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Dilation Theory Yesterday and Today

William Arveson

Abstract. Paul Halmos’ work in dilation theory began with a question and
its answer: Which operators on a Hilbert space H can be extended to normal
operators on a larger Hilbert space K ⊇ H? The answer is interesting and
subtle.

The idea of representing operator-theoretic structures in terms of con-
ceptually simpler structures acting on larger Hilbert spaces has become a
central one in the development of operator theory and, more generally, non-
commutative analysis. The work continues today. This article summarizes
some of these diverse results and their history.
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1. Preface

What follows is a brief account of the development of dilation theory that highlights
Halmos’ contribution to the circle of ideas. The treatment is not comprehensive. I
have chosen topics that have interested me over the years, while perhaps neglecting
others. In order of appearance, the cast includes dilation theory for subnormal op-
erators, operator-valued measures and contractions, connections with the emerging
theory of operator spaces, the role of extensions in dilation theory, commuting sets
of operators, and semigroups of completely positive maps. I have put Stinespring’s
theorem at the center of it, but barely mention the model theory of Sz.-Nagy and
Foias or its application to systems theory.

After reflection on the common underpinnings of these results, it seemed a
good idea to feature the role of Banach ∗-algebras in their proofs, and I have done
that. An appendix is included that summarizes what is needed. Finally, I have
tried to make the subject accessible to students by keeping the prerequisites to a
minimum; but of course familiarity with the basic theory of operators on Hilbert
spaces and C∗-algebras is necessary.
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2. Origins

Hilbert spaces are important because positive definite functions give rise to inner
products on vector spaces – whose completions are Hilbert spaces – and positive
definite functions are found in every corner of mathematics and mathematical
physics. This association of a Hilbert space with a positive definite function in-
volves a construction, and like all constructions that begin with objects in one
category and generate objects in another category, it is best understood when
viewed as a functor. We begin by discussing the properties of this functor in some
detail since, while here they are simple and elementary, similar properties will
re-emerge later in other contexts.

Let X be a set and let
u : X × X → C

be a complex-valued function of two variables that is positive definite in the sense
that for every n = 1, 2, . . . , every x1, . . . , xn ∈ X and every set λ1, . . . , λn of
complex numbers, one has

n�

k,j=1

u(xk, xj)λj λ̄k ≥ 0. (2.1)

Notice that if f : X → H is a function from X to a Hilbert space H with inner
product 
·, ·�, then the function u : X × X → C defined by

u(x, y) = 
f(x), f(y)�, x, y ∈ X (2.2)

is positive definite. By passing to a subspace of H if necessary, one can obviously
arrange that H is the closed linear span of the set of vectors f(X) in the range of
f , and in that case the function f : X → H is said to be minimal (for the positive
definite function u). Let us agree to say that two Hilbert space-valued functions
f1 : X → H1 and f2 : X → H2 are isomorphic if there is a unitary operator
U : H1 → H2 such that

U(f1(x)) = f2(x), x ∈ X.

A simple argument shows that all minimal functions for u are isomorphic.
For any positive definite function u : X × X → C, a self-map φ : X → X

may or may not preserve the values of u in the sense that

u(φ(x), φ(y)) = u(x, y), x, y ∈ X ;

but when this formula does hold, one would expect that φ should acquire a Hilbert
space interpretation. In order to discuss that, let us think of Hilbert spaces as the
objects of a category whose morphisms are isometries; thus, a homomorphism from
H1 to H2 is a linear isometry U ∈ B(H1, H2). Positive definite functions are also
the objects of a category, in which a homomorphism from u1 : X1 × X1 → C to
u2 : X2 ×X2 → C is a function φ : X1 → X2 that preserves the positive structure
in the sense that

u2(φ(x), φ(y)) = u1(x, y), x, y ∈ X1. (2.3)
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Given a positive definite function u : X×X → C, one can construct a Hilbert
space H(u) and a function f : X → H(u) as follows. Consider the vector space
CX of all complex-valued functions ξ : X → C with the property that ξ(x) = 0
for all but a finite number of x ∈ X . We can define a sesquilinear form 
·, ·� on
CX by way of


ξ, η� =
�

x,y∈X

u(x, y)ξ(x)η̄(y), ξ, η ∈ CX,

and one finds that 
·, ·� is positive semidefinite because of the hypothesis on u. An
application of the Schwarz inequality shows that the set

N = {ξ ∈ CX : 
ξ, ξ� = 0}
is in fact a linear subspace of CX , so this sesquilinear form can be promoted
naturally to an inner product on the quotient CX/N . The completion of the inner
product space CX/N is a Hilbert space H(u), and we can define the sought-after
function f : X → H(u) as follows:

f(x) = δx + N, x ∈ X, (2.4)

where δx is the characteristic function of the singleton {x}. By construction,
u(x, y) = 
f(x), f(y)�. Note too that this function f is minimal for u. While there
are many (mutually isomorphic) minimal functions for u, we fix attention on the
minimal function (2.4) that has been constructed.

Given two positive definite functions uk : Xk × Xk → C, k = 1, 2, choose a
homomorphism from u1 to u2, namely a function φ : X1 → X2 that satisfies (2.3).
Notice that while the two functions fk : Xk → H(uk)

f1(x) = δx + N1, f2(y) = δy + N2, x ∈ X1, y ∈ X2

need not be injective, we do have the relations


f2(φ(x)), f2(φ(y))�H(u2) = u2(φ(x), φ(y)) = u1(x, y) = 
f1(x), f1(y)�H(u1),

holding for all x, y ∈ X1. Since H(u1) is spanned by f1(X1), a familiar and el-
ementary argument (that we omit) shows that there is a unique linear isometry
Uφ : H(u1) → H(u2) such that

Uφ(f1(x)) = f2(φ(x)), x ∈ X1. (2.5)

At this point, it is straightforward to verify that the expected composition formulas
Uφ1Uφ2 = Uφ1◦φ2 hold in general, and we conclude:

Proposition 2.1. The construction (2.4) gives rise to a covariant functor (u, φ) →
(H(u), Uφ) from the category of positive definite functions on sets to the category
of complex Hilbert spaces.

It is significant that if X is a topological space and u : X × X → C is a
continuous positive definite function, then the associated map f : X → H(u) of
(2.4) is also continuous. Indeed, this is immediate from (2.2):

�f(x) − f(y)�2 = u(x, x) + u(y, y) − u(x, y) − u(y, x), x, y ∈ X.
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The functorial nature of Proposition 2.1 pays immediate dividends:

Remark 2.2 (Automorphisms). Every positive definite function

u : X × X → C

has an associated group of internal symmetries, namely the group Gu of all bijec-
tions φ : X → X that preserve u in the sense that

u(φ(x), φ(y)) = u(x, y), x, y ∈ X.

Notice that Proposition 2.1 implies that this group of symmetries has a natural
unitary representation U : Gu → B(H(u)) associated with it. Indeed, for every
φ ∈ Gu, the unitary operator Uφ ∈ B(H(u)) is defined uniquely by

Uφ(f(x)) = f(φ(x)), x ∈ X.

The properties of this unitary representation of the automorphism group of u often
reflect important features of the environment that produced u.

Examples: There are many examples of positive definite functions; some of the
more popular are reproducing kernels associated with domains in Cn. Here is
another example that is important for quantum physics and happens to be one of
my favorites. Let Z be a (finite- or infinite-dimensional) Hilbert space and consider
the positive definite function u : Z × Z → C defined by

u(z, w) = e	z,w
, z, w ∈ Z.

We will write the Hilbert space H(u) defined by the construction of Proposition 2.1
as eZ , since it can be identified as the symmetric Fock space over the one-particle
space Z. We will not make that identification here, but we do write the natural
function (2.4) from Z to eZ as f(z) = ez, z ∈ Z.

