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Abstract: We show that states on tensor products of matrix algebras whose ranks are
relatively small are almost surely entangled, but that states of maximum rank are not.
More precisely, let M = Mm(C) and N = Mn(C) be full matrix algebras with m ≥ n,
fix an arbitrary state ω of N , and let E(ω) be the set of all states of M ⊗ N that extend
ω. The space E(ω) contains states of rank r for every r = 1, 2, . . . ,m · rank ω, and it
has a filtration into compact subspaces

E1(ω) ⊆ E2(ω) ⊆ · · · ⊆ Em·rank ω = E(ω),

where Er (ω) is the set of all states of E(ω) having rank ≤ r .
We show first that for every r , there is a real-analytic manifold V r , homogeneous

under a transitive action of a compact group Gr , which parameterizes Er (ω). The unique
Gr -invariant probability measure on V r promotes to a probability measure Pr,ω on
Er (ω), and Pr,ω assigns probability 1 to states of rank r . The resulting probability space
(Er (ω), Pr,ω) represents “choosing a rank r extension of ω at random”.

Main result: For every r = 1, 2, . . . , [rank ω/2], states of (Er (ω), Pr,ω) are almost
surely entangled.

1. Introduction

In the literature of physics and quantum information theory, a stateρ of the tensor product
of two matrix algebras M ⊗ N is said to be separable (or classically correlated) if it is
a convex combination of product states

ρ = t1 · σ1 ⊗ τ1 + t2 · σ2 ⊗ τ2 + · · · + tr · σr ⊗ τr ,

where the coefficients tk are nonnegative and sum to 1, and where σk, τk are states of M
and N respectively [Wer89]. Remark 7.5 below implies that the set of separable states
is a compact convex subset of the state space of M ⊗ N . A state that is not separable is
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said to be entangled. The so-called separability problem of determining whether a given
state of M ⊗ N is entangled is a subject of current research [HHHH07]. It is considered
difficult, and computationally, has been shown to be NP-hard. The purpose of this paper
is to show that almost surely, a state of M ⊗ N of relatively small rank is entangled.

The set E(ω) of all extensions of a fixed stateω of N to a state of M ⊗ N is a compact
convex subspace of the state space of M ⊗ N , and it admits a filtration into compact
subspaces

E1(ω) ⊆ E2(ω) ⊆ · · · ⊆ Em·rank ω(ω) = E(ω),

where Er (ω) is the space of all extensions ρ of ω satisfying rank ρ ≤ r . In Sects. 2
through 6 we show that for each r there is a uniquely determined unbiased probability
measure Pr,ω on Er (ω), and that Pr,ω is concentrated on the set of states of rank = r .
Hence the probability space (Er (ω), Pr,ω) represents “choosing a rank r extension of ω
at random”. The main result below is an assertion about the probability of entanglement
in the various probability spaces (Er (ω), Pr,ω), namely that the probability of entangle-
ment is 1 when r is relatively small (see Theorem 9.1 and Remark 9.2). We also point
out in Theorem 10.1 that this behavior does not persist through large values of r , since
for r = m · rank ω, the probability p of entanglement is shown to be positive (and< 1).

Remark 1.1. (Terminology and conventions). Let H be a finite dimensional Hilbert
space. A state ρ of B(H) has an associated density operator A ∈ B(H), defined by
ρ(X) = trace(AX), X ∈ B(H). In the literature of quantum information theory, the
operation of restricting ρ to a subfactor N ⊆ B(H) corresponds to a “partial tracing”
operation on its density operator, in which A ∈ B(H) is mapped to the operator Ā ∈ N
that is defined uniquely by

