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Abstract

Let A/ and M be von Neumann algebras. It is proved that LP(N') does not
linearly topologically embed in LP(M) for A infinite, M finite, 1 < p < 2. The
following considerably stronger result is obtained (which implies this, since the
Schatten p-class Cp, embeds in LP(N) for N infinite).

Theorem. Let1 < p < 2 and let X be a Banach space with a spanning set

(x:5) so that for some C' > 1,

(i) any row or column is C-equivalent to the usual £2-basis,

(ii) (x4, ,5,.) is C-equivalent to the usual ¢P-basis, for any iy < is < --- and

N<ga<--.

Then X is not isomorphic to a subspace of LP(M), for M finite. Complements on
the Banach space structure of non-commutative LP-spaces are obtained, such as the
p-Banach-Saks property and characterizations of subspaces of LP(M) containing
#P isomorphically. The spaces LP(N) are classified up to Banach isomorphism
(i.e., linear homeomorphism), for A infinite-dimensional, hyperfinite and semifinite,
1 <p< oo, pz#2. It is proved that there are exactly thirteen isomorphism types;
the corresponding embedding properties are determined for p < 2 via an eight level
Hasse diagram. It is also proved for all 1 < p < oo that LP(N) is completely
isomorphic to LP(M) if A/ and M are the algebras associated to free groups, or if
N and M are injective factors of type IIIy and Iy, for 0 < A, N < 1.

1991 Mathematics Subject Classification. Primary: 46B20, 46110, 46152, 47L25.

Key words and phrases. von Neumann algebras, Schatten p-class, Banach isomorphism, uni-
form integrability.
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CHAPTER 1

Introduction

Let A be a finite von Neumann algebra and 1 < p < 2. Our main theorem
yields that C, is not isomorphic to a subspace of LP(N) (where C, denotes the
Schatten p-class). It follows immediately that for any infinite von Neumann algebra
M, LP(M) is not isomorphic to a subspace of LP(N), since C), is then isomorphic
to a subspace of LP(M). (Banach spaces X and Y are called isomorphic if there is
a continuous linear bijection T : X — Y.)

REMARKS. 1. (Added December 2001.) This result has subsequently also been
extended to the case 0 < p < 1 by the third named author of the present paper
and Q. Xu [SX]. 2. It is proved in [S1] that also C), does not embed in LP(N) for
any 2 < p < 00.

For N a semi-finite von-Neumann algebra and 7 a faithful normal semi-finite
trace on N, LP(7) denotes the non-commutative L? space associated with (N, )
(see e.g., [FK]). The particular choice of trace 7 is unimportant, for if 3 is another
such trace, L?(() is isometric to LP(7). We also denote this (isometrically unique)
Banach space by LP(N).

Given C' > 1 and non-negative reals a and b, let a £ b denote the equivalence
relation a < b < Ca. Sequences (z;) and (y;) in Banach spaces X and Y
respectively all called C-equivalent if

(1.1) Hi‘” E“iay
=1 1=1

(Equivalently, there exists an invertible linear map T : [x;] — [y;] with ||T'||, |77 || <
C, where [z;] denotes the closed linear span of (z;).) (z;) is called unconditional
if there is a constant u so that for any n and scalars ci,...,c, and €1,...,¢,
with |g;| = 1 for all 4, |30 ecms| < ull Y ciaif| (then one says (z;) is u-
unconditional). The usual #P-basis refers to the unit vector basis (e;) of 7, where
e;(i) = é;; for all 4 and j.

Our main result goes as follows.

for all » and scalars a1, ...,a, .

THEOREM 1.1. Let N be a finite von Neumann algebra, 1 < p < 2, and let
(xi;) be an infinite matriz in LP(T) where T is a fived faithful normal tracial state
on N. Assume for some C > 1 that every row and column of (x;;) is C-equivalent
to the usual £*-basis and that (z;, ;. )32, is unconditional, whenever iy < iz < -
and j1 < jo < ---. Then there exist i1 < iy < --- and j; < jo < --- so that setting
Yk = Ty, 5, for all k, then

(1.2) lim n_l/p“ Zy:
=1

=0
Lr(7)

n—oo

1



2 1. INTRODUCTION

for all subsequences (y;,) of (yk)-

COROLLARY 1.2. Let p and N be as in 1.1. Let X be a Banach space spanned
by an infinite matriz of elements (x;;) so that for some A > 1,

(i) every row and column of (x;) is A-equivalent to the usual ¢? basis
(ii) (s, 5, )o2; is A-equivalent to the usual ¢P-basis, for all iy < iz < --- and
J1<j2<--.
Then X is not Banach isomorphic to a subspace of LP(r). In particular, C, does
not embed in LP(T).

The Corollary yields its final statement since the standard matrix units (x;;)
for C, satisfy (i) and (ii) with A = 1.

To see why 1.1 = 1.2, suppose to the contrary that T : X — X’ C LP(1)
were an isomorphic embedding, where X is as in 1.2. Then (T'z,;) satisfies the
hypotheses of 1.1 with C' = \||T'|| ||T~!||. However if (ix), (ji) satisfies the conclu-
sion of Theorem 1.1, (T'z;, ;) and hence (x;, ; ) cannot be equivalent to the usual
fP-basis, a contradiction.

Let Rad Cp denote the “Rademacher unconditionalized version” of C, (1 <
p < 00). That is, letting (r;;) be an independent matrix of {1, —1}-valued random
variables with P(r;; = 1) = P(r;; = —1) = 3 for all 7,7, and letting (c;;) be a
matrix of scalars with only finitely many non-zero terms, then

(1.3) (cii)lIRade, = Eull(rij(w)ei;)lle, -

COROLLARY 1.3. Let p and N be as in 1.1. Then Rad C, is not isomorphic to
a subspace of LP(T).

PROOF. The standard matrix units basis (z;;) of Rad C, also satisfies the hy-
potheses of Corollary 1.2 with A = 1. 0

Corollary 1.3 yields new information in the classical, commutative case of LP.
(Throughout, LP refers to LP on the unit interval, endowed with Lebesgue measure;
i.e., LP = LP(N') where N’ = L* acting on L? via multiplication.) This also reveals
a remarkable difference in the structure of LP-spaces, p < 2 or p > 2, for Rad C,
is isometric to a subspace of LP for 2 < p < oo (cf. Theorem 5 of [L-P]). Also,
let us note that Rad C), is isometric to a subspace of LP (Cp) for 1 < p < 2, so we
obtain an unconditionalized version of C}, in LP(M) which also does not embed in
LP(N), for N finite, where M = L>® @ B(H). (Throughout, LP(X) refers to the
Bochner-Lebesgue space LP(X,m), where m is Lebesgue measure.)

It is a classical result of C.A. McCarthy that C, does not “locally” embed in
L?, for 1 < p < 0o [McC]. Corollary 1.2 yields an “infinite” dimensional proof of
this result for 1 < p < 2, as well as the apparently new discovery that also Rad C,
does not locally embed in L, for these p. To see this, we give the following.

DEFINITION. Let 1 < p < oo, n € N, and A > 1. A finite-dimensional Banach
space X is called a A\-G'Cp-space provided there is an (n x n)-matrix (z;;) spanning
X so that

(i) any row and column of (z;;) is A\-equivalent to the usual ¢2-basis
(i) (@4 jp )i, is A-equivalent to the usual €, basis for any m,

1<ip < <ip<nand 1<j;<jo< - <jJnm<n.
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An infinite-dimensional space X is called a A\-GC-space provided it admits a span-
ning matrix (x;;) satisfying (i) and (ii) of Corollary 1.2; finally X is called a GC)p-
space if it is a A-GC)p-space for some A > 1.

Cy refers to the n?-dimensional Schatten p-class consisting of n x n matrices
in the Cp norm; “G” stands for “Generalized”. For example, Rad C} is a 1-GCp
space. The next result yields that A\-GC}-spaces cannot be uniformly embedded
in LP, hence in particular, we recapture the classical fact mentioned above that
L? does not contain C}’s uniformly. (For isomorphic Banach spaces X and Y,

d(X,Y) = inf{||T|| ||T~ : T is a surjective isomorphism from X to Y}).
COROLLARY 1.4. Let 1 <p <2 and X > 1. Define:
P =inf{d(X,Y) : X is a \-GC}-space and Y C LP} .
Then lim,, o0 Bp,x = 00.

PROOF. Suppose this were false. Then we could choose A > 1 and X, Xo,...
subspaces of L? so that X, is a A-GCp-space for all n. Choose then (z7;) an n x n
matrix of elements of X,,, satisfying (i) and (ii) of the definition, for all n. Let My
denote the linear space of all infinite matrices of scalars with only finitely many

non-zero entries. Let U be a free ultrafilter on N. Define a semi-norm || - || on My
by
(14) el = Him S ety

It is easily checked that | - || is indeed a semi-norm; let W be its null space;

W = {(ci;) € Moo : ||(ci;)|| = 0}, and let X denote the completion of (Mo, ||-||)/W .
It follows easily that X is a A-GCp-space. By standard ultraproduct techniques,
it follows that X is finitely representable in LP. But then (since ultraproducts
of (commutative) LP(u) spaces are (commutative) LP(v) spaces and any separable
subspace of an LP(v) space is isometric to a subspace of L?), X isometrically embeds
in LP. This contradicts Corollary 1.2. O

REMARK. Theorem 1.1 may easily be extended to the case of general finite von
Neumann algebras N, and not just the finite, o-finite ones covered by its statement.
Corollaries 1.2 and 1.3 also hold in this setting, as well as the general formulations
of Theorems 4.1 and 4.2. Indeed, in general, one has that LP(A) is isometrically
isomorphic to L?(7) for some semi-finite faithful normal trace 7 on N. Let (z;;) be
a matrix of elements of LP(7) satisfying the assumptions of Theorem 1.1, and let P
be the supremum of all the support projections of z;; and «7;, 4,7 = 1,2,.... Then
P is a o-finite projection in N, and thus PA/ P is both finite and o-finite. Moreover
all the z;;’s belong to LP(PN'P,7') = PLP(N,7)P, where 7/ = 7|PN'P. But in
turn, LP(PNP,7') is isometrically isomorphic to LP(PNP,7") for some faithful
finite normal trace 7" on PN P. This reduces the proof of Theorem 1.1 in the case
of general finite von Neumann algebras, to those with a finite trace.

We now give a description of the results and proof-order of the paper.

If a matrix satisfies the hypotheses of Theorem 1.1, then every row and col-
umn has the property that the p** powers of absolute values of the terms form a
uniformly integrable sequence. We develop the basic technical tools to explain and
exploit this, in Section 2, through the device of the p-modulus of an element of
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LP(N) with respect to a normal tracial state 7 on N. We give several useful in-
equalities for this modulus in Lemma 2.3. Although many of these can be obtained
from the literature (e.g., [FK]), we give full proofs for the sake of completeness.
We also obtain equivalences for relative weak compactness in L'(A) in terms of
uniform integrability in Proposition 2.5, and a useful non-commutative truncation
equivalence for general p, in Corollary 2.7.

We give technical information concerning general unconditional sequences in
LP(N) for p < 2 in Lemmas 2.8-2.10, yielding in particular the following defin-
itive equivalences obtained in Corollaries 2.11 and 2.12. Let (f,) be a bounded
unconditional sequence in LP(N). Then the following are equivalent.

1. (fn) has no subsequence equivalent to the usual P basis.
2. (|fnl|P) is uniformly integrable.
3. limpoe n VP S50 flllLo(r) = O for all subsequences (f),) of (fn).

The proof of Theorem 1.1 is then completed, using the standard ultraproduct
construction of the finite ultrapower of a finite von Neumann algebra A, and a result
giving the connection between its associated LP space and the Banach ultrapower
of LP(N) (Lemma 2.13). For recent structural results on ultrapowers of LP(N) for
arbitrary von Neumann algebras N, see [Ray].

Section 3 yields results considerably stronger than Theorem 1.1. The arguments
here do not use the ultraproduct construction in Section 2, and are thus more
elementary (but also more delicate). Theorem 3.2 gives the following result (which
immediately implies Theorem 1.1).

If a semi-normalized matriz in LP (N') is such that all columns and “generalized”
diagonals are unconditional while all rows are u-unconditional for some fixed wu,
then three alternatives occur: FEither some column has an fP-subsequence, or (P ’s
are finitely represented in the terms of the rows, or the matrixz has a “generalized
diagonal” (yx) satisfying (1.2) of Theorem 1.1.

This result is a fundamental step in the proof of the main result of section 3,
Theorem 3.1, which yields that if p = 1 or if p > 1 and N is hyperfinite, the uncondi-
tionality assumption in 3.2 may be dropped. In addition to 3.1, its proof uses results
from Banach space theory. The case p > 1 also uses recent non-commutative mar-
tingale inequalities (see [SF], [PX1]). The case p = 1 uses techniques from [R1],
which yield results for sequences in the preduals of arbitrary von Neumann alge-
bras which may be of independent interest (see Lemmas 3.8 and 3.9). The proof
in this case also requires an apparently new elementary finite disjointness result
(Lemma 3.10B).

(We have followed the referee’s suggestion in rewriting the beginning of sec-
tion 3, inverting the order of Theorems 3.1 and 3.2 from the earlier version of this
work.)

Section 4 contains rather quick applications of our main results and the tech-
niques of their proofs. For example, Proposition 4.1 asserts that neither the Row
nor Column operator spaces completely embed in the predual of a finite von Neu-
mann algebra; this is a quick consequence of our main result. Theorem 4.4 shows
that for 1 < p < 2 and N finite, a subspace of L?(N) contains ¢£’s uniformly iff it
contains an almost disjointly supported sequence (which of course is then almost
isometric to £7), extending the previously known commutative case [R2]). We give
the concepts of the p-Banach-Saks and strong p-Banach-Saks properties in Defini-
tion 4.5, and extend the classical results of Banach-Saks [BS] and Szlenk [Sz] in
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Proposition 4.6. This result also yields that for p and A as above, a weakly null
sequence in L?(N) has the property that every subsequence has a strong p-Banach-
Saks subsequence if and only if the pt* powers of absolute values of its terms are
uniformly integrable.

The main result of Section 5 shows that there are precisely thirteen Banach
isomorphism types among the spaces LP(N') for N hyperfinite semi-finite, 1 <
p < 00, p # 2. The embedding properties of the various types for p < 2 are
given in an eight-level Hasse diagram, in Theorem 5.2. This work completes the
classification and embedding properties of the type I case given in [S2]. The main
work in establishing this Theorem is found in the non-embedding results given in
Theorems 5.3 and 5.9; we also give a new proof of a non-embedding result in the
type I case, established in [S2], in our Proposition 5.5. The most delicate of these
is Theorem 5.9, which yields that if M is a type Il von-Neumann algebra, and
LP(M) embeds in LP(N'), then also N must have a type Il or type III summand
(1 < p < 2). Of course this reduces directly to the case where M is the hyperfinite
type Il factor; the proof requires our Theorem 3.1, and also rests upon recent
discoveries of M. Junge [J] and Pisier-Xu [PX2].

Our methods do not cover the following case, which remains a fascinating open
problem: Is it so that the predual of a type III von-Neumann algebra does not
Banach embed in the predual of one of type 11,7 In fact, we do not know if the
predual of the injective type Il factor can be Banach isomorphic to the predual
of an injective type III-factor. We show in Theorem 6.2 that such factors cannot in
general be distinguished by the Banach space isomorphism class (or even operator
space isomorphism class) of their preduals. Letting Ry denote the Powers injective
factor of type III, and R, denote the Araki-Woods injective factor of type III;,
we show that (R),). is completely isomorphic to (Rs)« for all 0 < A < 1. (For
a von Neumann algebra N, N, denotes its predual, also denoted here by L}(N).)
Thus there are uncountably many isomorphically distinct injective factors, all of
whose preduals are completely isomorphic. We also show in Theorem 6.2 that
there are uncountably many isomorphically distinct injective type IIly-factors, all
of whose preduals are completely isomorphic to (Roo)«-

We show in Theorem 6.3 that the famous open isomorphism problem for free
group von Neumann algebras cannot be resolved by the Banach (or even operator)
space structure of the predual. Namely, we prove that the preduals of the L(F,)’s
are all completely isomorphic, for 2 < n < oo, where F), is the free group on n
generators and L(F),) its associated von Neumann algebra. This extends the result
of A. Arias [Ar], showing that the L(F,)’s themselves are completely isomorphic
as operator spaces. The proof of Theorem 6.3 relies basically on the deep result of
D. Voiculescu that L(F) 2 M (L(Fy)) as von Neumann algebras, for k = 2,3, ...
(cf. [Vo] or [VDN]).

The results in Section 6 also extend to the case of the non-commutative spaces
LP(N), for 1 < p < oo (see Theorem 6.5). These isomorphism results (as well as
the “positive” isomorphism results in Section 5) rely on the operator space version
of the so-called Pelczyniski decomposition method (see Lemma 6.13). Thus, one ac-
tually shows for von Neumann algebras A/ and M, that each of the spaces LP(N)
and LP(M) is completely isometric to a completely contractively complemented
subspace of the other, and also (e.g., in the free group case M = L(F,)), that
say LP(M) also has the property that (LP(M) & -+ @ LP(M) @ - - - )g» completely
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contractively factors through LP(M), which then implies the operator space iso-
morphism of these two spaces. Thus the proofs of these operator space isomorphism
results are actually based on natural isometric embedding properties of the LP(N)
spaces themselves.

REMARK. (Added December 2001.) Some of the results of this Memoir have
been announced in [HRS].



CHAPTER 2

The modulus of uniform integrability and weak
compactness in L!'(N)

Let A be a finite von Neumann algebra, acting on a Hilbert space H. Let
P = P(N) denote the set of all (self-adjoint) projections in N'. We shall assume
that NV is endowed with a faithful normal tracial state 7, which is atomless. That
is, for all P € P with P # 0, there is a Q@ < P, @ € P, with 0 < 7(Q) < 7(P).
(Equivalently, 0 # @ # P, since 7 is faithful.)

These assumptions cause no loss in generality. Indeed, if N has a faithful
normal trace v, then simply replace N by N = N®L>, where N is equipped with
the atomless trace v = 7 ® m, with m the trace on L given by integration with
respect to Lebesgue measure on [0,1]. N is (+-isomorphic to) a subalgebra of N,
and hence LP(N) is isometric to a subspace of L? (j\7 ), so we may as well assume
our space X in Theorem 1.1 is already contained in L?(N).

Now if M C N is a MASA, it follows easily that also 7| M is atomless. Indeed,
were this false, we could choose P # 0, P € M so that 0 < Q < P, @ € M implies
Q@ =0or Q = P. But then choosing @ € P(N), 0 < Q < P with 0 < 7(Q) < 7(P),

we obtain that if M is the von Neumann algebra generated by M and @, M is
also commutative and M # M, a contradiction.

