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ABSTRACT

A (finite or countably infinite) set G of generators of an abstract C∗-
algebra A is called hyperrigid if for every faithful representation of A

on a Hilbert space A ⊆ B(H) and every sequence of unital completely

positive linear maps φ1, φ2, . . . from B(H) to itself,

lim
n→∞ ‖φn(g)− g‖ = 0, ∀g ∈ G =⇒ lim

n→∞ ‖φn(a) − a‖ = 0, ∀a ∈ A.

We show that one can determine whether a given set G of generators is

hyperrigid by examining the noncommutative Choquet boundary of the

operator space spanned by G ∪ G∗. We present a variety of concrete

applications and discuss prospects for further development.

1. Introduction

In a previous paper [Arv08] it was shown that every separable operator system

has sufficiently many boundary representations, thereby providing a noncommu-

tative counterpart of the function-theoretic fact that the closure of the Choquet

boundary is the Silov boundary. Considering the central position of the lat-

ter in both potential theory and approximation theory, it is natural to expect

corresponding applications of the noncommutative Choquet boundary to the

theory of operator spaces. In this paper we initiate a study of what might be

called noncommutative approximation theory, focusing on the question: How

does one determine whether a set of generators of a C∗-algebra is hyperrigid?
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Definition 1.1: A finite or countably infinite set G of generators of a C∗-algebra
A is said to be hyperrigid if for every faithful representation A ⊆ B(H) of A

on a Hilbert space and every sequence of unit-preserving completely positive

(UCP) maps φn : B(H) → B(H), n = 1, 2, . . . ,

(1.1) lim
n→∞ ‖φn(g)− g‖ = 0, ∀g ∈ G =⇒ lim

n→∞ ‖φn(a)− a‖ = 0, ∀a ∈ A.

We have lightened notation in this definition by identifying A with its image

π(A) in a faithful nondegenerate representation π : A → B(H) on a Hilbert

space H . Significantly, hyperrigidity of a set G of operators on a Hilbert space

H implies not only that (1.1) should hold for sequences of UCP maps φn defined

on B(H), but also that the property should persist for every other faithful

representation of A. Note too that a set G is hyperrigid iff the linear span of

G∪G∗ is hyperrigid, so that hyperrigidity is properly thought of as a property

of self-adjoint operator subspaces of a C∗-algebra. In principle, one could adjoin

the identity toG∪G∗ as well, but for many examples—especially those involving

sets of compact operators—it is best not to adjoin the identity operator to G.

Hence we allow that a set G of operators, its operator space and its generated

C∗-algebra may not contain a unit.

The general characterization of hyperrigid generators given in Theorem 2.1

provides the following criterion: A separable operator system S that generates a

C∗-algebra A is hyperrigid iff every representation π : A → B(H) on a separable

Hilbert space H has the unique extension property in the sense that the only

unital completely positive (UCP) map φ : A → B(H) that satisfies φ �S= π �S
is φ = π itself.

The simplest examples of hyperrigid generators G are obtained by a direct

application of this criterion. These examples are associated with “extremal”

properties of the operators in G which force the unique extension property (and

therefore hyperrigidity) through a direct application of the Schwarz inequality

and the Stinespring representation of UCP maps. The following two results

illustrate the point: They are proved in Section 3.

Theorem 1.2: Let X ∈ B(H) be a self-adjoint operator and let A be the

C∗-algebra generated by X . Then G = {X,X2} is a hyperrigid generator for

A.
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Theorem 1.3: Let V1, . . . , Vn ∈ B(H) be an arbitrary set of isometries that

generates a C∗-algebra A. Then G = {V1, . . . , Vn, V1V
∗
1 + · · · + VnV

∗
n } is a

hyperrigid generator for A.

Remark 1.4: Theorem 1.2 can be viewed as a noncommutative strengthening of

a classic approximation-theoretic result of Korovkin: see Remark 1.8 for further

discussion. The referee has pointed out that Theorem 1.2 can be formulated

in terms of the multiplicative domains of certain UCP maps, and after that

reformulation, Lemma 3.1 of [JOR03] gives a norm estimate that leads to an

alternate proof of Theorem 1.2 when applied to the function system {1, x, x2} ⊆
C[a, b], where a and b are appropriate bounds on the spectrum of the operator

X .

Finally, note that Theorem 1.3 implies that for every n ≥ 2, the standard set

of generators G = {V1, . . . , Vn} of the Cuntz C∗-algebra On is hyperrigid. The

referee has also pointed out a related result of Neshveyev and Størmer (Theorem

6.2.6 of [NS06]), concerning generating sets of unitary operators.

On the other hand, we emphasize that most hyperrigid operator systems

S ⊆ C∗(S) do not share the conspicuous extremal properties associated with

Theorems 1.2 and 1.3, and one cannot establish hyperrigidity of the more subtle

examples by such direct methods. The purpose of this paper is to identify the

obstruction to hyperrigidity in general in terms of the noncommutative Choquet

boundary. We conjecture that this is the only obstruction in Section 4. While

we are unable to establish the conjecture in general, we do prove it when C∗(S)
has countable spectrum, and that leads to a variety of hyperrigidity results

with distinctly new features. We now describe two more subtle examples which

are concrete special cases of more general results that are proved in Sections 5

through 9.

Positive linear maps of matrix algebras. Building on work of Chandler

Davis [Dav57], Choi showed in [Cho74] that for a unit-preserving positive linear

map φ of unital C∗-algebras, the inequality

(1.2) f(φ(A)) ≤ φ(f(A))

holds for every function f : (a, b) → R that is operator convex in the sense

of Bendat–Sherman [BS55] and every self-adjoint operator A with spectrum in

(a, b). Note that the spectrum of φ(A) is also contained in (a, b), so that one
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can form both f(A) and f(φ(A)) by way of the functional calculus. In [Pet86],

Petz asked when equality can hold in (1.2), and showed that if f : (a, b) → R is

an operator convex function that is not of the form f(x) = ax+ b and equality

holds in (1.2), then the restriction of φ to the algebra of polynomials in A is

multiplicative.

We want to broaden Petz’ question in the following way. Fix a real-valued

continuous function f : [a, b] → R defined on a compact interval. We say that

f is rigid if for every every self-adjoint operator A in a unital C∗-algebra A
whose spectrum is contained in [a, b] and every unit preserving positive linear

map φ : A → B into another unital C∗-algebra, one has

f(φ(A)) = φ(f(A)) =⇒ φ(An) = φ(A)n, n = 1, 2, . . . .

The following result—a consequence of Theorem 9.4 below—characterizes the

rigid functions with respect to maps on matrix algebras, that is, the C∗-algebras
A = B(H) with finite-dimensional H :

Theorem 1.5: For every real-valued function f ∈ C[a, b], the following are

equivalent:

(i) For every unital positive linear map of matrix algebras φ : M → N and

every self-adjoint operator A ∈ M having spectrum in [a, b],

φ(f(A)) = f(φ(A)) =⇒ φ(An) = φ(A)n, ∀n = 1, 2, . . . .

(ii) f is either strictly convex or strictly concave.

Recall that a real function f ∈ C[a, b] is said to be strictly convex if for

any two distinct points x �= y in [a, b] and every t ∈ (0, 1),

f(t · x+ (1− t) · y) < t · f(x) + (1− t) · f(y).
f is said to be strictly concave when −f is strictly convex.

Remark 1.6 (Relation to Petz’ theorem): It follows from the characterization of

[BS55] that an operator convex function f that is not an affine function must

be real-analytic with f ′′ > 0 throughout (a, b). Since such functions are strictly

convex, Theorem 1.5 implies Petz’ result for maps on matrix algebras. Since

most continuous strictly convex functions are not operator convex, this is a

significant extension of the result of [Pet86].

It is natural to ask if Theorem 1.5 holds for unital positive linear maps of

more general unital C∗-algebras; indeed, we will show in Section 9 that the
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implication (i) =⇒ (ii) holds in that generality. While we conjecture that the

opposite implication (ii) =⇒ (i) holds as well, that has not been proved (see

Section 9 for further discussion).

Hyperrigid generators of K. We conclude with a fourth hyperrigidity re-

sult about a familiar—perhaps the most familiar—compact operator.

Theorem 1.7: Consider the Volterra integration operator V acting on the

Hilbert space H = L2[0, 1],

V f(x) =

∫ x

0

f(t) dt, f ∈ L2[0, 1].

It is well-known that V is irreducible, generating the C∗-algebra K of all com-

pact operators. This operator has the following additional properties:

(i) G = {V, V 2} is hyperrigid; and in particular, for every sequence of

unital completely positive maps φn : B(H) → B(H) for which

lim
n→∞ ‖φn(V )− V ‖ = lim

n→∞ ‖φn(V
2)− V 2‖ = 0,

one has

lim
n→∞ ‖φn(K)−K‖ = 0

for every compact operator K ∈ B(H).

(ii) The smaller generating set G0 = {V } of K is not hyperrigid.

While the hyperrigidity property (i) of {V, V 2} formally resembles the hyper-

rigidity property of {X,X2} in Theorem 1.2, the two settings are fundamentally

different because V is not a self-adjoint operator. Indeed, while Theorem 1.2 is

more or less a direct consequence of the Schwarz inequality and Stinespring’s

theorem, the proof of Theorem 1.7 will make essential use of the noncommuta-

tive Choquet boundary (see Corollary 8.3, a consequence of the more general

Theorem 8.1).

The paper is organized into three parts. Part 1 is relatively short and contains

the basic characterization hyperrigid operator systems. Using that character-

ization, we discuss two of the simplest examples of hyperrigid generators and

prove Theorems 1.2 and 1.3.