One finds that the automorphism group of Remark 2.2 is the full unitary
group U(Z) of Z. Hence the functorial nature of the preceding construction leads
immediately to a (strongly continuous) unitary representation Γ of the unitary
group U(Z) on the Hilbert space eZ . In explicit terms, for U ∈ U(Z), Γ(U) is the
unique unitary operator on eZ that satisfies

Γ(U)(ez) = eUz , U ∈ U(Z), z ∈ Z.

The map Γ is called second quantization in the physics literature. It has the prop-
erty that for every one-parameter unitary group {Ut : t ∈ R} acting on Z, there
is a corresponding one-parameter unitary group {Γ(Ut) : t ∈ R} that acts on the
“first quantized” Hilbert space eZ . Equivalently, for every self-adjoint operator A
on Z, there is a corresponding “second quantized” self-adjoint operator dΓ(A) on
eZ that is uniquely defined by the formula

eitdΓ(A)) = Γ(eitA), t ∈ R,

as one sees by applying Stone’s theorem which characterizes the generators of
strongly continuous one-parameter unitary groups.
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Finally, one can exploit the functorial nature of this construction further to
obtain a natural representation of the canonical commutation relations on eZ , but
we will not pursue that here.

3. Positive linear maps on commutative ∗-algebras

The results of Sections 4 and 5 on subnormal operators, positive operator-valued
measures and the dilation theory of contractions can all be based on a single
dilation theorem for positive linear maps of commutative Banach ∗-algebras. That
commutative theorem has a direct commutative proof. But since we require a
more general noncommutative dilation theorem in Section 6 that contains it as
a special case, we avoid repetition by merely stating the commutative result in
this section. What we want to emphasize here is the unexpected appearance of
complete positivity even in this commutative context, and the functorial nature of
dilation theorems of this kind.

A Banach ∗-algebra is a Banach algebra A that is endowed with an isometric
involution – an antilinear mapping a �→ a∗ of A into itself that satisfies a∗∗ = a,
(ab)∗ = b∗a∗ and �a∗� = �a�. In this section we will be concerned with Banach
∗-algebras that are commutative, and which have a multiplicative unit 1 that
satisfies �1� = 1. The basic properties of Banach ∗-algebras and their connections
with C∗-algebras are summarized in the appendix.

An operator-valued linear map φ : A → B(H) of a Banach ∗-algebra is said
to be positive if φ(a∗a) ≥ 0 for every a ∈ A. The most important fact about
operator-valued positive linear maps of commutative algebras is something of a
miracle. It asserts that a positive linear map φ : A → B(H) of a commutative
Banach ∗-algebra A is completely positive in the following sense: For every n-tuple
a1, . . . , an of elements of A, the n× n operator matrix (φ(a∗

i aj)) is positive in the
natural sense that for every n-tuple of vectors ξ1, . . . , ξn ∈ H , one has

n�

i,j=1


φ(a∗
i aj)ξj , ξi� ≥ 0. (3.1)

Notice that the hypothesis φ(a∗a) ≥ 0 is the content of these inequalities for the
special case n = 1. This result for commutative C∗-algebras A is due to Stinespring
(see Theorem 4 of [Sti55]), and the proof of (3.1) can be based on that result
combined with the properties of the completion map ι : A → C∗(A) that carries
a commutative Banach ∗-algebra A to its enveloping C∗-algebra C∗(A) ∼= C(X)
(see Remark A.3 of the appendix).

The notion of complete positivity properly belongs to the noncommutative
world. We will return to it in Section 6 where we will prove a general result
(Theorem 6.1) which, when combined with (3.1), implies the following assertion
about positive linear maps of commutative ∗-algebras.

Scholium A: Let A be a commutative Banach ∗-algebra with unit and let H be
a Hilbert space. For every operator-valued linear map φ : A → B(H) satisfying
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φ(a∗a) ≥ 0 for all a ∈ A, there is a pair (V, π) consisting of a representation
π : A → B(K) of A on another Hilbert space K and a linear operator V ∈ B(H, K)
such that

φ(a) = V ∗π(a)V, a ∈ A. (3.2)
Moreover, φ is necessarily bounded, its norm is given by

sup
�a�≤1

�φ(a)� = �φ(1)� = �V �2, (3.3)

and V can be taken to be an isometry when φ(1) = 1.

Remark 3.1 (Minimality and uniqueness of dilation pairs). Fix A as above. By a
dilation pair for A we mean a pair (V, π) consisting of a representation π : A →
B(K) and a bounded linear map V : H → K from some other Hilbert space H into
the space K on which π acts. A dilation pair (V, π) is said to be minimal if the set
of vectors {π(a)V ξ : a ∈ A, ξ ∈ H} has K as its closed linear span. By replacing K
with an appropriate subspace and π with an appropriate subrepresentation, we can
obviously replace every such pair with a minimal one. Moreover, the representation
associated with a minimal pair must be nondegenerate, and therefore π(1) = 1K .

Note that every dilation pair (V, π) gives rise to a positive linear map φ : A →
B(H) that is defined by the formula (3.2), and we say that (V, π) is a dilation pair
for φ. A positive map φ has many dilation pairs associated with it, but the minimal
ones are equivalent in the following sense: If (V1, π1) and (V2, π2) are two minimal
dilation pairs for φ then there is a unique unitary operator W : K1 → K2 such
that

WV1 = V2, and Wπ1(a) = π2(a)W, a ∈ A. (3.4)
The proof amounts to little more than checking inner products on the two gener-
ating sets π1(A)V1H ⊆ K1 and π2(A)V2H ⊆ K2 and noting that


π2(a)V2ξ, π2(b)V2η� = 
π2(b∗a)V2ξ, V2η� = 
φ(b∗a)ξ, η�
= 
π1(a)V1ξ, π1(b)V1η�,

for a, b ∈ A and ξ, η ∈ H .
Finally, note that in cases where φ(1) = 1, the operator V of a minimal pair

(V, π) is an isometry, so by making an obvious identification we can replace (V, π)
with an equivalent one in which V is the inclusion map of H into a larger Hilbert
space ι : H ⊆ K and π is a representation of A on K. After these identifications
we find that V ∗ = PH , and (3.2) reduces to the more traditional assertion

φ(a) = PHπ(a) �H , a ∈ A. (3.5)

Remark 3.2 (Functoriality). It is a worthwhile exercise to think carefully about
what a dilation actually is, and the way to do that is to think in categorical terms.
Fix a commutative Banach ∗-algebra A with unit 1. Operator-valued positive
linear maps of A are the objects of a category, in which a homomorphism from
φ1 : A → B(H1) to φ2 : A → B(H2) is defined as a unitary operator U : H1 → H2

satisfying Uφ1(a) = φ2(a)U for all a ∈ A; equivalently, U should implement a
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unitary equivalence of positive linear maps of A. Thus the positive linear maps of
A can be viewed as a groupoid – a category in which every arrow is invertible.

There is a corresponding groupoid whose objects are minimal dilation pairs
(V, π). Homomorphisms of dilation pairs (V1, π1) → (V2, π2) (here πj is a repre-
sentation of A on Kj and Vj is an operator in B(Hj, Kj)) are defined as unitary
operators W : K1 → K2 that satisfy

Wπ1(a) = π2(a)W, a ∈ A, and WV1 = V2.

The “set” of all dilation pairs for a fixed positive linear map φ : A → B(H) is
a subgroupoid, and we have already seen in Remark 3.1 that its elements are all
isomorphic. But here we are mainly concerned with how the dilation functor treats
arrows between different positive linear maps.