DEFINITION 2.1. Given f € N, = L'(1), we define the modulus of uniform
integrability of f as the function on RY, ¢ — w(f,e) given by

(2.1) w(f,e) =sup{r(|fP|), PP, 7(P)<¢e}.
We also define the lower modulus of f, e — w(f,€), as
(2.2) w(f,e) =sup{|r(fP)|: P P,7(P)<¢e}.

To handle the case p # 1 in our Main Theorem, we also use the following p-
moduli. (When 7 is fixed, we set || fll, = [|fllr(r) = (7(|f[?))/?. Also, for f € N,
we set || flloo = [Ifllar-)

DEFINITION 2.2. Let 0 < p < 0o and f € LP(1). The p-modulus of f, wp(f,-),
the symmetric p-modulus of f, wy(f,-), and the spectral p-modulus of f, wp(f,)
are given, for 0 <e <1, by

(23)  wplfie) =sup{lfPlp: PeP, 7(P)< e},
(24)  wi(f.e) =sup{|PfP|,: P € P, 7(P) < e},

25)  @,(fe) = sup{ ( /( . td(r o Em(t)))l/p .70 Bjg((r,00)) < s}

where for g self-adjoint, E, denotes the spectral measure for g.

7
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It is trivial that all these moduli are increasing (i.e., non-decreasing) functions
on R*, which are continuous at 0, thanks to the assumption that f € LP(r).
Actually, the assumption that 7 is atomless yields that w,(f,-), w(f,-) and wp(f,-)
are absolutely continuous on [0, 1].

We now give some basic properties of these moduli. The most important of
these is that several of them reduce to the uniform integrability modulus given in
Definition 2.1. In particular, we obtain for f € LP(7) and € > 0 that

wpf.€) Swp(f*,€) = wp(f€) = (WP, )P < 25 (Iflve) -

For any f affiliated with A/, we let ¢ — p(f,t) denote the decreasing rearrange-
ment of |f| on [0,1]; u(f,t) = inf{r > 0: 70 Ej5((r,00)) < t}.

LEMMA 2.3. Let 1 <p < oo, f,g € LP(7), and € > 0.

(2.6) wp(f +9,6) Swp(f,e) +wplg,e)
and

wp(f +9.€) Swp(f,e) +wy(g.e) -
If f is self-adjoint, then

wp(f,e) = wp(f,€) = ((IfIP, )P
=max{||fP|,: Pf=fP, P€P, and1(P)=c¢}

([ wuna) v
and

(2.8) w(f,e) <2w(f,e) when p=1.
In general,
wp(f,€) S wp(fre) = wp(f™,€)
= wp(Ifl,€) = @(IfIP,e)? < 2w5(f,¢)

(2.7)

(2.9)

and in case p =1,

(2.10) w(f,e) Sw(f,e) <dw(f.e) .

Finally, let 7 = ¢ Y/P||f|,. There exists a spectral projection P for |f| so that
fP e N with

(2.11) [/ Plloc <7 and || f(I = P)llp < @p(f,€) < wp(fye) -

The case p > 1 uses the following classical submajorization inequality, due to
H. Weyl [W].

SUBLEMMA. Let f and g be decreasing non-negative functions on (0,1] so that

/ f(t)dtﬁ/ g(t)dt forall 0<x<1.
0 0
Then also . .
/ f”(t)dtg/ gP(t)dt forall 1 <p< oo,
0 0
all0 <z <1.
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REMARKS. 1. This follows easily from the corresponding “discrete” formula-
tion, cf. [GK]. Also, the result holds in greater generality; one does not need the
functions to be non-negative, and moreover the conclusion generalizes to assert that

/ <I>of(t)d_<_/ Dog(t)dt forall 0<z <1
0 0

all continuous convex functions ®.

2. All the assertions of Lemma 2.3 hold for semi-finite von Neumann algebras
N that are atomless (i.e., have no minimal projections), endowed with a faithful
normal trace 7. Several of its assertions can also be deduced from results in [FK]
and [CS]. For example, once one proves the equality of the first and last terms in
(2.7), one may apply Lemma 4.1 of [FK] to obtain several of the other equalities
n (2.7), for p = 1; one then has that w(7',e) = ®.(T) in the notation of [FK], and
some other results in Lemma 2.3 follow from Theorem 4.4 of [FK]. However we
prefer to give a “self-contained” treatment, in part because we take the modulus
w(f,€) as the primary concept in our development.

PrROOF OF LEMMA 2.3. Let p, f,g and € be as in the statement. (2.6) is a

trivial consequence of the fact that || - ||, is a norm (i.e., the triangle inequality).
Also, we easily obtain that
(2.12) wp(f,€) S wp(fre) = wp(lfl€)
(213) (:)P(f’g) S wp(fvg)
and in case p =1,
(2.14) w(f,e) Sw(f,e) -
Indeed, if P € P, then
(2.15) [P = (Pf*fP)/2 = (P|fPP)/? = | |£|P]

which immediately yields the equality in (2.12). Since compression reduces the
L?(7) norm, we have

(2.16) I1PfPllp = IP(fP)Pllp < |IfPllp

which gives the inequality in (2.12). If 0 < r and 7 o Ej£/((r,00)) < ¢, then setting
P = E|f|((1",00)),

1/p
(2.17) u"fwwamﬂ —NA1P], <wnlhD)
yielding the inequality in (2.13). (2.14) is trivial, since for any P € P,
(2.18) IT(fP) < 7(IfP) = lf Pl -

For the non-trivial assertions of the Lemma, we need the following basic iden-
tities (cf. [FK], [CS]).

0o 1
(219) = [ waromgw < [ wirod.
(The final inequality is also an equality, but this follows from the conclusion of our
Lemma.)

Now let f be self-adjoint. Let A'(f) denote the von Neumann algebra generated
by f, and let M be a MASA contained in N with N(f) € M. Then by our
initial remarks, 7|M is atomless. Let us identify (as we may), M and 7|M with
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an atomless probability space (2, S, v). It follows that we may choose a countably
generated o-subalgebra Sy of S so that f is Sp-measurable and also v|Sy is atomless.
Denote the corresponding von-Neumann algebra by: L™ (v|Sy) = M.

It then follows that (€2, Sp, ) is measure-isomorphic to ([0, 1], B,m) (where B
denotes the Borel subsets of [0,1] and m denotes Lebesgue measure on B), and
moreover the measure-isomorphism may be so chosen that the “random-variable”
f is carried over to the decreasing function ¢ — u(f,t) (cf. Lemma 4.1 of [CS]). It
now follows that

(2.20) [ <.

Indeed, it follows that there exists a set S € Sp with v(S) = z and [¢|f|Pdv =
T(|XsfIP) = [y uP(f,t)dt (where Xs may be interpreted as the projection in My
obtained via multiplication). Now we define a quantity 8 (depending on z) by

(2.21) B=sup{llfvl:v eN, [Pl <1, [7(¥)] <z} .
We are going to prove that there exists a G € P(Mpy) with 7(G) = z and
(2.22) T(IfG) =7(f1G) =5 .

Note that the first equality in (2.22) is trivial, since G < f. But then all the
equalities in (2.7) for the case p = 1, follow immediately, for we have also that then
/G = GIfIG = [GFG| and so trivially 7(IfIG) < w(lfl,z) < B and 7(f|G) <
wi(f,z) < B; of course also w(f,z) < G, hence by (2.22), 8 = w(f, z). Moreover by
the argument for (2.20) and (2.22) we have that 8 = 7(|f|G) = [ u(f,t) dt.

Before proving this basic claim, let us see why it also yields (2.7) for p > 1
(via the Sublemma). Still keeping = fixed, assume 0 < z < ¢ < 1, and suppose
P ¢ P with 7(P) < e. Now setting g = |fP], g is self-adjoint and “supported” on
P, whence it easily follows that u(g,t) =0 for t > €.

But now we obtain that

. Y "0 dt
(2.23) / (g, t) tg/o u(f. 1) di
Indeed,

/0 " (g,1) dt < w(g,7) = w(fP.x)

(2.24) = sup{[|fPQ|1 : 7(Q) < =}
=sup{|T(fPQ¥)|: ¢ €N, [l¢llc <1} (by duality)
<g

(since PQ € N, [ PQll < 1, and |7(PQ)| < 7(Q) < 2).

Now (temporarily) unfixing z, we also have that (2.23) holds for = > ¢, since
wu(g,t) = 0 for all ¢t > e. Thus the Sublemma yields that

(2.25) /0 T (g, 1) dt < /0 () db

Hence in view of (2.19),

(2.26) IFPIE < /0 WP(f, 1) dt |
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and so at last

(2.27) wplfr) < ( / () dt)l/p

Of course (2.20) combined with (2.27) now yields that

(2.28) wplfs) = ( / ) dt>1/,, ,

and now all the equalities in (2.7) follow for p > 1 as well.
We now establish (2.22). Using the polar decomposition of f and duality, we
have that

B =sup{|T(fYe)l : ¥, ¢ €N, [[¥lloo, llelloo <1 and |7(¥)] <z}
(2.29) =sup{7(|f[¢): v €N, 0<¥ <1, 7(¢) <z}
=sup{7(|flY):p e M, 0< ¥ <1, 7(¥) <z} .

The last equality follows by a conditional expectation argument from classical prob-
ability theory.

Indeed, given 0 < ¢ < 1 in N with 7(¢) < z, there exists a unique ¥ e M,
such that

(2.30) 7(gp) = 7(gp) for all g€ L*(My) .

It follows that then 0 < ¢ < 1 and 7'(1Z) < z; this yields the desired equality.
Now let K be defined:

(2.31) K={peMp:0<9¢<1land7(¢) <z} .
Then K is a weak* compact convex set, thus

(2.32) K =w"—-co{p:¢p e ExtK}

and moreover

(2.33) B =sup{7r(|fle): ¢ € ExtK} .

Now we claim that if ¢ € Ext K, ¢ is a projection. To see this, again identifying
My with L>°(Q, Sp, v|Sp), we regard ¢ as an Sp-measurable function on Q. Were
© not a projection, we could choose 0 < § < % so that setting F = {w € Q: 6 <
p(w) <1 -4}, then u(F) > 0. Since p is atomless, choose a measurable £ C F
with p(F) = u(E). Now define g by
(234) g = gXE - gXFNE .

Then g # 0, 7(g) = 0,and 0 < p+ g < 1. But then 7(¢ £ g) < ¢, hence p+g € K
and ¢ = (—“”Jrg);r&l, contradicting the fact that ¢ € Ext K. (For a proof of this
claim in a more general setting, see [CKS].)

We finally observe that the supremum in (2.29) is actually attained, thanks to
the w*-compactness of K. But it then follows that this is attained at an extreme
point of K, i.e., there indeed exists a G € P(My) with 7(G) = z, satisfying (2.22).
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We may now also easily obtain (2.8). Letting f = f* — f~ where f* . f~ =0
and f*, f~ >0, we have (by the proof of (2.7))

w(f,e) =sup{7(|f|P): P € P(Mo), 7(P) < ¢}
=sup{r(fTP)+7(f P): P € P(My), 7(P) < ¢}
< 2sup{|r(fP)|: P € P(My), 7(P) <e}
< 2w(f,e)

(2.35)

The first equality in (2.9) follows from the fact that for a general f affiliated
with AV, there exists a unitary U in N with f = U|f| (thanks to the finiteness of \V).
But then |f| and |f*| are unitarily equivalent, which yields that u(f,t) = u(f*,t)
for all ¢, and hence the desired equality follows by the final equality in (2.7).

It remains to prove the last inequalities in (2.9) and (2.10), and the final state-
ment of the lemma. Let f = g + ih with g and h self-adjoint (and so in LP(7)).
Then

wP(fv 5) < wp(g’ 5) + wp(ha 6) by (26)

(2.36) =wi(g,€) +wi(h,e) by (2.7).

But if ¢ = g or h, then

(237) wilpne) S wi(fie)
Indeed, if P € P, 7(P) < ¢, then PfP = PgP + iPhP. But PgP and PhP are
both self adjoint, hence ||PoP||, < ||PfP||p, yielding (2.37). Of course (2.36) and
(2.37) yield the final inequality in (2.9). Similarly, in case p = 1,

w(f,e) Sw(g,e) +w(h,e) by (2.6)
(2.38) < 2w(g,e) + 2w(h,e) by (2.8)

< 4dw(fe)

since we also have for ¢ = g or h, that w(p,€) < w(f,e) (by an argument similar
to that for (2.37)).

To obtain the final assertion of the lemma, let r = u(f,¢), and let E = Ey.
Now if € = 7(FE][r,00)) then since

(2.39) E([r,o0)) = /\{E([s, o00)):s<r},

we have ¢ < &. Thus

(2.40) rPe < rPe < / tPdr o E(t) < / tPdro E(t) = (I}
[r,00) [0,00)
Hence
(2.41) r<e VPfl,
Now also by the definition of r, 7(E(r,00)) < €, and so
(2.42) H(SPE o) = [ #droB@) <a,(e)
(r,00)

Finally, let f = U|f| be the polar decomposition of f. In particular, U is a partial
isometry belonging to A'. Then P = E([0,7]) satisfies (2.11). Indeed, fP = U|f|P
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and || |f|Plloo <1, s0 also |U|f|P|le <7, and

IUIFI = P)llp < AT = P)llp = (r(|fPE(ro0))”
<@p(f,e) by (242). O

REMARKS. 1. We have given a self-contained proof of the basic inequality
(2.27) for the sake of completeness. An alternate deduction may be obtained as
follows. The remarks preceding (2.20) actually yield that for any g € L?(7), |lgl|, =
llee(g, )llp- Let f be as in the proof of (2.27) and fix a P € P with 7(P) = . We
apply this observation to g = fP. First, Proposition 1.1 of [CS] yields that for any
O0<x<1,

[ ntpods [ uoura.
0 0

Hence applying the Sublemma and the observation,
1

1Pl = [ Py < [l oupa i

= /Eup(f, t)dt
0

which of course yields (2.26) and hence (2.27).

2. Rather than making use of the measure isomorphism of (€2, Sy, v|Sp) with
([0,1], B,m), one can use the following more elementary procedure, in demonstrat-
ing (2.20). Let r = pu(f, x). Then it follows that setting P = E|/((r,00)), 7(P) <z
and 7(Ef([r,00))) > . Using that 7| M is atomless, choose @ € P(M) with
Q < Ej5({r}) so that 7(Q) + 7(P) = z. Then

F(FP+QIP) = (PP +Q))
—rr(Q) + / #d7 o Byp (1)

(T‘7OO)

= [(wna.
0

Here, the first two equalities are trivial; however the third one follows by a direct
elementary (but somewhat involved) argument. (We are indebted to Ken Davidson
for this Remark.)

We next use the modulus of uniform integrability to establish a criterion for
relative weak compactness.

DEFINITION 2.4. A subset W of L1(7) is called uniformly integrable if

lim sup w(f,e) =0.
e—0 few
COMMENT. The assumption that 7 is atomless implies uniformly integrable
subsets are bounded in L!(7). In fact, it then follows that if W satisfies that
SUp ey w(f, e0) < oo for some gy > 0, W is bounded.

PROPOSITION 2.5. Let (f,) be a given sequence in L(7). The following are
equivalent
(i) (fn) is relatively weakly compact in L(7).
(ii) (fn) is uniformly integrable.
(iil) (|fn|) is relatively weakly compact.
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(iv) (fn) is bounded in L' (1) and lim._q sup,, ©1(fn,€) = 0.
(v) For all € > 0, there exists an r < o0 so that for all n,

dLl(T)(fnarBa(N)) <e.
Moreover if (f,) is bounded in L'(T) and

(2.43) n= lin}) supw(fn,e) >0,
E— n
there exists a sequence Py, Py, ... of pairwise orthogonal projections in P and ny <
ng < --- so that
(2.44) 7 (f, Pe)| > g for all k.

REMARK. B,(N) denotes the closed unit ball of N; thus 7- B,(N) = {f € N :
[ flloe <7} For W C L*(7) and f € L*(7), dpi(ry(f, W) = inf{|| f —wl1 : w € W}
by definition. Our proof of (iv) = (v) reduces, via the proof of Lemma 2.3, to a
standard truncation argument in the case of commutative N.

PROOF. Once (i) < (ii) is established, the other equivalences in this Proposi-
tion follow easily from 2.3. Indeed, we have by the equalities in (2.9) that

lim sup w(fr,t) = lim supw(|fal, &) ,
e—0 4 e—0 5

whence we have the equivalence of (i)—(iii). Now trivially (i) = (iv) since
&1(f,€) <w(f,e) for any f € L1(7) and € > 0 (see (2.11)). Suppose first that (f,)
satisfies (v). Then given € > 0, for each n we may choose ¥, € N, ||[¥nlleo < T,
with

(2.45) fn = Ynllrry <€
But then for any § < ¢,
(2.46) W(fn,0) S w(fn —Vn,0) +w(¥n,d) <e+rd.

Hence lims_q sup,, w(fn,d) < &, proving (ii). On the other hand, suppose (iv)

holds. Let € > 0, and choose § > 0 so that
(2.47) 01(fn,0) <e forall n.

Also, let M = sup||fallz1(-). Then setting r = 6~'M, it follows by the final
statement of Lemma 2.3 that for each 7, we may choose v, € r B, N with

[Vn = fallLry < @1(f,96) <€,

proving (iv) = (v).
To prove the equivalences of (i) and (ii), we use the following classical criterion
due to C. Akemann [A]: A bounded set W in the predual of a von-Neumann alge-

bra M is relatively compact if and only if for any sequence Py, Ps, ... of disjoint
projections in M,
(2.48) lim sup |P;(w)|=0.

J=OweWw

Now suppose first that (f,) is not relatively weakly compact; then choosing
disjoint P;’s as in the above criteria, we obtain that

(2.49) lim sup |7(Pjfn)| =6 >0.
J70 n
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But lim7(P;) = 0, since the P;’s are disjoint. It follows immediately that
(2.50) lin%)supg(fn,s) >4,
E— n

which together with (2.10), proves that (ii) = (i).

Finally, to show that (i) = (ii), assume instead that n > 0, where 7 is
given in (2.43). It now suffices to demonstrate the final assertion of 2.5, for then
(fn) is not relatively weakly compact by Akemann’s criterion. Let 0 < € < 1 with
7 —¢e > Z. By (2.43), choose n; with

1
(251) w (fnl’é) >n—c€.
Then choose (by (2.10) of Lemma 2.3), @, € P with 7(Q1) < 1/2 and
—€
(2.52) I (fay Q)| > T

Since f,, is integrable, {f,,} is uniformly integrable, so we may choose 0 < g5 < 1
so that

(2.53) w(fnl7€2) <

N ™

Next by (2.43), choose ny > nq with
(2.54) W(fny,€2) >N —€.

