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1. Introduction

Well known results of Banach [1]? and M. H. Stone [8] determine all linear
isometric maps of one C(X) onto another (where ‘C(X)’ denotes, throughout
this paper, the set of all real-valued, continuous functions on the compact
Hausdorff space X). Such isometries are the maps induced by homeomorphisms
of the spaces involved followed by possible changes of sign in the function values
on the various closed and open sets. An internal characterization of these isom-
etries would classify them as an algebra isomorphism of the C'(X)’s followed by
a real unitary multiplication, i.e., multiplication by a real continuous function
whose absolute value is 1. The situation in the case of the ring of complex con-
tinuous functions (which we denote by ‘C’(X)’ throughout) is exactly the same;
the real unitary multiplication being replaced, of course, by a complex unitary
multiplication.

It is the purpose of this paper to present the non-commutative extension of
the results stated above. A comment as to why this noncommutative extension
takes form in a statement about algebras of operators on a Hilbert space seems
to be in order. The work of Gelfand-Neumark [2] has as a very particular con-
sequence the fact that each C’(X) is faithfully representable as a self-adjoint,
uniformly closed algebra of operators (C*— algebra) on a Hilbert space. The
representing algebra of operators is, of course, commutative. A statement about
the norm and algebraic structure of C’(X) finds then its natural non-commuta-
tive extension in the corresponding statement about not necessarily commu-
tative C*— algebras.

A cursory examination shows that one cannot hope for a word for word trans-
ference of the C’'(X) result to the non-commutative situation. An isometry be-
tween operator algebras is as likely to be an anti-isomorphism as an isomorphism.
The direct sum of two C*— algebras, which is again a C*— algebra, by [2], with
an automorphism in one component and an anti-automorphism in the other
shows that isomorphisms and anti-isomorphisms together do not encompass all
isometries. It is slightly surprising, in view of these facts, that any orderly
classification of the isometries of a C*— algebra is at all possible. It turns out, in
fact, that all isometric maps are composites of a unitary multiplication and a
map preserving the C*— or quantum mechanical structure (see Segal [7])—
of the operator algebra in question. More specifically, such maps are linear
isomorphisms which commute with the *— operation and are multiplicative on
powers, composed with a multiplication by a unitary operator in the algebra.

! This paper was written while the author was a National Research Fellow.
2 Numbers in brackets refer to the bibliography at the end of this paper.

325



326 RICHARD V. KADISON

The methods previously developed for handling C'(X) are entirely abandoned.
They rely on intimate use of the relations between X and C(X). The analogous
procedure in the non-commutative case would involve dealing with the state
space of the operator algebra (see Segal [6]), i.e., the space of self-adjoint, positive,
normalized, linear functionals, and the pure states (extreme points) therein.
The sparseness of knowledge concerning the pure states makes this procedure
seem very difficult. Our investigation is actually carried out along lines which
develop an intrinsic proof. The C’(X) result is not used, and our proof yields in
that case an intrinsic proof which is perhaps simpler than the original one.

This paper falls naturally into two parts. In §2 an internal study of C*— alge-
bras is made to determine the nature of the extreme points on their unit spheres.
In §3 these theorems are applied to determine the isometries of C*— algebras,
and the paper concludes with a result concerning the possibility of distinguishing
between factors by their Banach space structure alone.

The problem of extending the isometry theorem to the non-commutative case
was posed to the author by I. Kaplansky who conjectured a result close to that
which is actually the case.

2. Extreme points on the unit sphere

Since the isometries of one Banach space onto another carry the extreme points
of the unit sphere in the first space onto the extreme points of the unit sphere in
the second space, a knowledge of the nature of these extreme points in each of
the spaces would seem to provide a useful tool in classifying the possible isom-
etries. The following theorem provides us with this knowledge in the case of a
C*— algebra.

We note, at this point, that all C*— algebras to which we refer throughout
this paper contain the identity operator. When we use the term ‘“‘B*— algebra”,
we refer to the algebras of [2] satisfying the conditions 1’-5" of that paper, i.e.,
Banach algebras with a *-operation such that || a*a || = || a||*.

THEOREM 1. The set of extreme points of the unit sphere & of a C*— algebra A is
exactly the set of partially isometric operators of U of the form U, where U*U = E,
UU*=F and (I — F)A(I — E) = (0). The only normal extreme points are the
unttary operators in N and these operators are the only extreme points with tnverses.

LemMA 2. In any B*— algebra with identity e, e is an extreme point of the unit
sphere.

ProoF. Suppose ¢ = 3(a + b); then e¥ = ¢ = 3(a* + b*), so that
e = 33i(a + a*) + (b + b*)] = i(c + d), where a, b, ¢, d are all in the unit
sphere and ¢ and d are self-adjoint. Since d = 2¢ — ¢, d and ¢ commute. Repre-
senting the real B*-algebra generated by e, ¢, d as a C(X), we see that ¢ = d = ¢,
ie., i(a 4+ a*) = 1(b + b*) = e (the lemma is clear for function spaces). Again
a* = 2e¢ — a, so that a is normal, and, passing to the function space, this time
a C’'(X), shows us that a = a* = e. It follows that e is an extreme point of the
unit sphere.