A functor is the end product of a construction. In order to describe how the
dilation functor acts on arrows, we need more information than the statement of
Scholium A contains, namely the following: There is a construction which starts
with a positive linear map φ : A → B(H) and generates a particular dilation pair
(V, π)φ from that data. Scholium A asserts that such dilation pairs exist for every
φ, but since the proof is missing, we have not seen the construction. Later on,
however, we will show how to construct a particular dilation pair (V, π)φ from a
completely positive map φ when we prove Stinespring’s theorem in Section 6. That
construction is analogous to the construction underlying (2.4), which exhibits an
explicit function f : X → H(u) that arises from the construction of the Hilbert
space H(u), starting with a positive definite function u. In order to continue the
current discussion, we ask the reader to assume the result of the construction of
Theorem 6.1, namely that we are somehow given a particular dilation pair (V, π)φ

for every positive linear map φ : A → B(H).
That puts us in position to describe how the dilation functor acts on arrows.

Given two positive linear maps φj : A → B(Hj), j = 1, 2, let U : H1 → H2 be a
unitary operator satisfying Uφ1(a) = φ2(a)U for a ∈ A. Let (V1, π1) and (V2, π2)
be the dilation pairs that have been constructed from φ1 and φ2 respectively.
Notice that since U∗φ2(a)U = φ1(a) for a ∈ A, it follows that (V2U, π2) is a
second minimal dilation pair for φ1. By (3.4), there is a unique unitary operator
Ũ : K1 → K2 that satisfies

ŨV1 = V2U, and Ũπ1(a) = π2(a)Ũ , a ∈ A.

One can now check that the association φ, U → (V, π)φ, Ũ defines a covariant
functor from the groupoid of operator-valued positive linear maps of A to the
groupoid of minimal dilation pairs for A.

4. Subnormality

An operator A on a Hilbert space H is said to be subnormal if it can be extended
to a normal operator on a larger Hilbert space. More precisely, there should exist
a normal operator B acting on a Hilbert space K ⊇ H that leaves H invariant and
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restricts to A on H . Halmos’ paper [Hal50] introduced the concept, and grew out
of his observation that a subnormal operator A ∈ B(H) must satisfy the following
system of peculiar inequalities:

n�

i,j=0


Aiξj , A
jξi� ≥ 0, ∀ ξ0, ξ1, . . . , ξn ∈ H, n = 0, 1, 2, . . . . (4.1)

It is an instructive exercise with inequalities involving 2 × 2 operator matrices to
show that the case n = 1 of (4.1) is equivalent to the single operator inequality
A∗A ≥ AA∗, a property called hyponormality today. Subnormal operators are cer-
tainly hyponormal, but the converse is false even for weighted shifts (see Problem
160 of [Hal67]). Halmos showed that the full set of inequalities (4.1) – together
with a second system of necessary inequalities that we do not reproduce here –
implies that A is subnormal. Several years later, his student J. Bram proved that
the second system of inequalities follows from the first [Bra55], and simpler proofs
of that fact based on semigroup considerations emerged later [Szf77]. Hence the
system of inequalities (4.1) is by itself necessary and sufficient for subnormality.

It is not hard to reformulate Halmos’ notion of subnormality (for single op-
erators) in a more general way that applies to several operators. Let Σ be a com-
mutative semigroup (written additively) that contains a neutral element 0. By a
representation of Σ we mean an operator-valued function s ∈ Σ �→ A(s) ∈ B(H)
satisfying A(s + t) = A(s)A(t) and A(0) = 1. Notice that we make no assumption
on the norms �A(s)� as s varies over Σ. For example, a commuting set A1, . . . , Ad

of operators on a Hilbert space H gives rise to a representation of the d-dimensional
additive semigroup

Σ = {(n1, . . . , nd) ∈ Zd : n1 ≥ 0, . . . , nd ≥ 0}
by way of

A(n1, . . . , nd) = An1
1 · · ·And

d , (n1, . . . , nd) ∈ Σ.

In general, a representation A : Σ → B(H) is said to be subnormal if there is a
Hilbert space K ⊇ H and a representation B : Σ → B(K) consisting of normal
operators such that each B(s) leaves H invariant and

B(s) �H= A(s), s ∈ Σ.

We now apply Scholium A to prove a general statement about commutative op-
erator semigroups that contains the Halmos-Bram characterization of subnormal
operators, as well as higher-dimensional variations of it that apply to semigroups
generated by a finite or even infinite number of mutually commuting operators.

Theorem 4.1. Let Σ be a commutative semigroup with 0. A representation A :
Σ → B(H) is subnormal iff for every n ≥ 1, every s1, . . . , sn ∈ Σ and every
ξ1, . . . , ξn ∈ H, one has

n�

i,j=1


A(si)ξj , A(sj)ξi� ≥ 0. (4.2)
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Proof. The proof that the system of inequalities (4.2) is necessary for subnormal-
ity is straightforward, and we omit it. Here we outline a proof of the converse,
describing all essential steps in the construction but leaving routine calculations
for the reader. We shall make use of the hypothesis (4.2) in the following form:
For every function s ∈ Σ �→ ξ(s) ∈ H such that ξ(s) vanishes for all but a finite
number of s ∈ Σ, one has

�

s,t∈Σ


A(s)ξ(t), A(t)ξ(s)� ≥ 0. (4.3)

We first construct an appropriate commutative Banach ∗-algebra. Note that
the direct sum of semigroups Σ⊕Σ is a commutative semigroup with zero element
(0, 0), but unlike Σ it has a natural involution x �→ x∗ defined by (s, t)∗ = (t, s),
s, t ∈ Σ. We will also make use of a weight function w : Σ⊕Σ → [1,∞) defined as
follows:

w(s, t) = max(�A(s)� · �A(t)�, 1), s, t ∈ Σ.

Using �A(s + t)� = �A(s)A(t)� ≤ �A(s)� · �A(t)�, one finds that

1 ≤ w(x + y) ≤ w(x)w(y), w(x∗) = w(x), x, y ∈ Σ ⊕ Σ.

Note too that w((0, 0)) = 1 because A(0) = 1. Consider the Banach space A of all
functions f : Σ ⊕ Σ → C having finite weighted �1-norm

�f� =
�

x∈Σ⊕Σ

|f(x)| · w(x) < ∞. (4.4)

Since w ≥ 1, the norm on A dominates the ordinary �1 norm, so that every
function in A belongs to �1(Σ ⊕ Σ). Ordinary convolution of functions defined on
commutative semigroups

(f ∗ g)(z) =
�

{x,y∈Σ⊕Σ: x+y=z}
f(x)g(y), z ∈ Σ ⊕ Σ

defines an associative commutative multiplication in �1(Σ ⊕ Σ), and it is easy to
check that the above properties of the weight function w imply that with respect
to convolution and the involution f ∗(s, t) = f̄(t, s), A becomes a commutative
Banach ∗-algebra with normalized unit δ(0,0).

We now use the semigroup A(·) to construct a linear map φ : A → B(H):

φ(f) =
�

(s,t)∈Σ⊕Σ

f(s, t)A(s)∗A(t).

Note that �φ(f)� ≤ �f� because of the definition of the norm of f in terms of
the weight function w. Obviously φ(δ(s,t)) = A(s)∗A(t) for all s, t ∈ Σ, and in
particular φ(δ(0,0)) = 1. It is also obvious that φ(f∗) = φ(f)∗ for f ∈ A.