(It is easily seen, thanks to the uniform integrability of finite sets in L(7), that in
fact n = lim. 0 lim;, 00 w(fn, €); thus we may insure that ny may be chosen larger
than n;.) Again using (2.54) and (2.10), choose Q2 € P with 7(Q2) < £% and

(2:55) [7(faaQa)l > 1= .
Then choose €3 < €5 so that
(2.56) W(frgs €3) < g .
Continuing by induction, we obtain n;y < no < ---, 1 =¢&1 > €9 > ---, and
projections @1, @2, ... in P so that for all k,
(2.57) m(Qn) < o
(2:58) W frrers) < 5
and
(2:59) 7 (fn @)l > 1=

Now set P = Qr A (Aj>k(1—Qj)), for k= 1,2,.. .. Evidently the Py’s are pairwise
orthogonal. For each i, let Q); = @Q; — P;. Now by subadditivity of T,

")z 7(@) - (1-7 At~ 2)

>7(Q:) — ZT<Qj) .

J>1
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But
I 1
ZT(Qj) < Z -2—2— < €it1 Z 2‘]‘ by (257)
j>i j>i j>i
< Ei41 -
Hence we have
(2.60) T(Qi) <) 7(Q)) < -
>i
Thus by (2.58),
~ €
(2.61) | fr; Qillt < W(fni»€it1) < 5

Hence

7 (fai P = 17 (fn, Qi — f Q3)

n—e €
1 5 by (2.61)

Y

v
ol

O

REMARK. The proof of the implication (i) = (ii) itself, may quickly be
achieved, using instead Theorem 3.5 of [DSS].

The following result is an immediate consequence of 2.5.

COROLLARY 2.6. A subset of L'(7) is relatively weakly compact if and only if
it is uniformly integrable.

PRrROOF. Let W be the subset, and suppose first W is relatively weakly com-

pact, yet lim. o supsey w(f,€) d:efn > 0. Then for each n, choose f, € W with

w(fn, 3) > n—5=. It follows immediately that also lim._.q sup,, w(fn,€) = 7, hence
(fn) is not relatively weakly compact by Proposition 2.5. If W is uniformly inte-
grable, then W is bounded, and then W is relatively weakly compact by Akemann’s
criterion, (stated preceding (2.48)). O

REMARK. Suppose ||fi|l1 < 1 for all ¢, and (f;) satisfies (2.43). Letting the
n1 < ng < --- be as in the proof of 2.5, we show in Section 3, using arguments
in [R1], that there exists a subsequence (f!) of (f,,) so that (f]) is %—equivalent
to the usual ¢!-basis, with also [f/] %—complemented in L'(7). Hence (f;) has a
subsequence equivalent to the ¢!-basis, so of course (f;) is not relatively weakly
compact.

We note finally a consequence of the proof of 2.5, valid for all 1 < p < oo and
arbitrary (not necessarily atomic) finite von Neumann algebras.

COROLLARY 2.7. Let 1 < p < oo, let M be a finite von Neumann algebra
endowed with a faithful normal tracial state T, and let W be a bounded subset of
L?(7). Then the following are equivalent.

(i) {|lw|? : w € W} is uniformly integrable.
(ii) lime_osupsew Wp(f,€) = 0.
(iii) limy—00 gw(r) =0,
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where the function gw is defined by
(2.62) gw(r) = sup dpr(r)(w,r Bo(M)) for r>0.
weW

PROOF. (i) = (ii) follows immediately from the (obvious) inequality @, (f,¢)
< wp(f,€) (stated as part of (2.11) in Lemma 2.3).

(ii) = (iil). Assume that |w|, < M for all w € W. For r sufficiently large,
define e(r) = e > 0 by

(2.63) r=eVPM .

Let f € W. Since e V/?||f||, < r, by the final assertion of Lemma 2.3, we may
choose P a spectral projection for |f| so that

(2.64) fPerBy(M) and |f(I—P)|, <p(fre) -
It follows immediately that
(2.65) gw(r) < sup @,(f,€) .

few

Thus (iii) holds by (ii), since e(r) — 0 as r — co. (Note also that the final assertion
of 2.3 does not involve the “atomless” hypothesis, since @, (f,€) is defined in terms
of the spectral measure for |f|.)

(ili) = (i). Given f € W and € > 0, choose ¢ € r - B,(M) with

(2.66) If = Yllerr) <€
Then for any 6 < ¢,
(2.67) wp(f,0) Swp(f —1,0) +wp(¥,0) <e+r1d .

Hence lims_,o sup e wp(f,9) < ¢, proving that (i) holds, since € > 0 is arbitrary
and w,(f,t) = (w(|f[P,t))*/P for any f and ¢, by (2.9) of Lemma 2.3. O

Proof of the Main Theorem

We first assemble some preliminary lemmas, perhaps useful in a wider context.
N and 7 are assumed to be as in Section 2. Let 71,75, ... denote the Rademacher
functions on [0, 1]; equivalently, an independent sequence of {1, —1}-valued random
variables (r;) with P(r; = 1) = P(r; = —1) = 3 for all j.

LEMMA 2.8. Let1 < p <2 and (f,) be a bounded unconditional basic sequence
in LP(7), so that (|fi|P)22, is uniformly integrable. Then lim, oo n 2P| fi +--- +
fnllLe(r) = 0.

REMARK. Recall from the introduction that a sequence (z,) in a Banach space
is called unconditional if there is a constant u so that

n n
H a;cx;|| < u” CiT;
oy IR 2

€1,.-.,¢cnp and g, ..., o, with |a;| =1 for all 7 .

} for all » and scalars

(xn) is called u-unconditional if (2.1) holds.
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PROOF OF 2.8. Suppose (fy) is u-unconditional. Then (f,) is u-equivalent to
(frn ® rp) in LP(N®L™>), so it suffices to prove the same conclusion for (f, ® ry)
instead. Let 3 = 7 ® m, where m is Lebesgue measure on [0,1). We may also
assume without loss of generality that || f,|/z»(-y < 1 for all n. Now let ¢ > 0, and
choose § > 0 so that

(2.2) W(|fnl?,6) < e foralln

(using that (|f,|?) is uniformly integrable). By the final statement of Lemma 2.3,
we may by (2.2) choose for each j a P; € P = P(N) so that f;P; € N with

1
(2.3) IfiPilleo < 5 and [If5(I = Pz <.
Then fixing n,
(2.4) “ S fiern
i=1
But

29 |Srpen
i=1

([ P 4
Lp(ﬁ)'i"”;ft( 1)®T1

L7(6) ;f ' ' L(8)

o vn
L2p) ~ 0

< P
Le(g) ”;fl P QT

since || fiP;[loc < § for all i.
On the other hand, since LP(M) is type p with type p constant 1 for any
von-Neumann algebra M,

n n 1/p
[Ssa-ran|,, < (SIar-Pi,)
i=1 L2 8 =1

<en'/? by (2.3).

(2.6)

(This fact follows by Clarkson’s inequalities — see the discussion in the proof of
the next lemma.) We thus have that
nl/2

< li —_
Lr(8) — 711_151;0 onl/p

+e=¢

n—0o0

(2.7) Tim n—l/PH Y hern
=1

by (2.5) and (2.6). Since € > 0 is arbitrary, the conclusion of the lemma follows. 0O

REMARKS. 1. It follows easily from the above proof that in fact if (f,) satisfies
the hypothesis of 2.8, then lim, .o 2 YP||f] + --- + f.|l, = 0 uniformly over all
subsequences (f},) of fn.

2. The proof of Lemma 2.8 yields the following quantitative result. Fiz ¢ > 0,
and let (f;) be a bounded sequence in LP(T) so that there exists an r < oo with
dpo(ry (fism BaN) < € for all j. Then limy o0 Eun™ P 37 r5(w) fll1o(r) < e
Indeed, for each j, choose @; € r By N with || f; — ¢jll1r(r) < . Then fixing n,
(2.4)—(2.6) yield

|3 er
i=1

<[Foor |5 mer
) ;‘Pz Lo(8) zzzl(f ‘Pt)
<rvn+ent/?.

Hence lim,, 0o n™YP|| 37, f; ® 14l 1o () < € as desired. O

L»(B)
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We next give a criterion for a finite or infinite sequence in LP(7) to be equivalent
to the usual # basis.

LEMMA 2.9. Letu>1,6 >0,1<p <2, and fi,..., fn elements of B,(LP(N))
be given so that (f;)™_; is u-unconditional. Assume there erist pairwise orthogonal
projections Py, ..., P, in P so that

(2.8) (1P fPj|F) > 67 forall 1<j<mn.
Then (i), is C-equivalent to the usual ¢%, basis, where C = u/35 1.

PROOF. We first note that (using interpolation), LP(7) satisfies Clarkson’s in-
equalities: for all z,y € LP(7),

(2.9) Iz +yllp + llz =yl < 20l + llylp) -

It follows immediately by induction on n that LP(7) is type p with constant one;
that is, for any 1, ...,z, in LP(7),

1 n
Z | £z £ Fa,|) = / HZrz(w)a:
Av+ 0 =1
< (S lay)
i=1

Now let scalars a1, ...,a, be given, and let f =" a;f;. We obtain from (2.10)
that since (f;) is u-unconditional,

n 1/p
(2.11) Il < u(Elai)
=1

Now fix w and set f, =Y ., a;7;(w)fi. Then

(2.10)

(2.12) (P Z 1P £ By 5 -
J=1
Thus integrating over w and again using unconditionality,

72 5 [ g
(2.13)
= ;;;/0 |1 £ PjlP dw by (2.12).

But fixing 7, since LP(7) is cotype 2 with constant at most 3'/2,

p/2
[ iesnigs 2 g (Simwsn:)

2.14
( ) P a; fi P ”p

Z 317/2

> orla;[P6P by (2.8).

3;7/2
Thus in view of (2.13),

o -
(215 1712 2 e (22 o)
Z
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so (2.11) and (2.15) now imply the conclusion of Lemma 2.9. O

Our last preliminary result yields an estimate for equivalence to the 2 basis in
terms of p-moduli.

LEMMA 2.10. Let 0 < e <n/2, n>1, and fi,..., fn € By LP(T) be such that
(f1,---, fn) is u-unconditional and there are 61 > d9 > --- > 6, > 0 so that for all
1<j<mnandallk withj <k (ifj<n)

(2.16) wp(fj,0;) >n and wy(fj,0k + k41 + -+ 0p) <

N ™

Then (f1,. .., fn) s C-equivalent to the ¥, basis where
n -1
< - — .
C <uVv3 ( 5 5)

PROOF. By Lemma 2.3, (see (2.9)), we have, fixing 1 < j < n, that

(2.17) wp(f5,05) > g :
Hence we may choose @; € P with
(218) 1Qs£iQsllp > § and (Q;) <6,
Define projections P; and Qj by
(2.19) Pi=Q;A N(1-Q) and Q;=Q,; - P
k>j
Then
(2.20) QifiQ; = PifiP; + Qi fiF; + ijij :
Now we have by subadditivity of 7 that 7(A,.,;(1 —Qk)) = 1 — > 4., 0k, and so

again by subadditivity,

wp) 2 @) - (1-7(A1-a))

k>j
>7(Q) = D bk -

k>j
Thus 7(Q;) < 3y 0. Hence we have

12552l = 105550 < (55,3001

(2.21) k>3
€
- wp<fj,z(5k> 5 by (2.16)).

k>j

By the same argument,
~ €

(2.22) 1QifiQillp = 5 -
Thus from (2.18), (2.20), (2.21) and (2.22), we obtain

n
(2.23) 1P f5P5llp 2 5 — ¢ -
Of course Pi,..., P, are pairwise orthogonal; hence Lemma 2.9 now immediately

yields the conclusion of 2.10. 0
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Lemma 2.10 immediately yields an infinite dimensional conclusion as well.
Combining this and Lemma 2.8 we obtain the following definitive result.

COROLLARY 2.11. Let (f,) be a bounded unconditional sequence in LP(1), 1 <
p < 2. The following are equivalent:
(a) (fn) has a subsequence equivalent to the usual fP basis.
(b) (|fnlP) is not uniformly integrable.

PrOOF. (a) = (b) follows immediately from Lemma 2.8. Assume that (b)
holds and also assume without loss of generality that || f, ||, < 1 for all n. Then by
Lemma 2.8,

(2.24) ndzef lirr(l)supwp(fn,s) >0.

e—0 p
Now Lemma 2.10 yields that there is a subsequence (f}) of (f») so that
(2.25) (fr) is -cng-equivalent to the ? basis,

where ¢ is an absolute constant.
Indeed, fix 0 < e < 4. Choose §; < 1 and n; so that

(226) wp(fn1761) > n—e.
Suppose n; < --- < n; and §; > -+ > §; chosen so that

wp(fni,5i+1+-'-+5j) <§ for all 1SZ<] .

By continuity of the functions ¢ — w;,(fn,,t) for i < j and the fact that f, € LP(7),
choose §;11 < §; so that

(227) wp(fm,éi.,_l B —I—(S] + gj+1) < % forall 1< <j7.

Then choose §;11 < 3j+1 and n;j41 > n; so that

(2.28) Wp(frj1,0541) >M—€ .

This completes the inductive choice of n; < ng < -« -.

Setting f; = fn,, then (f{,..., f}) satisfies the hypotheses of Lemma 2.10 for
all n, and hence (f)) is u\/_?;(g —¢)~l-equivalent to the P basis by 2.10. By taking
¢ small enough, we obtain ¢ < 7 in (2.25). O

REMARK. The hypothesis that (f,) is unconditional may be omitted when
p = 1, as pointed out in the remark following the proof of Corollary 2.6. Also, it’s
not hard to show that the sequence (f},) constructed above has its closed linear
span complemented in LP(7). Finally, it follows from known (rather non-trivial)
results that if 1 < p < oo and N is hyperfinite, then every semi-normalized weakly
null sequence in LP(N') has an unconditional subsequence. Indeed, assuming (as we
may) that A/ acts on a separable Hilbert space, LP(N') has an unconditional finite
dimensional decomposition (see [SF|, [PX1]), which yields the above statement.
Thus also in the hyperfinite case, the hypothesis that (f,,) is unconditional may be
omitted. We do not know, however, if this is so for general N.

COROLLARY 2.12. Let (f,,) be a bounded unconditional sequence in LP(7), 1 <
p < 2. The following are equivalent.
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(a) For every subsequence (f!) of (frn)

n
lim n_l/p” E 1l
n— o0

i=1

(b) (|fnlP) is uniformly integrable.

=0.
Lr(r)

PROOF. Both implications are proved by contradiction. (a) = (b): Assume
(b) is false. Then by Corollary 3.4 there exists a subsequence (f/) equivalent to
the usual ¢P-basis. In particular

lim inf n_l/”” Z 1
i=1

>0.
Lr(r)

n—oo

which contradicts (a).
(b) = (a). This follows from Lemma 3.1, since condition (b) implies that
(If-1)? is uniformly integrable for any subsequence (f},) of (fy). O

We now turn to the proof of the Main Theorem. First we give some preliminary
results concerning ultrapowers of Banach spaces and the standard construction of
the ultrapower of a finite von Neumann algebra (cf. [MeD], [V]).

Fix U a free ultrafilter on N. For a given Banach space X, let £°°(X) denote
the set of bounded sequences in X, under the norm ||(z,)| = sup,, ||z.||, and set

(2.29) Ey ={(z,) € £2(X) : liél[lj lzn |l = 0} .
Then Xy, the ultrapower of X with respect to U, is given by
(2.30) Xy =4>*(X)/Ey .

Now fix AV a finite von Neumann algebra with a normal faithful tracial state 7,
and define Iy by

(2.31) Iy = {(z,) € L°(N) : ller?jr($;mn) =0} .

Then I;; is a norm-closed two-sided ideal in £>°(X); we define N’V (a different object
than Ny!) by

(2.32) NY = =(N)/Iy .

Then by the references cited above, N’V is a W*-algebra (i.e., an abstract von Neu-
mann algebra) with a normal faithful tracial state 7 given by

(2.33) Tu(m(z,)) = ilen& T(zn)

where 7 : £2°(N) — NV is the quotient map.
The next result yields that LP(NY) may be regarded as a subspace of the

Banach space ultrapower LP(N)Y.

LEMMA 2.13. Let 1 < p < co and let Y, denote the closure of {>°(N') in the
Banach space £°(LP(N)). Then m has a unique extension to a bounded linear map
7 :Y, = LP(NY). Moreover, for (z,) € Yy,

(2.34) 17 (@) llLr (o) = }lleﬂl} lznllze(r) -
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Fixing p as in 2.13 and letting p : £>°(LP(N)) — LP(N)Y be the quotient map,
Lemma 2.13 yields there is a unique isometric embedding i : LP(NY) — LP(N)V
so that the following diagram commutes:

(2.35) Y, — W)Y

PROOF. Since 7 is a *-homomorphism of £>°(N') onto NV, we have for any
continuous function f : [0,00) — C and any z = (x,,) € £>°(N),
(2.36) T ((f(@72n))nz1) = f(r(a")m(z)) .
Applying this to f(t) = |t|P/2, we get by the trace formula (2.33) that
(2.37) I7(@)l|zr(roy = lim l|znllLoer) -
In particular,
I7(@) | e (ry) < sUP |20l Lo (r)
(2.38) n
= [lzllese(zr ) -

Thus 7 extends by continuity to a contraction 7 : Y, — LP(N'Y). Now let z = (z,,)
belong to Y,, and let € > 0. Then choose y = (y,,) in £>°(N) so that

(2.39) 12 = yllee Loy <€
It follows from (2.39) that
(2.40) | 7@l ) = 7@l 2| < €
and
(2.41) |l @l () = i lgallzein| < e -

Since (2.37) holds, replacing “z” by “y” in its statement, we have from (2.40) and
(2.41) that

< 2e.

(2.42) [ 17(@) 20 = lim o)
Since € > 0 is arbitrary, (2.34) holds for all z = (z,) in Y. O

LEMMA 2.14. Let 1 < p < 2, and let (z;;) be an infinite matriz in LP(N) so
that for some C > 1, each row and each column of (x;;) is C-equivalent to the usual
02-basis. Then for every free ultrafilter U on N

(2.43) sup lim dps () (245, 7 Ba(N)) — 0 as r — oo
jeN €U

PRrOOF. Define for each j € N a function g; : R — R* by
gj(r) = supdpr(r) (i, Ba(N)) -
K3
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For fixed j, (x;;)$2, is C-equivalent to the usual ¢%-basis, so by Corollary 3.4 and

Corollary 2.7, (|z;;|P)32, is uniformly integrable and

(2.44) lim g;(r)=0.

Now (2.44) implies that (z;;);2, belongs to Y,. Let 7 be as in the statement of
Lemma 3.6 and define z; by

25 = ((2)2,) € PY) .
Now we claim that

(2.45) (z;) is C-equivalent to the ¢*-basis.

Indeed, using the hypotheses of Theorem 1.1 and Lemma 2.13, we have for any n

and scalars c1,...,c,, that

n o0
ca:~' :Hir ( cm) ‘
”; TN Lo () f R N | PZIC)
S horts

j=1
c 1/2
~ (ZIC;‘F) -

Now define g : Rt — R™ by
9(r) = sup dps () (25,7 Ba(N7)) .
J

M=

<
Il

3

by (2.34
pogny Y (234)

Again by (2.45) and Corollary 2.11, (|z;|?)?2; is uniformly integrable in LP(717), so
by Corollary 2.7 we have that

(2.46) lim g(r)=0.

