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field-value averages, the covariant four-potential operators are Ai(o) =
tQ(V/H-1'Spi), i = 1, 2, 3, and t(o) = kQ(VHiY®p4). Averages over
mutually space-like regions commute. The total energy of the field is
Q2(H) - c(Al(si) + A2(s2) + Aa(s3) + 4(s4)), where s1, S2, S3, s4 is any real,
square-integrable, contravariant four-current density. Expectation values
of (V ..A -. ci(b/8t)c)(4) are always zero (on photons), and (02A ) (4)
- -c-'(si, 4))I, i = 1, 2, 3, (Q24)(4) = c-1(S4, 0)I, so Maxwell's equations
are satisfied. A photon is polarized parallel to its electric vector and per-
pendicular to its magnetic vector-both perpendicular to its momentum.
Its energy satisfies Planck's relation E = hp, where v is the frequency of
the induced field.

*This note summarizes a longer paper submitted for publication elsewhere. It was
written, with the continuing advice of Prof. I. E. Segal, for presentation to the Depart-
ment of Mathematics of the University of Chicago in partial fulfillment of requirements
for the Ph.D. Most of the work was done while under contract with the Office of Naval
Research.

1 Stone, M. H., Linear Transformations in Hilbert Space, Am. Math. Soc. Coll. Publ.,
XV, New York, 1932.

2 Fock, V., Zeits. f. Phys., 75, 622-647 (1932).
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1. Introduction.-In this note the authors present a proof of a conjec-
ture of F. J. Murray and J. v. Neumann' concerning normalcy of factors.
A ring of operators2 CR is said to be normal if each subring 3 of CR coincides

with the set of operators in CR each of which commutes with every operator
in W'M, where W'& is the ring of operators in CR each of which commutes with
every operator in S. In symbols, normalcy requires that ('aY)a'R = 8
for each subring 3 of CR. The center of a normal ring (R consists of the
operators a I, a complex (put 3 = {a I}); i.e., MR is a factor. J. v. Neu-
mann- proved8 that the factor (B of all bounded operators is normal. The
question of which factors are normal was raised by F. J. Murray and J. v.
Neumann (R.O. I, p. 185). They showed that all factors in case I (the
discrete case) are normal and exhibited examples of non-normal factors
in case II (the continuous case). Their later results establish the non-
normalcy of each member of a restricted class of factors in case II, viz.,
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the approximately finite factors (cf. R.O. I, pp. 209, 229; and R.O. IV,
Theorem XIV, p. 781, Lemma 5.2.3, p. 787). The presumption is that no
factor in case II is normal (cf. R.O. I, p. 185). We shall show that this is
actually the case, and, indeed, that one can choose a subfactor which violates
the normalcy.
The proof of the non-normalcy of factors in case II proceeds in four

stages: a lemma concerning operators "almost in the center" of a finite
factor is proved; the existence of maximal approximately finite subfactors
of a factor of type II1 is established; it is then shown, for each non-
approximately finite factor of type III, that every maximal approximately
finite subfactor violates normalcy; and, finally, the case II,, is reduced to
the case II,.

2. Almost Central Operators.-We note first a simple relation valid for
functions on a locally compact group and reprove, as a special consequence
of it, a result in R.O. IV (Lemma 4.7.1). The purpose of this section is to
establish the following extension of the cited result.
THEOREM 1. For a given e > 0, let the operator A in a factor t of type

I1 (or In) satisfy the following conditions4

(i) [[AX -XA]J < elIXIIfor all X inJ,
(ii) T(A) = 0.

Then [[A]] < e
LEMMA 1. Let G be a locally compact group and p an integrable and square

integrable function on G. Define II|p12 = fG (o(g) 2dg, where dg refers to
left-invariant Haar measure on G. Introduce the translated functions je,:
(pS(g) = (p(s-1g), s in G. If fG(p(g)dg = 0 then

.TG(jlk - (ps1I2 - 211(pI2) ds = 0.

Hence, for some a and b in G,

II'P - (Pa11 2 < 211|I |2 .< |cao - (Pb 1|2.
Proof. Since llpsII2 = 1k0112I

I|I - (Psi12 -211- p 12 =-2Re fG 'p(g)p(s -'g) dg.
Defining S(g) to be (p(g-'), the integral on the right side becomes the con-
volution p*Co at s; and

fG(o*-(s) ds = fG(p(s) ds-fG@(s) ds = 0.

LEMMA 2 (cf. R.O. IV, Lemma 4.7.1). For a given e > 0, let a self-
adjoint operator A in afactor 9) of type In (n = 1, 2, . . .) satisfy thefollozing
conditions

(i) [[AX - XA]] < eIjX f l
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(ii) T(A) = o.