What is most important for us is that φ is a positive linear map, namely for
every f ∈ A and every vector ξ ∈ H


φ((f∗) ∗ f)ξ, ξ� ≥ 0. (4.5)
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To deduce this from (4.3), note that since φ : A → B(H) is a bounded linear map
and every function in A can be norm-approximated by functions which are finitely
nonzero, it suffices to verify (4.5) for functions f : Σ ⊕ Σ → C such that f(x) = 0
for all but a finite number of x ∈ Σ ⊕ Σ. But for two finitely supported functions
f, g ∈ A and any function H : Σ ⊕ Σ → C, the definition of convolution implies
that f ∗ g is finitely supported, and

�

z∈Σ⊕Σ

(f ∗ g)(z)H(z) =
�

x,y∈Σ⊕Σ

f(x)g(y)H(x + y).

Fixing ξ ∈ H and taking H(s, t) = 
A(s)∗A(t)ξ, ξ� = 
A(t)ξ, A(s)ξ�, we conclude
from the preceding formula that


φ(f ∗ g)ξ, ξ� =
�

s,t,u,v∈Σ

f(s, t)g(u, v)
A(t + v)ξ, A(s + u)ξ�

=
�

s,t,u,v∈Σ

f(s, t)g(u, v)
A(t)A(v)ξ, A(u)A(s)ξ�.

Thus we can write


φ(f∗ ∗ f)ξ, ξ� =
�

s,t,u,v∈Σ

f̄(t, s)f(u, v)
A(t)A(v)ξ, A(u)A(s)ξ�

=
�

t,u∈Σ


A(t)(
�

v∈Σ

f(u, v)A(v)ξ), A(u)(
�

s∈Σ

f(t, s)A(s)ξ)�

=
�

t,u∈Σ


A(t)ξ(u), A(u)ξ(t)�,

where t ∈ Σ �→ ξ(t) ∈ H is the vector function

ξ(t) =
�

s∈Σ

f(t, s)A(s)ξ, t ∈ Σ.

Notice that the rearrangements of summations carried out in the preceding formula
are legitimate because all sums are finite, and in fact the vector function t �→ ξ(t)
is itself finitely nonzero. (4.5) now follows from (4.3).

At this point, we can apply Scholium A to find a Hilbert space K which
contains H and a ∗-representation π : A → B(K) such that

PHπ(f) �H= φ(f), f ∈ A.

Hence the map x �→ π(δx) is a ∗-preserving representation of the ∗-semigroup
Σ ⊕ Σ, which can be further decomposed by way of π(δ(s,t)) = B(s)∗B(t), where
B : Σ → B(K) is the representation B(t) = π(δ(0, t)). Since the commutative
semigroup of operators {π(δx) : x ∈ Σ⊕Σ} is closed under the ∗-operation, B(Σ)
is a semigroup of mutually commuting normal operators. After taking s = 0 in the
formulas PHB(s)∗B(t) �H= A(s)∗A(t), one finds that A(t) is the compression of
B(t) to H . Moreover, since for every t ∈ Σ

PHB(t)∗B(t) �H= A(t)∗A(t) = PHB(t)∗PHB(t) �H ,
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we have PHB(t)∗(1 − PH )B(t)PH = 0. Thus we have shown that H is invariant
under B(t) and the restriction of B(t) to H is A(t). �

Remark 4.2 (Minimality and functoriality). Let Σ be a commutative semigroup
with zero. A normal extension s ∈ Σ �→ B(s) ∈ B(K) of a representation s ∈ Σ �→
A(s) ∈ B(H) on a Hilbert space K ⊇ H is said to be minimal if the set of vectors
{B(t)∗ξ : t ∈ Σ, ξ ∈ H} has K as its closed linear span. This corresponds to
the notion of minimality described in Section 6. The considerations of Remark 3.1
imply that all minimal dilations are equivalent, and we can speak unambiguously
of the minimal normal extension of A. A similar comment applies to the functorial
nature of the map which carries subnormal representations of Σ to their minimal
normal extensions.

Remark 4.3 (Norms and flexibility). It is a fact that the minimal normal extension
B of A satisfies �B(t)� = �A(t)� for t ∈ Σ. The inequality ≥ is obvious since A(t)
is the restriction of B(t) to an invariant subspace. However, if one attempts to
use the obvious norm estimate for representations of Banach ∗-algebras (see the
appendix for more detail) to establish the opposite inequality, one finds that the
above construction gives only

�B(t)� = �π(δ(0,t))� ≤ �δ(0,t)� = w(0, t) = max(�A(t)�, 1),

which is not good enough when �A(t)� < 1. On the other hand, we can use the
flexibility in the possible norms of A to obtain the correct estimate as follows. For
each � > 0, define a new weight function w� on Σ ⊕ Σ by

w�(s, t) = max(�A(s)� · �A(t)�, �), s, t ∈ Σ.

If one uses w� in place of w in the definition (4.4) of the norm on A, one obtains
another commutative Banach ∗-algebra which serves equally well as the original to
construct the minimal normal extension B of A, and it has the additional feature
that �B(t)� ≤ max(�A(t)�, �) for t ∈ Σ. Since � can be arbitrarily small, the
desired estimate �B(t)� ≤ �A(t)� follows. In particular, for every t ∈ Σ we have
A(t) = 0 ⇐⇒ B(t) = 0.

5. Commutative dilation theory

Dilation theory began with two papers of Naimark, written and published somehow
during the darkest period of world war II: [Nai43a], [Nai43b]. Naimark’s theorem
asserts that a countably additive measure E : F → B(H) defined on a σ-algebra F
of subsets of a set X that takes values in the set of positive operators on a Hilbert
space H and satisfies E(X) = 1 can be expressed in the form

E(S) = PHQ(S) �H , S ∈ F ,

where K is a Hilbert space containing H and Q : F → B(K) is a spectral measure.
A version of Naimark’s theorem (for regular Borel measures on topological spaces)
can be found on p. 50 of [Pau02]. Positive operator-valued measures E have become
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fashionable in quantum physics and quantum information theory, where they go
by the unpronounceable acronym POVM. It is interesting that the Wikipedia page
for projection operator-valued measures (http://en.wikipedia.org/wiki/POVM)
contains more information about Naimark’s famous theorem than the Wikipedia
page for Naimark himself (http://en.wikipedia.org/wiki/Mark Naimark).

In his subnormality paper [Hal50], Halmos showed that every contraction
A ∈ B(H) has a unitary dilation in the sense that there is a unitary operator U
acting on a larger Hilbert space K ⊇ H such that

A = PHU �H .

Sz.-Nagy extended that in a most significant way [SN53] by showing that every con-
traction has a unitary power dilation, and the latter result ultimately became the
cornerstone for an effective model theory for Hilbert space contractions [SNF70].
Today, these results belong to the toolkit of every operator theorist, and can be
found in many textbooks. In this section we merely state Sz.-Nagy’s theorem and
sketch a proof that is in the spirit of the preceding discussion.

Theorem 5.1. Let A ∈ B(H) be an operator satisfying �A� ≤ 1. Then there is a
unitary operator U acting on a Hilbert space K containing H such that

An = PHUn �H , n = 0, 1, 2, . . . . (5.1)

If U is minimal in the sense that K is the closed linear span of ∪n∈ZUnH, then it
is uniquely determined up to a natural unitary equivalence.

Sketch of proof. Consider the commutative Banach ∗-algebra A = �1(Z), with
multiplication and involution given by

(f ∗ g)(n) =
+∞�

k=−∞
f(k)g(n − k), f∗(n) = f̄(−n), n ∈ Z,

and normalized unit 1 = δ0. Define A(n) = An if n ≥ 0 and A(n) = A∗|n| if n < 0.
Since �A(n)� ≤ 1 for every n, we can define a linear map φ : A → B(H) in the
obvious way

φ(f) =
+∞�

n=−∞
f(n)A(n), f ∈ A.