T—00

Now let ¢ > 0. Since 7 is a quotient map of £*°(N') onto NV, it follows that
fixing j, there exists for every r > 0, (y;;):2; € r Bo(N) so that

lz; — m((yi; i) Le(ro) < 9(r) + <.
Hence by Lemma 2.13,
him [lzij = yijlleee) <9(r) +¢,
which implies that
i dp () (@i, 7 Ba(N)) < g(r) + € -
Hence by (2.46)

lim sup (sup lim dpp (7 (-Tij,’r'Ba(N))> <e.
r—oo \jeN €U

Since € > 0 was arbitrary, we get (2.43). O

PRrROOF OF THEOREM 1.1. Let 1 < p < 2, and let (z;;) be as in Theorem 1.1,
and let U be a free ultrafilter on N. Put

(2.47) h(r) = sup }IEIIUl drp(ry(Tij, 7 Ba(N)), reRy .
j
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Then h: Rt — R™ is a decreasing function and by (2.43)
(2.48) lim h(r)=0.

T—00
We claim that (2.47) and (2.48) imply that for a suitable choice of natural numbers
i1 < ip < --- one has

(2.49) (|zi;,57)7=1 is uniformly integrable.

To prove (2.49) put for j € N

(2.50) Gj= ﬂ Gjr
where for j,r € N|

1
(2.51) G,r= {z €N [ dpo(r)(@ijyr Ba(N)) < h(r) + ;} .

By (2.47) each G, € U, and hence also G; € U for all j € N. Since U is a free
ultrafilter, each G; is infinite, so we can choose successively i; < i2 < --- such
that i; € G; for all j. Put y; = z;, ;, j € Nand W = {y;,j € N}, and put as in
Corollary 2.7

(2.52) gw(r) = sup dre(r)(yj, 7 Ba(N)) reRY.
JjE€

To prove (2.49) we just have to show that gw(r) — 0 when r — oo (cf. Corol-
lary 2.7). Let € > 0. By (2.48) we can choose 9 € N such that

1
(2.53) h(ro) + — <e.

To
When j > ro, i; € G; € Gj,,. Hence by (2.51) and (2.53)
(2.54) drr(r) (Y5, 70 Ba(N)) < €, Jj=>ro.

Since N' = {J,.or Bo(N) is dense in L?(7) we have for every j € N,
Jim dre(r)(Ys, 7 Ba(N)) =0 .

Hence, we may choose r; > rg, such that

(2.55) dre () (y5,r1 BaN)) < €, j=1,...,m0—1.

By (2.54) and (2.55), gw (r) < ¢ for all r > r;. This shows that lim,_, gw(r) =0
and hence by Corollary 2.7, (|yj|”);”;1 is uniformly integrable, i.e., (3.49) holds.
Thus by the assumption that (y;) is unconditional, Corollary 3.5 yields that for
any subsequence (y}) of (y;),

(2.56) lim 0=/ 3y
j=1

n—0o0

=0.
Lz (r)

Putting now j, = k, we have y, = z;, j, and Theorem 1.1 follows. O






CHAPTER 3

Improvements to the Main Theorem

We obtain here results that are stronger than the Main Theorem. In particular,
Theorem 3.2 is also needed in Section 6 (specifically, for the proof of Theorem 6.9).
The arguments in this section do not use the ultraproduct construction and tech-
nique of Section 3. They are in a sense more elementary, and also more delicate,
than those of the previous section.

We use the following terminology: given a matrix (z;;), a sequence (z;, j,)
of elements of the matrix is called a generalized diagonal if 7 < iy < --- and
J1 < j2 < ---. A set W (or matrix (z;;)) in a Banach space is called semi-
normalized if there are 0 < § < K < oo with 6 < ||w|| < K for all w € W.

The main result of this section goes as follows.

THEOREM 3.1. Let N be a finite von-Newmann algebra, 1 < p < 2, and (z;;)
be an infinite semi-normalized matriz in LP(N'). Say that (x;;) satisfies triple-
alternatives provided one of the following three possibilities hold.

I. Some column has a subsequence equivalent to the usual P basis.
II. There is a C > 1 so that for all n, there exists a row which contains n
elements C-equivalent to the usual £2 basis.
III. There is a generalized diagonal (yi) so that

|, o
n i as n — 00

for all subsequences (y;) of (y:).

Assume that every generalized diagonal is a basic sequence. Then (x;;) satisfies
triple alternaties provided any of the following hold:
(i) p=1
(ii) 1 < p, every column is an unconditional basic sequence and
(iia) there is a A > 1 so that every row is a A-basic sequence.
(ii) 1 < p, N is hyperfinite, every column is a basic sequence, and ii(a) holds.

It remains an open question if (z;;) satisfies triple alternatives when 1 < p < 2,
and A is not hyperfintie but still the remaining conditions in (iii) holds. Our proof
of 4.1 yields that under these assumptions, the following three alternatives hold: 11
or IIT of Theorem 3.1, or
I'. Thereis a C > 1 and a column so that for all n, the column contains n elements
C-equivalent to the usual £P basis.

We first prove a fundamental special case of 3.1, which also immediately yields
our main theorem (Theorem 1.1).

27
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THEOREM 3.2. Let N, p, and (z;5) be as in the first sentence of Theorem 3.1.
Then (x;;) satisfies triple-alternatives provided every column and generalized diag-
onal is unconditional and there is a u > 1 so that every row is u-unconditional.

To recover the Main Theorem from Theorem 3.2, let (x;;) be as in the hy-
potheses of the Main Theorem, and simply note that Alternatives I and II of 3.1
are impossible, since otherwise one would obtain a constant A so that the ¢£ and
2 bases are M\-equivalent for all n. Alternative III now yields the conclusion of the
Main Theorem.

REMARK. (Added December 2001.) Although we couldn’t see how to obtain
an ultraproduct proof of Theorem 3.2, Yves Raynaud subsequently succeeded in
doing so (unpublished notes at this time).

Let us say that the rows of (x;;) contain f-sequences if condition II of 3.1
holds, with a similar definition for the columns. Since obviously we can interchange
rows and columns in the statement of 3.2, we then obtain the following immediate
consequence of Theorem 3.1:

THEOREM 3.1'. Let N, p and (z;;) be as in the first sentence of Theorem 3.1.

Assume that every generalized diagonal is a basic sequence, and that any of the
following hold:

i) p=1.
((ug 11) < p and there is au > 1 so that every row and column is u-unconditional.
(iii) 1 < p, N is hyperfinite, and there is a A > 1 so that every row and column
is a A\-basic sequence.
Then one of the following three alteratives holds:
I. Some column or some row has a subsequence equivalent to the usual ¢P
basis.

II. Both the rows and the columns contain 2 -sequences.
III. Condition III of 8.1 holds.

REMARK. (Added December 2001.) The third named author of the present
paper and Q. Xu have subsequently also obtained a result analogous to Theorem 3.1’
for0 <p< 1.

Proof of Theorem 3.2

We may assume without loss of generality that ||z;;|[, <1 for all i and j. We
introduce the following notation, for all € > 0 and all i,j = 1,2,....

(3.1) wij(e) = wp(xsj,€)
(3.2) wi(e) = supwij(s) .
K3
Now assume that Case I of Theorem 3.1 does not occur. We then have by

Corollary 2.11 (and Lemma 2.3) that (|z;;|?);2; is uniformly integrable for all j,
and hence

(3.3) lin(l)wj ()=0 forall j.
E—

We now use the following (hopefully intuitive) convention. A set of rows R
of (z;;) is identified with a set J C {1,2,...} via R = {R; : i € J} where
R, ={x;; : j=1,2,...} for all i € 7. Columns are just identified with j € N; i.e.,
g~ C={ay i =1,2,...}.
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Case II. There is an 7 > 0 and an infinite set of rows 7 so that for all further
infinite sets of rows J' C J, all § > 0, and all columns jg, there is a column j > jg
so that

(3.4) {i € J :w;;(6) >n} is infinite.

Intuitively, the final statement means that looking down the j** column of the
submatrix with rows 7', then infinitely many of the moduli w; ;(6) are bigger than
7.

We shall show that Case II yields IT of Theorem 3.1. In fact, we shall show
that then, via Lemma 2.10,

for every n, there exists a row R; and elements z;;,,...,%;j, in

3.5 7
(3:5) R;, j1 < -+ < jn, with (24, )f=1 %—equiv&lent to the /2 basis.

Let Jo be the initial set of rows satisfying Case II. Let ; = 1/2, and choose j;
so that

(3.6) T i€ Ty s wig, (61) >} if infinite.
Next, using (3.3), choose 5 < §; so that
- €
(37) Wi, (62) < 5 R

and choose §; < d,. Now using the assumptions of Case II, choose jp > j; so that

(3.8) T2 %0 € 7yt wij, (52) > n} s infinite.

For the general inductive step, suppose n > 1, infinite J; D --- O J,—1 and
1 < - < g1, 01 > 08y > 683> - >08,_1 > 6,1 > 0 have been chosen so that
forall 1 <4 <n—1, w;,(8e41) < £ and Sp41 + -+ + p—1 < dr41. Using (3.3),
choose 0 < &, < 0,1 so that wj,_, (6,) < £; then choose 0 < &, < &, so that also
Opg41 + -+ 0p < pqq for all 1 < £ < n— 1. We thus have that

(3.9) wﬁ(5(+1+-.-+5n)<§ forall 1<f<n—1.

Then choose j, > j,—1 so that

(3.10) Tn d:ef{i € Jn—1 1 wij, (0p) > n} is infinite.

This completes the inductive construction. Now fix n, let i € 7,, and let
fr = x4, for 1 <k <mn. Then (fi1,..., fn) satisfies the assumption of Lemma 2.10.
Indeed, the f;’s are u-unconditional by hypothesis, and for each k, 1 < k <n

(3.11) wijy, (Ok) = wp(fr, o) >

and

(3.12) Wp(fis Sm+0mar++++0n) < Wy (Omt-Omprte - +0n) < g for k<m<mn.

Thus (z;;, )}, satisfies the conclusion of (3.5) in view of Lemma 2.10, proving
Case II of 3.1 holds.
We now suppose that Case II does not hold, i.e., we have
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Case III. For all n > 0 and infinite sets of rows 7, there exists an infinite set
of rows J' C J,ad >0, and a column j so that for all columns j > j,

(3.13) wyr;(8) < n for all but finitely many ¢/ € J’ .

(Note that we get j > j instead of j > j by just replacing j by j + 1).

Intuitively, the final statement means that now, looking down the j** column
of the submatrix with rows 7', then all but finitely many of the moduli w; ;(J) are
no bigger than 7.

We shall now construct i; < ip < --+ and j; < js < --- so that

(3.14) lim sup w;, ;. (6) =0 .
e—0 ’

Thus we obtain that (|z;,;, [P)72, is uniformly integrable, and hence Case III of
Theorem 3.1 holds by Corollary 3.5.

We first claim that we may choose infinite sets of rows J; D J2 D - - -, columns
j1 < Jj2 <---,and numbers 1 > &, + > 6,5, § > 83--- so that for all £,
) 1
(3.15) for all j > ji, wij(dx) < ok for all but finitely many i € J .

Indeed, first choose [J; an infinite set of rows, j; € N and §; > 0 so that for all
j > j1, (3.13) holds, where J' = 7, n=1/2, and é; = 4.

Now suppose J, jk, and &5 have been chosen. Setting n = 1/25*1  choose
an infinite Jp41 C Ji, j > jr and a § > 0 so that for all j > j, (3.13) holds for
J' = Jit1. Now simply let 641 = min{6, 2715, ﬁi} Since the functions w;,
are non-decreasing, we have that also for all j > j, w;;(6x41) < 1/2%F! for all but
finitely many i € Jry1. This completes the inductive construction, with (3.15)
holding for all k.

Now choose i1 € J1 with w;, ;,(61) < 1/2. Then also for all but finitely many
i € J2, wij,(01) <1/2 and w; 4, (62) < 1/4. Hence we can choose iy > iy (i2 € Ja),
with

(3.16) Wiy . (01) < % and wj, j,(62) < i .
But we can also choose 0 < g9 < 5 so that
(3.17) wnlE) < 7
Thus also
(3.18) Gasal22) < 7
Now suppose i1 < --- < i and 6; = €1, ..., €, have been chosen so that £; < §;

for all j < n and

1
(3.19) Wi e (€3) < o forall 1<k<n, 1<i<n.
Now by (3.15), choose ip41 > iy (int1 € Jn+1) so that

(6e) < 1

(3.20) 5

Wiy i1 in1 forall 1<f<n+1.

This is possible, since for each ¢, w; ;. ., (6,) < 1/2¢ for all but finitely many i €
jn+1~
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Again, since the ¢’s are smaller than the §,’s,

1
(3.21) Wiy ns (E0) < 5 forall 1<¢<mn.
Finally, choose ;41 < 6,41 so that
1
(3.22) Wiy je (Eng1) < STESY forall 1<{4<n.
Again, we also have
1
(3.23) Wi g1, jnsr (En1) < oAl
This completes the inductive construction of i; < i < --- and €1,€9,.... Then
for each i, we have
1
(324) Sup Wiy, 4 (Ez) < —.
k 2
It then follows immediately that (3.14) holds, since if € < ¢;, then also
1
(3.25) sup w;, 4, (€) < 5 -
k

This completes the proof of Theorem 3.2, in view of the comment after (3.14). O

Proof of Theorem 3.1

We use theorems from Banach space theory and of course Theorem 3.2. To
obtain the case p > 1, of Theorem 3.1 we require the following remarkable result,
due to Brunel and Sucheston ([BrS1], [BrS2]; see also [G]). (A sequence (z;) of
non-zero elements in a Banach space is called 3-suppression unconditional if for
all n, scalars c1,...,cn, and F C {1,...,n}, | 22;cp ol < Bl 3 5er cjzjll Tt is
easily seen that if (x;) is A-suppression unconditional, it is 2A-unconditional over
real scalars and 4\-unconditional over complex scalars. Actually, a neat result of
Kaufman-Rickert yields that such a sequence is wA-unconditional (over complex
scalars) [KR].)

LEMMA 3.3. Let (z,) be a semi-normalized weakly null sequence in a Banach
space X, and let ¢ > 0. Then there ezists a subsequence (y;) of (x;) so that for any
kE<ji<jo<: < jok, (y]z)fil is (1 + €)-suppression unconditional (and hence
7(1 + €)-unconditional).

REMARKS. 1. Actually, the results of Brunel-Sucheston yield much more than
this. They obtain that under the hypotheses of Lemma 3.3, there exists a Banach
space E with a suppression 1-unconditional semi-normalized basis (e;) and a basic
subsequence (y;) of (x;) so that:

(i) (ej;) is isometrically equivalent to all of its subsequences and
(ii) for all € > 0 and k large enough, and any £ < j; < -+ < jox, (?/ji)?; is
(1 + ¢)-equivalent to (eq,...,ex).
In the standard Banach space terminology, (e;) is called a subsymmetric basis for
E, and a spreading model for (x;).

2. A classical result of Bessaga-Pelczynski yields that any seminormalized
weakly null sequence in a Banach space has a basic subsequence (in fact, for every
€ > 0, a subsequence which is (1 + ¢)-basic). However it is obtained in [MR] that
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there exists a normalized weakly null sequence in a certain Banach space with no
unconditional subsequence, and in [GM] that there exists an (infinite dimensional)
reflexive Banach space with no (infinite) unconditional basic sequences at all. Thus
in a sense, Lemma 3.3 is the best possible positive result in this direction.

We now give consequences of this lemma that are needed for Theorem 3.1. The
first one follows from Lemma 2.8 and Lemma 3.3.

COROLLARY 3.4. Let 1 <p <2 and (f,) be a weakly null sequence in LP(T) so
that (|fi|P)$2, is uniformly integrable. Then there is a subsequence (f!) of (fi) so
that

Hm nVP|leryr + - + enynllLon) =0

n—oo

uniformly over all subsequences (y;) of (f) and all choices (¢;) of scalars with
lej| <1 forallj.

REMARK. The result shows (and also follows from): any spreading model for
(f;) is not equivalent to the £P-basis.

PROOF OF 3.4. We may assume without loss of generality that ||f;|l, < 1 for
all j. Let € > 0 be such that 7(1 +¢) < 4, and choose (y;) a subsequence of (f;)
satisfying the conclusion of Lemma 3.3. Let (r;) denote the Rademacher functions
on [0,1] (as defined in Section 3), set N' = N®L>®, and let g; = y; ® r; for all
j. Then (g;) is 2-unconditional (over complex scalars) and of course (|g;|P) is also
uniformly integrable in Ll(./\? ), whence by Lemma 2.8,

(3.26) Jim 27 Pllgy 4 gl ey = 0

Let £ > 0, and choose N so that if n > N, then

(3.27) nVPllgs 4+ alle iy < 15

and

(3.28) n~YP(1 4+ logyn) < g .

Now fix n, and choose k with

(3.29) 2kl <p < 2F

Of course then

(3.30) k<1+logyn .

Now if €1, ...,e, are given scalars of modulus at most one, then
o ” j:Zk:H% LP(N) : 16’]jglgj’ Lr(N)
Indeed, yg+t1,---,Yn is 4-unconditional by the conclusion of Lemma 3.3 (since n —

k < n < 2%), yielding (3.31). On the other hand,

k
(3.32) H Zsjyj] k<1+logyn by (3.30).
Jj=1

<
LP(N)
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Thus we have

n k n
—1/p” : ” < —1/p” . —1/p” . ”
n ;Ea% p_n ;@%||p+n j;};l‘%% ,

n
<n YP(1 4logyn) + 8n_1/p” Z 9;

(3.33) Plrwf L2 (N)
o3
< Z .
=35 + 8n ZgJ Lo ()
j=1
€ €
< — — =g,
=3 + 9 €

(The last inequality holds by (3.27); the next to the last by (3.28) and the fact
that (g;) is 1-unconditional over real scalars.) The uniformity of the limit over all
subsequences of (y;) follows from the fact that the limit in (3.26) is uniform over
all subsequences of (g;), thanks to the proof of Lemma 2.8. 0

We next note a general consequence of Lemma 3.3, which follows from ultra-
products.

COROLLARY 3.5. Let X be a uniformly conver Banach space and let A > 1,
e > 0, and k be given. Then there is an n > k so that for any A-basic sequence
(T1,...,%n) in X, there exist 1 < j; < jo < --- < ji so that (x;,,...,2j5,) is
suppression (1 + €)-unconditional (and hence w(1 + €)-unconditional).