In order to deal with the more subtle aspects of hyperrigid generators it is

necessary to bring in the noncommutative Choquet boundary, and Part 2 is

devoted to those issues. We show how boundary representations are involved

in the obstruction to hyperrigidity in Corollary 4.2, and following that, we
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conjecture that this is the only obstruction in general. We are unable to prove

the conjecture in general, but we do prove it for generators of C∗-algebras
that have countable spectra (Theorem 5.1). When the generated C∗-algebra
is not unital, there is an additional obstruction associated with the “point at

infinity” and we identify that obstruction in concrete operator-theoretic terms

in Theorem 6.1. In Section 7 we introduce the noncommutative counterparts of

peak points and show how one uses them to identify boundary representations

for examples involving compact operators in Theorem 7.2.

When a set G of operators generates a commutative C∗-algebra ∼= C(X), it is

possible to formulate a “localized” version of Conjecture 4.3. Part 3is devoted

to a discussion of this kind of localization, and in Theorem 11.1 we prove an

appropriate local version of Conjecture 4.3.

We work extensively with representations π : A → B(H) of C∗-algebras A on

Hilbert spaces H throughout this paper, and we require that all representations

should be nondegenerate. Thus, H should be the closed linear span of the set

of vectors {π(a)ξ : a ∈ A, ξ ∈ H}; and if A has a unit 1 then this entails

π(1) = 1H .

Finally, a word about notation. When dealing with abstract C∗-algebrasA, it
is customary to refer to elements of A with lowercase letters a ∈ A, while when

dealing with C∗-algebras of operators A ⊆ B(H) it seems more appropriate

to refer to operators with uppercase letters A ∈ A, as we have already done

in the introduction. Of course, the two usages are inconsistent. But it seems

punctilious to insist on referring to an operator on a Hilbert space H with

a ∈ B(H), and we revert at times (in Sections 8 and 9) to more traditional

operator-theoretic notation. Hopefully, this will not cause problems for the

reader.

Remark 1.8 (Quantizing Korovkin’s theorem): When specialized appropriately,

Theorem 1.2 provides a noncommutative strengthening of a classical theorem

of approximation theory. To review that briefly, a seminal theorem of P. P. Ko-

rovkin [Kor53], [Kor60] makes the following assertion: If a sequence of positive

linear maps φ1, φ2, . . . : C[0, 1] → C[0, 1] has the property

lim
n→∞ ‖φn(fk)− fk‖ = 0, k = 0, 1, 2,

for the three functions f0(x) = 1, f1(x) = x, f2(x) = x2, then

lim
n

‖φn(g)− g‖ = 0, ∀ g ∈ C[0, 1].
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Korovkin’s theorem generated considerable activity among researchers in ap-

proximation theory, and far-reaching generalizations were discovered during the

1960s, following the realization that the fundamental principle underlying it is

that every point of the unit interval is a peak point for the 3-dimensional func-

tion system [1, x, x2] ⊆ C[0, 1]. The generalizations make essential use of the

Choquet boundary, and in one way or another, those we have seen use the fact

that the real functions in C(X) form a lattice. We will not summarize those

developments here, but refer the reader to [Bau61], [BD78], [Phe66], [Phe01],

[Šaš67] and the survey [Don82].

Theorem 1.2 strengthens Korovkin’s theorem in a nontrivial way. To see that

in concrete terms, consider the multiplication operator X on L2[0, 1],

(Xξ)(t) = t · ξ(t), t ∈ [0, 1], ξ ∈ L2[0, 1].

For every sequence of UCP maps φ1, φ2, . . . : B(L2[0, 1]) → B(L2[0, 1]) that

satisfies

(1.3) lim
n→∞ ‖φn(X)−X‖ = lim

n→∞ ‖φn(X
2)−X2‖ = 0,

Theorem 1.2 implies that φn(Y ) converges in norm to Y for every multiplication

operator Y = Mf with f ∈ C[0, 1]. Of course, if each of the given maps φn

leaves the commutative C∗-algebra A = {Mf : f ∈ C[0, 1]} invariant, then

this would follow from Korovkin’s theorem. However, we do not assume that;

indeed, the spaces φn(A) need not commute with X or with each other. If one

attempts to use the methods of classical approximation theory to prove this

operator-theoretic result, one finds that the argument breaks down precisely

because a pair of self-adjoint operators A,B acting on a Hilbert space need not

have a least upper bound or greatest lower bound, even when AB = BA.

Acknowledgments. Finally, I thank Erling Størmer for helpful comments on

a draft of this paper. This is the second of a series of papers in which applications

of the noncommutative Choquet boundary to the theory of operator spaces are

developed.

Part 1. Basic results

2. Characterization of hyperrigidity

We now prove the basic characterization of hyperrigid operator systems.
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Theorem 2.1: For every separable operator system S that generates a C∗-
algebra A, the following are equivalent:

(i) S is hyperrigid.

(ii) For every nondegenerate representation π : A → B(H) on a separable

Hilbert space and every sequence φn : A → B(H) of UCP maps,

lim
n→∞ ‖φn(s)− π(s)‖ = 0 ∀s ∈ S =⇒ lim

n→∞ ‖φn(a)− π(a)‖ = 0 ∀a ∈ A.

(iii) For every nondegenerate representation π : A → B(H) on a separable

Hilbert space, π �S has the unique extension property.

(iv) For every unital C∗-algebra B, every unital homomorphism of C∗-
algebras θ : A → B and every UCP map φ : B → B,

φ(x) = x ∀x ∈ θ(S) =⇒ φ(x) = x ∀x ∈ θ(A).

Proof. Since the implication (ii) =⇒ (iii) is trivial, we prove (i) =⇒ (ii) and

(iii) =⇒ (iv) =⇒ (i).

(i) =⇒ (ii): Let π : A → B(H) be a nondegenerate representation on a

separable Hilbert space and let φn : A → B(H) be a sequence of UCP maps

such that ‖φn(s)− π(s)‖ → 0 for all s ∈ S.

Let σ : A → B(K) be a faithful representation of A on another separable

space K. Then σ⊕ π : A → B(K ⊕H) is a faithful representation, so that each

of the linear maps ωn : (σ ⊕ π)(A) → B(K ⊕H)

ωn : σ(a) ⊕ π(a) �→ σ(a) ⊕ φn(a), a ∈ A,

is unit preserving and completely positive. By the extension theorem of [Arv69],

ωn can be extended to a UCP map ω̃n : B(K ⊕H) → B(K ⊕H). Since φn �S
converges to π �S point-norm, ω̃n converges point-norm to the identity map on

(σ ⊕ π)(S). So by hypothesis (i), ω̃n must converge point-norm to the identity

map on (σ ⊕ π)(A). We conclude that for every a ∈ A,

lim sup
n→∞

‖φn(a)− π(a)‖ ≤ lim sup
n→∞

‖σ(a)⊕ φn(a)− σ(a)⊕ π(a)‖
= lim

n→∞ ‖ω̃n(σ(a) ⊕ π(a))− σ(a) ⊕ π(a)‖ = 0,

hence φn converges point-norm to π on A.

(iii) =⇒ (iv): Let θ : A → B be a unit preserving ∗-homomorphism of C∗-
algebras, and let φ : B → B be a UCP map that satisfies φ(θ(s)) = θ(s), s ∈ S.
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We have to show that

(2.1) φ(θ(a)) = θ(a), a ∈ A.

For that, let B0 = θ(A) and, assuming that separable C∗-algebras Bk have

been defined for 0 ≤ k ≤ n that satisfy Bk ∪ φ(Bk) ⊆ Bk+1 for k < n, let Bn+1

be be the C∗-subalgebra of B generated by

Bn ∪ φ(Bn) ∪ φ2(Bn) ∪ · · · .
It is clear from its construction that the norm-closure B∞ of B0 ∪B1 ∪B2 ∪ · · ·
is a separable C∗-subalgebra of B satisfying φ(B∞) ⊆ B∞, and hence it has a

faithful representation on some separable Hilbert space H . After making the

obvious identification we may assume that B∞ ⊆ B(H).

By the extension theorem of [Arv69], there is a UCP map φ̃ :B(H)→B(H)

that restricts to φ on B∞, and in particular φ̃(θ(s)) = θ(s) for s ∈ S. Since

a ∈ A �→ θ(a) ∈ B(H) is a representation on a separable Hilbert space, hy-

pothesis (iii) implies that φ̃ must fix θ(A) elementwise. We conclude that

φ(θ(a)) = φ̃(θ(a)) = θ(a), a ∈ A, and (2.1) is proved.

(iv) =⇒ (i): Suppose that A ⊆ B(H) is faithfully represented on some Hilbert

space H , and φ1, φ2, . . . : B(H) → B(H) is a sequence of UCP maps satisfying

limn ‖φn(s)− s‖ = 0 for all s ∈ S. We have to prove

(2.2) lim
n→∞ ‖φn(a)− a‖ = 0, ∀ a ∈ A.

To that end, write B = B(H), let �∞(B) be the C∗-algebra of all bounded

sequences with components in B and let c0(B) be the ideal of all sequences in

�∞(B) that converge to zero in norm.

Consider the UCP map φ0 : �∞(B) → �∞(B) defined by

φ0(b1, b2, b3, . . . ) = (φ1(b1), φ2(b2), φ3(b3), . . . ).

This map carries the ideal c0(B) into itself, hence it promotes to a UCP map

of the quotient φ : �∞(B)/c0(B) → �∞(B)/c0(B) by way of

φ(x + c0(B)) = φ0(x) + c0(B), x ∈ �∞(B).

Now consider the natural embedding θ : A → �∞(B)/c0(B),

θ(a) = (a, a, a, . . . ) + c0(B).