Proor oF THEOREM 1. We show first that a partially isometric operator U of
A with initial space E3C (3¢ the Hilbert space) and final space F3C (see Murray-
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von Neumann [4]) such that (I — F)A( — E) = (0) is an extreme point of &.
In fact, suppose U = (4 + B) with A and Bin &. Then E = U*U =
3(U*A 4+ U*B) and E = Y{(U*AE + U*BE). Since EU* = U*, both U*4E
and U*BE lie in the B*-algebra EAE whose identity is E. By Lemma 2, U*4AE =
U*BE = E. With x in E3¢, U*YAEx = U*Ax = Ex = z. Now, since 4 is in &,
|| Az || = ||z ||. But || U*|| = 1, so that || Az || = ||z || ; moreover U* is
norm preserving on F3C alone, so that Az lies in F3¢. However, U¥Uz = Ex = z;
and, since U* is 1-1 on F3¢, Ax = Ux. Thus AE = U, and, by symmetry,
BE = U.Now U* = {(4* + B*), so that, by symmetry again, A*F = B*F = U*
or FA = FB = U. Our hypothesis, (0) = (I — F)A({ — E), tells us
that A = FA(I — E) + AE = FB(I — E) + BE = B so that U is extreme.

Suppose now that T is an extreme point of ©. We show first that T is a partial
isometry by showing T*T to be a projection. Consider the commutative, real
C*— algebra generated by I and T*T; and its representing C(X). Denoting
operators and their representing functions by the same symbol, T*T is a positive
function of norm 1 (7T, being extreme on &, has norm 1). Suppose that at some
point z of X, T*T takes a non-zero value less than one. It is clear that one can
construct a function C small in a small neighborhood of z, vanishing outside
this neighborhood, and non-zero at r such that if R = I + C, S =1 — C,
then 1 = | T*TR*|| = || T*TS*||. Thus | TR|® = || (TR)*(TR) || =
| R*T*TR || = | T*TR*|| = 1 = || TS|’ so that TR and TS are in &. But
T = 3(TR 4+ TS8), and, since T is extreme on &, T = TR = T + TC. Hence
TC = 0, so that T*TC = 0 contrary to the fact that both 7*T and C are non-
zero at x. Thus T*T takes no values different from 0 and 1 and is therefore a
projection. It is an algebraic consequence of the fact that T*T is a projection
that TT* is a projection, however, it is appropriate to note at this point that
the *— operation is a real linear isometry of %A onto 2 so that T* as well as T
is extreme on ©. The above argument then shows that 7**T* = TT* is a pro-
jection.

It remains now to show that T is a partial isometry of the described type.
Let E = T*T and F = TT*, and suppose 4 is in (I — F)A(I — E). We may
of course assume A to be of norm less than 1. Let z = # + y be of norm 1 with
z in the range of £ and y in the range of I — E;then (T & A)z = Tz & Ay =
FTz = (I — F)Ay so that || (T &= A)z|| < 1and thus | T =+ 4| = 1. But
T=3¥Tr+A+T—-A)withT+AandT — AinS.ThusT + A = T or
A = 0sothat (I — F)UA(I — E) = (0) as asserted.

With either F or E the identity, we have (I — F)A(I — E) = 0, so that
“semi-unitary”’ operators (i.e. partially isometries U such that U*U or UU*is I)
are always extreme. For further reference, we note that multiplication by a
unitary operator U is an isometry of A onto itself, for || UA [® =
| (UA*(UA) || = || A*U*UA || = | A*A || = | A" Since I is extreme,
UI = U is, and we have another proof that the unitary operators of U are
extreme. Moreover, if U is normal and extreme on &, then by passing to the
C’(X) representing the C*— algebra generated by I, U, and U*, we see that U
is unitary. In fact, if the function U was in absolute value less than 1 at some
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point z of X, a small function C non-zero at z and vanishing outside a small
neighborhood of z could be constructed so that U + C and U — C were both
in ©. Butthen U = 3(U+4+ C 4+ U — C) with U 4+ C # U — C. We thus have
U unitary as stated.

If we know that T is extreme on & and has an inverse it follows, from the
above results, that T is unitary. This can be seen directly, however, from the
polar decomposition 7 = U(T*T)! with U unitary. Indeed, U*T is extreme
since multiplication by U* is an isometry and T is extreme. Thus (T*T)! is a
self-adjoint extreme point and hence unitary, so that T = U(T*T)! is unitary.
The proof is complete.

An application of Theorem 1 to particular situations yields some special
results of interest.

Rickart [5] defines ‘“‘quasi-transitivity” of an algebra U to mean “AUYB = 0
if and only if A or B is 0.” Applying the results of [5] (slightly modified to re-
move denumerability restrictions) to the case of rings of operators in the sense
of Murray-von Neumann [4], we have that quasi-transitive rings are factors
(central) and conversely. As a result of this, we can state:

CoROLLARY 3. The only extreme points of the unit sphere in a factor are the semzi-
unttary operators. In finite factors only the unitary operators are extreme.

It is rather surprising that the case most closely resembling the commutative
case, where only unitary operators appear as extreme points, is the totally non-
commutative or factor case, and, indeed, in the finite factor situation the result
is exactly the same as the commutative case.