Then [[A]] < e/Vi.
Proof. We can assume that 91 is the full ring (B. of linear transformations

on n-dimensional unitary space, since algebraic * isomorphisms between
91 and G?n preserve trace5 and bound. Choose a basis el, e2, . .., en consisting
of mutually orthogonal unit eigenvectors for A. Then A = diag { X1, X2,
... n}. Introduce the permutation matrices U, U2, ... by Upeg =
eq-s where subscripts are read modulo n. Then U-A U9 = diag {Ixi,
X2-8p ..* *Xn-s I * Since [ [VB ] ] = [ [B ]] for arbitrary B, and unitary V,
both in 9, we infer from (i) that [ [A Us - USA]]2 = [[U-8AUs - A]]2 =

(1/n) EI B-s-xol 2 < e 2. In Lemma 1, take G as the additive group of
g1

integers modulo n, and let (p(g) = Xg. It follows, then, that

n ~~~~~n

2[[A] = 2(1/n) __ Xo'I . (1/n) Z -x07_I2 < e2,forsomes.
g=1 ~~g= 1

Proof of Theorem 1. It suffices to prove that (i) and (ii) imply [[A]]
< e/V2 for A self-adjoint. In fact, for arbitrary A, write A1 = (1/2)
(A + A*), A2 = (1/2i)(A - A*), and observe that

[[A ]]2 = T(A *A) = [[A1]]2 + [ [A2]]2 (since T(A1A2) = T(A2A1)).

Moreover, [[AjX - XAj]] < el XI|, so that [[Aj]] < e/V/2, j = 1, 2; and
thus [[A]] < e.
Given a > 0, one can determine real numbers Xk and orthogonal spectral

projections Ek, k = 1, 2, ..., m, for the self-adjoint operator A such that
m

E Ek = I and
k = 1

m

||A - _E EX,Ek < 6.
k =1

Let c = XkI and choose an integer n greater than (c/6)2. Express
k = 1

each Ek as a sum of orthogonal projections Ek(° in 9, all of relative di-
mension 1/n, and a residual projection Rk of dimension less than 1/n. Let

m

R = E Rk: then D(R) = r/n for some integer r less than n. Decompose R
k = 1

into a sum of r orthogonal projections Pi in 9, each of dimension 1/n,
m

and define B = E Xk(Ek- Rk). Then
k = 1

[ [B Af] 6 + Xkl - [ [Rk ]] <5 6 + c/ n- S 26,
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Since the n projections Ek(') and Pi are orthogonal, equivalent and have sum
I, they lie in some subfactor 91 of X, 91 of type In (9E consists of all linear
combinations of the members of a system of n X n matrix units, in 91,
based on the above n projections; cf. R.O. IV, §2.6). Note that B is in
91 and that

[[BX - XB]] < [[AX - XA]] + 2[[B - A]].H|XH| < (e + 45)||X||

for arbitrary X in 911 and, a fortiori, in 91. This same inequality obtains
if B is altered by subtracting from it the central operator T(B) -1.

Since the trace and norm in 9, when restricted to 91, coincide with the
trace and norm in 91, it follows, from the preceding lemma, that

[[B - T(B)I]] < (e + 4S)/IV2.
From the Cauchy-Schwarz inequality, T(X* Y) < [ [X] ] [[Y] ], one ob-
tains

|T(B)= IT(B - A)I < [[B - A]] [[I]] < 26
(recall that T(A) = 0). The above inequalities imply that

[[A]] < [[A -B]] + [[B -T(B)I]] + T(B)| < 26 + (,E+ 48)//2- + 26
for arbitrarily small a. Hence [[A ] ] < e/V2 as asserted.

3. Maximal Approximately Finite Factors.-With the aid of Theorem 1,
we are in a position to prove the key result. The proof is carried out by
methods similar to those employed in R.O. IV (Theorem XIII, p. 780) for
the construction of approximately finite subfactors.
THEOREM 2. In a factor 9 of type Ih1, each infinite family { Pal of sub-

factors which is simply ordered by inclusion, generates a subfactor (P of 91, (P
of type Ill. If, in addition, each (Pa is either approximately finite or in case I
then (P is approximately finite.
Each factor of type II, contains a subfactor which is maximal with respect

to the property of being approximately finite.
Proof. The set theoretical union 3 of aU (Pa is a self-adjoint subalgebra of

91. In R.O. IV (Theorem I, p. 728) it is shown that (P is the closure of 8 in the
metric topology on 9 induced by the norm " [ [] ]." We show that (P is a
factor. In fact, let A be an operator in the center of (P. Choose e positive
and determine an operator B in some (P6 such that [ [B - A ] < e. For
each X in 9, in particular for X in (Ps,, one has

[[(B - T(B)I)X - X(B - T(B)I)]] =

[[(B - A)X - X(B - A)]] < 2,EIXII.
Applying Theorem 1, we see that [[B - T(B)I]] < 2e. Now T(B) -
T(A)| < [[B-AI] < esothat
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[[A - T(A)I]] < [[A - B]] + [[B - T(B)I]] + |T(B) - T(A)I < 4e

for arbitrary small e. Thus A = T(A)I, and (P is a factor.
Since J is finite, (P is of type II, (type I, is excluded, for (P is infinite

dimensional as a vector space). Under the additional assumption that
each (Pa is approximately finite or in case I we can conclude that (P is ap-
proximately finite. In fact, given e > 0 and operators A1, . . . , Am in d',
find B1, . . ., Bm in some WP. such that [[B - A2]] < e/2. Applying the
criterion (A) (cf. R.O. IV, Definition 4.3.1, and Theorem XII, p. 778) for
approximate finiteness, we determine C1, . . ., Cm in some case I subfactor
of (P., such that [[Ci- B]] < e/2. Then [[Ai - C2]] < e, and (P is ap-
proximately finite (now by criterion (B); R.O. IV, Definition 4.5.2).
The last assertion of the theorem follows, now, from the fact that each

factor of type II, contains an approximately finite subfactor (cf. R.O. IV,
Theorem XIII, p. 780) and an application of Zorn's Lemma.