By hypothesis, ‖φn(s)− s‖ → 0 as n → ∞ for s ∈ S, and therefore

φ(θ(s)) = (φ1(s), φ2(s), . . . ) + c0(B) = (s, s, . . . ) + c0(B) = θ(s).
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Hence φ restricts to the identity map on θ(S).

Applying hypothesis (iv) to the inclusions

θ(S) ⊆ θ(A) ⊆ �∞(B)/c0(B)

and the UCP map φ : �∞(B)/c0(B) → �∞(B)/c0(B), we conclude that φ must

fix every element of θ(A). Since θ(a) = (a, a, . . . ) + c0(B) and

φ(θ(a)) = (φ1(a), φ2(a), . . . ) + c0(B),

we must have (φ1(a)− a, φ2(a)− a, . . . ) ∈ c0(B), and (2.2) follows.

It is significant that hyperrigidity is preserved under passage to quotients:

Corollary 2.2: Let S be a hyperrigid separable operator system with gene-

rated C∗-algebra A, let K be an ideal in A and let a ∈ A �→ ȧ ∈ A/K be the

quotient map. Then Ṡ is a hyperrigid operator system in A/K.

Proof. An immediate consequence of property (ii) of Theorem 2.1.

3. Applications I: Two basic examples

Theorem 3.1: Let x ∈ B(H) be a self-adjoint operator with at least 3 points

in its spectrum and let A be the C∗-algebra generated by x and 1. Then

(i) G = {1, x, x2} is a hyperrigid generator for A, while

(ii) G0 = {1, x} is not a hyperrigid generator for A.

Proof. (i): By Theorem 2.1, it suffices to show that every nondegenerate repre-

sentation π : C∗(x) → B(K) has the unique extension property. To prove that,

let φ : A → B(K) be a UCP map that satisfies φ(x) = π(x) and φ(x2) = π(x2).

We have to show that φ is multiplicative on A.

For that, Stinespring’s theorem implies that there is a Hilbert space L con-

taining K and a representation σ : A → B(L) such that φ(a) = Pσ(a) �K ,

a ∈ A, where P ∈ B(L) is the projection onto K. We have

Pσ(x)(1− P )σ(x)P = Pσ(x2)P − Pσ(x)Pσ(x)P = φ(x2)P − φ(x)2P

= π(x2)P − π(x)2P = 0.

This implies that |(1 − P (σ(x)P )|2 = 0, hence (1 − P )σ(x)P = 0, i.e., σ(x)

leaves H invariant. Since A is the norm-closed algebra generated by 1 and x,
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it follows that σ(A) leaves H invariant, and consequently φ(a) = Pσ(a) �K is a

multiplicative linear map.

(ii): Choose points λ1 < λ2 < λ3 in the spectrum Σ of x. Then λ2 is a convex

combination of λ1 and λ3. For k = 1, 2, 3, let ρk be the state of A defined by

ρk(f(x)) = f(λk), f ∈ C(Σ).

Each ρk is an irreducible representation of A, and by the preceding remark, the

restriction of ρ2 to the function system S = span{1, x} is a convex combination

of ρ1 �S and ρ2 �S. Since ρ1 �= ρ3, ρ2 �S fails to have the unique extension

property, and Theorem 2.1 implies that S is not hyperrigid.

Note that the hypothesis on the cardinality of the spectrum of x was not used

in the proof of item (i) of Theorem 3.1.

Remark 3.2 (Other hyperrigid generators): Let I = [a, b] be a compact real

interval and let f : I → R be a continuous function and let A ∈ B(H) be

a self-adjoint operator with spectrum in [a, b]. One can ask: Is {1, A, f(A)}
a hyperrigid generator of C∗(A)? Theorem 3.1 answers affirmatively for the

particular function f(t) = t2; but the proof of Theorem 3.1 is tailored to this

particular function. In general, there is a stringent constraint: If the answer

to the above question is yes, then f must be either strictly convex or strictly

concave. This is a consequence of results of Section 9 (see Proposition 9.3).

Conversely, if f is strictly convex or strictly concave, then for every self-

adjoint operator A with discrete spectrum in I, {1, A, f(A)} is a hyperrigid

generator. This can be established by making use of Proposition 4.4 at the

appropriate place in the proof of Theorem 9.4 below. We believe that the

same is true without the discrete spectrum hypothesis, but that depends on the

validity of the commutative case of Conjecture 4.3 (see Remark 9.5).

We now discuss a class of highly noncommutative examples. Let u1, . . . , un

be an arbitrary set of isometries that act on some Hilbert space. The “defect op-

erator” D=u1u
∗
1+ · · ·+unu

∗
n is positive and its norm satisfies 1≤‖D‖≤n, with

many possibilities for D depending on how the uk are chosen. In this section

we exhibit a hyperrigid generator for the C∗-algebra generated by u1, . . . , un,

assuming nothing about the structure of the defect operator or relations that

may exist between the various uk.



360 WILLIAM ARVESON Isr. J. Math.

Theorem 3.3: Let u1, . . . , un be a set of isometries that generate a C∗-algebra
A and let

(3.1) G = {u1, . . . , un, u1u
∗
1 + · · ·+ unu

∗
n}.

Then G is a hyperrigid generator for A.

Proof. Let S be the operator system spanned by G ∪ G∗ and the identity.

By item (iii) of Theorem 2.1, it suffices to show that for every nondegenerate

representation π of A, π �S has the unique extension property.

To prove that, fix a representation π : A → B(H) and let v1, . . . , vn be the

isometries vk = π(uk), k = 1, . . . , n. Let φ : A → B(H) be a UCP map

satisfying φ(uk) = vk, 1 ≤ k ≤ n, and φ(u1u
∗
1+ · · ·+unu

∗
n) = v1v

∗
1 + · · ·+ vnv

∗
n.

We have to show that φ = π.

For that, we use Stinespring’s theorem to express φ in the form

φ(x) = V ∗σ(x)V, x ∈ A,

where σ is a representation of A on a Hilbert space K, V : H → K is an

isometry, and which is minimal in the sense that σ(A)V H spans K.

We claim first that σ(uk)V = V vk, 1 ≤ k ≤ n. Indeed, for k = 1, . . . , n we

have

V ∗σ(uk)
∗V V ∗σ(uk)V = φ(uk)

∗φ(uk) = u∗
kuk = 1H ,

hence V ∗σ(uk)(1− V V ∗)σ(uk)V = 0, so that σ(uk) leaves V H invariant. The

claim follows because σ(uk)V = V V ∗σ(uk)V = V φ(uk) = V vk.

Note next that since
∑

k vkv
∗
k = π(

∑
k uku

∗
k) = φ(

∑
k uku

∗
k), we have

n∑
k=1

σ(uk)V V ∗σ(uk)
∗ =

n∑
k=1

V vkv
∗
kV

∗ = V φ(

n∑
k=1

uku
∗
k)V

= V V ∗
n∑

k=1

σ(uku
∗
k)V V ∗

=

n∑
k=1

V V ∗σ(uk)σ(u
∗
k)V V ∗

and since σ(uk)V = V V ∗σ(uk)V for all k, subtracting the left side from the

right leads to
n∑

k=1

V V ∗σ(uk)(1K − V V ∗)σ(uk)
∗V V ∗ = 0,
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and hence (1K − V V ∗)σ(uk)
∗V V ∗ = 0 for all k. We conclude that V H is in-

variant under both σ(uk) and σ(uk)
∗ for all k; and since A is generated by the

uk it follows that σ(A)V H ⊆ V H . By minimality, we must have V H = K,

which implies that V is unitary and therefore φ(x) = V −1σ(x)V is a represen-

tation. Since φ agrees with π on a generating set, the desired conclusion φ = π

follows.

Since the Cuntz algebras On are generated by sets of isometries u1, . . . , un

satisfying the single condition u1u
∗
1+· · ·+unu

∗
n = 1, we can discard the identity

operator from the generating set G of (3.1) to conclude:

Corollary 3.4: The set G = {u1, . . . , un} of generators of the Cuntz algebra

On is hyperrigid.

Part 2. Role of the noncommutative Choquet boundary

4. Obstruction to hyperrigidity

An operator system is a self-adjoint linear subspace of a unital C∗-algebra A

that contains the unit of A, and the C∗-subalgebra of A generated by S is de-

noted C∗(S). Given a unital completely positive (UCP) map φ from an operator

system S to a unital C∗-algebra B, we say that φ has the unique extension

property if it has a unique UCP extension φ̃ : C∗(S) → B, and moreover this

extension is multiplicative φ̃(xy) = φ̃(x)φ̃(y), x, y ∈ C∗(S). By a boundary

representation for S we mean an irreducible representation π : C∗(S) → B(H)

such that π �S has the unique extension property. There is a more intrinsic char-

acterization of the unique extension property that we do not require here (see

Proposition 2.4 of [Arv08]). Much of the discussion to follow rests on a result

of [Arv08], which we repeat here for reference:

Theorem 4.1: Every separable operator system S ⊆ C∗(S) has sufficiently

many boundary representations in the sense that for every n ≥ 1 and every

n× n matrix (sij) with components sij ∈ S, one has

‖(sij)‖ = sup
π

‖(π(sij))‖,

the supremum on the right taken over all boundary representations π for S.

Let X be a compact metrizable space and let S ⊆ C(X) be a function system,

namely a linear subspace of C(X) that is closed under complex conjugation and
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contains the constant functions. There is no essential loss if one assumes that

S separates points of X . Let p be a point of X ; by a representing measure

for p one means a (Borel) probability measure μ on X satisfying

∫
X

f(x) dμ(x) = f(p), f ∈ S.