It is obvious that �φ(f)� ≤ �f�, f ∈ A, but not at all obvious that φ is a positive
linear map. However, there is a standard method for showing that for every ξ ∈ H ,
the sequence of complex numbers an = 
A(n)ξ, ξ�, n ∈ Z, is of positive type in the
sense that for every finitely nonzero sequence of complex numbers λn, n ∈ Z, one
has

�
n∈Z an−mλnλ̄m ≥ 0; for example, see p. 36 of [Pau02]. By approximating

f ∈ A in the norm of A with finitely nonzero functions and using


φ((f∗) ∗ f)ξ, ξ� =
+∞�

m,n=−∞

A(n − m)ξ, ξ�f(n)f̄(m),
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it follows that 
φ(f)ξ, ξ� ≥ 0, and we may conclude that φ is a positive linear map
of A to B(H) satisfying φ(δ0) = 1.

Scholium A implies that there is a ∗-representation π : A → B(K) of A on a
larger Hilbert space K such that π(f) compresses to φ(f) for f ∈ A. Finally, since
the enveloping C∗-algebra of A = �1(Z) is the commutative C∗-algebra C(T),
the representation π promotes to a representation π̃ : C(T) → B(K) (see the
appendix). Taking z ∈ C(T) to be the coordinate variable, we obtain a unitary
operator U ∈ B(K) by way of U = π̃(z), and formula (5.1) follows. We omit the
proof of the last sentence. �

No operator theorist can resist repeating the elegant proof of von Neumann’s
inequality that flows from Theorem 5.1. von Neumann’s inequality [vN51] asserts
that for every operator A ∈ B(H) satisfying �A� ≤ 1, one has

�f(A)� ≤ sup
|z|≤1

|f(z)| (5.2)

for every polynomial f(z) = a0 + a1z + · · · + anzn. von Neumann’s original proof
was difficult, involving calculations with Möbius transformations and Blaschke
products. Letting U ∈ B(K) be a unitary power dilation of A satisfying (5.1), one
has f(A) = PHf(U) �H , for every polynomial f , hence

�f(A)� ≤ �f(U)� = sup
z∈σ(U)

|f(z)| ≤ sup
|z|=1

|f(z)|.

6. Completely positivity and Stinespring’s theorem

While one can argue that the GNS construction for states of C∗-algebras is a dila-
tion theorem, it is probably best thought of as an application of the general method
of associating a Hilbert space with a positive definite function as described in Sec-
tion 2. Dilation theory proper went noncommutative in 1955 with the publication
of a theorem of Stinespring [Sti55]. Stinespring told me that his original motiva-
tion was simply to find a common generalization of Naimark’s commutative result
that a positive operator-valued measure can be dilated to a spectral measure and
the GNS construction for states of (noncommutative) C∗-algebras. The theorem
that emerged went well beyond that, and today has become a pillar upon which
significant parts of operator theory and operator algebras rest. The fundamental
new idea underlying the result was that of a completely positive linear map.

The notion of positive linear functional or positive linear map is best thought
of in a purely algebraic way. More specifically, let A be a ∗-algebra, namely a
complex algebra endowed with an antilinear mapping a �→ a∗ satisfying (ab)∗ =
b∗a∗ and a∗∗ = a for all a, b ∈ A. An operator-valued linear map φ : A → B(H)
(and in particular a complex-valued linear functional φ : A → C) is called positive
if it satisfies

φ(a∗a) ≥ 0, a ∈ A. (6.1)
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One can promote this notion of positivity to matrix algebras over A. For
every n = 1, 2, . . . , the algebra Mn(A) of n × n matrices over A has a natural
involution, in which the adjoint of an n × n matrix is defined as the transposed
matrix of adjoints (aij)∗ = (a∗

ji), 1 ≤ i, j ≤ n, aij ∈ A. Fixing n ≥ 1, a linear map
φ : A → B(H) induces a linear map φn from Mn(A) to n × n operator matrices
(φ(aij)) which, after making the obvious identifications, can be viewed as a linear
map of Mn(A) to operators on the direct sum of n copies of H . The original map
φ is called completely positive if each φn is a positive linear map. More explicitly,
complete positivity at level n requires that (6.1) should hold for n × n matrices:
For every n × n matrix A = (aij) with entries in A and every n-tuple of vectors
ξ1, . . . , ξn ∈ H , the n × n matrix B = (bij) defined by B = A∗A should satisfy

n�

i,j=1


φ(bij)ξj , ξi� =
n�

i,j,k=1


φ(a∗
kiakj)ξj , ξi� ≥ 0.

Note that this system of inequalities reduces to a somewhat simpler-looking system
of inequalities (3.1) that we have already seen in Section 3.

If A happens to be a C∗-algebra, then the elements x ∈ A that can be
represented in the form x = a∗a for some a ∈ A are precisely the self-adjoint
operators x having nonnegative spectra. Since Mn(A) is also a C∗-algebra in a
unique way for every n ≥ 1, completely positive linear maps of C∗-algebras have
a very useful spectral characterization: they should map self-adjoint n × n opera-
tor matrices with nonnegative spectra to self-adjoint operators with nonnegative
spectra. Unfortunately, this spectral characterization breaks down completely for
positive linear maps of more general Banach ∗-algebras, and in that more general
context one must always refer back to positivity as it is expressed in (6.1).

Stinespring’s original result was formulated in terms of operator maps defined
on C∗-algebras. We want to reformulate it somewhat into the more flexible context
of linear maps of Banach ∗-algebras.

Theorem 6.1. Let A be a Banach ∗-algebra with normalized unit and let H be a
Hilbert space. For every completely positive linear map φ : A → B(H) there is a
representation π : A → B(K) of A on another Hilbert space K and a bounded
linear map V : H → K such that

φ(a) = V ∗π(a)V, a ∈ A. (6.2)

Moreover, the norm of the linking operator V is given by �V �2 = �φ(1)�.

We have omitted the statement and straightforward proof of the converse,
namely that every linear map φ : A → B(H) of the form (6.2) must be completely
positive, in order to properly emphasize the construction of the dilation from the
basic properties of a completely positive map.

Proof. The underlying construction is identical with the original [Sti55], but a
particular estimate requires care in the context of Banach ∗-algebras, and we will
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make that explicit. Consider the tensor product of complex vector spaces A⊗ H ,
and the sesquilinear form 
·, ·� defined on it by setting

� m�

j=1

aj ⊗ ξj ,

n�

k=1

bk ⊗ ηk

�
=

m,n�

j,k=1


φ(b∗kaj)ξj , ηk�.

The fact that φ is completely positive implies that 
ζ, ζ� ≥ 0 for every ζ ∈ A⊗H .
Letting N = {ζ ∈ A⊗ H : 
ζ, ζ� = 0}, the Schwarz inequality implies that N is a
linear subspace and that the sesquilinear form can be promoted to an inner product
on the quotient K0 = (A⊗H)/N . Let K be the completion of the resulting inner
product space.

Each a ∈ A gives rise to a left multiplication operator π(a) acting on A⊗H ,
defined uniquely by π(a)(b⊗ξ) = ab⊗ξ for b ∈ A and ξ ∈ H . The critical estimate
that we require is


π(a)ζ, π(a)ζ� ≤ �a�2
ζ, ζ�, a ∈ A, ζ ∈ A⊗ H, (6.3)

and it is proved as follows. Writing ζ = a1 ⊗ ξ1 + · · · + an ⊗ ξn, we find that


π(a)ζ, π(a)ζ� =
n�

j,k=1


abj ⊗ ξj , abk ⊗ ξk� =
n�

j,k=1


φ(b∗ka∗abj)ξj , ξk�

=
n�

j,k=1


a∗abj ⊗ ξj , bk ⊗ ξk� = 
π(a∗a)ζ, ζ�.