We close this section by proving a somewhat simpler auxiliary result.

THEOREM 4. The set of extreme points of the positive portion B of the unit sphere
& in a C*— algebra A is the set of projections in U.

Proovr. If T is an extreme point of P it is a fortiori self-adjoint and positive.
Passing to the function situation, one sees readily that T is a projection.

Suppose now that E is a projection in ¥ and that £ = (A + B) with 4 and
BinB. Then2E — A = B =0sothat E = A/2.If Ex = 0then 0 = (Ez, z) =
1(Az, z) = 0 so that (Az, z) = 0. But then (A'z, A'z) = 0 so that A*z =0 and
A'A'r = Az = 0. Thus A(I — E) = Osothat A = AE + A(I — E) = AE =
(AE)* = EA and by symmetry B = EBE. By Lemma 2, E is extreme on the
unit sphere of EAFE so that A = B = E, and E is extreme on P.

3. The isometries

To this point, we have referred to the full algebraic structure of the operator
algebra U when we used the term “C* — algebra”. What is relevant, however, for
the quantum-mechanical applications is the linear structure and the power
structure of the self-adjoint elements of % (see [7]). From the identity (4 + B)* —
A* — B® = AB + BA, the Jordan product of self-adjoint elements becomes
meaningful, and this, together with the decomposition of the aribitrary operator
A as A = B + 1C with B and C self-adjoint, gives meaning to the expression
A’ thus to the Jordan product of arbitrary operators and hence to arbitrary
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powers. This leads us to define a linear isomorphism p of one C*— algebra A onto
(into) another 9’ which preserves self-adjoints, their power structure, and, hence,
the full Jordan structure as a ‘“quantum mechanical isomorphism of A onto
(into) A’ ”—or, for brevity, a “C*— isomorphism”. In addition® to the Jordan
structure of ¥, it is of importance to know when two operators of A commute.
We shall note, as a consequence of the results of Jacobson-Rickart [9], that a
C*— isomorphism between two C*— algebras automatically preserves commuta-
tivity. Moreover, the results of [9] make it possible to more closely determine the
form of a C*— isomorphism.

We begin with a theorem which generalizes a result of Gelfand-Neumark [2]
and I. Kaplanksy [3]. These papers prove the isometric character of actual *—
ring isomorphisms.

THEOREM 5. A C*— isomorphism p of a C*— algebra (B*— algebra) A onto a
C*— algebra (B*— algebra) A’ is isometric and preserves commutativity.

LeMma 6. With A and B in U, p(BAB) = p(B)p(A)p(B) and p((4B)" +
(BA)") = (p(A)p(B))" + (o(B)p(4))"

Proor. We have observed that p(AB + BA) = p(A)p(B) + p(B)p(4). More-
over, p((A + B))) = (s(4) + p(B))" = p(4)° + p(4)’s(B) + p(B)e(4)" +
p(4)p(B)’ + p(B)’p(A) + p(B)’ + p(ABA + BAB), so that p(ABA + BAB) =
p(A)p(B)p(A) + p(B)p(A)p(B). Similarly, considering p((4 — B)%), we find
—p(ABA) 4+ p(BAB) = —p(A)p(B)p(A) + p(B)p(A)p(B). Adding the last two
equalities, we find p(BAB) = p(B)p(A)p(B). In consequence of this, we have
p(B(AB)"™) = p(B)(p(A)p(B))"™" = p((BA)""'B) so that p((AB)" + (BA)") =
p(AB(AB)"™ + (BA)"7BA) = p(A)p(B(AB)"™) + p((BA)""'B)p(4) =
p(A)p(B)(p(A)p(B))" ™" + (o(B)p(4))"'p(B)p(A) = (p(A)p(B))" + (p(B)p(4))".

Proor oF THEOREM 5. We can show p(I) = I’, the identity of A’; for other-
wise p(I) is a projection and p(B) = p(IBI) = p(I)p(B)p(I), by Lemma 5, for
arbitrary B in ¥, so that p maps ¥ into p(I)U'p(I), a C*— algebra with identity
p(I).

We show now that p is an order isomorphism, i.e., that p takes positive opera-
tors and only positive operators into positive operators. In fact, if A is positive
then A = B’ with B self-adjoint so that p(4) = p(B)® is positive. Suppose now
that p(4) is positive; then p(| 4 |)* = p(| A|*) = p(4%) = p(4)*so that p(| A|) =
p(A4), since a positive operator has only one positive square root. (In the B*—
algebra case we take ‘“positive’” to mean ‘‘self-adjoint with non-negative spec-
trum.” The uniqueness of positive square roots is true here from the following
considerations. If a* = b* = ¢ with a and b positive then ac = @’ = ca. Passing
to the representing function algebra, a is the uniform limit of polynomials in c.
Similarly b is the uniform limit of the same polynomials in ¢, so that a = b.)
Since p is an isomorphism A = | A | = 0. It follows at once that p is isometric
on self-adjoint elements A, for both || p(4) || I’ &= p(A) and | A || I & A are
positive so that, in the first case || p(4)||I £ A = 0 and, in the second,
Al I+ p(4) z 0.