The set Kp of all representing measures for p is a weak∗-compact convex subset

of the dual of C(X), and it contains the point mass δp concentrated at p. If

Kp = {δp}, then p is said to belong to the Choquet boundary of X (relative to

S), sometimes written ∂S(X). It is not obvious that the Choquet boundary is

nonempty; but it is always nonempty when S separates points, and in fact its

closure is the Silov boundary—the smallest closed set K ⊆ X with the property

that every function in S achieves its maximum value on K (see Proposition 6.4

of [Phe01]). The following comments show that Theorem 4.1 generalizes this

fact to noncommutative operator systems.

For every operator system S ⊆ A = C∗(S), there is a largest (closed two-

sided) ideal K ⊆ A such that the quotient map a ∈ A �→ ȧ ∈ A/K is completely

isometric on S. The quotient C∗-algebra A/K is called the C∗-envelope of S.

The C∗-envelope of S depends only on the internal structure of S and not on

the embedding of S in its generated C∗-algebra. This ideal was introduced

and shown to exist for a variety of examples in [Arv69], where it was called

the Silov boundary ideal since it is the noncommutative counterpart of the

Silov boundary of a function system. The existence of the Silov boundary

ideal in general was left open, and the issue was later settled affirmatively

by Hamana [Ham79a], [Ham79b] as a consequence of his work on injective

envelopes. More recently, Dritschel and McCullough [DM05] gave a second

proof of the existence of this ideal in general that is independent of the theory

of injective envelopes. During the past decade or so, the terminology for the

ideal K has been contracted to Silov ideal for S. On the other hand, in the

noncommutative context it seems more appropriate to refer to K simply as the

boundary ideal for S, as we shall do throughout this paper.

It was shown in Theorem 2.2.3 of [Arv69] that for every operator system that

has sufficiently many boundary representations (in the sense of Theorem 4.1),

the boundary ideal is the intersection of the kernels of all boundary representa-

tions. Note that the existence of sufficiently many boundary representations in

general was left open in [Arv69] and [Arv72], and was not addressed in Hamana’s
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work on injectivity. Since Theorem 4.1 establishes that property for separable

operator systems, it provides a third proof of the existence of the boundary

ideal in such cases. Of course, this is the noncommutative counterpart of the

fact that the closure of the Choquet boundary of a function system is the Silov

boundary.

We deduce the following necessary conditions for hyperrigidity:

Corollary 4.2: Let S be a separable operator system generating a C∗-algebra
A. If S is hyperrigid, then every irreducible representation of A is a boundary

representation for S. In particular, the boundary ideal of a hyperrigid operator

system must be {0}.
Proof. The first assertion is an immediate consequence of condition (ii) of The-

orem 2.1. The second follows from it, together with Theorem 4.1, which implies

that the boundary ideal is the intersection of the kernels of all boundary repre-

sentations for S.

We now conjecture that the obstructions described in Corollary 4.2 are the

only obstructions to hyperrigidity. Indeed, we will prove that conjecture for

classes of examples in Section 5:

Conjecture 4.3: If every irreducible representation of A is a boundary rep-

resentation for a separable operator system S ⊆ A, then S is hyperrigid.

It is known that a direct sum of UCP maps with the unique extension property

has the unique extension property (see [DM05]). For completeness, we conclude

the section by proving that result in the form we require.

Proposition 4.4: Let S ⊆ A = C∗(S) be an operator system, and for each i

in an index set I, let πi : A → B(Hi) be a representation such that πi �S has

the unique extension property. Then the direct sum of UCP maps

⊕
i∈I

πi �S: S → B
(⊕

i∈I

Hi

)

has the unique extension property.

Proof. Let φ : A → B(⊕i∈I Hi) be an extension of π to a UCP map from A to

B(⊕i∈I Hi), and for each i ∈ I, let φi : A → B(Hi) be the UCP map

φi(a) = Piφ(a) �Hi , a ∈ A,
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where Pi is the projection on Hi. Since φi restricts to πi on S, the unique exten-

sion property of πi �S implies that φi(a) = πi(a) for all a ∈ A, or equivalently,

Piφ(a)Pi = π(a)Pi. By the Schwarz inequality applied to φ,

Piφ(a)
∗(1− Pi)φ(a)Pi = Piφ(a)

∗φ(a)Pi − Piφ(a)
∗Piφ(a)Pi

≤ Piφ(a
∗a)Pi − Piφ(a)

∗Piφ(a)Pi

= π(a∗a)Pi − π(a)∗π(a)Pi = 0.

Hence |(1 − Pi)φ(a)Pi|2 = 0, and it follows that Pi commutes with the self-

adjoint family of operators φ(A). So for every a ∈ A we have

φ(a) =
∑
i∈I

φ(a)Pi =
∑
i∈I

Piφ(a)Pi =
∑
i∈I

π(a)Pi = π(a)

as asserted.

5. Countable spectrum

Let A be a separable C∗-algebra. By the spectrum of A we mean the set Â

of unitary equivalence classes of irreducible representations of A. In general, Â

carries a natural Borel structure that separates points of Â, and it is well-known

that A is type I iff the Borel structure of Â is countably separated. In this section

we prove Conjecture 4.3 for operator systems S whose generated C∗-algebra has
countable spectrum. This class of C∗-algebras includes those generated by sets

of compact operators (and the identity) as well as many others. It is closed under

most of the natural ways of forming new C∗-algebras from given ones (countable

direct sums, quotients, ideals, extensions, crossed products with compact Lie

groups), but of course it fails to contain most commutative C∗-algebras.

Theorem 5.1: Let S be a separable operator system whose generated C∗-
algebra A has countable spectrum, such that every irreducible representation

of A is a boundary representation for S. Then S is hyperrigid.

Proof. By item (iii) of Theorem 2.1, it suffices to show that for every represen-

tation π : A → B(H) of A on a separable Hilbert space, the UCP map π �S has

the unique extension property. Since the spectrum of A is countable, A is a type

I C∗-algebra, hence π decomposes uniquely into a direct integral of mutually

disjoint type I factor representations. Using countability of Â again, the direct

integral must in fact be a countable direct sum. Hence π can be decomposed
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into a direct sum of subrepresentations πn : A → B(Hn)

(5.1) H = H1 ⊕H2 ⊕ · · · , π = π1 ⊕ π2 ⊕ · · ·

with the property that each πn is unitarily equivalent to a finite or countable

direct sum of copies of a single irreducible representation σn : A → B(Kn).

By hypothesis, each UCP map σn �S has the unique extension property.

Hence the above decomposition expresses π �S as a (double) direct sum of UCP

maps with the unique extension property. By Proposition 4.4, it follows that

π �S has the unique extension property.

6. Generators of nonunital C∗-algebras

In this section we discuss sets G of operators that generate a nonunital C∗-
algebra A—for example, sets of compact operators on an infinite-dimensional

Hilbert space. One can adjoin the identity operator to obtain a unital C∗-
algebra Ã = A+C · 1, at the cost of introducing an additional one-dimensional

irreducible representation π∞ : Ã → C that represents “evaluation at ∞”

(6.1) π∞(a+ λ · 1) = λ, a ∈ A, λ ∈ C.

It is a fact that π∞ may or may not be a boundary representation for the

operator system S̃ spanned by G ∪ G∗ ∪ {1}; and when it is not a boundary

representation,G cannot be hyperrigid. The purpose of this section is to identify

this obstruction to hyperrigidity in concrete operator-theoretic terms. We will

show that π∞ is a boundary representation for S̃ iff the original (nonunital)

space S spanned by G ∪G∗ “almost contains” strictly positive operators.

A self-adjoint operator x ∈ A is said to be almost dominated by S if there

is a sequence of self-adjoint operators sn ∈ S such that

sn +
1

n
· 1 ≥ x, n = 1, 2, . . . .

A more familiar notion is strict positivity: A positive operator p ∈ A is called

strictly positive if for every positive linear functional φ ∈ A′,

φ(p) = 0 =⇒ φ = 0.

It is well-known that separable C∗-algebras contain many strictly positive op-

erators; for example, if e1 ≤ e2 ≤ · · · is a countable approximate unit for A,
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then for every sequence of positive numbers c1, c2, . . . with finite sum,

p = c1 · e1 + c2 · e2 + · · ·

is a strictly positive operator in A.

Theorem 6.1: Let S be a self-adjoint operator space that generates a nonunital

C∗-algebra A, let Ã = A + C · 1, S̃ = S + C · 1, and let π∞ : Ã → C be the

representation at ∞. The following are equivalent.

(i) π∞ is a boundary representation for S̃.

(ii) A contains a strictly positive operator that is almost dominated by S.

(iii) Every self-adjoint operator x ∈ A is almost dominated by S.

Our proof of Theorem 6.1 requires an operator-algebraic variation of a classic

minimax principle—a consequence of Krein’s extension theorem for positive lin-

ear functionals. While the result is known in one form or another to specialists,

we lack a specific reference and include a proof for completeness. Let S be an

operator system and let B be the (unital) C∗-algebra generated by S. A state

of S is a positive linear functional φ on S such that φ(1) = 1. Krein’s extension

theorem implies that every state of S can be extended to a state of B, and we

write Eφ for the weak∗-compact convex set of all extensions of φ to a state of

B.

Proposition 6.2: Let S be an operator system that generates a C∗-algebra
B. For every state φ of S and every self-adjoint operator x ∈ B,

sup{φ(s) : s = s∗ ∈ S, s ≤ x} = min{ρ(x) : ρ ∈ Eφ},
inf{φ(s) : s = s∗ ∈ S, s ≥ x} = max{ρ(x) : ρ ∈ Eφ}.