This formula implies that the linear functional ρ(a) = 
π(a)ζ, ζ� satisfies ρ(a∗a) =

π(a)ζ, π(a)ζ� ≥ 0. Proposition A.1 of the appendix implies

ρ(a∗a) ≤ ρ(1)�a∗a� ≤ �ζ�2�a�2,

and (6.3) follows.
It is obvious that π(ab) = π(a)π(b) and that π(1) is the identity opera-

tor. Moreover, as in the argument above, we have 
π(a)η, ζ� = 
η, π(a∗)ζ� for all
a ∈ A and η, ζ ∈ A ⊗ H . Finally, (6.3) implies that π(a)N ⊆ N , so that each
operator π(a), a ∈ A, promotes naturally to a linear operator on the quotient
K0 = (A ⊗ H)/N . Together with (6.3), these formulas imply that π gives rise to
a ∗ representation of A as bounded operators on K0 which extends uniquely to
a representation of A on the completion K of K0, which we denote by the same
letter π.

It remains only to discuss the connecting operator V , which is defined by
V ξ = 1⊗ ξ +N , ξ ∈ H . One finds that π(a)V ξ = a⊗ ξ +N , from which it follows
that


π(a)V ξ, V η� = 
a ⊗ ξ + N ,1⊗ η + N � = 
φ(a)ξ, η�, ξ, η ∈ H.

Taking a = 1, we infer that �V �2 = �V ∗V � = �φ(1)�, and at that point the
preceding formula implies φ(a) = V ∗π(a)V , a ∈ A. �
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7. Operator spaces, operator systems and extensions

In this section we discuss the basic features of operator spaces and their matrix
hierarchies, giving only the briefest of overviews. The interested reader is referred
to one of the monographs [BLM04], [ER00], [Pau86] for more about this developing
area of noncommutative analysis.

Complex Banach spaces are the objects of a category whose maps are con-
tractions – linear operators of norm ≤ 1. The isomorphisms of this category are
surjective isometries. A function space is a norm-closed linear subspace of some
C(X) – the space of (complex-valued) continuous functions on a compact Haus-
dorff space X , endowed with the sup norm. All students of analysis know that every
Banach space E is isometrically isomorphic to a function space. Indeed, the Hahn-
Banach theorem implies that the natural map ι : E → E �� of E into its double dual
has the stated property after one views elements if ι(E) as continuous functions on
the weak∗-compact unit ball X of E�. In this way the study of Banach spaces can
be reduced to the study of function spaces, and that fact is occasionally useful.

An operator space is a norm-closed linear subspace E of the algebra B(H) of
all bounded operators on a Hilbert space H . Such an E is itself a Banach space,
and is therefore isometrically isomorphic to a function space. However, the key
fact about operator spaces is that they determine an entire hierarchy of operator
spaces, one for every n = 1, 2, . . . . Indeed, for every n, the space Mn(E) of all n×n
matrices over E is naturally an operator subspace of B(n · H), n · H denoting the
direct sum of n copies of H . Most significantly, a linear map of operator spaces
φ : E1 → E2 determines a sequence of linear maps φn : Mn(E1) → Mn(E2), where
φn is the linear map obtained by applying φ element-by-element to an n×n matrix
over E1. One says that φ is a complete isometry or a complete contraction if every
φn is, respectively, an isometry or a contraction. There is a corresponding notion
of complete boundedness that will not concern us here.

Operator spaces can be viewed as the objects of a category whose maps are
complete contractions. The isomorphisms of this category are complete isometries,
and one is led to seek properties of operator spaces that are invariant under this
refined notion of isomorphism. Like Shiva, a given Banach space acquires many
inequivalent likenesses when it is realized concretely as an operator space. That is
because in operator space theory one pays attention to what happens at every level
of the hierarchy. The result is a significant and fundamentally noncommutative
refinement of classical Banach space theory.

For example, since an operator space E ⊆ B(H) is an “ordinary” Banach
space, it can be represented as a function space ι : E → C(X) as in the opening
paragraphs of this section. If we form the hierarchy of C∗-algebras Mn(C(X)),
n = 1, 2, . . . , then we obtain a sequence of embeddings

ιn : Mn(E) → Mn(C(X)), n = 1, 2, . . . .

Note that the C∗-algebra Mn(C(X)) is basically the C∗-algebra of all matrix-
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valued continuous functions F : X → Mn(C), with norm

�F� = sup
x∈X

�F (x)�, F ∈ Mn(C(X)).

While the map ι is surely an isometry at the first level n = 1, it may or may not be
a complete isometry; indeed for the more interesting examples of operator spaces
it is not. Ultimately, the difference between Banach spaces and operator spaces
can be traced to the noncommutativity of operator multiplication, and for that
reason some analysts like to think of operator space theory as the “quantized”
reformulation of functional analysis.

Finally, one can think of operator spaces somewhat more flexibly as norm-
closed linear subspaces E of unital (or even nonunital) C∗-algebras A. That is
because the hierarchy of C∗-algebras Mn(A) is well defined independently of any
particular faithful realization A as a C∗-subalgebra of B(H).

One can import the notion of order into the theory of operator spaces in a
natural way. A function system is a function space E ⊆ C(X) with the property
that E is closed under complex conjugation and contains the constants. One some-
times assumes that E separates points of X but here we do not. Correspondingly,
an operator system is a self-adjoint operator space E ⊆ B(H) that contains the
identity operator 1. The natural notion of order between self-adjoint operators,
namely A ≤ B ⇐⇒ B − A is a positive operator, has meaning in any operator
system E , and in fact every operator system is linearly spanned by its positive
operators. Every member Mn(E) of the matrix hierarchy over an operator system
E is an operator system, so that it makes sense to speak of completely positive
maps from one operator system to another.

Krein’s version of the Hahn-Banach theorem implies that a positive linear
functional defined on an operator system E in a C∗-algebra A can be extended
to a positive linear functional on all of A. It is significant that this extension
theorem fails in general for operator-valued positive linear maps. Fortunately, the
following result of [Arv69] provides an effective noncommutative counterpart of
Krein’s order-theoretic Hahn-Banach theorem:

Theorem 7.1. Let E ⊆ A be an operator system in a unital C∗-algebra. Then every
operator-valued completely positive linear map φ : E → B(H) can be extended to a
completely positive linear map of A into B(H).

There is a variant of 7.1 that looks more like the original Hahn-Banach the-
orem. Let E ⊆ A be an operator space in a C∗-algebra A. Then every operator-
valued complete contraction φ : E → B(H) can be extended to a completely
contractive linear map of A to B(H). While the latter extension theorem emerged
more than a decade after Theorem 7.1 (with a different and longer proof [Wit81],
[Wit84]), Vern Paulsen discovered a simple device that enables one to deduce it
readily from the earlier result. That construction begins with an operator space
E ⊆ A and generates an associated operator system Ẽ in the 2× 2 matrix algebra
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M2(A) over A as follows:

Ẽ =
��

λ · 1 A
B∗ λ · 1

�
: A, B ∈ E , λ ∈ C



.

Given a completely contractive linear map φ : E → B(H), one can define a linear
map φ̃ : Ẽ → B(H ⊕ H) in a natural way

φ̃

��
λ · 1 A
B∗ λ · 1

��
=

�
λ · 1 φ(A)

φ(B)∗ λ · 1

�
,

and it is not hard to see that φ̃ is completely positive (I have reformulated the
construction in a minor but equivalent way for simplicity; see Lemma 8.1 of [Pau02]
for the original). By Theorem 7.1, φ̃ extends to a completely positive linear map
of M2(A) to B(H ⊕ H), and the behavior of that extension on the upper right
corner is a completely contractive extension of φ.

