 one another in the commutative case, so that one might justifiably consider the
 C*-algebra theorem an extension of both of the function algebra theorems.
 Despite such trifling considerations, two questions still remain: what are the
 isometries of one C*-algebra onto another, and what are the isometries of one
 Jordan C*-algebra onto another? At the time [21 was written, the C*-algebra
 seemed the more natural object to consider. In view of the results obtained,
 answering the Jordan C*-algebra questions appeared to be an unnecessary decora-
 tion to the theory. We felt that the Jordan C*-algebra results could be obtained
 from the C*-algebra results in the same way that the real function algebra theorem
 follows from the complex function algebra theorem (viz., by showing that the
 complexified linear map is everywhere isometric). Subsequent investigations
 have changed our attitude in this matter. An important application of these con-
 siderations requires a Jordan C*-algebra theorem for one thing, and our attempts
 to derive this theorem directly from the C*-algebra theorem failed for another.

 The result in question is contained in Theorem 2 of ?2 and states (in normal-
 ized form) that an isometry between two Jordan C*-algebras which carries the
 identity into the identity is a C* (Jordan) -isomorphism. This theorem was
 eventually proved with the aid of a Generalized Schwarz Inequality (cf. Theorem
 1 of ?2). In effect, an alternative ending has been given to the proof of [Theorem
 7; 2]. This ending is by no means simpler or shorter than the one given in [2]
 (though it is, perhaps, less contrived), but it is flexible enough to allow us to
 draw the desired Jordan C*-algebra conclusion.

 The critical application of these results is contained in Corollary 3. A discussion
 accompanies Corollaries 3 and 4, but a few additional remarks are in order.

 1 This paper was written while the author was a National Research Fellow.
 2 Numbers in brackets refer to the bibliography at the end of this paper.
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 Experience with C*-algebras shows them to be quite untamed as a general class
 of algebras. It may well be that the algebraic invariants we attach to C*-algebras
 carry the question of the algebraic nature of C*-algebras as far as it can go in
 general terms. These invariants have the merit of being a very natural extension
 of the invariants one has in the commutative case. The task left in investigating
 a particular C*-algebra or a particular class of C*-algebras is the computation of
 the pure states.

 Section 2 contains, in addition to the assertions indicated, several related re-
 sults. Section 3, the concluding section, contains some examples and remarks
 which settle many of the questions brought up by the results of ?2.

 2. The principal results

 The following theorem is the main step toward our final results.

 THEOREM 1 (The Generalized Schwarz Inequality). Let 2I be a C*-algebra, and
 let 0 be a linear order preserving map of 2I into the algebra of all bounded operators
 on some Hilbert space such that II 11 < 1. Then 4(A2)' > 0 (A)2 for each self-
 adjoint operator A in W.

 PROOF. Since the theorem deals only with the real algebra generated by a
 single self-adjoint operator A and I at one time, we may restrict our attention
 to such algebras (as domain algebras for 4). Such algebras are (algebraically)
 isomorphic to the set of all continuous (real) functions on the spectrum of the

 operator A, and thus we can consider maps 4 of the described type from C(X)
 to bounded operators (where X is a compact subset of the reals). We denote by
 the same symbol, the operator and its representing function. Let E1, * **, E
 be characteristic functions of open subsets and closed subsets of X such that

 EiEj = 0 and such that EaiEi is close to A uniformly. We shall extend 4,
 preserving its order and norm properties, to the space generated by C(X) and

 the functions E1, l , En.. Suppose, for the moment, that this is done, and
 suppose, also, that

 (1) 4[(EaiEi)2] _ [4(EaiEi)]2.

 By uniform continuity of 4, we have that 4[(EaiE )2] is close to 4(A2) and
 [4(EaiEi)]2 is close to 4(A)2. The arbitrariness of the degree of approximation
 implies that 4(A2) ? 4(A)2. It remains to prove that 4 can be so extended and
 that (1) holds.