Suppose now that A is an arbitrary operator of norm 1 in . Since both
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(AA*)" and (A*A)" are self-adjoint, we have 1 = || A ||** = || 44*|* =
[ (Aa*™ | = 344%™ + iA*)" + (A4A"" + @))% | -
[ 3((AA*%)" — i(A*A)" + ((A4%)" — 9(A*A)) || = || (A4A%)" 4 (4*4)" | -
| (AA®)™ — i(A*A)" || = || (A4H™ 4+ (A*A)™ + i((A*4)"(44%)" — (44%)"
A*)) || = 1p((AAH™ 4+ (A*4A)") 4+ ip((A*4)"(AA")" — (44%)"
AN | = 1§ (e(D)p(A%))™ 4+ (p(A)*o(A))™ + i((p(A)*0(A))"(p(A)p(A)*)"

= (D))" (p(A)*p(AN)™) || = || (AAD™ || + [ (A*)™ ] + | (4*4)"
(AA%™ | + || (A4®™(A*A)" || < 4||A|*"" = 4 (see Lemma 6). Thus 1
= {1 (p(A)p(A)M™ + (p(A)*o(4))™ + i((o(A)*p(4))"(0(A)p(A)H)" — (p(A)p
(A)*) " (p(A)*o(AN™ || £ 4| p(A) |I** for arbitrary positive integral n so
that || p(4) | = 1. Moreover, treating p(A) as we did 4, we find that
[ pCA) 11" = || (o(4)p(A)*)™ 4 (p(A)*p(4))™ + i((p(4)*p(4))"(p(4)p(A)*)" —
(p(A)p(A)*)"(p(A)*p(A))™) || = 4 for arbitrary positive integral n so that
Il p(4) 1| = 1. Thus for 4 of norm 1 in ¥, || p(4) || = 1. It is immediate that p
is an isometry.

In [9; Corollary 1], it is shown that a Jordan homomorphism onto a special
Jordan algebra whose enveloping algebra has a center which contains no nil-
potents, preserves commutativity. Our C*— isomorphisms are, of course, Jordan
homorphisms, the enveloping algebras of the images of which are the image
C*— algebras. Since the center of a C*— algebra is representable as a C'(X),
it contains no nilpotents. Thus [9] applies, and we see that p preserves commu-
tativity. For completeness, we sketch the short proof of the quoted result. A
simple computation shows that p preserves the Lie triple product [[4, B], CJ;
and the square of the Lie product, [4, BJ’. Thus if A and B commute, then
[[4, B],C] = 0 for arbitrary C in ¥, so that [[o(4), p(B)], o(C)] = 0 and [p(4),
p(B)] is in the center of ’. But [4, B]’ = 0 so that [p(4), p(B)]* = 0, and [p(4),
p(B)] is a central nilpotent. Hence [p(A), p(B)] = 0, or p(4) and p(B) commute.
The proof of Theorem 5 is complete.

When the term “isometry” is employed, in the following theorem, it refers
solely to a linear, norm preserving map with no restrictive conditions as regards
the *— structure.

THEOREM 7. A linear isomorphism p of one C*— algebra U onto another A’ which
18 1sometric s a C*— isomorphism followed by left multiplication by a fixed unitary
operator, viz., p(I).

LemMA 8. A linear map 7 of one B*-algebra into another which carries the identity
into the identity and s tsometric on normal elements preserves adjoints, i.e., n(a*) =
n(a)*.

Proor. Suppose a is self-adjoint of norm 1 and n(a) = b + 7c with b and ¢
self-adjoint. If ¢ is non-zero there is a non-zero real number 8 in the spectrum
of ¢; say 8 > 0 (otherwise consider —a). Then ||a + il | = (1 + n%)* < 8 +
n < ic+nl’ =1 g(a+ inl)| for large n. Since 7 is isometric on normal
elements, 8 = 0. Thus ¢ must have zero spectrum and, being self-adjoint, is
itself 0, i.e., n(a) is self-adjoint. Now for arbitrary a, witha = o’ + a”, o/, a”
self-adjoint, we have n(a)* = n(a’) — in(a”’) and n(a*) = n(a’) — in(a’’) so
that n(a)* = 5(a*).
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Proor oF THEOREM 7. We show first that po(I) is a unitary operator. Since
p is an isometry of U onto A’, the extreme points of the unit sphere in A are
mapped by p into extreme points of the unit sphere of A’. By Lemma 2, I is
such an extreme-point in ¥, so that p(I) is extreme on the unit sphere of .
By Theorem 1, p(I) is a partially isometric operator U such that

(I—-FAI—-E)=0,

where U*U = E and UU* = F. Our task is to show that E = F = I. Suppose
that A is an operator of % such that || A | = sup {| A | :\ in the spectrum of A}

and that |y | = || A || with v in the spectrum of A. Then vI + A has 2y in its
spectrumsothat 2| A || = |2y | S |v/ I+ A = |v|+ |4l =2 A and
thus 2[| A || = |71 + A | = [ve() + p(4) || = [|7U + »(4) . One can

find, therefore, a sequence of unit vectors z, = . + y» with , = Ez,, y. =
(I — E)z, such that || (YU + p(4))z. | = 2 || A || Since || @U + p(4))za || =
[vUzall + l[p(A)za| = A + |4, wehave|yUz|| — [[A] and