PROOF. Suppose the conclusion were false. Then we could find for every n > k,
an n-tuple (z7,...,z1) of elements in X so that (z},...,z") is A-basic, yet no k
terms are suppression (1 + ¢)-unconditional. By homogeneity, we may assume
that ||z7'|| = 1 for all n and ¢ < n. Now let &/ be a non-trivial ultrafilter on N
and let X3, denote the ultrapower of X with respect to 4. (That is, we let Ey

denote the subspace of £>°(X) consisting of all bounded sequences (z;) in X with

limjey ||z;]| = 0, and then set Xy = ¢°(X)/Ey.) Since X is uniformly convex,
so is Xy. Now define a sequence (Z;) in Xy by &; = m(z});2,, for all j, where

7 £°(x) — Xy is the quotient map and we set z? = 0if n < j. It then follows
that () is also A-basic and normalized; since Xy, is reflexive, (Z;) is weakly null.
But then by Lemma 3.3, there exist k terms Z;,...,T;, of this sequence with
(Zj,)%, (14 £)-suppression unconditional. Standard ultraproduct techniques yield
that n > 0 given, there exists an n > j; so that (Z;,,...,2;,) is (1 + n)-equivalent
to (z7,,...,27}, ) and hence the latter is (1 +n) (1 + §)-suppression unconditional.
Of course we have a contradiction if (1+7)(1+5) <1+e. O

PROOF OF THEOREM 3.1 (1) AND (111). We use the same notations and as-
sumptions as in the proof of Theorem 3.2 (e.g., we assume that ||z;;||, < 1 for all
i and j). Assume that Case I of 3.1 does not occur. Then again we have that
(lzi;|P)s2, is uniformly integrable for all j, and hence Case II of 3.1 holds, by the

proof of Theorem 3.2. This is also the case under assumption (iii) of Theorem 3.1.

For suppose to the contrary that for some i, ( fj)d:ef(a:ij) has the property that

(1£;1P) is not uniformly integrable. Then setting g; = f; @ r; in LP(N) (as de-
fined in the proof of Corollary 3.4), (g;) is unconditional and again (|g;|?) is not
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uniformly integrable, hence there exist n; < ny < --- with (gy,,) equivalent to the
usual £P-basis, by Corollary 2.11). But (f,,) has an unconditional subsequence (f;)

by [SF], [PX1]. Of course then (f}) is equivalent to (g) d:e{(f]' ®r;), a subsequence

of (gn,), whence (f]) is equivalent to the ¢ basis.

Now replace the entire matrix (z;;) by (:Eij)dzef(a:ij ® ri;) in LP(N) (where

N = N®L>), where r;; is just a “renumbering” of (r;) via N x N (precisely, let
@ :Nx N — N be a bijection, and set 7;; = r(; ;)). Now wp (x4, €) = wp(Zi5,¢) for
all 4, 7, and ¢; hence assuming Case II in the proof of Theorem 3.2 occurs, we have
that Alternative II holds for the matrix (Z;;). But then since LP(N) is uniformly
convex, II holds for (z;;) itself, by Corollary 3.5. Indeed, let C' be as in II of 3.1,
let k be given. Choose n > k satisfying the conclusion of 3.5 for X = LP(N) (with
m(1+¢) <4, say). Choose i and my < -+ < my, with (Z;)7_; C-equivalent to the
8 basis where we set T; = Ty, and ¥; = T;m, for all j. Then choose j; < ---ji
with (z;,) 4-unconditional. But then (z;,) is 8-equivalent to (Z;,), and is hence
8C-equivalent to the ¢} basis.

If Case II in the proof of 3.2 does not occur, we have by Case III that there
exists a generalized diagonal (Z;, ;, )7 of (x;;) so that (|Z;, ;. |P)o%; is uniformly
integrable. Hence immediately, (|z;, ;.|?)22, is uniformly integrable, and so by
Corollary 3.4, (z;, j,) has a subsequence (yi) (which is of course also a generalized
diagonal) satisfying IIT of 3.1. This completes the proof of Theorem 3.1 (ii). O

To obtain 3.1 (i), we need two further “Banach” properties of preduals of
von Neumann algebras. The first one holds in complete generality.

LEMMA 3.6. Let M be a von-Neumann algebra, and let (f,) be a bounded
sequence in M., such that (f,) is not relatively weakly compact. Then (f,) has a
subsequence equivalent to the £'-basis.

We give a “quantitative” proof of this result at the end of this section, using
the case for commutative N established in [R1]. In fact, Lemma 3.6 is due to
H. Pfitzner [Pf]. However, the second result we need is a “localization” of our
proof, which does not seem to follow directly from previously known material. This
result yields that given k and 7, then for n sufficiently large, if n elements of B, (N,)
(N finite) have mass at least 7 on pairwise orthogonal projections, then k of these
are C-equivalent to the ¢}-basis. Here, C' depends only on 7, n on k and n. To
make this more manageable, let us simply say that n elements fi,..., fn of the
predual of a von-Neumann algebra M are n-disjoint provided there exist pairwise
orthogonal projections Py, ..., P, in M such that

(3.34) IPfiPll =0 forall i,

(Here, if P € M and f € M,, PfP is defined by: (T, PfP) = (PTP, f) for all
T € M. Also, ||-||; denotes the predual norm on M..) (We shall also say fi1,..., fx
are disjoint provided there are pairwise orthogonal projections Pi,..., P, in M
with f; = P;f; P; for all i. Evidently if the f;’s are normalized, they are disjoint iff
they are 1-disjoint.)

LEMMA 3.7. Given n > 0, then if C > %, then for all k > 1, there is an
n > k so that for any von-Neumann algebra N' and n-disjoint elements f1,..., fn
in Ba(N.), there exist j1 < --- < ji with (f;,)*_; C-equivalent to the £1. basis.
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We delay the proof of this result, and complete the proof of Theorem 3.1, i.e.,
the case p = 1. Again we make the same assumptions and use the same notation as
in the proof of 3.2. Now suppose that Alternative I of Theorem 3.1 does not occur.
We now have, immediately from Proposition 2.5 and Lemma 3.6, that (z;;)32, is
uniformly integrable for all 4, and hence again Alternative II holds, by the proof of
3.1. Now again assume Case II of the proof 3.1 holds. Then the proof of 3.11I yields
that for all n, there exists a row 4 and j; < --- < j, so that (fz)}_, is 2-disjoint,
where fi, = z;;, for all k.

Indeed, we obtain there (following formula (3.3)), that for all n, there is a
sequence (f1,..., fn) satisfying the assumptions of Lemma 2.10 (for n > 0 and 0 <
€ < ) except for the u-unconditionality assumption. But the proof of Lemma 2.10
yields precisely that (f1,..., fn) is 7 — ¢ disjoint; the unconditionality assumption
was only used, in invoking Lemma 2.9. Of course we may choose ¢ = £, and so
(f1y. .. fn) is then Z-disjoint.

Then Lemma 3.7 immediately yields Case II of Theorem 3.1. Finally, assuming
Case II of the proof of 3.2 does not occur, we obtain again from the proof of
Case III that there exists a generalized diagonal (gi) of (x;;) with (gx) uniformly
integrable. Hence there exists a weakly convergent subsequence (f;) of (gx), by
Proposition 2.5. But since we assume the generalized diagonals of (x;;) are basic
sequences, (f;) must be weakly null. Now Corollary 3.4 immediately yields Case III
of Theorem 3.1. O

REMARK. The case p = 1 of Theorem 3.1 may be alternatively formulated as
follows (with essentially no assumptions at all on the matrix (z;;)).

THEOREM 3.1(1)". Let N be a finite von-Neumann algebra and let (x;;) be an
infinite semi-normalized matriz in N,. Then one of the following holds.

I. Some column has a subsequence equivalent to the usual £* basis.
II. There is a C > 1 so that for all n, there exists a row with n elements
C-equivalent to the usual £}, basis.
III. Some generalized diagonal of (x;;) is weakly convergent.

It remains to prove Lemma 3.7. This is an immediate consequence of the
following two results, which in turn follow from the techniques in [R1]. (We denote
the “predual norm” of a general von-Neumann algebra by | - ||1.)

LEMMA 3.8. Let N be an arbitrary von-Neumann algebra, and f1, fo,... be a
finite or infinite sequence in N, with ||fi|l1 <1 for all i. Assume there are pairwise
orthogonal projections Py, Py,... in N and 0 < & < & <1 so that for all 1,

(3.35) IPifiPilli >6 and > ||P;fiPjlhi <e.
J#i
Then fi, fa,... is ﬁ equivalent to the usual basis of £* (resp. £ if the sequence

has n terms).

LEMMA 3.9. Letk > 1 and 0 < € < 1 be given. There is an n > k so that
given any von Neumann algebra N, f1,..., fn € Bo(N.), and pairwise orthogonal
projections Py, ..., P, in N, there exist j; < jo < --+ < jr so that for all1 < i < k,

(3.36) > NP £ Pyl <e .
r#1
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REMARK. We obtain that we may choose n = k’ where £ = [1/¢] + 1.

PrOOF OF LEMMA 3.7. Let C > % and choose 0 < € < n with # < C. Let
n be as in Lemma 3.9, fi,..., f, as in the hypotheses of 3.7, and choose ji, ..., jk
satisfying the conclusion of 3.9. Then (fj,)F_, is C-equivalent to the /i basis by

Lemma 3.8. 0O
PROOF OF LEMMA 3.8. Let n < oo be less than or equal to the number of

terms in the sequence, and let ¢y, ..., ¢, be given scalars with

n
(3.37) dlel=1.

i=1
Let g =37, ¢;fi. Since the P;’s are pairwise orthogonal, we have that
(3.38) lglls > > I1P;g Pl -

j=1
Now fixing 7,
I1PsgP;ll > [[Pye; f3P; + Py Y e fiPia
(3.39) 7
> ey =D leil 1P fiPy

i#]
by (3.35) and the triangle inequality. Hence using (3.38) and (3.39),

n n
gl =D lesls =D " lesl 1P fiPy
=1

=1 i

(3.40) n
=6—) lel D IIP;fiPsll by (3.37)
i=1 i
>0 —¢ by (3.37) and (3.35).
This completes the proof. 0

We finally deal with Lemma 3.9. This result follows from the simplest possible
setting: A = £2°, the f,’s are in 1% (i.e., the positive part of N, = £1), and the
orthogonal projections P; correspond to multiplication by X(;, for all 7. That is,
we finally have the following elementary disjointness result.

LEMMA 3.10. A. Let fi, fo, ... be a bounded infinite subset of £1T, and let ¢ > 0.

There exist ny < ng < --- so that for all 1,
(3.41) > fulng) <e.
Jj#i

B. Let k € N and £ > 0 be given. There exists an N > k so that given f1,...,fn €
B, Z}VJF, there exist ny < ng < --- < nyg so that for all 1 < i <k, (3.41) holds.

REMARK. Part A is a special case of Lemma 1.1 of [R1]. Part B appears to
be new. We obtain in fact that we may let N = k* where ¢ = [1/¢] + 1.
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PRrROOF OF LEMMA 3.9. Let ¢ > 0 and N be as in the conclusion of 3.10B.
Let the f;’s and P;’s be as in the statement of 3.9. For each i, define f; in 2+ by
fi(j) = ||P; fiP;|1 for all 1 < j < N. Then

N
(3.42) SR £l = lIfill < Ifila <1

j=1
for all i. Now the conclusion of B yields j; < --- < ji so that

(3.43) Zfﬁ (Jr)<e forall 1<i<k.
(&)
Then f;,,..., fj, satisfies the conclusion of Lemma 3.9. O

At last, we give the proof of Lemma 3.10.

We first prove A, using an argument due to J. Kupka [Ku]. We then adapt
this argument to obtain Part B. We regard elements of £!* as finite measures on
subsets of N and use the notation: f(E) = 3 ;cp f(j) for f € A+ and E C N.
Thus, the conclusion of A may be restated: There exists an infinite M C N so that

(3.44) filM ~ {i}) <e forall ie M.
Let Ny, Na, ... be pairwise disjoint infinite subsets of N with N = U;)i1 N;.

Case 1. For each i, there exists n; € N; so that

(3.45) frs(N~N)) <e.
It then follows that M = {ni,ng, ...} satisfies (3.44). Indeed, for all i,
(346) {nl,ng,...,ni_l,ni_,_l,...}CNwNi

since the N, are disjoint, so (3.44) follows from (3.45) and (3.46).

Case I1. Case I fails. Thus we may choose i; so that
(3.47) fiN~N; ) >¢e forall jeN, .

Now repeat the same procedure; let M, = Ny, and choose M{, M%,... disjoint
infinite subsets of M7 with M; = U;";l M. If Case I fails for M;, we will obtain

M, d:efo (for some j) so that

(348) fj(M] ~ MQ) > ¢ for all JjE M, .

Again divide up M5. This “failure of Case I” must terminate before ¢ steps, where
|| filli < e for all j. Indeed, otherwise, we finally obtain N = My D M; D M, D
-+ My and a j € M, with

(3.49) fi(M;—1 ~ M;) > ¢ forall i,

whence || f;|| > fe, a contradiction.

PROOF OF PART B. Let £ = [1/e] + 1 and let N = k. Let then fi,...,fy €
B, (f}v"’) be given. Of course the conclusion of Part B may be restated: There exists
an M C {1,...,N} with #M = k so that (3.44) holds.

Let Ni,..., N, be disjoint subsets of {1,..., N}, each of cardinality k‘~!, and
just repeat the argument for Part A, Case I. If Case I fails, we repeat again the rest
of the argument: that is, we find i; satisfying (3.47) and set M; = N;,. Now we just
choose M}, ..., MF disjoint subsets of M, each of cardinality k°~2; if Case I fails for
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M, we continue as before, with M, satisfying (3.48) and My C My, #My = k2.
If Case I fails for £ steps, we obtain finally {1,...,N} = My D M; D --- M, with
#M; = k' for all i, so #M, = 1; and for j the unique number of My, (3.49) holds,
whence again || f;|| > £ > 1, a contradiction. O

Let us say that a finite or infinite sequence (f;) satisfying the hypotheses of
Lemma 3.8 is (4, )-relatively disjoint. It then follows from arguments in [R1]
that the closed linear span of such a sequence is K -complemented in N, , where K
depends only on § and . Indeed, let W denote the closed linear span of the f;’s;
let Py, P,, ... be as in the statement of 3.8, and let g; = P; f; P; for all j, then let
Z denote the closed linear span of the g;’s. Of course then Z is isometric to £*
(or £} if the sequence has n terms). We may easily define a contractive projection
R : N, — Z as follows. For each j, choose by duality an element ¢; € N of norm
one with ¢; = P;p; P; and

(3.50) (05,95) = llgsllr -

(Note that 1 > ||g;|[1 > ¢ for all j.) Then define

(3.51) R(f) =Y (5 Hllg;li g

for f € N.. Next, define an operator U : W — Z by

(3.52) U eify) = 95

for all ¢;’s with ) |¢;| < co. Then Lemma 3.8 yields that U is invertible with
(3.53) UM< (@—e)t.

Now a simple computation yields that

(3.54) |U(w) — R(w)|| < §||U(w)|| for all we W .

It then follows that R|W is an isomorphism mapping W onto Z, with
B € 1 gef
(3.55) lEw) < [(1-5)6-9] “k.

Finally, Qd:ef(RlW)_lR is thus a projection from N, onto W, with |Q| < K.
It then follows that the elements satisfying the conclusion of Lemma 3.7 have a
“well-complemented” linear span.

We also obtain finally, a quantitative proof of Lemma 3.6, yielding also the re-
sult of H. Pfitzner [Pf] that the preduals of von Neumann algebras have Pelczyniski’s
property (V*).

LEMMA 3.6". Let N be an arbitrary von Neumann algebra, and W be a subset
of By N, so that there exists a sequence Py, P, ... of orthogonal projections in N
with

(3.56) Tim sup |(P;,w)] Zn>0.
J wew
Then given C' > %, there exists a sequence wi,Ws, ... in W which is C-equivalent

to the usual £*-basis, with closed linear span C-complemented in N, .

REMARK. By Akemann’s criterion [A], it thus follows that any bounded non-
relatively weakly compact subset of A, contains a sequence equivalent to the £!-
basis, with complemented span. This is an equivalent formulation of property (V*).
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ProOOF. It follows easily that we may choose (f;) a sequence in W and n; <
ng < --- so that
(357) lim | (Pa,. £3)] 2 7
Then given 0 < ¢ <7’ <7, Lemma 3.10A yields a subsequence (f;) of (f;) so that
(f}) is (n',)-relatively disjoint. Finally, since " may be arbitrarily close to 1 and
¢ arbitrarily small, we deduce from Lemma 3.8 and (3.55) that given C' > %, (fhH
may be chosen C-equivalent to the £!-basis with span C-complemented in A,. O



This page intentionally left blank



CHAPTER 4

Complements on the Banach/operator space
structure of LP(N)-spaces

We give here several applications of our main result, and the techniques used in
its proof. For the first one, we let Row (resp. Col) denote the operator row (resp.
column) space. We also follow the notation in [Pi2]: for a given operator space X,

X°P (the “opposite” of X) denotes the following operator space: if X C B(H) and

(xi;) is an element of K @}, X, regarded as a matrix, then X°P dzd{(a:ji) D(wig) €

K®spX }, where K denotes the space of compact operators on £2 and K®s, X denotes
the spatial tensor product of X and X. One then has that Row™ = Row®? = Col.

PROPOSITION 4.1. Let N be a finite von Neumann algebra. Then neither Row
nor Col is completely isomorphic to a subspace of L*(N).

PROOF. Suppose to the contrary that there exists an X C L'(N) with X
completely isomorphic to Row. But then X°P C L'(N°P) is completely isomorphic
to Col. Let then M = N°P@AN. M is again a finite von-Neumann algebra, and
now X°P®X is a subspace of L'(M); that is, Col ® Row is completely isomorphic
to a subspace of L'(M). But Col® Row is (completely isometric to) Ci; this
contradicts our main result. 0

REMARK. An operator space X is called homogeneous if every bounded lin-
ear operator on X is completely bounded; X is called Hilbertian if it is Banach
isomorphic to a Hilbert space. The above argument then yields the following gen-
eralization (since Row is indeed a homogeneous Hilbertian operator space).

PROPOSITION. Let X be an infinite dimensional Hilbertian homogeneous opera-
tor space so that X* is completely isomorphic to X°P, and let N be a finite von Neu-
mann algebra. Then X is not completely isomorphic to a subspace of L*(N).

To obtain this, first observe that the hypotheses yield that X* ®,, X is Ba-
nach isomorphic to K. Hence X*®X is Banach isomorphic to C;. But X*®X is
completely isomorphic to X°P®@X by hypothesis; as above, if we then assume that
X C LY(N), we obtain that C; Banach embeds in L'(M), again contradicting our
main result. O

Our next result yields characterizations of those subspaces of LP(N') which
contain #P isomorphically (1 < p < 2, N finite). We have need of the following
concept. (For isomorphic Banach spaces X and Y, d(X,Y) = inf{||T|| T~ : T :
X — Y is a surjective isomorphism).