8. Spectral sets and higher-dimensional operator theory

Some aspects of commutative operator theory can be properly understood only
when placed in the noncommutative context of the matrix hierarchies of the pre-
ceding section. In this section we describe the phenomenon in concrete terms,
referring the reader to the literature for technical details.

Let A ∈ B(H) be a Hilbert space operator. If f is a rational function of a single
complex variable that has no poles on the spectrum of A, then there is an obvious
way to define an operator f(A) ∈ B(H). Now fix a compact subset X ⊆ C of the
plane that contains the spectrum of A. The algebra R(X) of all rational functions
whose poles lie in the complement of X forms a unital subalgebra of C(X), and
this functional calculus defines a unit-preserving homomorphism f �→ f(A) of
R(X) into B(H). One says that X is a spectral set for A if this homomorphism
has norm 1:

�f(A)� ≤ sup
z∈X

|f(z)|, f ∈ R(X). (8.1)

Von Neumann’s inequality (5.2) asserts that the closed unit disk is a spectral
set for every contraction A ∈ B(H); indeed, that property is characteristic of
contractions. While there is no corresponding characterization of the operators
that have a more general set X as a spectral set, we are still free to consider
the class of operators that do have X as a spectral set and ask if there is a
generalization of Theorem 5.1 that would apply to them. Specifically, given an
operator A ∈ B(H) that has X as a spectral set, is there a normal operator N
acting on a larger Hilbert space K ⊇ H such that the spectrum of N is contained
in the boundary ∂X of X and

f(A) = PHf(N) �H , f ∈ R(X)? (8.2)

A result of Foias implies that the answer is yes if the complement of X
is connected, but it is no in general. The reason the answer is no in general is
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that the hypothesis (8.1) is not strong enough; and that phenomenon originates
in the noncommutative world. To see how the hypothesis must be strengthened,
let N be a normal operator with spectrum in ∂X . The functional calculus for
normal operators gives rise to a representation π : C(∂X) → B(K), π(f) = f(N),
f ∈ C(∂X). It is easy to see that representations of C∗-algebras are completely
positive and completely contractive linear maps, hence if the formula (8.2) holds
then the map f ∈ R(X) �→ f(A) must be not only be a contraction, it must be a
complete contraction.

Let us examine the latter assertion in more detail. Fix n = 1, 2, . . . and let
Mn(R(X)) be the algebra of all n×n matrices with entries in R(X). One can view
an element of Mn(R(X)) as a matrix-valued rational function

F : z ∈ X �→ F (z) = (fij(z)) ∈ Mn(C),

whose component functions belong to R(X). Notice that we can apply such a
matrix-valued function to an operator A that has spectrum in X to obtain an n×n
matrix of operators – or equivalently an operator F (A) = (fij(A)) in B(n ·H). The
map F ∈ Mn(R(X)) �→ F (A) ∈ B(n · H) is a unit-preserving homomorphism of
complex algebras. X is said to be a complete spectral set for an operator A ∈ B(H)
if it contains the spectrum of A and satisfies

�F (A)� ≤ sup
z∈X

�F (z)�, F ∈ Mn(R(X)), n = 1, 2, . . . . (8.3)

Now if there is a normal operator N with spectrum in ∂X that relates to A as in
(8.2), then for every n = 1, 2, . . . and every F ∈ Mn(R(X)),

�F (A)� ≤ �F (N)� ≤ sup
z∈∂X

�F (z)� = sup
z∈X

�F (z)�,

and we conclude that X must be a complete spectral set for A.
The following result from [Arv72] implies that complete spectral sets suffice

for the existence of normal dilations. It depends in an essential way on the extension
theorem (Theorem 7.1) for completely positive maps.

Theorem 8.1. Let A ∈ B(H) be an operator that has a compact set X ⊆ C as a
complete spectral set. Then there is a normal operator N on a Hilbert space K ⊇ H
having spectrum in ∂X such that

f(A) = PHf(N) �H , f ∈ R(X).

The unitary power dilation of a contraction is unique up to natural equiv-
alence. That reflects a property of the unit circle T: Every positive linear map
φ : C(T) → B(H) is uniquely determined by its values on the nonnegative powers
1, z, z2, . . . of the coordinate variable z. In general, however, positive linear maps
of C(X) are not uniquely determined by their values on subalgebras of C(X),
with the result that there is no uniqueness assertion to complement the existence
assertion of Theorem 8.1 for the dilation theory of complete spectral sets.

On the other hand, there is a “many operators” generalization of Theorem 8.1
that applies to completely contractive unit-preserving homomorphisms of arbitrary
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function algebras A ⊆ C(X) that act on compact Hausdorff spaces X , in which
∂X is replaced by the Silov boundary of X relative to A. The details can be found
in Theorem 1.2.2 of [Arv72] and its corollary.

9. Completely positive maps and endomorphisms

In recent years, certain problems arising in mathematical physics and quantum
information theory have led researchers to seek a different kind of dilation the-
ory, one that applies to semigroups of completely positive linear maps that act
on von Neumann algebras. In this section, we describe the simplest of these dila-
tion theorems as it applies to the simplest semigroups acting on the simplest of
von Neumann algebras. A fuller accounting of these developments together with
references to other sources can be found in Chapter 8 of the monograph [Arv03].

Let φ : B(H) → B(H) be a unit-preserving completely positive (UCP) map
which is normal in the sense that for every normal state ρ of B(H), the composition
ρ ◦ φ is also a normal state. One can think of the semigroup

{φn : n = 0, 1, 2, . . .}
as representing the discrete time evolution of an irreversible quantum system.
What we seek is another Hilbert space K together with a normal ∗-endomorphism
α : B(K) → B(K) that is in some sense a “power dilation” of φ. There are a
number of ways one can make that vague idea precise, but only one of them is
completely effective. It is described as follows.

Let K ⊇ H be a Hilbert space that contains H and suppose we are given
a normal ∗-endomorphism α : B(K) → B(K) that satisfies α(1) = 1. We write
the projection PH of K on H simply as P , and we identify B(H) with the corner
PB(K)P ⊆ B(K). α is said to be a dilation of φ if

φn(A) = Pαn(A)P, A ∈ B(H) = PB(K)P, n = 0, 1, 2, . . . . (9.1)

Since φ is a unit-preserving map of B(H), P = φ(P ) = Pα(P )P , so that
α(P ) ≥ P . Hence we obtain an increasing sequence of projections

P ≤ α(P ) ≤ α2(P ) ≤ · · · . (9.2)

The limit projection P∞ = limn αn(P ) satisfies α(P∞) = P∞, hence the com-
pression of α to the larger corner P∞B(K)P∞ ∼= B(P∞K) of B(K) is a unital
∗-endomorphism that is itself a dilation of φ. By cutting down if necessary we can
assume that the configuration is proper in the sense that

lim
n→∞

αn(P ) = 1K , (9.3)

and in that case the endomorphism α is said to be a proper dilation of φ. We
have refrained from using the term minimal to describe this situation because
in the context of semigroups of completely positive maps, the notion of minimal
dilation is a more subtle one that requires a stronger hypothesis. That hypothesis
is discussed in Remark 9.3 below.
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Remark 9.1 (Stinespring’s theorem is not enough). It is by no means obvious that
dilations should exist. One might attempt to construct a dilation of the semigroup
generated by a single UCP map φ : B(H) → B(H) by applying Stinespring’s
theorem to the individual terms of the sequence of powers φn, n = 0, 1, 2, . . . , and
then somehow putting the pieces together to obtain the dilating endomorphism
α. Indeed, Stinespring’s theorem provides us with a Hilbert space Kn ⊇ H and a
representation πn : B(H) → B(Kn) for every n ≥ 0 such that

φn(A) = PHπn(A) �H , A ∈ B(H), n = 0, 1, 2, . . . .