[ 6(A)za | > | A || = || p(4) || . Tt follows that || Uza || = || Uza || = | 2. || — 1
so that || y. || — 0. Hence
Al =1eA)] z Il p(4)z. |
= || p(A)zn — p(A)yn || Z [ p(A)za || — [ p(A)ya || — [ 4 ]

so that || p(4)x, || — || 4 || . We assert that yUz, — p(4)x. — 0. In fact, by the
parallelogram law,

H 7an - P(A)xn ”2
= 2(| Uz |* + |l p()za ) — | 7Uzn + p(A)z, ||*
—4AP- @A) =0

It follows now that for A as above, and, in particular, for A normal,
| U*A)E| = [[A]. In fact, |A] = [p(A)] = [U*(AE]|
| U*p(A)Ez, | = || U*p(A)za || = | U*p(Ad)zn — YU*Uzn + yU*UZa |
| U*(p(A)zn — YUzs) + vz | = v = 1Al

Let 7 be defined on ¥ as, 7(B) = U*p(B)E. Since EU* = U*, n maps U into
the B*— algebra EA'E, and n(I) = U*UE = E? = E, the identity of EU'E.
The preceding computation shows 7 to be isometric on normal operators so that
7 is as in Lemma 8 and preserves adjoints. Suppose now that A + 1B, 4, B
self-adjoint, is such that p(4 + iB) is either I — F or I — E. In either of these
cases n(4 + tB) = n(A) 4 in(B) = U*p(4A + ¢B)E = 0. Thus, since 7(4) and
n(B) are self-adjoint and of the same norm as A and B respectively, we have
7(4) = 7(B) = A = B = 0, and, thus, ] — F = I — E = 0. It follows that
p(I) = U is unitary.

Therefore n = U*p is an isometry of %A onto A’ which takes I into I’. We
show 7 to be a C*— isomorphism. In fact, by Lemma 8, n preserves adjoints.
Moreover, 5 preserves order, for suppose A is of norm 1 and 4 = 0, then n(4)

v
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is self-adjoint. Now || A — I'|| < 1, so that || 7(4) — I’ || £ 1. Thus 3(4) can
have no strictly negative spectrum, i.e., n(4) is positive.

We digress briefly to give an alternative ending to the proof in the ring of
operator (weakly closed) case. Since 7 is an isometry which preserves order it
preserves the set of extreme points of the positive portion of the unit sphere,
viz., by Theorem 4, the projections in . Since 5 preserves order, it preserves
the lattice structure of the projections in ¥ (assuming A weakly closed). Sup-
pose E and F are two orthogonal projections in %. Then E + F is a projection as
are n(E), n(F), and n(E) + 5(F). Hence

(n(B) + n(F))* = 9(E) + n(E)n(F) + n(F)n(E) + n(F) = n(E) + n(F).

Thus 7(E)n(F) = —n(F)n(E) and n(E)n(F) = n(E)n(F)* = —n(F)n(E)n(F).
Taking adjoints we have n(F)n(E) = —n(F)n(E)n(F) = n(E)n(F) = —n(F)n(E)
so that n(F)n(E) = 0. Let £ and F now be arbitrary commuting projections
in . Then (£ — EF)(F — EF) = 0so that (n(E) — 9(EF))(n(F) — 9(EF)) = 0
and n(E)n(F) — n(EF) —n(EF) + n(EF) = 0, i.e., n(E)n(F) = n(EF) (recall
that n(EF) is less than both n(E) and 5(F)). Since each self-adjoint operator in
U is a uniform limit of linear combinations of projections in U, n(AB) = 7(4)n(B)
when A and B are commuting self-adjoint operators. This settles the question
for the ring case but does not contribute to the general proof. We return now
to the arbitrary C*— algebra .

As a consequence of this theorem, we shall see that isometries preserve uni-
tary operators. For present purposes, however, we prove a partial result in this
direction, viz., n sends unitary operators U whose real part 3(U 4+ U*) = A)
is positive 4nd invertible into unitary operators. In fact, let « be the minimum
of the spectrum of A. By assumption @ > 0. Choose n so large that 2na > 1.
Then || U — nl || = sup {((n — N\)* + 1 — A)*:\ in the spectrum of A} =
sup {(n* — 2an + 1)}:\ in the spectrum of 4} = (n? — 2an + 1)} < n. But if
n(U) were not a unitary operator it would, by Theorem 1, being an extreme
point of the unit sphere in ', be a partially isometric operator without an in-
verse. In this case, || n(U) — nlI’ || Z n > || U — nl || contradicting the isometric
character of 4. Thus 5(U) is unitary.