 We prove, first, the inequality (1). Letting 4(Ei) = Ai, (1) becomes EaiAiA
 (EaiAi)2. To prove this last inequality, we must show that

 (2) ((Za Ai)x, x) _ ((ZaiAi)2x, x) Za|Aix 112

 for all x in the Hilbert space. We note that since Ei. 0 and ZEi < 1, we have
 Ai > 0 and ZAhi < I. We shall prove a more general inequality than (2), viz.,

 (3) E(Aiyi, yi) _t II EAiyi 112
 when the positive operators Ai satisfy the condition ZAi < I. The inequality
 (3) yields (2) when we set aix = yi. To prove (3) we consider the direct sum
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 of n copies of the original Hilbert space and introduce the positive semi-definite
 inner product

 [(z1* **, z.), (xi X,)] = Z(Azi , xi).

 The Schwarz Inequality holds for this inner product, and we apply it to the

 vectors (z, , z), (y., * * *, y.) where z = IAiyi. This gives

 l z 112 = jA jy yj) = [(z, , * z), (yi, , y*)]

 = [(Z. Z) , (Z. ** Z)1] (Yl, * * * ', nX (Y,, Y. Xa)]

 = (ZAiz, z)i(E(Ajyj, yi))i < (z, z)1(E(Ajyj, yi))*

 = I I (E(Ajyj, yi))'
 from which (3) results.

 We show now that O can be extended. For this purpose, we pattern our argu-
 ment after that which establishes the Riesz representation theorem for linear
 functionals on C(X). In fact if E1 is the characteristic function of an open set,
 we choose a monotone increasing sequence (An) of continuous functions which
 approach E1 pointwise (if E1 is the characteristic function of a closed set, we

 deal with 1 - E1). Then (4)(Aj)) is a monotone increasing sequence of operators
 bounded above by +(I) which, according to [8], has a strong limit O(El). As de-
 fined, 4(E1) is unique. In fact, let (Ba) be another sequence of functions with
 the same properties as (An). Denote the strong limit of (4)(Bn)) by O(E1)', and
 let x be a vector in the underlying Hilbert space. We show that O(E1)' = O(E1)
 by showing that (O(El)'x, x) = (4)(El)x, x). Indeed (4)(El)'x, x) = limn(4)(Bn)x, x)
 and (4)(E1)x, x) = limn(4)(Aj)x, x). Now, by the Riesz representation theorem,
 the positive functional ()( . )x, x) on C(X) defines a measure , on X, and, by the

 monotone convergence theorem, limn(4)(An)x, x) = g(El) = limn(4)(Bj)x, x),
 from which the uniqueness of O(E1) follows (this proves that if E1 happens to
 be in C(X), the old and new definitions of O(E1) agree). We extend 4 by linearity
 to the space generated by E1, X , En and C(X), i.e., to all functions of the
 form alE1 + * * * + a.E. + B with B in C(X). That 4 so extended is uniquely
 defined follows from the fact that if alEl + * + anEn + B represents 0 then
 ailAi+* + + + anA + B is dominated by some constant (for all m) and
 tends pointwise to 0, where At() (or 1 - A ") was used to define O (Ei). Thus,
 by the dominated convergence theorem,

 (4(alA ( + * + nA + B)x, x)
 - ([ai4)(Am,)) + * + a~n4(A(n)) + O(B)]x, x)

 tends to 0. This limit is, however, ([ai4(El) + * + aOno(En) + 4(B)]x, x), and
 thus ai4(El) + * + an4(En) + 4(B) = 0. Since (4(. )x, x) is a positive linear
 functional on C(X), the integral (q5(alEl + * + anEn + B)x, x) of alE1 + *
 + anEn + B is non-negative if alEi + + anEn + B > 0, so that 4 is
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 order preserving. This together with the fact that +(I) < I implies that the ex-

 tended 4 has norm less than or equal to 1, and the proof is complete.

 With the aid of The Generalized Schwarz Inequality we prove:

 THEOREM 2. Each isometry p of the Jordan algebra of self-adjoint elements in a
 C*-algebra 21 onto the Jordan algebra of self-adjoint elements in the C*-algebra f,
 when extended linearly to all of 2f, has the form p = U *4) where 4 is a C*-isomorphism

 of St onto 2f, and U is a self-adjoint unitary operator in the center of 21, viz., p(I).
 PROOF. Since I is an extreme point of the convex set of self-adjoint elements

 of norm not exceeding 1 in 2f, p(I) is an extreme point of the corresponding set
 in f, (cf. [2]). An examination of the function representation of the uniformly
 closed algebra generated by p(I) and I shows that p(I) is a (self-adjoint) unitary
 operator U. Now the map Uop takes I into I and is isometric on self-adjoint

 elements. The hypotheses of [Lemma 8; 2] can be weakened to include maps

 which are isometric on self-adjoint elements alone, and one can still conclude

 that if such a map preserves the identity it preserves adjoints. Indeed, all that
 was needed in the proof of this lemma was the fact that the map in question

 is isometric on operators of the form A + inI, A self-adjoint, n an integer (which

 is immediate from the hypotheses). Thus Uop preserves adjoints. Since p maps

 onto the set of self-adjoint elements in sb., multiplication by U sends each self-
 adjoint element in 2f, into a self-adjoint element. Thus U is in the center of
 2f .Letobe Uop.

 It was remarked in [21 that for self-adjoint A of norm less than or equal to 1,

 I - A II < 1 is a necessary and sufficient condition for A to be positive. Thus 4
 preserves order (as does +-'). Since 4 is onto, there exists an operator B in 21

 such that +)(B) = 4)(A)2 < 4)(A2), so that B < A2. However, for 4-', we can

 assert-'([4)(A)]2) = B > [&-'(0(A))]2 = A2. Thus B = A2, so that4)(A2) =(A
 and the proof is complete.

 It is now a simple matter to establish the following results:

 CORROLARY 3. If 21 and 22 are two C*-algebras with pure state spaces (1 and G2
 respectively and function representations 21 , V2 respectively on these state spaces,
 and if O91 and W2 are homeomorphic under a map which carries 21 onto V2, then 2h
 and %2 are C*-isomorphic under a map which induces the given homeomorphism.

 PROOF. In [3] the function representation mentioned in the statement of this
 corollary is discussed in detail. The spaces (s, (P2 are the w* closures of sets of
 extreme points of the positive linear functionals that are 1 at I on ?I and 2
 respectively. An operator in the algebra is mapped into that function whose value

 at a given pure state is the value of the given pure state on the operator. This
 representation is a linear isomorphism between the operator algebra and a
 linear subspace of the set of complex, continuous functions on the pure state

 space, which sends scalars into constants, maps the * operation into complex
 conjugation, and preserves the norm of self-adjoint operators. Since the given

 homeomorphism maps V, onto 22, it sends the real functions in V, onto the real
 functions in V2 in a linear, norm preserving manner. This induces a linear iso-
 morphism 4 of 2I onto 2I2 which preserves self-adjoints and their norms, and
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 sends I onto I. Thus, by Theorem 2, 0 is a C*-isomorphism and induces the
 given homeomorphism by its very definition.

 COROLLARY 4. If 2[ is a C*-algebra, a, its pure state space, V the function repre-
 sentation of 2[ on (P, and if V is closed under pointwise multiplication of functions
 then 2[ is commutative, the representation of 2[ as V is an algebraic isomorphism, and
 V is the set of all continuous, complex-valued functions on the compact-Hausdorff
 space of pure states of W.

 PROOF. That V is the full set of functions on the pure state space follows from
 the Stone-Weierstrass Theorem [7]. Under the given hypothesis V is a com-
 mutative C*-algebra (under pointwise multiplication) and the representation of
 2 as V provides a linear isomorphism between 2f and this C*-algebra which is
 norm preserving on self-adjoint elements and takes I onto I. From Theorem 2,
 it follows that the representation is a C*-isomorphism. But V is commutative,
 and a C*-isomorphism of a commutative algebra is an isomorphism. Thus 2 is
 commutative and the representation is an isomorphism.

 Of course these last results would hold if, instead of the pure state space, we
 used the space of all states. Our choice of the pure state space is motivated by
 the following considerations. In the case of a C*-algebra generated by a single
 self-adjoint operator A and the identity operator I, the pure state space is com-
 pletely identifiable with the spectrum of A (in fact, the algebra is isomorphic to
 the set of continuous functions on the spectrum of A). This space is then "the
 spectrum of the algebra". Two such algebras are isomorphic if and only if they
 have homeomorphic spectra. It is natural then to call the pure state space "the
 spectrum of the algebra" for arbitrary C*-algebras. With this terminology,
 Corollary 3 becomes: two C*-algebras are C*-isomorphic if and only if they have
 homeomorphic spectra via a homeomorphism which preserves the representing
 function system. The representing function system, in its relation to the set of
 all continuous functions on the pure state space, measures the commutativity of