DEFINITION 4.2. Let 1 <p < co. A Banach space X is said to contain 2 ’s if
there is a C > 1 so that for all n, there exists a subspace X,, of X with d(X,,. (%) <
C.

41
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A remarkable result of J.L. Krivine yields that if a Banach space contains
£P’s, it contains them almost isometrically ([Kr]; cf. also [R3], [L]). That is, then
for every € and n, one can choose X, C X with d(X,,#2) < 1+ ¢e. (Of course
the famous Dvoretzky theorem yields that every infinite dimensional Banach space
contains £2’s almost isometrically; also the case p = 1 or oo in Krivine’s Theorem
was established previously by Giesy-James [GJ].)

We also need the following natural notion.

DEFINITION 4.3. Let N be a von Neumann algebra and 1 < p < oco. A
sequence (gn) in LP(N) is called disjointly supported provided there exists a se-
quence P1, Py, ... of pairwise orthogonal projections in N so that g; = Pjg;P;
for all 5. A semi-normalized sequence (fy) in LP(N) is called almost disjointly
supported if there exists a disjointly supported sequence (g;) in LP(N) so that
limy, o0 ||fn - gn”LT-’(N) =0.

Of course a disjointly supported sequence of non-zero elements spans a subspace
isometric to #P. A standard elementary perturbation argument then yields that an
almost disjointly supported sequence in LP(N') has, for every € > 0, a subsequence
spanning a subspace (1 + ¢)-isomorphic to £7. The next result yields in particular
that for A finite, and 1 < p < 2, subspaces of LP(N') which are isomorphic to ¢?
always contain almost disjointly supported sequences.

THEOREM 4.4. Let1 < p <2 and N be a finite von Neumann algebra; let T be
a faithful normal tracial state on N'. Let X be a closed linear subspace of LP(N).
The following assertions are equivalent.

1. X contains a subspace isomorphic to £P.

. X contains £ ’s.

AlxlPx € Bo(X)} is not uniformly integrable.
SuPjeg, (x) Wp(f:€) =supseg, (x) Wp(f,€) =1 for all ¢ > 0.
The p and 1 norms on X are not equivalent (in case p > 1).

. X contains an almost disjointly supported sequence.

7. For alle > 0, X contains a subspace (1 + €)-isomorphic to £P.

REMARKS. 1. This result is established for the commutative case in [R2]; the
case p > 2 is also valid, and follows (with some extra work for assertion 5) from
the results in [S1]. Again, the commutative case for p > 2 is immediate from the
classical work of Kadec-Pelczyniski [KP]. Also, condition 5 may be replaced by the
following one, valid also for p = 1:

5. The p and q quasi-norms are not equivalent on X for all 0 < ¢ < p.

Added December 2001: The same result has subsequently been established in [SX]
for all p with 0 < p < 1.

2. The equivalences of 1, 5, 6 and 7 of Theorem 4.4 follow also from recent work
of N. Randrianantoanina, which establishes these also for semi-finite von-Neumann
algebras A and 1 < p < oo, p # 2 ([Ral] and [Ra2]).

3. (Added December 2001). Recent work of Y. Raynaud and Q. Xu yields that
the equivalences 1, 2, 6, and 7 hold for arbitrary von Neumann algebras N and
1 < p < oo (see Theorem 5 of [RayX] and its proof).

Proor. Weshow 1l — 2 — 4 — 6 — 7 — 1,4 — 3 — 2,
and4 —> 5 = 3incasep > 1. Ofcourse ] = 2 and 7 = 1 are trivial. So
is 4 = 3, in virtue of Lemma 2.3.
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2 = 4. Fix § > 0. Choosing an “almost isometric” copy of ¢ in X by
Krivine’s theorem, we shall show that for n large enough, one of the natural basis
elements f; of this copy is such that @,(f;,d) is almost equal to 1.

Define A\ by

(4.1) A =sup{@p(z,0) :z € X, |lzf| <1} .

Let C' > 1, and using Krivine’s theorem, choose fi,..., f, € B.(X) with (f1,...,
frn) C-equivalent to the ¢£ basis. In particular, we have that

(4.2) ” zj: +

Again by the final assertion of Lemma 2.3, we may choose for each i a ¥; € N so
that

(4.3) [Willoc <677 and |If; — il < @p(fi,8) <A .

Thus letting 3 be as in the proof of Lemma 2.8, again we have
1
Enl/p < Zfz ®7illLr(s) by (4.2)

(44) SIS v @rillrag + 1 D (F = 1) @ rillLogs)
< 5—1/19\/5 + Anl/P

by (4.3) and the fact that LP(f) is type p with constant one.
Thus
1 1

4.5 - <\
9 C ™ gt S
Since C' > 1 and n are arbitrary, we obtain that A = 1, proving 2 = 4.

4 = 6. We first note that assuming 4, then given 1 > ¢ > 0, we may choose
f € X with ||f|l, =1 and P € P(N) with 7(P) < ¢ so that

(4.6) IfPl,>1—¢c and [f( - P)|, <e.

Indeed, choose f in X of norm one so that @,(f,e) > 1 —e. Then choose P a

spectral projection for |f| with ||fP||, > (1 — ¢P)/P. But then since P commutes
with | f],

1
> Enl/p for all choices of =+ .

p

(4.7) IfPIp=7(fPP) and |f(I— P)|5=r(f"(I-P)),
whence

(4.8) 1> 7(IfIPP) + r(fP(I = P)) > (1—&) + | £(I - P)|2
(4.9) 1> 7(|fPP) + r(IfIP(I = P))

>1=e"+|fU =Py,

so ||f(I — P)|, < ¢ as desired. Now since |f| and |f*| are unitarily equivalent in
N, we also obtain the existence of a Q € P(N') with 7(Q) < ¢ so that

(4.10) 1Qfllp >1—¢ and [f(I-Q)llp <e.
Then let R = PV Q. We have
(4.11) 7(R) <2 and |f— RfR| <2¢.

Indeed, the first estimate is trivial; but
f-RfR=fI-R)+(I-R)fR=fI-P)I-R)+I-R)(I-Q)fR



44 4. COMPLEMENTS ON THE BANACH/OPERATOR SPACE

and so (4.11) follows from (4.6) and (4.10).
Now using that for ¢ > 0, f of norm 1 in X and R may be chosen satisfying

(4.11) we choose inductively fi, fo,... in X of norm one, 1 > 6; > dy > --- > 0,
and Q1,Q>,. .. in P(N) so that for all j,

1 d;
(4.12) 15 = Qi fiQsllp < 55 and 7(Q;) < 55
(113 a5 8501) < o

27
To see this is possible, just choose §; = 1/2, then choose fi; and Qi thanks to
(4.11). Suppose fi,..., fn, and &, chosen. By uniform integrability of {|f.|"},
choose 8,41 < &, so that wy(fn,dn41) < 1/2"F1. Then choose f,,11 and Qni1
satisfying (4.12) for j = n + 1.
Now define projections P; and Qj by (2.19). The P;’s are orthogonal and by
the argument for the last part of Proposition 2.5, fixing j, we have

T(Qj) < ZT(Qk) < 041 Z %,; by (4.12)
(4.14) = e
< Ojt1 -
Hence
1Q;f5llp < wp(fF,8541) = wp(fy,0541) < 2%
(by (4.13)) and also

3 1
”ijj”P < wp(fja(sj-i-l) < 2—] .

Hence

- 1 ~ 1
(4.15) 1Q; £ Q;llp < 5 ond 1Q; £ Qsllp < %

Hence finally we have by (4.12) and (4.15),
3 ;
(4.16) 1f; = BifiPill < 55 forall j.

Thus (f;) is almost disjointly supported, proving that 6 holds.

6 =— 7 is a standard perturbation argument in Banach space theory. As-
suming 6 holds, we may choose a normalized disjointly supported sequence (g, ) in
LP(N) and a sequence (f,) in X so that

(4.17) > lign = fallp < 00 .

But now (g,,) is l-equivalent to the ¢P-basis, and a simple perturbation argument
gives that given ¢ > 0, there is an N so that (f,)n>n is (1 + ¢)-equivalent to the
£P basis. (Thus (f,) is “almost isometrically equivalent” to the ¢? basis.)

3 = 2. We have that if p = 1, X contains a subspace isomorphic to ¢! by
Lemma 3.6, so assume p > 1. We may choose a sequence (f,) of norm-1 elements
of X, 6, > éy > -+ with 4,, — 0 and n > 0 so that

(4.18) wp(fn,0n) >n foral n.

By passing to a subsequence, we may assume without loss of generality that
(fn) is weakly convergent, with weak limit f, say. But

(419) Wp(fn - fa 6n) _>_ wp(fna 6n) - wp(fa 6n)
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and hence

(4.20) lim wp(fu = £,60) 21 -

n—oo

That is, we have now obtained a weakly null sequence (g,) in X so that
(4.21) (lgn|?) is not uniformly integrable.

By Corollary 2.11, after passing to a subsequence of (g,,), we may assume
(4.22) (gn ® 1) is C-equivalent to the usual ¢P-basis in LP(3) for some C.

Now Lemma 3.3 yields that for all n, there exist m; < mg < --- < m,, so that
9my»- -+ > gm,, 18 4-unconditional, and hence

(4.23) (gm, )11 is 4C-equivalent to the £ -basis.

This proves that 2 holds. Now assume p > 1.
4 = 5. Let ¢ > 0 and choose f € X with | f|l, = 1 and P € P(N) with
7(P) < € so that (4.6) holds. Then of course

(4.24) If( =Pl <e.

Now letting % + % =1,

(4.25) I£Pll1 < IflIpIIPllg < €7 by Hélder’s inequality.
Thus
(4.26) IfllL <e+et/a.

Since || f|l, =1 and € > 0 is arbitrary, 5 holds.
5 = 3. Suppose 5 holds, yet 3 were false. Choose 0 < 4 so that

(4.27) Op(f,0) < % for all f € Bg(X) .

Let f € X, ||fll, = 1. By the last statement of Lemma 2.3, choose P a spectral
projection for |f| so that fP € N with

1

(4.28) 1T =Pl < 5 and [|fPle < g
Then

1 .

5 = IFPIE=7(fPP) (since P < |f])
(4.29) =7(fI1fIP*P)

< Nflhst e

That is,
(4.30) Ifllh =2 YPsr 1<
(4.30) yields that ||g||, < C||g||: for all g € X i.e., 5 does not hold, a contradiction.
This completes the proof of the theorem. O

The final result of this section deals with the Banach-Saks property.

DEFINITION 4.5. Let X be a Banach space, and 1 < p < oo.
(a) Let (zy,) be a weakly null sequence in X. (z,,) is called
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(i) a Banach-Saks sequence if

(4.31) lim n_lH En:yJH = 0 for all subsequences (y;) of (x;) .
j=1

n—oo

(ii) a p-Banach-Saks sequence if

n
there is a C' < 0o so that lim n_l/pH y<”§C
(4.32) =00 ; ’

for all subsequences (y;) of (z;).

(iii) a strong p-Banach-Saks sequence if

n—00

4.33 lim n~1/P yill = 0 for all subsequences (y;) of (z;).
j j J
j=1

(b) X is said to have the Banach-Saks property (resp. the p-Banach-Saks prop-
erty) (resp. the strong p-Banach-Saks property) if every weakly null sequence in
X has a Banach-Saks (resp. p-Banach-Saks) (resp. strong p-Banach-Saks) subse-
quence.

The classical paper of Banach-Saks [BS] yields that commutative LP spaces
have the p-Banach-Saks property, for 1 < p < 2; the fact that L!-spaces have the
Banach-Saks property was proved later by Szlenk [Sz]. Our last result yields in
particular a generalization to the spaces LP(N'), N finite. Most of its assertions
follow very quickly from our previous results.

PROPOSITION 4.6. Let N be a finite von-Neumann algebra and 1 < p < 2.

1. LY(N) has the Banach-Saks property and LP(N') has the p-Banach-Saks
property.

2. A weakly null sequence (f,) in LP(N') has a strong p-Banach-Saks sub-
sequence if (|fn|P) is uniformly integrable. If (|fn|P) is not uniformly in-
tegrable, (f,) has a subsequence (f}) so that for some ¢ > 0 and all
subsequences (y;) of (f}),

(4.34) i 7Sy 2 e
j=1

3. A closed linear subspace X of LP(N) has the strong p-Banach-Saks prop-
erty if and only if X has no subspace isomorphic to (P.

PROOF. Corollary 3.4 together with Proposition 2.5 yields that L!(N) has the
Banach-Saks property. It also yields the first assertion in 2. Suppose (| f|?) is not
uniformly integrable and assume (without loss of generality) that ||fn|l, < 1 for all
n. Applying Corollary 2.11 and Lemma 3.3, we may choose a subsequence (f!) of
(fn) so that for some C > 1,

(4.35) (f} ®r,) is C-equivalent to the usual (P-basis.
and
(4.36) (fays---+ fn,,) is 4-unconditional for all k < ny <ng <+ < ngx .

Suppose (y;) is a subsequence of (f}). Then it follows that for all k,
(4.37) (Yk+1,- -+ Yry2r) is (4C)-equivalent to the £, -basis.
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Let n be a “large” integer and choose k with

(4.38) 2kl < p < 2k,
Then
_ l/p
(4.39) “ Z y]H > =k )
j=k+1
Thus
1/17 _ —1)i/p
4.40 gy (mologen =D
4], iC 2

Hence

4 N
(4.41) Jim 7 Zya > 40

This completes the proof of assertion 2 of the Proposition. But we also have that

(4.42) H Z yJ“ <4C(n - k)YP by (4.37),
j=k+1
and so
(4.43) H 3 y]|| < 4C(n —logy )P +logyn + 1,
=1 7
thus
n
4.44 Tim n_l/p“ H <4C .
( ) S ;?h »

This proves that LP(N') has the p-Banach-Saks property, for any weakly null
sequence (f,) in LP(N) either has (| f,|?) uniformly integrable (and hence a strong
p-Banach-Saks subsequence), or a subsequence (f],) as above.

The final assertion of the Proposition follows immediately from Theorem 4.4
and assertion 2. O

REMARK. Of course Hilbert space has the 2-Banach Saks property. Actually,
it can be shown that LP(N) has the 2-Banach Saks property for p > 2 and N finite,
and this is best possible (in general). Indeed, if (f;) is a weakly null sequence in
LP(N), then if || f;]|, — O, (f;) trivially has a p-Banach Saks subsequence; the same
is true if (f;) has a subsequence equivalent to the ¢P-basis (and of course a p-Banach
Saks sequence is a 2-Banach Saks sequence). Otherwise, combining arguments in
[S1] Theorem 2.4 with the arguments in Proposition 5.6, we see that there exists a
subsequence (f}) of (f;) such that its all subsequences (y,) are 2-Banach Saks.

We conclude this section with a brief discussion of the following open

PROBLEM. Let 1 < p < 2 and (f,,) be a seminormalized weakly null sequence
in LP(N) (N a finite von Neumann algebra) such that (|f,|?) is not uniformly
integrable. Does (f,) have a subsequence equivalent to the usual P basis?
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As pointed out previously, the answer is affirmative if (f,,) has an unconditional
subsequence. Actually, it can be proved that if (f,,) satisfies the hypotheses of this
Problem, it has a subsequence (f},) which dominates the €P-basis and moreover has
spreading model equivalent to the ¢P-basis. (The last assertion follows immediately
from our proof of Proposition 4.6.) It may then be shown that the above Problem
is equivalent to the following one (in which the hypothesis concerning (| f,|P) no
longer enters).

PRrROBLEM'. Let (f,,) be a seminormalized basic sequence in LP(N), p and N/
as above. Does (f,) have a subsequence (f/) which is dominated by the ¢P-basis?
i.e., such that )" c; f; converges in LP(N) whenever ) |c;[P < 00?



CHAPTER 5

The Banach isomorphic classification of the spaces
LP(N) for N hyperfinite semi-finite

We first fix some notation. Let 1 < p < co. We let S, = (B,-; Cy)yp
(= LP(®M,)o). To avoid confusion, we denote by L, ®, X the Bochner space
L,(X,m), where m is Lebesgue measure and X is a Banach space. Thus e.g.,
L,®,Cp = L,(Cp) = LP(L>®(m)@B(£?)). R denotes the hyperfinite type II factor,
and LP(R) ®, C, denotes LP(RQB(£?)) (so R@B(¢?) is the hyperfinite type Il
factor).

The main motivating result of this section is as follows.

THEOREM 5.1. Let N be a hyperfinite semi-finite infinite dimensional von-
Neumann algebra, and let 1 <p < oo, p# 2. Then LP(N) is (completely) isomor-
phic to precisely one of the following thirteen Banach spaces.

ep’ LP’ SP’ CP’ SP@LP’ CP@LP’ LP®PSP’ CP@(LF'@PSP)
Ly®pCp, LP(R), G LP(R), LP(R)®(Lp&pCp), LP(R)@pChp .

Theorem 5.1 is an immediate consequence of the following finer result concern-
ing embeddings.

THEOREM 5.2. Let 1 < p < 2. If N is as in 5.1, then LP(N) is (completely)
isomorphic to one of the thirteen spaces in the tree in Figure 1. If X #Y are listed
in the tree, then X is Banach isomorphic to a subspace of Y if and only if X can be
joined to Y through a descending branch (in which case X 1is completely isometric
to a subspace of Y ).

REMARK. In the language of graph theory, Theorem 5.2 asserts that the tree
in Figure 1 is the Hasse diagram for the partially ordered set consisting of the
equivalence classes of LP(N) under Banach isomorphism (over A as in 5.1), with
the order relation: [X] < [Y] provided X is isomorphic to a subspace of Y.

Parts of Theorem 5.2 require previously known results, some of which are very
recent. It is established in [S2] that the first nine spaces in the list in Theorem 5.1
are isomorphically distinct when p = 1, and exhaust the list of the possible Banach
isomorphism types of LP(N) for N type I (N as in 5.1), p # 2.

Theorem 5.2 yields the new result in the type I case: L, ®, C}, does not embed
in Cp ®(Ly ®p Sp) for 1 < p < 2; (another new result in this case, that Cp, does not
embed in L, ®, Sp, follows immediately from Corollary 1.2); the other embedding
results stated in 5.2 for the type I case are given in [S2]. We give here a new proof
of the particular case that L, ®, S, does not embed in L, @ Cp, using the Main
Result of this paper.

We first proceed with the non-embedding results required for Theorem 5.2. The
following theorem is crucial.

49
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p
L” ® @Lp®p Cp

p
LR ®p Cp
FIGURE 1
THEOREM 5.3. Let N be a finite von Neumann algebra and 1 < p < 2. Then

L, ®p Cp is not isomorphic to a subspace of Cp & LP(N).

We now fix 1 < p < 2 for the remainder of this section.
We first require

LEMMA 5.4. LetT : L, — C), be a given bounded linear operator, and let € > 0.
Then there exists an f € L, with f {1, —1}-velued so that | T f]| < €.