Suppose now that A is an arbitrary positive invertible operator of U of norm
less than or equal to 1. The unitary operator A + #(I — AZ)* has a positive in-
vertible real part so that n(4) + in((I — A%} is unitary. Since I — A%} is
positive, (I — A% is positive so that n((I — A% = (I — n(4)»! (by con-
sidering the functional representation). The same conclusion can be stated for
aA with « small and positive. Now, by the binomial expansion, which is appli-
cable in the Banach algebra situation,

I = (@d)) =T — 3’4* — o*A%/8 — - |
and
(I — n(@d)) = I — 3a’n(A)* — a'n(A)* — --- .
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Since 7 is an isometry and a fortiori continuous in the uniform topology, we
have

2((I — (@4))) = I — $a™n(4%) — a'n(4")/8 — -
= (I = n(ed))! = I — 3a’n(4)" — }a'n(4)" — -+ .
Thus
—in(4% — o™(4Y/8 — -+ = —in(A) — ’n(4)Y/8 — -+,

and, letting « tend to 0, we see that —i5(4%) = —2in(4) or n(4%) = n(4)’. To
obtain this property for A positive, invertible with arbitrary norm, we apply
the result just proved to 4/2 || A || . For 4 and B positive, invertible, and com-
muting, A + B is positive and invertible (functional representation). Thus
7((A + B)") = (2(4) + 7(B))* so that 29(AB) = 7(4)n(B) + n(B)n(4). For
arbitrary self-adjoint in U, we write A = Av0O+ 1 — (I — A AQ) where 4 vO +
I = Band I — A AO = C are positive, invertible, and commute. Thus n(4*) =
7(B") — 29(BC) + n(C*) = n(B)’ — 2(B)n(C) — n(C)n(B) + #(C)" =
(n(B) — 7(C))* = n(A)". Thus nis a C*— isomorphism, and the proof is complete.

The results of this section, when applied to a single C*— algebra, find expres-
sion in more algebraic form through the following considerations. Suppose p, 7 are
two isometries of the C*— algebra U onto itself, with the group of all quantum
automorphisms of U denoted by @, U the group of all unitary operators in 9,
and 9 the group of all isometries of A onto itself. From our preceding results,
p=U-n7=7V-fwith U, Vina and », ¢ in Q. (This decomposition is obvi-
ously unique). The group U acts as an automorphism group on @ as follows: to
U in ‘U we assign the automorphism 5(-) — U*y(-)U = U(n) of @ onto itself.
If for a group G we denote by G # the anti-isomorphic group (i.e., the elements
of G with the multiplication a-b = ba), we can state

COROLLARY 9. 9 ¥ 1s the semi-direct product of U ¥ and Q.

Proor. In fact, p = (U, ), = = (V, ¢), and p:7 = 7p = ViUp =
VUWU*U)yy = U-V(U*U)n = (U-V, U(¢)n); with the notation as estab-
lished above.

It would seem appropriate, at this point, to investigate, in a more detailed
fashion, the nature of C*— isomorphisms. A complete examination would, of
course, entail the determination of all isomorphisms and anti-isomorphisms of
C*— algebras, a program far beyond the scope of this paper. We propose, rather
than such a complete investigation, the program of relating the C*— isomor-
phisms to the more tractible *— isomorphisms and * — anti-isomorphisms. Again
the author was fortunate in having the burden of the algebraic portions of this
study carried by [9]. Since Jacobson-Rickart propose to consider this question
in the case of rings with an involution (which, in particular, includes our situa-
tion), we confine our attention to those results which lie close to the work of [9]
and Kaplansky [10].

We say that a C*— isomorphism p of ¥ onto U’ is the sum of the *— isomor-
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phism » and *— anti-isomorphism ¢ when p = 5 4+ ¢ as linear maps and
there exist C*— subalgebras %, , Az of A and Ay , As of A’ such that A is the
direct sum of 2, and A, , A’ is the direct sum of 9% and ¥, 7 is a *— isomor-
phism of ¥, onto %; and is 0 on s , and ¢ is a *— anti-isomorphism of ¥, onto
A:and is O on U, .

TueoreM 10. A C*— 1somorphism p of a ring of operators U onto a C*— al-
gebra N’ is the sum of a *— isomorphism and a *— anti-isomorphism.

Proo¥F. Suppose first that we can decompose ¥ into a direct sum of *— algebras
such that the restriction of p to each of these algebras decomposes into a sum of a
*— isomorphism and a *— anti-isomorphism. It is clear then, from simple algebra,
that p is such a sum. Suppose again that in a ring of operators ¥; it is possible
to halve the identity operator I, i.e., there exist orthogonal equivalent projec-
tions E, F in the ring such that E + F = I. Then ¥, is ring isomorphic to a
2 X 2 matrix ring. In fact, if U is a partial isometry such that U*U = E and
UU* =F,thenE = e, ,F = ey, U = ey, U* = e1z are a set of matrix units,
and ¥, is isomorphic to the 2 X 2 matrix ring over the ring of elements in A,
which commute with E, F, U, and U*. As a consequence of the results of [9],
we shall see that a C*— isomorphism of such a matrix ring is the sum of a
*— isomorphism and a *— anti-isomorphism. Now the results of Kaplanksy
[10], allow us to decompose an operator ring ¥ into the direct sum of the fol-
lowing five summands: two parts of type I and type II each, a finite and a
purely infinite part, and a summand of type III, which is purely infinite. (A
ring of operators is finite if the identity is equivalent to no properly smaller
projection in the ring; infinite otherwise; and purely infinite if every non-zero
central projection is infinite. A ring A is of type I if every direct summand has
an abelian projection, i.e., a projection E such that EAFE is abelian, type IT if
it has no abelian projections and every direct summand has a finite projection;
type III if all projections are infinite). Kaplanksy shows that in rings with
no abelian projections and in purely infinite rings the identity can be halved.
He also shows that finite rings of type I are direct sums of finite matrix rings
over a commutative algebra with identity. Thus rings fall into two easily
managed portions, one in which the identity can be halved and so is a 2 X 2
matrix ring and the other a finite ring of type I, which is a direct sum of finite
matrix rings. Our initial remarks apply and the proof is complete once we make
the slight modification of the results of [9] necessary for our situation.