 the algebra (when these families of functions coincide, Corollary 4 tells us that
 the C*-algebra is commutative). In giving the complete set of algebraic invariants
 for commutative C*-algebras only the spectrum need be mentioned, for the
 equality of "the index of commutativity" is contained in the assumptions. To
 point this situation out most strikingly, it helps to observe that one can find
 two C*-algebras (one of them commutative) with identical spectrum but which
 are not C*-isomorphic; viz., any non-commutative C*-algebra and the set of all
 continuous functions on its spectrum.

 It is worth pointing out that Sherman's Theorem [6] is a natural and easy
 consequence of The Generalized Schwarz Inequality. Sherman's Theorem states
 that if the self-adjoint elements of a C*-algebra form a lattice in their natural
 order then the algebra is commutative. In fact, if the self-adjoint elements form
 a lattice then they are linear lattice isomorphic to a C(X), by [4]. However, in
 proving Theorem 2 with the aid of The Generalized Schwarz Inequality, we
 proved:

 COROLLARY 5. A linear order isomorphism between two C*-algebras which carries
 the identity of one algebra into the identity of the other is a C*-isomorphism.
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 A linear order isomorphism is an order preserving linear isomorphism whose
 inverse is also order preserving. It follows then that the self-adjoint elements in

 the C*-algebra of Sherman's Theorem are C*-isomorphic with the C(X). But,
 since the C(X) is commutative, the C*-isomorphism is an algebraic isomorphism,
 and the C*-algebra is commutative. These remarks concerning Sherman's The-
 orem are intended only to illustrate the power of The Generalized Schwarz In-
 equality in dealing with order questions in operator algebras. Actually, the proof
 given by Sherman avoids the weighty considerations involved in The Generalized
 Schwarz Inequality by taking early advantage of the commutativity available
 at one end of the line.

 In [2] and in the present paper, our key results have concerned linear iso-
 morphisms, with additional properties, of one C*-algebra onto another. It is
 natural enough to inquire whether or not the onto restriction can be dropped.
 The general answer is very definitely no, and the function representation of a
 non-commutative C*-algebra on its pure state space illustrates this. In Corollary

 5, one cannot even drop the assumption that the inverse map be order-preserving
 as we shall illustrate by example in ?3. In spite of these facts, if we assume that
 our linear map preserves absolute values of self-adjoint operators and sends I
 into I, we can drop all other restrictions on the map, even that it be an iso-

 morphism, and conclude that it is a C*-homomorphism. Although the assump-
 tion on absolute values appears, at first glance, to be only slightly stronger than
 the order preserving assumption, it should be observed that this hypothesis
 actually implies information concerning the set of self-adjoint operators in the
 algebra which commute with a given self-adjoint operator. Indeed, A v 0 =
 2(I A I+ A), and A v 0 is the smallest operator in the algebra which commutes
 with A and is greater than both A and 0. We prove:

 THEOREM 6. If 4 is a linear map, which sends I into I, of one C*-algebra into

 another, and 0(1 A I) = I O(A) I for each self-adjoint A in the algebra then 4 is a
 C*-homomorphism.

 PROOF. If A and B are operators in our algebra

 0 ? 4[(a-A* + B*)(aA + B)] = I a 120(A*A) + 2Re{ao(B*A)} + 4(B*B)

 where Re C = (C + C*)/2 for any operator C. Thus, for each x in the Hilbert
 space,

 I a 12(X0 (A*A)x, x) + 2Re (ao(B*A)x, x) + (O(B*B)x, x) > 0,

 and 2Re (ab(B*A)x, x) = 2 1 a I Re (04(B*A)x, x) where a = j a j 0. Choosing
 a so that 0 = 1, we conclude

 (O(A*A)x, x)(4(B*B)x, x) _ I Re (q(B*A)x, x) 12

 Now, if (4(B*A)x, x) = I (O(B*A)x, x) I 01, we replace A by 61A, so that the
 left side of this inequality remains the same and the right becomes I (c(B*A)x, x) i2.
 Thus we have

 (4) (O(A*A)x, x)(O(B*B)x, x) _ I (O(B*A)x, x) 12

 for all A and B in our algebra and all x in the Hilbert space.
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 Suppose that C = AB is a positive operator with A a positive operator. Then,

 by (4)

 (O(A)x, x) (b(B*AB)x, x) > I (4O(A'A'B)x, x) I2 = I (O(C)X, x) 12.