SUBLEMMA. The conclusion of 5.4 holds, replacing Cp by £2 in its hypotheses.

Proor. Fix n a positive integer. Using the generalized parallelogram identity,

n 2 n
ave|T Y Xz || = S0 IT Oz 113
j=1 Jj=1

(5.1) <ATIP D Xpaze 51
j=1
n 1
= ||T|? =

—7 = T -
n2/p n2/p—1
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It follows that we may choose 77; = £1 for all j so that

2 (Sl = 5
j=1

1
nr 2

Now simply choose n so that AT < ¢ and let f= Z;‘:l NiX[izt iy O

|
I-

3 ||
Nl

PROOF OF LEMMA 5.4. Let (e;;) be the matrix units basis for Cp, and define
for each n,

(5.3) H,=[ej:1<i<nandl1<j<oorl<i<oocand1<j<n].

Let P, be the natural basis projection onto Hy; i.e., P, : C;, — Cp is the projection
with P,(e;;) = 01if e;; ¢ Hyp, Po(eij) = ey if e;; € Hy (so [|[Pal|l < 2). Then
H, is isomorphic to £2, so by the sub-lemma we may choose f, in LP with f,
{1, —1}-valued and

1
(5.4) 12T full < 5, -
We claim that

(5.5) lHm |[Tfa]|=0.

Of course (5.5) yields the conclusion of the Lemma. Suppose (5.5) were false. It
follows that (f,,) has a subsequence (f/) so that

(5.6) (T'fl) is equivalent to the usual ¢P-basis
and
(5.7) (f!) converges weakly in L? .

((5.6) follows because (f/,) may be chosen to be a small perturbation of a “block-
off-diagonal sequence”, by 5.4).

Of course (f]) converges weakly in LP as well, hence (Tf]) also converges
weakly, a contradiction when p = 1 since then (T'f/) is equivalent to the ¢!-basis.

When p > 1, letting f be the weak limit of (f,), we have that T'f = 0 since
Tf! — 0 weakly. Moreover ||fllco < 2, so letting f! = f] — f for all n, (f]/) is a
uniformly bounded weakly null sequence in LP with (T'f))) = (T f]) equivalent to the
fP-basis. Finally, since (f//) is also semi-normalized in LP, (f/) has a subsequence
(gn) equivalent to the usual #2-basis. (Indeed, we may choose (g,) equivalent to
the #2-basis in L?-norm, and unconditional. But then since L? has cotype 2, (g,) is
equivalent to the #2-basis in the LP-norm). Still, (T'g,,) is equivalent to the £P-basis;
this is impossible since p < 2. O

We now apply our Main Result and Lemma 5.4, to give the

PROOF OF THEOREM 5.3. Suppose to the contrary that A is a finite von Neu-
mann algebra and T : L, ®, Cp, — Cp & LP(N) is an isomorphic embedding. Of
course we may assume that ||T|| = 1; let ¢ = ||T~!||~!. Thus we have
(5.8) ITfll > el f|| forall feL,®,C,.

Let P be the projection of C,®LP(N) onto C), with kernel LP(N'), and set Q = I—P.
Also, for each 7 and j, let Q;; be the natural projection of L, ®, C}, onto the space

(5.9) E;; dzef{f X €45 : fe Lp} .
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(As before, e;; denotes the i, j* matrix unit for Cp. Visualizing C, as matrices of
scalars and L, ®, C, as all matrices (f;;) of functions in L, with

il = ([ 1, dw)w <,

then Qi;((fre)) = fij ® es5. Ejj is just the space of matrices with all entries zero
except in the 50 slot). Now fix i and j. Of course E;; is isometric to L.
Thus by Lemma 5.4, we may choose f;; € L, with f;; {1, —1}-valued so that

€
Now letting X = [f;; ® €55 : 4,7 = 1,2,...], then X is a 1-GC), space, in the

terminology of the Introduction. That is, every row and column of (f;; ® e;;) is
1-equivalent to the ¢2 basis, while every generalized diagonal is 1-equivalent to the
P basis. Hence X is not isomorphic to a subspace of LP(N') by our Main Theorem
(i.e. Corollary 1.2). However

(5.11) QT|X is an isomorphic embedding.
Indeed, if x = 3" ¢;;(fi; @ €;;) with only finitely many ¢;;’s non zero, and ||z|| = 1,
then |c;;| <1 for all i and j (since the Q;;’s are contractive and || f;;|| = 1 for all 4

and 7), and so

IPTxl| < max ey DTS @ el

2%
< Z Z 9itit2 9
i=1j=1
using (5.10) and our assumption that T is a contraction. Hence

(5.13) 1QTz|| zg by (5.8).

(5.12)

This proves (5.11), and completes the proof by contradiction. O

Our localization result, Corollary 1.4, and the preceding proof, yield an alter-
nate proof of the following result, obtained in [S2].

PROPOSITION 5.5. LP ®, S, is not isomorphic to a subspace of Cp, © Ly.

PROOF. We have that L? @, S, is (linearly isometric to) (P,—; Ly ®p Cy')p.
Thus it suffices to prove that

(5.14) lim A, = o0
n—0o0
where
(5.15) A = inf{d(L, ®, C},Y) : Y is a subspace of C;, ® L, }

and “d” denotes the Banach Mazur distance-coefficient (defined just preceding
Corollary 1.4).

Now fix n, and let T': L, ®, C)) =Y C C, & Ly be an isomorphic embedding
onto Y, with

(5.16) IT] =1 and || T7Y] <2\, .

Using the notation and reasoning in the proof of Theorem 5.3, and setting
e = 1/(2\,), we may choose for each ¢ and j with 1 < 4,5 < n, a {1, —1}-valued
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fij € LP satistying (5.10). We thus obtain that ||PT|X|| < /2 by (5.12). Hence
for all z € X,

(517 Q7@ = (55 - 5 ) el = g5 lel

using also (5.16). That is, setting Z = QT(X), we have that

(5.18) d(X,Z) < 4\, .

Now X is a 1-GCyp-space; thus

(5.19) 4\, > Bpy forall n

(in the notation of Corollary 1.4), so (5.14) holds by Corollary 1.4. O

We also require the following rather deep result, due to M. Junge [J].
THEOREM 5.6. Cy is isomorphic to a subspace of LP(R) for allp < g < 2.

Finally, we require the following (unpublished) result, due to G. Pisier and
Q. Xu [PX2].

LEMMA 5.7. Let X be a (closed linear) subspace of L, @, Cp. Then either X
embeds in L, or £P embeds in X.

For the sake of completeness, we sketch a proof. First, we give an important,
quick consequence of these last two results.

COROLLARY 5.8. LP(R) is not isomorphic to a subspace of L, @, Cp.

Proor. By Theorem 5.6, it suffices to prove that C; does not embed in L,®,C,
if p < g <2 If C; did embed, then since it does not embed in L,, it would have
a subspace isomorphic to P, by Lemma 5.7. However it is a standard fact that
every infinite-dimensional subspace of C, is either isomorphic to ¢? or contains a
subspace isomorphic to P, a contradiction. O

We next sketch the proof of Lemma 5.7 (which also yields the above mentioned
standard fact).

Let (x;5) be a given matrix in a linear space X. Call a sequence (fi) in X a
generalized block diagonal of (x;;) if there exist i; < iz < --- and j1 < j2 < --- s0
that for all &,

(5.20) fr € [.’L‘ij ti <0 <idpgr and jp < j < jk+1] .

Now if (fr) is a generalized block diagonal of the matrix (e;;) consisting of non-
zero terms, e;; the matrix units for Cp, (as above), then (fi/| fx||) is isometrically
equivalent to the ¢P-basis. But then it follows immediately that if (g;;) is any
matrix of elements of L and if (f;) is a normalized generalized block diagonal
of (gi; ® e;5) (in L? ®, Cp) consisting of non-zero terms, (fj) is also isometrically

equivalent to the #P-basis. Indeed, for any scalars ¢y, co, ... with only finitely many
non-zero terms, and any 0 < w <1,
f P P | f. P
(5.21) 1S e fs @)%, = S el 155 w)l? -
Hence

(5.22) 1S e fllr = / 1S s ), dw =S [e;l7 .
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Now fix n, and let H, be the subspace of C}, defined in the proof of Lemma 5.4
(specifically, in (5.3)). Standard results yield that LP ®, H,, embeds in L? (actually,
L? @, Hy, is isomorphic to L? if p > 1), and of course I ® P, is a projection onto
LP ®, H, with ||I ® P,|| <2 (P, as defined in the proof of 5.4). Now let X be as
in Lemma 5.7, and suppose X does not embed in L,. Then for each n, we may
choose an z,, € X with

1
(5.23) lznll =1 and ||(I @ By)znl|l < n -
But it follows that for any f € L, ®;, Cy,
(5.24) (IQP)(f)—f as n— 0.

A standard travelling hump argument now yields g;;’s in LP and a normalized
generalized block diagonal (f)) of (g;; ® e;;) and a subsequence (z’;) of (x;) so that

1 .
(5.25) o) — fell < oF for ail k .

It follows immediately that (z},) is equivalent to the ¢P-basis. O

REMARK. The last part of this proof also yields the fact (due to Y. Friedman
[F]) that if X is an infinite-dimensional subspace of C,, then X is isomorphic to £?
or /P embeds in X. Indeed, assuming X is not isomorphic to 2, then since H,, is
isomorphic to £2, we obtain for each n and z,, € X with ||z,[| = 1 and || Pz < 7=.
Again we then obtain a normalized block diagonal (f) of (e;;) and a subsequence
(z%;) of (x;) satisfying (5.25), and then (z}) is equivalent to the £7 basis.

We now give the last and perhaps most delicate of the needed non-embedding
results; its proof requires the refined version of our Main Result given by Theo-
rem 3.2.

THEOREM 5.9. Let N be a finite von Neumann algebra. Then LP(R) @, Cp is
not isomorphic to a subspace of LP(N') & (L, @, Cp).

We first give some notation used in the proof. As always, e;;’s denote the
matrix units for Cp. Thus LP(R) ®, C, = LP(R&B(?)) = the closed linear span
of the elementary tensors f @ e;;, f € LP(R), i and j arbitrary. We denote also the
norm on LP(R) ®, Cp as || - ||,- If X is a closed linear subspace of LP(R),

(5.26) X®,C, Yz ®e; zeX, i, jEN

(where the closed linear span above is taken in LP(R) ®, Cp). Next, we need
expressions for the norm on LP(R) ® Row, LP(R)® Column. We easily see that
given z1,...,x, in LP(R), then for any i,

n n 1/2

5.27 “ T el = H( :J:-ac*f) “
( ) Z: J J » z_: 1% p

j=1 =1
and

n n 1/2
(5.28) DT - ”(ijmj> ”p

j=1 j=1

Evidently (5.27) and (5.28) show that if we consider a matrix of the form
(25 ® e;;) with ;; non-zero elements of LP(R) for all ¢ and j, then all rows and
columns of this matrix are 1-unconditional sequences.



5. THE BANACH ISOMORPHIC CLASSIFICATION 55
The next result is really a “localization” of Lemma 2.8 (and could be formulated
instead for LP(N), A any finite von Neumann algebra).

LEMMA 5.10. Let X be a closed linear subspace of LP(R) containing no subspace
isomorphic to ¢P. Then given € > 0, there is an N so that given any n > N and
1,y Ty 10 Be(X),

n 1/2 n 1/2
(5.29) n_l/p“( mx*) “ <e and n_l/p”< a:f@) “ <e.

PrOOF. Let 7 be the normal faithful tracial state in R. By Theorem 4.4,
{|z|P : © € Bo(X)} is uniformly integrable. Let n > 0, to be decided later. Choose
0 > 0 so that

(5.30) w(|zfP,0) < nP forall z € B,(X) .

Let z1,...,z, be elements of B,(X). By the final assertion of Lemma 2.3 (following
(2.10)), we may choose for each j a P; € P(R) so that z;P; € R with

(5.31) 3Py lloe < 5717 and fla; (1= P)ll, <.
Then

n 1/2 n
[(Se) | =[S @en], b @20
j=1 p i=1 p
n n
< “ Z-’l'jpj ®€1j”p + “ Z.’L'](I — P]) ®elj”
j i P
j=1 7j=1

Since (z;(I — Pj) ® e1;)7_; is l-unconditional and LP(R) ®, C} is type p with
constant one,

(5.32)

n n l/p
Sl = By @ ey < (anju—Pj)nz)
j=1 =1

< nnt/P by (5.31) .

(5.33)

Now

n [ n p/2
|Sap s, - [[(Lars)
j=1 P j=1

L

(5.34) [ 1/2

< T(Z a:ijw;) (since p < 2)
j=1

L

< nl'/2§71/P by (5.31).
Thus (5.32)—(5.34) yield that

n 1/2
5.35 n_l/”u( a:w*f> H
(5.35) EZI i) |, S

Evidently we now need only take n < §; then choose N so that N-G=3)§-1/p <5
the identical argument for (x}z;)} , now yields that (5.29) holds for alln > N. O

-1/p




56 5. THE BANACH ISOMORPHIC CLASSIFICATION

We may now easily obtain our final needed preliminary result. (See the Remark
following Theorem 3.1 for the definition of: the rows or columns of a matrix contain
#P_sequences.)

COROLLARY 5.11. Let X be a closed linear subspace of LP(R) containing no
subspace isomorphic to P, and let (z;;) be a seminormalized matriz whose terms
lie in X. Then the matriz (z;; ® e;;) in X @, Cp has the following properties:

(i) Neither the rows nor the columns contain % -sequences.
(ii) Pwvery row and column is 1-unconditional.
(iii) Ewvery generalized diagonal is equivalent to the usual ¢P basis.

PRrROOF. (i) follows immediately from Lemma 5.10 and (5.27), and the latter
also immediately yields (ii). If (f;) is a generalized diagonal of the matrix, then
there exist projections Py, Py, ..., Q1,Q2,... in R&®B(?) so that the P;’s and the
Q,’s are pairwise orthogonal, with f; = P;f;Q; for all j. (That is, (f;) is “right

and left disjointly supported”.) It then follows that for any n and scalars cy, .. ., ¢,
n n 1/p
(5.30) |San], = (Slerintg)
j=1 P Jj=1
which immediately yields (iii) since (z;; ® e;;) is semi-normalized. O

We are finally prepared for the

PROOF OF THEOREM 5.9. Let p < g < 2 and let X be a subspace of LP(R) so
that X is isomorphic to Cy (using Junge’s result, formulated as Theorem 5.6 above).
We claim that X ®, C, is not isomorphic to a subspace of LP(N) & (L, @ Cp)
(which of course proves Theorem 5.9). Suppose to the contrary that T : X ®,C, —
LP(N)® (L, ®,C)p) is an isomorphic embedding. Assume without loss of generality
that ||T|| = 1. Let € > 0 be chosen so that ||Tf|| > €| f|| for all f € X ®, Cp. Let
P denote the projection of LP(N) @ (L, ®, C,) onto LP(N), with kernel L, ®, Cp;
and set @ = I — P. Now fix 7 and j. Then of course X ® e;; is isometric to X.
Thus by Lemma 5.7, QT|(X ® e;;) cannot be an isomorphic embedding (that is,
C, does not embed in L, ®, C}p). Hence we may choose z;; € X with
(5.37) loigll =1 and QT (zi; ® el < 5777 -

Now let Y = [z;; ® e;; : 1,7 = 1,2,...]. Since 7 does not embed in X, the
conclusion of Corollary 5.11 holds for the matrix (z;; ® e;;).

It follows from (5.37) that

€
(5.38) 1QTIY| < 3
Hence we obtain that

€

(5.39) IPT)I 2 5llyll forall yeY .
Thus Y is isomorphic to a subspace Z of LP(N). Let z;; = PT(z;; ® e;5) for all
and j. Now since PT|Y is an isomorphism, Corollary 5.11 yields that there is a u
so that every row and column of (z;;) is u-conditional, every generalized diagonal

of (2;) is equivalent to the ¢P-basis, yet neither the rows nor the columns of (z;;)
contain #P-sequences. This is impossible by Theorem 3.2. 0
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The following result is an immediate consequence of Theorem 5.9 and known
structural results for von-Neumann algebras.

COROLLARY 5.12. Let N, M be von Neumann algebras so that M has a direct
summand of type Il or of type III. If LP (M) is Banach isomorphic to a subspace
of LP(N), then also N has a direct summand of type Il or of type IIL.

PROOF. The hypotheses imply (via known results, cf. [HS]) that RQB(¢£?) is
isomorphic to a von Neumann subalgebra of M, which is the range of a normal
conditional expectation, whence LP(R) ®,, C}, is completely isometric to a subspace
of LP(M). Since LP?(R) ® Cy, is separable, we can assume without loss of generality
that N acts on a separable Hilbert space. Then if A fails the conclusion, there
exists a finite von Neumann algebra N so that A is isomorphic to a subalgebra
of N @ (L®°&®B(£2)), and hence LP(N) is completely isometric to a subspace of

LP(N) & (Lp ®p Cp). But then LP(M) does not Banach embed in LP(N), since
LP(R) ®, Cy, does not embed in LP(N) & (L, ®, Cp) by Theorem 5.9. O

REMARK. Of course Corollary 5.8 (i.e., the results of Junge and Pisier-Xu cited
above) also immediately yields that if M and A are von Neumann algebras so that
M has a type II; summand, and LP(M) embeds in L?(N), then A’ must have also
have a summand of type II or type III. Combining these two results, we have that
if LP(M) is Banach isomorphic to a subspace of LP(N) and M has no type III
summand, then N has a direct summand of type at least as large as these of the
summands of N'. It remains a most intriguing problem to see if one can eliminate
the non-type I1I summand hypothesis in this statement.

We now complete the proof of Theorem 5.2. We shall formulate the “positive”
results in the language of operator spaces; the reader unfamiliar with the relevant
terms may just ignore the adjective “complete” in all the statements, for of course
all positive operator space claims imply the pure Banach space ones. Given opera-
tor spaces X and Y, let us say that X completely contractively factors through Y if
X is completely isometric to a subspace X’ of Y such that there exists a completely
contractive projection mapping Y onto X’. Equivalently, there exist complete con-
tractions U : X — Y and V : Y — X such that V oU = Ix, Ix the identity
operator on X, that is,

Y

/7

X

(5.40) X - X

Now we easily see that
(5.41) (LP(R) @ LP(R) @ - -- ), completely contractively factors through LP(R) .

Indeed, simply let P;, P, ... be pairwise orthogonal non-zero projections in R. As
is well known, then P;RP; is isomorphic to R and hence P;LP(R)P; is completely
isometric to LP(R) for all i; then the map on LP(R) defined by f — Y P, fP;
witnesses (5.41).