In [9] it is shown that a Jordan homomorphism of an nzn matrix ring
D.(n = 2) over an arbitrary ring D with identity is the sum of a homomorphism
and an anti-homomorphism (say J; and J; respectively),i.e., the image ring is the
direct sum of two rings R, and R; such that J; is a homomorphism of D, into B, ,
J2 is an anti-homomorphism of D, into R, , and J = J, 4+ J; as linear maps. If
J is a Jordan isomorphism, it is clear, from linear space considerations alone that
D. is the direct sum of DY’ = J7(R,) and DY = J7'(R») as linear spaces, and
that J = J, on D" and J = J, on D'?. From this it follows that D’ and
D® are indeed subrings of D, , that J; is an isomorphism of DY’ onto R, , J»
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an anti-isomorphism of D{? onto R, , and J is the sum of J, and J; in the sense
which we defined before (applied to C*— isomorphisms). It remains for us to
prove that the *— operation behaves properly under the isomorphisms and anti-
isomorphisms exhibited. In the proof of the quoted result of [9] two central
idempotents ¢ and h are constructed in the envelope of the image ring of J, and
J1, Je are defined by J,(x) = J(x)g, J:(x) = J(x)h. In our situation we have
the C*— isomorphism p expressed as a sum of the isomorphism 5 and the anti-
isomorphism ¢ where the image of p and the envelope of the image of p coin-
cide and are the C*— algebra 9’. The central idempotents E, F, given by the
proof in [9], such that n(A) = p(A)E, ¢(4) = p(A)F, commute, in particular,
with their adjoints so that they are necessarily self-adjoint (normal idempo-
tents) and hence projections. Thus for arbitrary A, n(4)* = Ep(A)* = Ep(4*) =
p(A*E = n(4%*) so that » and, similarly, ¢ are *— preserving maps. The proof
is complete.

Since factors (central rings of operators) are indecomposable in the sense of
having no proper direct summands, we have as an immediate consequence of
Theorem 10:

CoROLLARY 11. Any C*— isomorphism of a factor is either a *— isomorphism
or a *— anti-isomorphism.

We turn our attention now to an examination of isometries in factors. First,
however, we prove a preliminary lemma.

LemMma 12. If p is an isometry of the C*— algebra A onto the C*— algebra A’ and
U s a unatary operator of A then p(U) s unitary.

Proor. By Theorem 7, p = V-5 with n a C*— isomorphism and V unitary
in 9’. It suffices, therefore, to show that #(U) is unitary. But I = (UU*)
= 1(p(U)n(U)* 4+ 9(U)*n(U)), and, by the extreme point property of I, I
= 9(U)n(U)* = 9(U)*n(U) so that n(U) is unitary.

By a conjugate isometry we shall mean a conjugate linear map which is
isometric. The relation “x is the image of y under some isometry or conjugate
isometry of A’ is clearly an equivalence relation on the set of extreme points of
the unit sphere in the operator algebra . The extreme points fall into disjoint
sets under this equivalence relation. We shall refer to such an equivalenceclass
of extreme points as ‘‘an extreme point class”. We shall also say “4 can be
reached from B’ when the operator A is the image of B under some isometry
of . With this terminology established, we state:

TureorEM 13. Factors of type I and I, have exactly one extreme point class, the
set of all unitary operators they contain. Factors of type I, (considered algebraically
and isometrically, now, as all bounded operators of some Hilbert space) have an
extreme point class corresponding to each cardinal number up to the dimension of
the Hilbert space. Each such class, other than the unitary operators, consists of all
those proper semi-unitary operators in the factor whose initial or final spaces (which-
ever is not the whole Hilbert space) have their complementary manifolds of dimension
a fized cardinal (the cardinal corresponding to the extreme point class). In the case
of separable Hilbert space, factors of type 111 have exactly two extreme point classes;
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the unitary operators forming one class and the proper semi-unitary operators the
other. Factors of type II, have at least three extreme point classes: the unitary
operators form one class, proper semi-unitary operators whose initial or final spaces
(whichever is not the whole Hilbert space) have their complementary projections of
finite relative dimension and those for which the complementary projections have
infinite relative dimension do not lie in the same extreme point class (in the separable
case, the latter set forms an extreme point class).