 Since +(C) is positive, if 4(A)x = 0 then O(C)x = 0, i.e., the null space of +(C)
 contains the null space of +(A). With A a positive, regular operator in our algebra,

 (A2 X WI) v 0 = [(A- XI) v 0][A + X1I]

 and

 (A- XI) v 0 = [(A2 - XI) v 0][A + X'Il-'

 for X > 0, so that 4[(A2 - XI) v 0] and 4[(A - X*I) v 0] have the same null
 space. However, since 4 preserves absolute values,

 4[(A2 _ XI) v 0] = (4(A2) - XI) v 0, 4[(A - XI) v 0] = (+ (A) - XI) v 0,

 and the null spaces of these last operators are EA , Fxi respectively, where IEa.,
 {Fa. are the spectral resolutions for 45(A2) and +(A) respectively. Thus

 4(A)2 = f X2dFx = f X2dEx2 = f adEa = (A 2).

 It follows easily, now, as in [Theorem 7; 2], that q6(B)2 = O(B2) for all operators
 B in the algebra, and thus 4 is a C*-homomorphism.

 3. Remarks and examples

 The crucial tool for our investigation was The Generalized Schwarz Inequality.
 One might wonder whether the standard proof of the ordinary Schwarz In-
 equality would apply to our general situation to give a simple proof. Unfortun-
 ately this is not the case. Indeed, the familiar argument yields 0 < 44[(aA + I)2] =
 a2O(A2) + 2a4)(A) + I for A self-adjoint and a real, from which we would wish
 to conclude that O(A2) > O(A)2 as in the case where 4(A2) and +(A) are real
 numbers. When O(A2) and +(A) commute, one can reduce the problem to the
 real-valued case, and the result follows from these considerations. When O(A2)
 and +(A) do not commute, one cannot conclude the desired inequality by these

 means as the following example shows. Choose B = 2' 2 and C = ( -1);
 an easy computation then shows that a 2B + 2aC + I > 0 for all real a, how-

 ever, B E C2. The non-commutativity of the image of 0 forces us to abandon
 the usual techniques.

 Our principal reason for developing The Generalized Schwarz Inequality was
 for its application to Theorem 2 and thence to Corollary 3. It should be noted
 that a proof of these last results, in the case of rings of operators (or, more gen-
 erally, whenever the C*-algebra contains an abundance of projections), is pro-
 vided in [Theorem 7; 2] by the alternative ending for the proof of Theorem 7
 given in the ring of operators case. Can one then deduce these results for the
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 arbitrary C*-algebra from the case where there are an abundance of projections

 by some device such as that employed in the proof of The Generalized Schwarz

 Inequality to bring idempotents into the picture? One of the means for assuring

 the existence of sufficiently many projections in a C*-algebra is to require that

 the projection on the closure of the range of an operator be in the algebra (cf. [5]).

 We shall produce an example of two (abelian) C*-algebras, a *-isomorphism be-

 tween them, and a positive operator in one of them such that the isomorphism

 cannot be extended to the algebra generated by the projection on the closure

 of the range of this operator and the original algebra. It follows that the "exten-

 sion" procedure cannot be used to prove Theorem 2 and Corollary 3. For our

 example, let Eo , El E2, * * * be an infinite set of orthogonal non-zero projections
 with sum I, and let 91 be the set of operators of the form caoEo + Ztcoi a Ei
 where (ai) is a convergent sequence of complex numbers and ao is its limit. For

 92 we take the algebra EZ==o aiEi with (ai) a convergent sequence of complex
 numbers (212 contains 9,). Both 9I and 9I2 are C*-algebras. Define a map 0 of
 9I2 onto 9I, as follows:

 o(Z7=o aiEi) = aEo + i= ai-rEi

 where a is the limit of the sequence (ai). The map 4 is clearly a *-isomorphism
 of 92 onto W,. If (ai) is a sequence of positive reals which converges to 0 then
 A = Z=0 a1E3 is a positive operator in f? with (0) nullspace. However, +(A)

 E1m ai-1Ei has Eo as the projection on its null space and, hence, I - Eo as the

 projection on the closure of its range. If 0-' were extendable from 21f to

 {21t, I - EoI

 then one would have

 A = 07'(O(A)) = 0-1((I - Eo)O(A)) = (I - -F(Eo))A = A - -'(Eo)A,

 so that 0-l(Eo) is contained in the projection on the null space of A and is there-
 fore 0.