Proof of Proposition 6.2. We prove the first formula; the second one follows

from it by replacing x with −x. If ρ ∈ Eφ and s = s∗ ≤ x, then

φ(s) = ρ(s) ≤ ρ(x)

and one obtains ≤ after taking the sup over s and the inf over ρ.

For the inequality ≥, let L be the left hand side. We claim that there is a

ρ ∈ Eφ with L = ρ(x). For the proof, we may assume that x /∈ S, and consider

the linear functional defined on the operator system S + C · x by

φ̂(s+ λx) = φ(s) + λL, s ∈ S, λ ∈ C.
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We claim that φ̂ is a state of S + C · x. Since φ̂(1) = 1, after rescaling, this

reduces to checking s+ x ≥ 0 =⇒ s+L ≥ 0 and s− x ≥ 0 =⇒ φ(s)−L ≥ 0,

where in both cases s is a self-adjoint element of S.

If s + x ≥ 0, then x ≥ −s so that −φ(s) = φ(−s) ≤ L, hence φ(s) + L ≥ 0.

If s − x ≥ 0, then for every t = t∗ ∈ S satisfying t ≤ x ≤ s we have t ≤ s,

hence φ(t) ≤ φ(s) and therefore L ≤ φ(s) by the arbitrariness of t. The desired

inequality φ(s) − L ≥ 0 follows.

By Krein’s extension theorem, φ̂ can be extended to a state ρ of B, and such

an extension satisfies ρ ∈ Eφ and L = ρ(x).

Proof of Theorem 6.1. Since A must contain strictly positive elements, the im-

plication (iii) =⇒ (ii) is trivial. We prove (i) =⇒ (iii) and (ii) =⇒ (i).

(i) =⇒ (iii): Let x be a self-adjoint element of A. Applying the second

formula of Proposition 6.2 to the operator system S̃ and its state φ = π∞ �S̃
and noting that Eφ = {π∞} by hypothesis (i), we find that

inf{λ ∈ R : ∃s = s∗ ∈ S, s+ λ · 1 ≥ x} = π∞(x) = 0.

It follows that there is a sequence sn = s∗n ∈ S such that sn + 1
n · 1 ≥ x, hence

x is almost dominated by S.

(ii) =⇒ (i): Assuming (ii), let ρ be a state of Ã that satisfies ρ �S̃= π∞ �S̃ . We

have to show that ρ = π∞. To that end, choose a strictly positive element p ∈ A

that is almost dominated by S, and consider the positive linear functional σ ∈ A′

defined by σ = ρ �A. By the hypothesis on p there is a sequence sn = s∗n ∈ S

such that sn + 1
n · 1 ≥ p for n = 1, 2, . . . . Applying ρ to this inequality and

using ρ(sn) = π∞(sn) = 0, we conclude that

1

n
≥ σ(p) ≥ 0, n = 1, 2, . . . ,

hence σ(p) = 0. It follows that σ = 0 by strict positivity of p, which implies

the desired conclusion ρ = π∞.

The following sufficient condition is easy to check for many examples.

Corollary 6.3: Let S ⊆ A be as in Theorem 6.1. If S contains a strictly

positive operator of A, then π∞ : Ã → C is a boundary representation for S̃.

Proof. If S itself contains a strictly positive operator p, then condition (ii) of

Theorem 6.1 is satisfied.
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7. Peaking representations

Given an exact sequence of C∗-algebras

0 −→ K −→ A −→ B −→ 0

in which a ∈ A �→ ȧ ∈ A/K = B is the natural quotient map, recall that every

nondegenerate representation

π : A → B(H)

of A decomposes uniquely into a central direct sum of representations

π = πK ⊕ πB

where πK is the unique extension to A of a nondegenerate representation of the

ideal K, and where πB is a nondegenerate representation of A that annihilates

K. When π = πK we say that π lives on K. In an obvious sense, the spectrum

of A decomposes into a disjoint union

(7.1) Â = K̂ ∪ B̂.

Now let S ⊆ B(H) be a concrete operator system that generates a C∗-algebra
A. In general, the setK of all compact operators in A is a closed two-sided ideal.

In this section we address the problem of identifying the points of K̂ that corre-

spond to boundary representations for S in cases where K �= {0}, and we show

how one can identify the boundary representations of K̂ as noncommutative

counterparts of peak points of function systems.

Definition 7.1: Let S be a separable operator system that generates a C∗-algebra
A. An irreducible representation π : A → B(H) is said to be peaking for S if

there is an n ≥ 1 and an n× n matrix (sij) over S such that

(7.2) ‖(π(sij))‖ > ‖(σ(sij))‖
for every irreducible representation σ inequivalent to π, written σ � π. π is

said to be strongly peaking if there is an n ≥ 1 and an n × n matrix (sij)

over S such that

(7.3) ‖(π(sij))‖ > sup
σ�π

‖(σ(xij))‖.

An n × n matrix (sij) satisfying (7.2) (resp. (7.3)) is called a peaking op-

erator (resp. strong peaking operator) for π. Strongly peaking irreducible

representations correspond to isolated points of Â, and they arise naturally
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when compact operators are present—such as in the setting of Theorem 7.2

below. We shall have nothing more to say about peaking representations that

are not strongly peaking in this paper.

The following characterization of boundary representations generalizes the

Boundary Theorem of [Arv72], and provides the basis for more concrete results

on hyperrigid sets of compact operators such as Corollary 7.3 and Theorem 8.1.

Theorem 7.2: Let S ⊆ B(H) be a separable concrete operator system and let

A be the C∗-algebra generated by S. LetK be the ideal of all compact operators

in A, assume that K �= {0}, and let K̂ be the set of unitary equivalence classes

of irreducible representations of A that live on K.

Then K̂ contains boundary representations for S iff the quotient map

x ∈ A �→ ẋ ∈ A/K

is not completely isometric on S. Assuming that is the case, then among the ir-

reducible representations of K̂, the boundary representations for S are precisely

the strongly peaking ones.

Proof. If K̂ contains no boundary representations, then because of the di-

chotomy (7.1), every boundary representation must annihilate K, and conse-

quently it factors through the quotient map a ∈ A �→ ȧ ∈ A/K. By Theorem

4.1, there are sufficiently many boundary representations πi, i ∈ I, for S so that

‖(ṡij)‖ ≤ ‖(sij)‖ = sup
i∈I

‖(πi(sij))‖ ≤ ‖(ṡij)‖

for every n × n matrix (sij) over S and every n ≥ 1. Hence the quotient map

is completely isometric on S. Conversely, if the quotient map is completely

isometric on S, then we claim that no π ∈ K̂ can be a boundary representation.

Indeed, for every irreducible representation π : A → B(Hπ) that lives in K, the

hypothesis implies that the map

ṡ ∈ Ṡ ⊆ A/K �→ π(s)

is completely positive, and hence can be extended to a completely positive linear

map φ : A/K → B(Hπ). The map a ∈ A �→ φ(ȧ) is therefore a completely

positive linear map that restricts to π on S, and which annihilates K. This

map differs from π because π lives in K, hence π does not have the unique

extension property.
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Turning now to the proof of the last sentence, enumerate the distinct elements

of K̂ as {π1, π2, . . . }, and view each πk as an irreducible subrepresentation

of the identity representation of A, so that πk(a) = a �Hk
, a ∈ A, where

H1, H2, . . . ⊆ H are mutually orthogonal reducing subspaces for A.

Assuming first that π1, say, is a boundary representation for S, we claim that

π1 is strongly peaking for S. Indeed, if π1 were not strongly peaking, then for

every n ≥ 1 and every n× n matrix (sij) over S we would have

‖(π1(sij)‖ ≤ sup
σ

max(‖(σ(sij))‖, ‖(π2(sij))‖, ‖(π3(sij))‖, . . . ),

where σ ranges over all irreducible representations of A that annihilate K.

Let ρ : A/K → B(L) be a faithful representation of A/K and consider the

representation ρ̃ of A defined by

ρ̃(a) = ρ(ȧ)⊕ π2(a)⊕ π3(a)⊕ · · · .
The preceding inequalities imply that the map

ρ̃(s) �→ π1(s), s ∈ S,

is completely contractive. Since it is also unit-preserving, it must be completely

positive, and hence by the extension theorem of [Arv69] there is a UCP map

φ : ρ̃(A) → B(Hπ1) such that

φ(ρ̃(s)) = π1(s), s ∈ S.

Since the UCP map φ◦ ρ̃ : A → B(Hπ1) extends π �S and π1 is assumed to be a

boundary representation for S, it follows that φ◦ ρ̃ = π on A and, in particular,

φ(ρ̃(k)) = π1(k), k ∈ K.

Noting that for k ∈ K,

ρ̃(k) = 0⊕ π2(k)⊕ π3(k)⊕ · · · ,
it follows that the map π2(k) ⊕ π3(k) ⊕ · · · �→ π1(k) is completely contractive,

or equivalently, that the map

k �H2⊕H3⊕··· �→ π1(k), k ∈ K,

defines an irreducible representation of the C∗-algebra K0 = K �H2⊕H3⊕···.
Since K0 is a C∗-algebra of compact operators, π1 must be unitarily equivalent

to one of the irreducible subrepresentations of the identity representation of K0,

namely π2, π3, . . . , say π1 ∼ πr, for some r ≥ 2. It follows that π1 is equivalent
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to πr, and we have arrived at a contradiction. Hence π1 must have been strongly

peaking for S.

Conversely, assume that one of the elements of K̂, say π1, is strongly peaking.