Since R®R is isomorphic to R,

(5.42) LP(R) ®p LP(R) dzepr(R@)R) is completely isometric to LP(R) .
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Using (5.41) and (5.42), we may now easily see that if Y is immediately below
X in the tree (and lying on a branch), then X completely contractively factors
through Y. Using the notation X < Y to mean that X completely contractively
factors through Y, we see, e.g., that L, S LP(R) = L,®,Cp & LP(R)®,Cp &
LP(R) ®p LP(R), whence

Lo 5= (BLe ) & (DrLysrm) Srm.
n=1 p n=1 P
i.e.,
(5.43) L, ®, Sy, S LP(R) .

Writing X ~ Y to mean: X is completely isometric to Y, we have
(544) Cp@(Lp @, Sp) = Cr@ Ly @, Cp = (L 9 Cy) @ (L ©Cp) m L © Gy
(where we use ¢P-direct sums).

X S Y if X is the level 7 space and Y is the level 8 space, since the same
argument for (5.41) yields also

(5:45)  ((L"(R) 8, Cp) & (L"(R) @, Cp) @ -+ ) < LA(R) 8, C, .

The reader may now easily check that the remaining “positive” assertions on the
tree. For the far deeper negative assertions, let us use the notation: X < Y to
mean that the Banach space X is not isomorphic to a subspace of Y.

Now suppose X # Y are on the tree and Y cannot be connected to X by a
descending branch; we claim that X <+ Y.

It suffices to prove this assertion by showing by induction on j = 2,3,... that
X lies at level j and for any Z and X’ on the tree in FIGURE 1,

(5.46) there is a k > j so that Y is at the k™ level, but if Z is at a higher
level than k, connected to Y, then X is connected to Z
and moreover if X’ is connected to X with
level X’ < j, then X’ is connected to Y

or

(5.47) Y is at the (j — 1)** level, but if Y is connected to Z at level k > j
with Z # X, then X is connected to Z and moreover if Z is connected
to X with level Z < j, then Z is connected to Y.

j = 2. S, ¥ Ly is classical (and also follows from our Corollary 1.4). L, +
Cp since £y — L, if p < ¢ <2 but £, /4 Cp.
j=3. Cp ¥ LP(R), the main result of the paper.
j=4. L, ®, Sy, # Cp ® L, by Proposition 5.5.
j=05 LP(R) % L, ®,Cp, by Corollary 5.8.
j=6. L,®,Cp, s Cp, ®LP(R) by Theorem 5.3.
j = 7. There is no Y satisfying (5.46) or (5.47).
j = 8. Theorem 5.9 gives the one required non-embedding result.
This completes the proof of the final statement of Theorem 5.2. It remains to

prove the first statement. This follows via the known type-decomposition and struc-
ture of hyperfinite von-Neumann algebras, and the following operator space version
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of the Pelczynski decomposition method (whose proof is exactly as Pelczynski’s
proof for the Banach space case [P]; see also p.54 of [LT] and [Ar]).

LEMMA 5.13. Let X and Y be operator spaces so that
(i) each completely factors through the other
and so that either
(ii) X is completely isomorphic to X & X and Y is completely isomorphic to
YaY
or
(it") X is completely isomorphic to (X & X & ---)q for some q € [1,00].
Then X and Y are completely isomorphic.

(We say that X completely factors through Y if X is completely isomorphic to
a completely complemented subspace of Y.)

COROLLARY 5.14. If (X @ X @ ---), completely factors through the operator
space X, then X is completely isomorphic to (X @ X & ---)p.

End of the proof of Theorem 6.2. (X & X @ ---), completely contractively factors
through X for all of the 13 spaces X listed in Theorem 5.2 (applying (5.41), (5.45),
and the analogous results for Cp, Ly, and L, ®, Cp). Thus the conclusion of 5.14
applies.

Now let A be as in the statement of Theorem 5.2. If A is type I, then by the
results in [S2] LP(N) is completely isomorphic to one of the first nine spaces listed
in Theorem 5.1, so assume that A is not type I. Then we have that

N = N1 & N, & N

where for each i, N; = {0} or A; is a hyperfinite von Neumann algebra of type i,
so that also Ny, & N1, # 0.

Now suppose that A is finite. It then follows from work of A. Connes [C2]
that

oo !

(5.48) N1 @ N1, is isomorphic to a von-Neumann subalgebra of R .

Indeed, by disintegration and Proposition 6.5 of [C2], any finite hyperfinite von Neu-
mann algebra (with separable predual) is a countable ¢*°-direct sum of von Neu-
mann algebras of the form A®B, where A is abelian and B is either M, for some
n < oo or R. But such an algebra A®B can be realized as a sub-algebra of R;
since also R®R is isomorphic to R, and (R R @ -+ )= is (isomorphic to) a
von Neumann subalgebra of R, (5.48) holds. Since N1, # 0, we have by the above
discussion that also

(5.49) R is isomorphic to a von-Neumann subalgebra of N .
Thus, we have that if A or B equals N or R, then
(5.50) A is (isomorphic to) a subalgebra of B, which is

the range of a normal conditional expectation.

Now if (5.49) holds for any two von Neumann algebras A and B, then L?(A)
completely contractively factors through LP(B). Thus by Lemma 6.13 and Corol-
lary 6.14 applied to X = LP(R), we obtain that LP(N) is isomorphic to LP(R).
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Now if N1, # 0, again using the deep results in [C2], N1 is (isomorphic to)
M®B(£?) where M is a finite hyperfinite von Neumann algebra, whence letting A
and B equal N or R®B(#?), (5.48) holds, whence LP(N) is completely isomorphic
to LP(R) ®p Cp again by Lemma 5.13 and Corollary 5.14 applied to LP(R) ®p Cj.

Now assume N = {0}, so N, # {0}, and suppose N is infinite; since
M., = {0}, we must have that N is infinite. But then by the classification of
the LP spaces of type I algebras, we have that LP(N7) is completely isomorphic to
either Cp, L, ® Cp, Cp, ® Ly, or Cp, @ (Lp ®@p Sp).

But Cp®L,®LP(R) and Cp®(Lp®pSy)BLP(R) are both completely isomorphic
to Cp @ LP(R), by our analysis of the finite case. Hence LP(N) is completely
isomorphic either to Cp & LP(R) or to (L, ®, Cp) & LP(R), completing the entire
proof. |



CHAPTER 6

LP(N)-isomorphism results for N a type III
hyperfinite or a free group von Neumann algebra

We first formulate the results of this section for the case of preduals of von Neu-
mann algebras NV, i.e., L}(N), and then show they hold also for the spaces LP(N)
for 1 < p < o0, as in the preceding sections. The following result is an imme-
diate consequence of Corollary 6.12. We prefer to give a quick proof just using
Corollary 1.2.

THEOREM 6.1. Let N be a factor of type II, and let M be a factor of type Il
or type III. Then the preduals N, and M, are not Banach space isomorphic.

PROOF. By the assumptions M is a properly infinite von Neumann algebra,
ie., M= M®B(f?) as von Neumann algebras (where & is the standard von Neu-
mann algebra tensor product). In particular M, is isometrically isomorphic to
M, ®+ C; for some crossnorm 7 on the algebraic tensor product M, ® Ci, and
therefore C; imbeds isometrically in M,. By Corollary 1.2, C; does not Banach
space imbed in N, . O

It would be interesting to know, whether a type Il.-factor and a type I1I-factor
can be distinguished by the Banach space isomorphism classes of their preduals.
(As noted in the Introduction, we do not know the answer for the special case
of injective factors.) In [C1] Connes introduced a subclassification of factors of
type 111 into factors of type 111, where A can take any value in the closed interval
[0,1]. Theorem 6.2 below shows that the number A in this classification cannot
be determined by the Banach space isomorphism class (or even operator space
isomorphism class) of the predual. Recall from [C2] and [H], that for each A € (0, 1],
there is up to von Neumann algebra isomorphism only one injective factor of type
III, acting on a separable Hilbert space. For 0 < A < 1 it is the Powers factor

o0
Ry = R (M:(C), )
n=1

where @) is the state on the 2 x 2 complex matrices given by

T x A 1
PA ( 1 12) = r11 + Ta2

T21 22
and for A = 1 it is the Araki-Woods factor R.., which can be obtained (up to
von Neumann-isomorphism) as the tensor product of two Powers factors

ROO g R)\] ®R/\2

provided }—gg—i; ¢ Q. On the hand there are uncountably many injective factors of

type III, acting on a separable Hilbert space (cf. [C1], [C2]). We will consider the

61
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predual of a von Neumann algebra as an operator space with the standard dual
operator space structure (cf. [Bl]).

THEOREM 6.2. Let for 0 < A < 1, Ry denote the Powers factor of type III
and let R, denote the Araki-Woods factor of type Il .
(a) For every A € (0,1) the predual (Ry). ts completely isomorphic to (Reo)x-
(b) There is an uncountable family (N;)ic; of mutually non-isomorphic (in
the von Neumann algebra sense) injective type Illy-factors on a separable
Hilbert space for which (N}), is completely isomorphic to (Roo)«-

REMARK. In [ChrS], Christensen and Sinclair proved that all injective infi-
nite dimensional factors acting on separable Hilbert space are completely isomor-
phic. This does not imply that their preduals are completely isomorphic. Indeed
the unique injective type IIj-factor R and the unique injective type II-factor
R&®B(#?) have non-isomorphic preduals by Theorem 6.1. Theorem 6.2 as well as
the results in [ChrS] are based on the completely bounded version of the Pelczyniski
decomposition method stated as Lemma 6.13 above.

PROOF OF THEOREM 6.2. (a) Let 0 < A < 1 and put N' = Ry, M = R..
Since N is a properly infinite von Neumann algebra, there exist two isometries
uy,uz € N, such that uju} and uguj are two orthogonal projections with sum 1.
Define now

P:N > NaN by ()= (ujz, usr)
and
V. Na&N >N by ¥(r,y)=uiz + uy
Then ®oW¥ = idpygn and Yo d = idys. Since ® and ¥ are normal (i.e., continuous)
in the w*-topologies on A and N/ & N) and also are completely bounded maps, it
follows that N, =~q, N, ®N.. Similary we have M, ~q, M, ® M,. Thus the pair
(M., N,) satisfies (ii) in Lemma 6.13. We next check condition (i) in Lemma 6.13.

Since Roo = RA®Ro as von Neumann algebras (cf. [C1, Sect.3.6]), we can
without loss of generality assume that M = NQP where P = R,,. Let ¢ be a
normal faithful state on P and define

T: N —->NQP by n(z)=z®1,

and let p : N®P — N be the left slice map given by ¢, i.e., the unique normal
linear map N®P — N for which

plx@y)=ply)r, zeN,yeP.

Thus ||7|lcb = ||plles = 1 and p o m = idpr. Hence idy, has a completely bounded
factorization through M,, i.e., N, is cb-isomorphic to a cb-complemented subspace
of M,. To prove the converse, we use that if ¢ is a normal faithful state on the
ITI;-factor M = Ry, and o = 02’2 is the moduluar automorphism associated with ¢
at tg = —rc?g%, then the crossed product Re X4 7Z is a factor of type III, (cf. [HW,
proof of Lemma 2.9]). Moreover injectivity of R, implies that the crossed product
is injective (cf. [C2]). Hence Roo X Z = Ry as von Neumann algebras, so in this
part of the proof we may assume that M x, Z = N. Further, after identifying M
with its natural imbedding in the crossed product, we have that N is generated as
a von Neumann algebra by M and a certain unitary group {u" | n € Z} coming
from the crossed product construction (cf. [C1]). Let i : M «— M X, Z be the
imbedding and let € : M x4 Z — i(M) be the unique normal faithful conditional
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expectation of M x,, Z onto i(M) for which £(u™) = 0, for n € Z ~ {0} (see again
[C1]). Then i and € are normal maps and i ! og0i = idx, so as above, we obtain
that M, is cb-isomorphic to a cb-complemented subspace of N,. Hence a) follows
from Lemma 6.13.

(b) Put again M = R, and let G C R be a dense countable subgroup. Let ¢
be a normal faithful state on R, and put Ng = Ry X4 G where a : G — Aut(M)
is the restriction of the modular automorphism group (o7 ):cr to G. It follows from
[C1] (see the proof of [HW, Lemma 2.9]) that N is a factor of type IIIy, which
is also injective (by [C2]). Moreover T'(Ng) = G, where T is Connes m-invariant.
Hence G # G’ implies, that Ng and Ng are not von Neumann-algebra isomorphic.
It is easy to check, that there are uncountably many dense countable subgroups of
R. Put P = Ng®R. Since Roo®Ry ~ R for 0 < A < 1, we have P&R) = P,
0 < A < 1, which by [C1, Theorem 3.6.1] implies that P is a factor of type III;.
Since P is also injective we have

NGRORoo =2 Rog = M

as von Neumann algebras. As in the proof of (a), it now follows, that (Ng). is
cb-isomorphic to a cb-complemented subspace of M,. Moreover, since M %, G is
a crossed product with respect to a discrete group, there is again an embedding
i: M — Mx,G and a normal faithful conditional expectation ¢ : Mx,G — (M),
and the rest of the proof of (b) follows now exactly as in the proof of (a). O

Let L(F,) denote the von Neumann algebra associated with the free group
F,, on n generators. Then for 2 < n < co L(F},) is a factor of type II;. It is a
long standing open problem to decide whether these II;-factors are isomorphic as
von Neumann algebras. Due to work of Voiculescu, Dykema and Radulescu, it is
known that either these factors are all isomorphic or L(F,,,) % L(F,,) whenever 2 <
ni,ne < oo and ny # ny (cf. [VDN]). In [Ar]| Arias proved that the von Neumann
algebras L(F,), 2 < n < oo are isomorphic as operator spaces. We show below,
that also their preduals are isomorphic as operator spaces. While Arias’ proof uses
mainly group theoretical considerations, the proof of Theorem 6.3 below relies on
one rather deep result of Voiculescu, that L(Fy) = My (L(Fx)) as von Neumann
algebras for k = 2,3,... (cf. [Vo] or [VDN]).

THEOREM 6.3. L(F),). is cb-isomorphic to L(Fx )« forn=2,3,....

PrROOF. Let n € N, n > 2 and put N = L(F,) and M = L(F,). Since
F, is isomorphic to a subgroup of F,, and vice versa, A is von Neumann-algebra,
isomorphic to a subfactor A7 of M and M is von Neumann-algebra isomorphic to
a subfactor M of A (see [Ar] for details). Moreover, let o4 and 757 be the unique
normal faithful tracial states on M and N respectively. Then there is a unique

normal faithful conditional expectation € : M 20, AL reserving the trace 7aq
p

(resp. a unique normal faithful conditional expectation ¢’ : A/ onte, M, preserving

the trace 7). As in the proof of Theorem 6.2, this implies that X = M, and
Y = N, satisfy condition (i) in Lemma 6.13. We next prove that (ii’) in Lemma 6.13
is satisfied with ¢ = 1. Since M = L(F) is a II;-factor, we can choose a sequence
of orthogonal projections (p;);2, in M, such that 7(p;) = 27" and Y .0 p; = 1
(convergence in the strong operator topology). By Voiculescu’s result quoted above,
L(Fy) = My (L(Fy)) for i = 1,2, ... as von Neumann-algebras, which implies that
PiMp; =2 M as von Neumann-algebras.
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Indeed, Voiculescu’s result yields that there are orthogonal equivalent projec-
tions ¢i,...,q9: in M with Zle g; = 1 so that g Mg = M. It follows (by
uniqueness of 7x4) that 7(g;) = 7(g;/), for all j and j', and so 7(¢q1) = 27%. Since
also Tpm(P;) = 27 and M is a finite factor, ¢; and p; are equivalent, and hence
piMp; = gu Mgy = M as desired.

Put

RQ=MOM®OD: )= = MRA™ .

Then @ is a von Neumann algebra isomorphic to @, = }:® p; Mp;, which is a
von Neumann subalgebra of M. Moreover, there is a 7p4-preserving normal faithful
conditional expectation ¢” : M onte, @1. Hence Q. is cb-isomorphic to a cb-
complemented subspace of M. Put as above X = M,. Then Q, = (X®X P - )n
as operator spaces. Hence we have shown that (X & X & --- ), completely factors
through X, so X and (X ®@ X @ - ) are completely isomorphic by Corollary 6.14.
This proves (ii’) iin Lemma 6.13 with ¢ = 1. Hence X = M, and Y = N, are
completely isomorphic. O

In the rest of this section, we will show how Theorem 6.2 and Theorem 6.3 can
be generalized to the non-commutative LP-spaces associated with the von Neumann
algebras in question. In [Ko], Kosaki proved, that the abstract LP-spaces LP(M),
1 < p < oo associated with a o-finite (= countably decomposable) von Neumann
algebra M, can be obtained by the complex interpolation method applied to the
pair (M, M,) with the imbedding M «— M, given by the map = — zp, © € M,
for a fixed normal faithful state ¢ on M. Assume next that A is a von Neumann
subalgebra of M and € : M — N is a normal faithful conditional expectation of M
onto . By replacing ¢ by ¢ o &, we can assume, that the state ¢ used in Kosaki’s
imbedding is e-invariant. Next, the adjoint of ¢ defines an imbedding of N, in M,
and i*, the adjoint of the inclusion map i : N' — M defines a cb-contraction of M,
onto N,. Moreover, we have the following commuting diagram:

N &5 M 5 N
Ll
N, & M, 5 N

where the vertical arrows are the Kosaki inclusions with respect to ¢y, ¢ and
p1n respectively. By the complex interpolation method we now get contractions
ip : LP(N) — LP(M) and ¢, : LP(M) — LP(N), such that the following diagram
comiutes:

NS M SN

L) 2 LP(M) - LP(N)

N S oM. SN

Further, if we consider LP(N) and LP(M) as operator spaces with the operator

spaces structure introduce by Pisier in [Pil], we get that i, and e, are complete
contractions. Hence we have proved:
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LEMMA 6.4. Let M be a o-finite von Neumann algebra, and N C M a sub
von Neumann algebra, which is the range of a normal faithful conditional expecta-
tion € : M — N. Then for every 1 < p < oo, LP(N) is cb-isometrically isomorphic
to a cb-contractively complemented subspace of LP(M).

Lemma 6.4 implies that the proofs of Theorem 6.2 and Theorem 6.3 can be
repeated almost word for word to cover the LP-case. Note that the argument for
N, ® N, = N, and M, ® M, = M, in the beginning of Theorem 6.2 also works
for the LP-spaces, when LP(N) (resp. LP(M)) are equipped with the natural left
M-module structure (resp. left A'-module structure). Hence we get:

THEOREM 6.5. Let Ry, 0 < A < 1 and R, be as in Theorem 6.2 and let
1<p<oo. Then
(a) LP(R)\) ~cb LP(ROO).
(b) There is an uncountable family of mutually non-isomorphic (in the von Neu-
mann algebra sense) injective type Illy-factors on a separable Hilbert space,
for which LP(N;) ~¢, LP(Ry) for alli € 1.
(¢) For everyn € N, n> 2, LP(L(F,)) =, LP(L(Fx)).
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