 It should be noted that, for the purposes of Corollary 3, Theorem 2 was actu-
 ally necessary and [Theorem 7; 2] was not applicable. To illustrate this, we shall
 exhibit a C*-algebra and an operator therein whose representing function on the
 pure state space of the algebra does not have the same norm as the operator (of
 course the operator will have to be non-normal). In fact, let the C*-algebra be

 all 2 x 2 complex matrices. The pure states of this algebra are all given by vectors

 x of the underlying 2-dimensional unitary space, and the value at a given operator

 A is (Ax, x). The operator (8 1) has norm 1 but the norm of its representing

 function on the pure state space is sup {fl(1 - ,32)I 0 < < 1} =
 Our final example will show that the hypotheses of Corollary 5 cannot be

 relaxed to allow an order preserving linear isomorphism in place of the linear

 order isomorphism, i.e., we shall give an example of an order preserving linear
 isomorphism of one C*-algebra onto another whose inverse is not order pre-
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 serving (or equivalently, by Corollary 5, which is not a C*-isomorphism). For

 both our C*-algebras, we choose the set of complex functions on a two point

 space (that is, pairs of complex numbers under coordinatewise multiplication and

 addition). Our linear isomorphism is given by the matrix (23 2) acting on the

 complex number pairs in the standard fashion. This linear transformation is an

 isomorphism, since its determinant is non-zero; it clearly takes positive functions

 into positive functions, the identity function into the identity function, and real

 functions into real functions; however, it takes the non-positive function (1, - 1)

 into the positive function (0, 4).

 One can check directly that the proof of The Generalized Schwarz Inequality

 remains valid (with trivial modifications) when q5 is an order preserving linear
 map with norm less than or equal to 1 of a C*-algebra which doesn't contain the
 identity operator I. However, it is a simple matter to prove the inequality in this

 case by extending q5 to the algebra W, generated by our algebra 9?I and I. In fact,
 define: qs(aI + A) = al + +5(A) for A in the algebra. If al + A _ 0 then
 a ? 0, for otherwise A would have an inverse and f contain I contrary to as-
 sumption. Thus aI > 0 and aI _ -A so that aI ? (-A) v 0 from which
 ax _?1 1 (-A) v 0 11 Since 4) has norm less than or equal to 1, a _14 [(-A) v 0] H

 or aI ? q5[(-A) v 0]. Now 0[(-A) A 0] is a negative operator, since 4 is order
 preserving, and thus al > q5[(-A) v 0] + 4 [(-A) A 0] = 0( -A) =-+(A).
 Thus 4), as extended, is order preserving. With this extension of The Gen-
 eralized Schwarz Inequality, Corollary 5 goes through in the non-unit situa-

 tion with the added assumption that the map (p as well as '-1 has norm less than
 or equal to 1, i.e., the assumption that 4) is isometric. In this form Corollary 5
 is probably the natural generalization of Theorem 2 to the non-unit situation.
 In the non-unit case there is no canonical procedure, such as examining the
 image of the identity operator, for telling whether or not the given isometry is in
 normalized form. When an identity is present, the order preserving assumption

 iseasily seen to be equivalent to the assumption that the identity goes into the
 identity. Undoubtedly, more can be said about the non-normalized isomet-
 ries in the non-unit case. At any rate, Corollary 5, as extended to the non-unit

 case, suffices to establish Corollary 3 in the non-unit case.
 In conclusion, we may remark that, even in the case where the self-adjoint

 algebras studied are not uniformly closed, the various assumptions on the maps
 considered assure their uniform continuity and hence their extendability to the
 uniform closure of the algebras. By these means, our results can be applied to
 not necessarily closed self-adjoint operator algebras.
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