Let {σi : i ∈ I} be a complete set of mutually inequivalent boundary represen-

tations for S. We claim that π1 is equivalent to some σi, and is therefore a

boundary representation. Indeed, if that were not the case, then by definition

of strong peaking representation (7.3), there would be an n ≥ 1 and an n × n

matrix (sij) over S such that

(7.4) ‖(π1(sij))‖ > sup
i∈I

‖(σi(sij))‖.

On the other hand, since the list {σi : i ∈ I} contains all boundary repre-

sentations up to equivalence, Theorem 4.1 implies that the right side of (7.4)

is ‖(sij)‖. We conclude that ‖(π1(sij))‖ > ‖(sij)‖, and hence the completely

bounded norm of π1 �S is > 1. But representations are completely contractive,

hence the assumption that π1 � σi for all i ∈ I was false.

The following result provides concrete criteria for checking hyperrigidity for

generators of C∗-algebras of compact operators. See Section 8 for specific ex-

amples of how one makes use of it.

Corollary 7.3: Let G ⊆ B(H) be a finite or countably infinite set of compact

operators on an infinite-dimensional Hilbert space, let S be the linear span of

G ∪G∗ and let A be the C∗-algebra generated by G. Then G is hyperrigid iff:

(a) Every irreducible subrepresentation of the identity representation of A

is strongly peaking for the operator system S + C · 1, and
(b) S almost dominates some strictly positive operator in A.

Proof. Let Ã = A + C · 1 be the unitalization of A and let S̃ be the oper-

ator system spanned by G ∪ G∗ and the identity operator. The irreducible

representations of Ã are the irreducible subrepresentations π1, π2, . . . of the

identity representation of Ã, together with the one-dimensional representation

π∞(a + λ · 1) = λ, a ∈ A, λ ∈ C. By Theorem 7.2, (a) is equivalent to the

assertion that every irreducible subrepresentation of the identity representation

is a boundary representation for S̃, and by Theorem 6.1, (b) is equivalent to

the assertion that π∞ is a boundary representation for S̃. Since the spectrum

of Ã is countable, Corollary 4.2 and Theorem 5.1 show that these assertions are

equivalent to the hyperrigidity of G.
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8. Applications II: Volterra type operators

In this section we identify a broad class of irreducible compact operators that

includes the Volterra integration operator on L2[0, 1], we show that for such op-

erators V , G = {V, V 2} is a hyperrigid generator for the C∗-algebra of compact

operators, but that the smaller generator G0 = {V } is not hyperrigid.

By standard spectral theory, every self-adjoint operator B decomposes

uniquely into a difference B = B+ − B−, where B± ≥ 0 and B+B− = 0.

A self-adjoint operator B ∈ B(H) is said to be essential if its positive and neg-

ative parts B+ and B− both have infinite rank. A straightforward argument

shows that if B is essential and F is a self-adjoint finite rank operator, then

B + F is also essential.

Theorem 8.1: Let V ∈ B(H) be an irreducible compact operator with carte-

sian decomposition V = A+ iB, where A is a finite rank positive operator and

B is essential with kerB = {0}. Then:
(i) G = {V, V 2} is a hyperrigid generator for the C∗-algebra K of compact

operators. In particular, for every sequence of unital completely positive

maps φn : B(H) → B(H) that satisfies

lim
n→∞ ‖φn(V )− V ‖ = lim

n→∞ ‖φn(V
2)− V 2‖ = 0

one has

lim
n→∞ ‖φn(K)−K‖ = 0

for every compact operator K.

(ii) The subset G0 = {V } is not a hyperrigid generator.

Proof. Note first that V must generate the full C∗-algebra K of compact opera-

tors, since K contains no proper irreducible C∗-subalgebras. Let S be the linear

span of V, V ∗, V 2, V 2∗ and let S̃ = S + C · 1. Then S̃ is an operator system

generating the C∗-algebra K + C · 1, whose irreducible representations are π∞
and, up to equivalence, the identity representation.

(i): The cartesian decomposition of V 2 = (A+ iB)(A+ iB) is

V 2 = (A2 −B2) + i(AB +BA).

Since A is a positive finite rank operator, we can find a c > 0 so that A2 ≤ c ·A,
hence

−c · A+ (A2 −B2) ≤ −B2 < 0
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is a strictly negative operator in S. Corollary 6.3 implies that π∞ is a boundary

representation for S̃. The other irreducible representation of C∗(S̃) is equivalent
to the identity representation, and obviously V is itself a peaking operator

for the identity representation restricted to S. Theorem 7.2 implies that the

identity representation is a boundary representation for S̃, so by Corollary 7.3,

G = {V, V 2} is a hyperrigid generator for K.

(ii): Consider the operator space S0 = span{A,B} and let Q be the projection

on AH⊥. Since Q is of finite codimension, QBQ is also essential, and using the

spectral theorem we can write

QBQ = C+ − C−

where C± ≥ 0 and C+C− = 0, both nonzero. Choose vectors ξ± ∈ C±H such

that

〈C+ξ+, ξ+〉 = 〈C−ξ−, ξ−〉 > 0,

and let ρ = ωξ+ + ωξ− ; ρ is a nonzero positive normal functional that satisfies

ρ(B) = ρ(QBQ) = 0 and ρ(A) = 0 because ρ lives in AH⊥. Hence ρ(S0) = {0},
and it follows after normalization that ρ is a normal state other than π∞ that

agrees with π∞ on the span of {1, V, V ∗}. Therefore π∞ is not a boundary

representation, so by Corollary 4.2, {V } is not a hyperrigid generator of K.

Now let V be the standard Volterra operator acting on L2[0, 1],

(8.1) V f(x) =

∫ x

0

f(t) dt, f ∈ L2[0, 1].

Lemma 8.2: The real part of V is 1
2E, where E is the projection on the one-

dimensional space of constant functions. The imaginary part of V is unitarily

equivalent to the following diagonal operator D on �2(Z):

(8.2) (Du)(n) =
−1

(2n+ 1)π
u(n), n ∈ Z, u ∈ �2(Z).

In particular, V belongs to the Schatten class Lp iff p > 1.

Proof. This result is surely known, and we merely sketch the argument. The

adjoint of V is the operator

V ∗f(x) =
∫ 1

x

f(t) dt.
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It follows that V +V ∗ is the projection on the space of constants, and moreover

V ∗ = E − V , so that i�V is the skew adjoint compact operator

A =
1

2
(V − V ∗) = V − 1

2
E.

To solve the eigenvalue problem for A one sets Af = λf and differentiates (in

the sense of distributions) to obtain f = λf ′. There are no nonzero solutions

f when λ = 0, and for λ �= 0 we must have f(x) = C · eωx for some imaginary

ω ∈ C. Substitution of the latter expression for f in the equation Af = λf

leads to a solution iff ω = (2n+1)πi for some n ∈ Z, and the possible values of

λ are

λn =
1

ωn
=

1

(2n+ 1)πi
, n ∈ Z,

with corresponding eigenfunctions fn(x) = e(2n+1)πix, n ∈ Z. In particular, the

asserted form (8.2) for the imaginary part of V follows.

We conclude:

Corollary 8.3: The Volterra operator V of (8.1) satisfies the hypotheses of

Theorem 8.1 above, and therefore its conclusion as well.

9. Applications III: Positive maps on matrix algebras

Let f : [a, b] → R be a continuous function defined on a compact real interval.

Notice that if φ : A → B is a unit-preserving positive linear map of unital

C∗-algebras and A is a self-adjoint operator in A with spectrum in [a, b], then

φ(A) is an operator in B with similar properties. We will say that f is rigid

if for every UCP map of unital C∗-algebras φ : A → B and every self-adjoint

operator A ∈ A with σ(A) ⊆ [a, b], one has

(9.1) φ(f(A)) = f(φ(A)) =⇒ φ(An) = φ(A)n, ∀n = 1, 2, . . . .

The purpose of this section is to identify rigid functions in the following sense.

We show that rigid functions must be either strictly convex or strictly concave

in Proposition 9.3. In this commutative context, Conjecture 4.3 would imply

the converse, namely that every strictly convex function is rigid. While we are

unable to prove that assertion, we do prove it for operators A ∈ B(H) and maps

φ : B(H) → B(K) when dimH < ∞ in Theorem 9.4.

Fix a real-valued function f ∈ C[a, b] and let u ∈ C[a, b] be the coordinate

function u(x) = x, x ∈ [a, b]. In order to determine whether f is rigid, we must
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first identify the Choquet boundary of the function system generated by f and

the coordinate function u(x) = x, x ∈ [a, b].

Proposition 9.1: Let S ⊆ C[a, b] be the function system spanned by the three

functions f, u,1 and let

Γ = {(x, f(x) : x ∈ [a, b]} ⊆ R
2

be the graph of f and let convΓ ⊆ R2 be its (necessarily compact) convex hull.

The Choquet boundary of S is the set of points x ∈ [a, b] such that (x, f(x)) is

an extreme point of convΓ.

Proof. The proof, an exercise in elementary convexity theory, is a consequence

of the following three observations. First, the state space of S is naturally

identified with the space of all probability measures on the compact convex

set K = convΓ. Second, the extreme points of K are the points k ∈ K for

which the point mass δk is the unique probability measure on K having k as its

barycenter; and such points must belong to Γ. Third, the Choquet boundary

of S is identified with the points of Γ that have the extremal property of the

preceding sentence.

Proposition 9.1 identifies the Choquet boundary ∂S [a, b] of the function sys-

tem S ⊆ C[a, b] spanned by f, u,1. If one combines that with the following

result, one identifies the functions f for which ∂S [a, b] = [a, b] as precisely those

which are either strictly convex or strictly concave.

Proposition 9.2: For every continuous function f : [a, b] → R, the following

are equivalent:

(i) Every point of the graph Γ = {(x, f(x)) : x ∈ [a, b]} of f is an extreme

point of the convex hull of Γ.