4. Non-normalcy in Case II.-The following theorem contains tke
principal result of this note.
THEOREM 3. No factor in case II is normal. If 1 is of type II, and not

approximately finite, and (a is a maximal approximately finite subfactor of
t, then (aw)')m contains a properly.
Proof. Consider first the case where M is of type III. The non-nor-

malcy of approximately finite factors was noted by F. J. Murray and J. v.
Neumann, who proved that all approximately finite factors are algebrai-
cally isomorphic (R.O. IV, Theorem XIV, p. 781) and exhibited specific
approximately finite factors which are non-normal, and indeed have a sub-
factor which violates normalcy (R.O. I, p. 209; and R.O. IV, Lemma
5.2.3, p. 787). We may assume, therefore, that M1 is not approximately
finite and select, by Theorem 2, a maximal approximately finite (proper)
subfactor (t.
The proof proceeds by contradiction. Indeed, suppose that (')Y' =

a. This implies, in the first place, that at'm is a factor. In fact, if A is
in the center of A 'Mt, i.e., A e (a'g) 's (= a), then A belongs to the center,
{ a II, of (t. In the second place, the assumption that (a'W))'o = (a implies
that a'z - { aI}. Hence the factor ('u contains a subfactor 9l of type
In, for some n > 2 (cf. R.O. IV, Lemma 2.6.2). The ring (P generated by
(a and 9Z is an approximately finite subfactor of n1l which contains a,
properly. This follows (cf. R.O. I, §2; and R.O. IV, Lemma 4.8.2) from
the fact that (P is algebraically the Kronecker product of the approximately
finite factor e and the total matrix ring (*n (note that 9t commutes with
a, and is algebraically isomorphic to 6n). An alternative proof is obtained
by applying the criterion for approximate finiteness formulated as Defini-
tion 4.1.1. in R.O. IV. The existence of such a (P violates the maximality
of a, and we conclude that (a')' contains a properly.
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It remains to establish the non-normalcy of factors of type II.. Each
such factor M is representable as an infinite matrix ring over a factor (P of
type II, in the sense of a Kronecker product (P @ (B (cf. R.O. IV, Theorem
IX, p. 746). Let Q be a subfactor of (P such that (Q'p) 'p $ Q. Then the
subfactor, Q 0 CB, of f, obtained by restricting the coefficients of the ma-
trix representation of M to 2. violates the normalcy of J, as verified by a
simple computation. This completes the proof.

In conclusion we note that J. v. Neumann6 has established the existence
of non-normal factors in case III. The techniques applied in the present
note do not, however, seem to yield further information in the case III situa-
tion.

* The second named author is a National Research Fellow.
1 Murray, F. J., and Neumann, J. v., "On Rings of Operators," Ann. Math., 37, 116-

229 (1936). We shall refer to this paper as R.O. I, and to the paper "On Rings of Opera-
tors IV," Ibid., 44, 716-808 (1943), by the same authors, as R.O. IV.

' "A ring of operators" is a weakly closed, self-adjoint algebra of bounded, linear trans-
formations on a Hilbert space, which contains the identity operator I.

3 Neumann, J. v., "Zur Algebra der Funktionaloperatoren," Math. Ann., 102, 370-
427 (1929).

4 We denote by "T(A)" the trace of the operator A and by "[[A]]" the norm,
(T(A*A))11, of A. Cf., Murray, F. J., and Neumann, J. v., "On Rings of Operators
II," Trans. Am. Math. Soc., 41, 208-248 (1937); see especially pp. 218, 219 and 241 for
the properties of the trace and norm.

6 For a matrix A = (a,,), i, j = 1,. n; T(A) is the normalized trace (Zaji)/n,
since T(I) = 1. Similarly [[A]]2 = (21aji|2)/n.

6 Neumann, J. v., "On Rings of Operators III," Ann. Math., 41, 94-161 (1940). See
especially pp. 159-161.
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1. Introduction.-In this note the authors wish to outline a theory of
determinants in a finite factor. This theory originated in an attempt to
prove that the trace' of a generalized nilpotent operator is zero. The
properties of the determinant, which we shall derive, will allow us to prove,
more generally, that the trace of an arbitrary operator lies in the convex
hull of its spectrum.
There is no difficulty in proving that the trace of a proper nilpotent is

zero or that the trace of a normal operator lies in the convex hull of its
spectrum. For arbitrary finite matrices, this latter result is proved by
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