Proov. It is clear that each unitary operator of a factor % can be reached
from every other unitary operator of . Moreover, Lemma 12 shows that no
operator other than a unitary operator can be reached from a unitary operator.
It follows that the set of unitary operators in a factor always forms an extreme
point class. Since the only extreme points of the unit sphere in finite factors are
the unitary operators, we have the first assertion of this theorem.

Suppose U and V are semi-unitary operators in the factor % with UU* =
E, VV* = F, E and F different from I and I — E equivalent to I — F. Then
V can be reached from U. In fact, suppose W is a partial isometry in % mapping
the range of I — E onto the range of I — F and the range of E into (0). A simple
computation shows that W 4 VU* is a unitary operator in ¥ left multiplication
by which sends U into V. Now, for factors of type I, (assuming that we have
already made the faithful isometric, algebraic representation as all bounded
operators on some Hilbert space), I — E and I — F are equivalent if and only
if they project on manifolds of the same dimension. Thus, for % of type I ,
U and V are in the same extreme point class when I — E and I — F project on
manifolds of the same dimension. Moreover, if p(U) = V with p an isometry
then I — E and I — F are equivalent (in the I case). In fact, p = T-n with
T unitary and 7 either a * automorphism or a * anti-automorphism of %. Thus
n(U) = T*V and n(UU*) = (E) = T*VV*T = T*FT. From this we have
n(I — E) = T*(I — F)T. Since 5 preserves projections and their orthogonality
relations, we see that the cardinal number of a maximal set of projections mutu-
ally orthogonal and smaller than T*(I — F)T is the same as that of a maximal
set of orthogonal projections smaller than I — E. These cardinal numbers, how-
ever, are the dimensions of the ranges of T*(I — F)T and I — E respectively.
Clearly the ranges of T*(I — F)T and I — F have the same dimension, so that
I — E and I — F project on manifolds of the same dimension and are equivalent.
Observe that, since all non-zero projections in case III are infinite and hence
equivalent (separable space case), U and V are in the same extreme point class,
for arbitrary semi-unitary operators, so long as U and V have 3¢ for initial space.
Since the * operation is a conjugate isometry all extreme point classes are self-
adjoint (i.e. contain U* along with U), and each conjugate isometry is the com-
position of an isometry and the * map. Thus the extreme point class of U consists
of those extreme points which can be reached from U together with their ad-
joints. This gives the results for factors of type I, and I11.

Suppose now that ¥ is of type I1, with U and V proper semi-unitary operators
in % such that UU* = E, VV* = F and V = p(U) for some isometry p of 2.
With the notation as before, p = T-nand y(I — E) = T*(I — F)T (if U*U =
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E the same equality results). Now I — F is infinite if and only if T*(I — F)T
is infinite, since n preserves order and sends partially isometric operators into
partially isometric operators. Moreover, T*(I — F)T is equivalent to I — F
under the partially isometry T*(I — F). Thus I — E is infinite if and only if
I — F is. We conclude, therefore, that if I — F is finite and I — F infinite
neither U nor U¥* is in the same extreme point class as V. Thus factors of type
II, have at least three extreme point classes. In the separable case, all infinite
projections are equivalent so that, from previous remarks, all semi-unitary
operators V with associated I — F infinite can be reached from one another and
hence form an extreme point class. The proof is complete.

It is an immediate corollary of the above result that no two factors of different
type are isometric (‘“equivalent” in the terminology of [1]). A stronger state-
ment than this can be made.

TureoreMm 14. If U and A’ are rings of operators with isometric Banach spaces
then A and W’ are * isomorphic as real algebras.

ProoF. Suppose p is an isometry of % onto A’. By Theorem 7, p = U- 9 with
U(= p(I)) a unitary operator in ¥’ and n a quantum isomorphism of A onto
A’. By Theorem 10, 5 is the sum of a * isomorphism ¢ and a * anti-isomorphism
¢. Now ¥ maps a subring %; = EUE of A anti-isomorphically onto a subring
(sub operator ring) ¥ = E’A’E’. Composing ¢ with a* anti-automorphism of
9(; yields ¢/, an isomorphism of %; onto A; . The sum of ¢ and ¥’ would then
give the desired isomorphism between ¥ and A’. As (real) * anti-isomorphism
we may use the * operation. Thus U and %’ are * isomorphic as real algebras
(the isomorphism, in fact, being complex linear on one direct summand and
conjugate complex linear on the other).

Note that if p is a conjugate isometry, the map p *, which is the map p followed
by the * map, is isometric. By Theorem 7, p* = U-y with U unitary and 7 a
C*—isomorphism, so that p(4) = n(4*)U* = U*Un*(A)U* = U*ne(A). Hence
conjugate isometries of C*— algebras are the composition of C*— isomorphisms,
the * map, and left multiplication by unitary operators.

It results from Theorem 13, that factors of type I, , II;, and III are recog-
nizable by their Banach space structure alone. The only possible confusion is
that which can arise from factors of type I, and II,, and this is due to our
incomplete knowledge of the extreme point classes of type 11, .

We conclude with the remark that the classification result for isometries of
C*— algebras goes over to the not necessarily closed *— algebras. In fact, an isom-
etry of such an algebra is uniquely extendable to its closure, and, now, our other
results are applicable.

INSTITUTE FOR ADVANCED STUDY
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