(ii) f is either strictly convex or strictly concave.

Proof. (i) =⇒ (ii): Assuming that (i) holds, we claim first that if x1, . . . , xn are

points of I = [a, b] and t1, . . . , tn are positive numbers with sum 1, then

(9.2) f(t1x1 + · · ·+ tnxn) = t1f(x1) + · · ·+ tnf(xn) =⇒ x1 = · · · = xn.

Indeed, the left side of the implication implies that for x0 = t1x1 + · · ·+ tnxn,

(x0, f(x0)) = t1 · (x1, f(x1)) + · · ·+ tn · (xn, f(xn)),
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which by (i) implies x1 = · · · = xn = x0. Next, we claim that for any two pairs

of distinct points x �= y, u �= v in I and 0 < s, t < 1, the two inequalities

f(sx+ (1− s)y) < sf(x) + (1− s)f(y),

f(tu+ (1 − t)v) > tf(u) + (1− t)f(v)

cannot both hold. For if they do, then the function F : [0, 1] → R

F (λ) =f(λ(sx+ (1− s)y)) + (1 − λ)(tu + (1− t)v))

− λ(sf(x) + (1− s)f(y))− (1− λ)(tf(u) + (1 − t)f(v))

is continuous, positive at λ = 0 and negative at λ = 1, so by the intermediate

value theorem, there is a λ ∈ (0, 1) for which F (λ) = 0, which contradicts (9.2)

for x1 = x, x2 = y, x3 = u, x4 = v. Hence one or the other inequalities must be

satisfied throughout, so that f is either strictly convex or strictly concave. The

proof of (ii) =⇒ (i) is straightforward.

Proposition 9.3: A rigid function f ∈ C[a, b] is either strictly convex or

strictly concave.

Proof of Proposition 9.3. We actually prove a somewhat stronger version of

Proposition 9.3 in its contrapositive formulation: If f is neither strictly con-

vex nor strictly concave, then there is a finite-dimensional Hilbert space H, a

self-adjoint operator A ∈ B(H) with spectrum in [a, b], and a unital completely

positive map φ : B(H) → B(H) such that φ(A) = A, φ(f(A)) = f(φ(A)), but φ

is not multiplicative on the algebra of polynomials in A. In particular, f is not

rigid.

Indeed, let f : [a, b] → R be a continuous function that is neither strictly

convex nor strictly concave. By Proposition 9.2, the graph Γ of f must contain

some point (x0, f(x0)) that is not an extreme point of its convex hull, and hence

can be written as a nontrivial convex combination of two distinct points of the

convex hull of Γ. Since Γ ⊆ R2, every point of the convex hull of Γ is a convex

combination of at most 3 points of Γ, and we conclude that (x0, f(x0)) can be

written as a convex combination of at most 6 points of Γ, (xi, f(xi)), xi �= x0,

i = 1, . . . , n ≤ 6. By discarding some of the points x1, . . . , xn and reducing

n if necessary, we can assume that the n + 1 points x0, x1, . . . , xn ∈ [a, b] are

distinct. By the choice of x1, . . . , xn, there are numbers t1, . . . , tn ∈ [0, 1] such
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that

(9.3) x0 =

n∑
k=1

tkxk and f(x0) =

n∑
k=1

tk · f(xk),

and consider the positive linear map φ : Cn+1 → C
n+1 defined by

φ(λ0, λ1, . . . , λn) = (t1λ1 + · · ·+ tnλn, λ1, . . . , λn), λk ∈ C.

Viewing Cn+1 as the algebra of all diagonal matrices in Mn+1 = Mn+1(C), φ

becomes a unit-preserving positive (and hence completely positive) linear map.

We may extend φ to a UCP map φ̃ : Mn+1 → Mn+1 in many ways, for example,

by composing it with the trace-preserving conditional expectation of Mn+1 onto

the diaganal subalgebra. In order to conserve notation, we continue to write

φ for an extension of the original map on diagonal matrices to a completely

positive map of Mn+1 into itself.

Consider the diagonal operator

A = (x0, x1, . . . , xn).

The conditions (9.3) on t1, . . . , tn imply the two operator formulas

φ(A) = A, φ(f(A)) = f(A).

Finally, since xi �= xj for i �= j, the algebra generated by A is all diagonal se-

quences in Cn+1, and obviously φ does not fix all diagonal sequences. Together,

these properties imply that the restriction of φ to the algebra of polynomials in

A is not multiplicative.

Theorem 9.4: Let [a, b] be a compact real interval and let f ∈ C[a, b] be real

valued. If f is strictly convex, then for every pair H , K of finite-dimensional

Hilbert spaces, every self-adjoint operator A ∈ B(H) having spectrum in [a, b],

and every UCP map φ : B(H) → B(K) satisfying

(9.4) φ(f(A)) = f(φ(A)),

the restriction of φ to the algebra of polynomials in A is multiplicative.

Conversely, if neither f nor −f is strictly convex, then there is a Hilbert space

H of dimension at most 7, a self-adjoint operator A ∈ B(H) with spectrum in

[a, b], and a UCP map φ : B(H) → B(H) such that

φ(A) = A, φ(f(A)) = f(A),

and which is not multiplicative on the algebra of polynomials in A.
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Proof. To prove the first paragraph, let φ : B(H) → B(K) be a UCP map,

let A = A∗ ∈ B(H) have its spectrum in I and satisfy (9.2), and assume that

f is strictly convex. Let B = φ(A) ∈ B(K). Consider the representations

π : C[a, b] → B(H) and σ : C[a, b] → B(K) defined by

π(g) = g(A), σ(g) = g(B), g ∈ C(X).

Let u(x) = x, x ∈ X , be the coordinate function and let S be the 2- or 3-

dimensional function system spanned by u, f and the constants. We have ar-

ranged that φ(π(u)) = σ(u), and φ(π(f)) = σ(f), hence

(9.5) φ ◦ π �S= σ �S .

Since K is finite-dimensional, σ is a finite direct sum of (one-dimensional)

irreducible representations of C[a, b], and such representations correspond to

points of [a, b]. Since f is assumed to be strictly convex, Proposition 9.2 implies

that every point of the graph Γ of f is an extreme point of the convex hull of

Γ; and Proposition 9.1 implies that every point of [a, b] belongs to the Choquet

boundary of [a, b] relative to S. Hence σ is a direct sum of one dimensional

representations with the unique extension property. By Proposition 4.4, σ itself

has the unique extension property; and since φ◦π restricts to σ on S, it follows

that φ ◦ π = σ. Hence the restriction of φ to π(C[a, b])) is multiplicative.

The assertion of the second paragraph follows from the proof of Proposition

9.2. Indeed, the construction in that proof exhibits a Hilbert space H of dimen-

sion at most 7, an operator A = A∗ ∈ B(H) and a unital completely positive

map φ : B(H) → B(H) with the stated properties.

Remark 9.5 (Infinite-dimensional generalizations): Naturally, one would hope

that the second paragraph of Theorem 9.4 remains true if one drops the hy-

pothesis of finite dimensionality of H ; but that has not been proved. Note

that it would be enough to prove Conjecture 4.3 for commutative C∗-algebras.
In turn, that would provide a generalization of Theorem 3.1 to cases in which

G = {1, x, x2} is replaced with G = {1, x, f(x)} for any continuous strictly

convex function f and any self-adjoint operator x.

Part 3. A local version of Conjecture 4.3

It is conceivable that Conjecture 4.3 might fail for reasons yet unknown; and in

that event one needs to know what can be proved. In the remaining sections
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we take up this issue in the commutative case of function systems S ⊆ C(X),

where X is a compact metric space, and we show that function systems satisfy

a “localized” version of Conjecture 4.3.

More precisely, let S ⊆ C(X) be a linear space of continuous functions that

separates points, contains the constants, is closed under complex conjugation,

and assume that every point p ∈ X has a unique representing measure in the

sense that the only probability measure μ on X satisfying

f(p) =

∫
X

f dμ, f ∈ S

is the point mass μ = δp. By Theorem 2.1, to prove Conjecture 4.3 it is enough

to prove the following assertion: For every separably-acting representation

π : C(X) → B(H) and every positive linear map φ : C(X) → B(H) such

that φ �S= π �S , one has

(9.6) φ(f) = π(f), f ∈ C(X).

Let E be the spectral measure of π—namely the projection valued measure on

the σ-algebra of Borel subsets of X that satisfies

π(f) =

∫
X

f(x) dE(x), f ∈ C(X).

We will show that (9.6) is true locally in the following sense: For every positive

linear map φ : C(X) → B(H) that restricts to π on S and for every point p ∈ X ,

(9.7) lim
ε→0

‖(φ(f)− π(f))E(Bε(p))‖ = 0, f ∈ C(X),

where Bε(p) = {x ∈ X : d(x, p) ≤ ε} is the ball of radius ε > 0 about p. Indeed,

the limit (9.7) is zero uniformly in p (see Theorem 11.1).

10. The local C∗-algebra of a representation of C(X)

Throughout this section, X will denote a compact metric space with metric

d : X × X → [0,∞). Every representation π : C(X) → B(H) gives rise to a

spectral measure F → E(F ) on the Borel subsets F ⊆ X , and which is uniquely

defined by

〈π(f)ξ, ξ〉 =
∫
X

f(x)〈E(dx)ξ, ξ〉, ξ ∈ H, f ∈ C(X).
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We say that π : C(X) → B(H) is a separable representation if the space H on

which it acts is a separable Hilbert space. All representations π are assumed to

be nondegenerate, so that π(1) = 1.