However, while these formulas certainly inherit a relation to each other by virtue of
the semigroup formula φm+n = φm ◦φn, m, n ≥ 0, if one attempts to exploit these
relationships one finds that the relation between πm, πn and πm+n is extremely
awkward. Actually, there is no apparent way to assemble the von Neumann alge-
bras πn(B(H)) into a single von Neumann algebra that plays the role of B(K),
on which one can define a single endomorphism α that converts these formulas
into the single formula (9.1). Briefly put, Stinespring’s theorem does not apply to
semigroups.

These observations suggest that the problem of constructing dilations in this
context calls for an entirely new method, and it does. The proper result for normal
UCP maps acting on B(H) was discovered by Bhat and Parthasarathy [BP94],
building on earlier work of Parthasarathy [Par91] that was set in the context of
quantum probability theory. The result was later extended by Bhat to semigroups
of completely positive maps that act on arbitrary von Neumann algebras [Bha99].
The construction of the dilation has been reformulated in various ways; the one I
like is in Chapter 8 of [Arv03] (also see [Arv02]). Another approach, due to Muhly
and Solel [MS02], is based on correspondences over von Neumann algebras. The
history of earlier approaches to this kind of dilation theory is summarized in the
notes of Chapter 8 of [Arv03].

We now state the appropriate result for B(H) without proof:

Theorem 9.2. For every normal UCP map φ : B(H) → B(H), there is a Hilbert
space K ⊇ H and a normal ∗-endomorphism α : B(H) → B(H) satisfying α(1) =
1 that is a proper dilation of φ as in (9.1).

Remark 9.3 (Minimality and uniqueness). The notion of minimality for a dilation
α : B(K) → B(K) of a UCP map φ : B(H) → B(H) is described as follows. Again,
we identify B(H) with the corner PB(K)P . We have already pointed out that
the projections αn(P ) increase with n. However, the sequence of (nonunital) von
Neumann subalgebras αn(B(H)), n = 0, 1, 2, . . . , neither increases nor decreases
with n, and that behavior requires care. The proper notion of minimality in this
context is that the set of all vectors in K of the form

αn1(A1)αn2(A2) · · ·αnk(Ak)ξ, (9.4)

where k = 1, 2, . . . , nk = 0, 1, 2, . . . , Ak ∈ B(H), and ξ ∈ H , should have K as
their closed linear span. Equivalently, the smallest subspace of K that contains H



120 W. Arveson

and is invariant under the set of operators

B(H) ∪ α(B(H)) ∪ α2(B(H)) ∪ · · ·
should be all of K. It is a fact that every minimal dilation is proper, but the
converse is false. It is also true that every proper dilation can be reduced in a
natural way to a minimal one, and finally, that any two minimal dilations of the
semigroup {φn : n ≥ 0} are isomorphic in a natural sense.

We also point out that there is a corresponding dilation theory for one-
parameter semigroups of UCP maps. These facts are discussed at length in Chapter
8 of [Arv03].

Appendix: Brief on Banach ∗-algebras

Banach ∗-algebras (defined at the beginning of Section 3) are useful because they
are flexible – it is usually a simple matter to define a Banach ∗-algebra with
the properties one needs. More importantly, it is far easier to define states and
representations of Banach ∗-algebras than it is for the more rigid category of C∗-
algebras. For example, we made use of the technique in the proof of Theorem 4.1
and the estimate of Remark 4.3.

On the other hand, it is obviously desirable to have C∗-algebraic tools avail-
able for carrying out analysis. Fortunately one can have it both ways, because ev-
ery Banach ∗-algebra A is associated with a unique enveloping C∗-algebra C∗(A)
which has the “same” representation theory and the “same” state space as A. In
this Appendix we briefly describe the properties of this useful functor A → C∗(A)
for the category of Banach ∗-algebras that have a normalized unit 1. There are
similar results (including Proposition A.1 below) for many nonunital Banach ∗-
algebras – including the group algebras of locally compact groups – provided that
they have appropriate approximate units. A comprehensive treatment can be found
in [Dix64].

The fundamental fact on which these results are based is the following (see
Proposition 4.7.1 of the text [Arv01] for a proof):

Proposition A.1. Every positive linear functional ρ on a unital Banach ∗-algebra
A is bounded, and in fact �ρ� = ρ(1).

What we actually use here is the following consequence, which is proved by
applying Proposition A.1 to functionals of the form ρ(a) = 
φ(a)ξ, ξ�:
Corollary A.2. Every operator-valued positive linear map φ :A→B(H) is bounded,
and �φ� = �φ(1)�.

By a representation of a Banach ∗-algebra A we mean a ∗-preserving homo-
morphism π : A → B(H) of A into the ∗-algebra of operators on a Hilbert space. It
is useful to assume the representation is nondegenerate in the sense that π(1) = 1;
if that is not the case, it can be arranged by passing to the subrepresentation
defined on the subspace H0 = π(1)H . Representations of Banach ∗-algebras arise
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from positive linear functionals (by way of the GNS construction which makes
use of Proposition A.1) or from completely positive linear maps (by a variation of
Theorem 6.1, by making use of Corollary A.2).

While we have made no hypothesis on the norms �π(a)� associated with
a representation π, it follows immediately from Proposition A.1 that every rep-
resentation of A has norm 1. Indeed, for every unit vector ξ ∈ H and a ∈ A,
ρ(a) = 
π(a)ξ, ξ� defines a positive linear functional on A with ρ(1) = 1, so that

�π(a)ξ�2 = 
π(a)∗π(a)ξ, ξ� = 
π(a∗a)ξ, ξ� = ρ(a∗a) ≤ �a∗a� ≤ �a�2,

and �π(a)� ≤ �a� follows. It is an instructive exercise to find a direct proof of the
inequality �π(a)� ≤ �a� that does not make use of Proposition A.1.

Remark A.3 (Enveloping C∗-algebra of a Banach ∗-algebra). Consider the semi-
norm � · �1 defined on A by

�a�1 = sup
π

�π(a)�, a ∈ A,

the supremum taken over a “all” representations of A. Since the representations
of A do not form a set, the quotes simply refer to an obvious way of choosing suf-
ficiently many representatives from unitary equivalence classes of representations
so that every representation is unitarily equivalent to a direct sum of the repre-
sentative ones. It is clear that �a∗a�1 = �a�2

1. Indeed, � · �1 is a C∗-seminorm,
and the completion of A/{x ∈ A : �x�1 = 0} is a C∗-algebra C∗(A), called the
enveloping C∗-algebra of A. The natural completion map

ι : A → C∗(A) (A.1)

is a ∗-homomorphism having dense range and norm 1. This completion (A.1) has
the following universal property: For every representation π : A → B(H) there is
a unique representation π̃ : C∗(A) → B(H) such that π̃ ◦ ι = π. The map π → π̃
is in fact a bijection. Indeed, Proposition A.1 is equivalent to the assertion that
there is a bijection between the set of positive linear functionals ρ on A and the set
of positive linear functionals ρ̃ on its enveloping C∗-algebra, defined by a similar
formula ρ̃ ◦ ι = ρ.

One should keep in mind that the completion map (A.1) can have a nontrivial
kernel in general, but for many important examples it is injective. For example, it
is injective in the case of group algebras – the Banach ∗-algebras L1(G) associated
with locally compact groups G. When G is commutative, the enveloping C∗-algebra
of L1(G) is the C∗-algebra C∞(Ĝ) of continuous functions that vanish at ∞ on
the character group Ĝ of G.
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