Let π : C(X) → B(H) be a representation and let p ∈ X . An operator

A ∈ B(H) is said to be locally null at p if for every ε > 0 there is an open

neighborhood U of p such that ‖AE(U)‖ ≤ ε and ‖A∗E(U)‖ ≤ ε.

Proposition 10.1: Let π : C(X) → B(H) be a representation. Then for every

operator A ∈ B(H) the following are equivalent:

(i) A is locally null at every point of X .

(ii) A is uniformly locally null in the following sense: Letting Bδ(p) =

{q ∈ X : d(p, q) < ε} be the δ-ball about a point p ∈ X , we have

(10.1) sup
p∈X

(‖AE(Bδ(p))‖+ ‖A∗E(Bδ(p))‖) → 0 as δ → 0 + .

Proof. (i) =⇒ (ii): It suffices to show that for every operator A ∈ B(H),

(10.2) lim
δ→0

‖AE(Bδ(p))‖ = 0 ∀p ∈ X =⇒ lim
δ→0

sup
p∈X

‖AE(Bδ(p))‖ = 0.

Contrapositively, let δn > 0 be a sequence tending to 0 such that

(10.3) ‖AE(Bδ(pn))‖ ≥ α > 0, n = 1, 2, . . . .

By compactness, {pn} has a convergent subsequence, and by passing to that

subsequence we may assume that pn → p ∈ X as n → ∞. For every δ > 0 we

will have Bδ(p) ⊇ Bδn(pn) for sufficiently large n, and for such n, (10.3) implies

‖AE(Bδ(p))‖ ≥ ‖AE(Bδ(pn))‖ ≥ α,

from which we conclude

inf
δ>0

‖AE(Bδ(p))‖ ≥ α,

contradicting item (i) at the point p. (ii) =⇒ (i) is trivial.

Definition 10.2: Let π : C(X) → B(H) be a representation. An operator A ∈
B(H) is said to be locally null (relative to π) if it satisfies the equivalent

conditions of Proposition 10.1. Nπ will denote the set of all operators that are

locally null with respect to π.

Remark 10.3 (Structure of Nπ): Consider the linear space of operators

Lπ = {A ∈ B(H) : lim
δ→0

‖AE(Bδ(p))‖ = 0, ∀p ∈ X}.
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Obviously, Lπ is a norm-closed left ideal in B(H) for which Nπ = Lπ ∩ L∗
π.

Moreover, the norm-closed linear span of Lπ · L∗
π is a two-sided ideal in B(H),

which when nonzero can only be the C∗-algebra K of all compact operators on

H or all of B(H). We conclude that either (a) Nπ = {0}, or (b) Nπ = K, or

(c) Nπ contains K together with some noncompact operators, in which case it

is strongly Morita equivalent to B(H).

Proposition 10.4: If π : C(X) → B(H) is a separable representation with no

point spectrum, then Nπ contains the C∗-algebra K of compact operators.

Proof. We claim first that Nπ contains every rank one projection A ∈ K. In-

deed, let Aξ = 〈ξ, f〉f , where f is a unit vector in H . Then for every p ∈ X

and δ > 0, AE(Bδ(p)) is a rank one operator with

‖AE(Bδ(p))‖2 = ‖E(Bδ(p))f‖2 = 〈E(Bδ(p))f, f〉,

and the latter tends to zero as δ ↓ 0 because the hypothesis on π implies that the

probability measure defined on X by μ(S) = 〈E(S)f, f〉 is nonatomic. Hence

A ∈ Nπ. The spectral theorem implies every self-adjoint compact operator can

be norm approximated by linear combinations of rank one projections, hence

Nπ ⊇ K.

The basic facts that connect Nπ to the structure of X are as follows:

Proposition 10.5: If X is countable, then Nπ = {0} for every separable

representation π : C(X) → B(H). If X is uncountable, then there is a separable

representation π of C(X) such that Nπ contains non-compact operators, and

in fact Nπ is strongly Morita equivalent to B(H).

Proof. Assume that X is countable and let π : C(X) → B(H) be a separably

acting representation. The set of factor representations of C(X) being countable

(∼= X), reduction theory shows that π decomposes into a direct sum of disjoint

factor representations, which in this simple context means

π(f) =

⊕∑
n≥1

f(pn)En

where the Ek are a sequence of mutually orthogonal projections with sum 1 and

p1, p2, . . . is a (finite or infinite) sequence of distinct points of X . Hence the

spectral measure of π is atomic and is concentrated on {p1, p2, . . . }. It follows
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that for every operator A ∈ Nπ we must have

‖AEn‖ = inf
δ>0

‖AE(Bδ(pn))‖ = 0, n = 1, 2, . . . ,

hence A =
∑

n AEn = 0.

Assume now that X is uncountable. Since X can be viewed as a standard

Borel space, it contains a Borel subset that is isomorphic to the unit interval

[0, 1], and hence X supports a nonatomic Borel probability measure μ. Let

H = L2(X,μ) and let π be the usual representation of C(X) on L2(X,μ) in

which π(f) acts as multiplication by f .

By Proposition 10.4, Nπ contains all compact operators on H . Now let ∞·π
be the direct sum of a countably infinite number of copies of π. For every

compact operator K ∈ B(H), the direct sum ∞ ·K = K ⊕K ⊕ · · · of copies of

K must belong to N∞·π. Since none of the operators ∞ · K is compact when

K �= 0, Remark 10.3 implies that ∞ · π is a representation of C(X) with the

stated properties.

11. Local uniqueness of UCP extensions

Continuing our discussion of function systems S ⊆ C(X) on compact metric

spaces X , in this section we prove:

Theorem 11.1: Given a separable representation π : C(X) → B(H), let

φ : C(X) → B(H) be a UCP map such that φ(s) − π(s) ∈ Nπ for every

s ∈ S. If every point of X belongs to the Choquet boundary ∂SX , then

φ(f)− π(f) ∈ Nπ, ∀ f ∈ C(X).

The proof of Theorem 11.1 requires the following estimate:

Proposition 11.2: Let S ⊆ C(X) be an arbitrary function system and let

φ : C(X) → B(H) be a UCP map with the property

φ(g)− π(g) ∈ Nπ, ∀g ∈ S.

Then for p ∈ X and every f ∈ C(X) we have

(11.1) lim sup
n→∞

‖φ(f)E(B1/n(p))‖2 ≤ inf{s(p) : s ∈ S, s ≥ |f |2}.

Proof. For each n = 1, 2, . . . choose a unit vector ξn ∈ E(Bn(p))H such that

(11.2) ‖φ(f)E(B1/n(p))‖2 ≤ ‖φ(f)ξn‖2 + 1/n,
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and fix a function s ∈ S satisfying s ≥ |f |2. Then

‖φ(f)ξn‖2 = 〈φ(f)∗φ(f)ξn, ξn〉 ≤ 〈φ(|f |2)ξn, ξn〉 ≤ 〈φ(s)ξn, ξn〉.

Now fix ε > 0. Since ξn is a unit vector in E(B1/n(p))H , it follows from the

hypothesis φ(s) − π(s) ∈ Nπ that for sufficiently large n we will have

|〈(φ(s) − π(s))ξn, ξn〉| ≤ ‖(φ(f)− π(f))E(B1/n(p))‖ ≤ ε

and therefore

‖φ(f)ξn‖2 ≤ 〈φ(s)ξn, ξn〉 ≤ 〈π(s)ξn, ξn〉+ ε =

∫
X

s(x)〈E(dx)ξn , ξn〉+ ε.

Since ξn ∈ B1/n(p), the measure 〈E(·)ξn, ξn〉 is supported on the closure of

B1/n(p). Hence the term on the right is dominated by

sup{s(x) : d(x, p) ≤ 1/n}+ ε

which, by continuity of s at p, is in turn dominated by s(p) + 2ε for sufficiently

large n. Finally, since ε can be arbitrarily small, we obtain

lim sup
n→∞

‖φ(f)ξn‖2 ≤ s(p).

From (11.2) we conclude that

lim sup
n→∞

‖φ(f)En‖2 ≤ s(p),

and the estimate (11.1) follows after taking the infimum over s.

We will also make use of the following property of points with unique repre-

senting measures, a consequence of a more general minimax principle based on

the Hahn–Banach theorem (see formula (1.2) of [Gli67]):

Lemma 11.3: Let u be a real function in C(X) and let p be a point in the

Choquet boundary of X relative to S. Then

u(p) = inf{s(p) : s ∈ S, s ≥ u}.
Proof of Theorem 11.1. Fix f ∈ C(X) and let A = φ(f) − π(f). We have to

show that for every point p ∈ X

(11.3) lim
n→∞ ‖AE(B1/n(p))‖ = 0.
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Fixing p, note that by replacing f with f − f(p)1, it suffices to prove (11.3) for

functions f that vanish at p. For such a function f we claim first that

(11.4) lim
n→∞ ‖π(f)E(B1/n(p))‖ = 0.

Indeed, we have

‖π(f)E(B1/n(p))‖ =

∥∥∥∥
∫
B1/n(p)

f(x)E(dx)

∥∥∥∥ ≤ sup
x∈B1/n(p)

|f(x)|,

and the term on the right tends to |f(p)| = 0 as n → ∞.

So to prove (11.3), we have to show that ‖φ(f)E(B1/n((p))‖ tends to zero as

n → ∞. To see that, note that Proposition 11.2 implies

(11.5) lim sup
n→∞

‖φ(f)E(B1/n(p))‖ ≤ inf{s(p) : s ∈ S, s ≥ |f |2}.

Since p belongs to the Choquet boundary, Lemma 11.3 implies that the right

side of (11.5) is |f(p)|2 = 0. Thus (11.3) is proved.
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