ρ(Y ) = traceN ( ĀY ), Y ∈ N , (1.1)

where traceN denotes the trace of N normalized so that it takes the value 1 on minimal
projections of N . In more operator-algebraic terms, the partial trace of A is Ā = µ·E(A),
where E : B(H) → N is the conditional expectation defined by the trace of B(H) (with
any normalization) and µ is the multiplicity of the representation of N associated with
the inclusion N ⊆ B(H). The constant µ is forced on the formula Ā = µ · E(A) by the
normalization specified for traceN in (1.1), and this non-invariant feature of (1.1) leads to
a problem if one attempts to interpret it for more general ∗-subalgebras N ⊆ B(H). More
significantly, the right side of (1.1) loses all meaning for type I I I subfactors N ⊆ B(H)
when H is infinite dimensional - a situation of some importance for algebraic quantum
field theory. We choose to avoid such issues by dealing with restrictions and extensions
of states rather than partial traces of operators and their inverse images.

Remark 1.2. (Literature and related results). A significant part of the literature of physics
and quantum information theory makes some connection with probabilistic aspects of
entanglement. The following papers (and references therein) represent a sample. The
papers [Sza04,AS06] concern Hilbert spaces HN = (C2)⊗N for large N , and sharp
estimates are obtained for the smallness of the ratio of the volume of separable states
to the volume of all states. In [Par04], the maximal dimension of a linear subspace of
H1 ⊗ · · · ⊗ HN that contains no nonzero product vectors is calculated, and in [HLW06]
it is shown that random subspaces of H ⊗ K are likely to contain only near-maximally
entangled vectors. [Loc00] discusses “minimal” decompositions for separable states
into convex combinations of pure product states (also see [Uhl98,STV98]). The survey
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[PR02] also deserves mention. For early results on the existence of a separable ball in
the state space see [BCJ+99]. A probabilistic study of separable states is carried out in
[ZHLS98], where lower and upper bounds are obtained for the probability of the set of
separable states. Those authors make use of a rather different probability space, and there
appears to be negligible overlap between [ZHLS98] and this paper. Finally, the paper
[PGWP+08] concerning maximal violations of Bell’s inequalities for tripartite systems
certainly bears on issues of entanglement. Most of the above developments focus on
obtaining asymptotic estimates of the volume of separable states. The following results
differ in that they make concrete assertions in all dimensions.

In order to prove Theorem 9.1, we introduce a numerical invariant of states of tensor
products of matrix algebras - called the wedge invariant - that can detect entanglement.
We now give a precise definition of the wedge invariant, deferring proofs to later sections,
and follow that with some general remarks on how the wedge invariant enters into the
proof of Theorem 9.1.

Its definition requires that we work with operators rather than matrices, hence we shift
attention to states ρ defined on concrete operator algebras B(K )⊗B(H) ∼= B(K ⊗ H),
where H and K are finite dimensional Hilbert spaces. Fix a state ρ of B(K ⊗ H), let
r be the rank of its density operator, and choose vectors ζ1, . . . , ζr ∈ K ⊗ H such
that

ρ(x) =
r∑

k=1

〈xζk, ζk〉, x ∈ B(K ⊗ H). (1.2)

The vectors ζk need not be eigenvectors of the density operator of ρ, but necessa-
rily they are linearly independent. Let ω be the state of B(H) defined by restric-
tion

ω(x) = ρ(1K ⊗ x), x ∈ B(H). (1.3)

The rank of ω depends on ρ, and can be any integer from 1 to n = dim H . Fix a Hilbert
space K0 of dimension rank ω, such as K0 = C

rank ω. The basic GNS construction
applied to ω, together with the representation theory of matrix algebras, leads to the
existence of a unit vector ξ ∈ K0 ⊗ H that is cyclic for the algebra 1K0 ⊗ B(H), and
has the property

ω(x) = 〈(1K0 ⊗ x)ξ, ξ 〉, x ∈ B(H). (1.4)

We point out that this procedure of passing from ω to the vector state defined by ξ is
known as purification in the physics literature.

Fixing such a unit vector ξ , we define an r -tuple of operators v1, . . . , vr as follows.
Because of (1.3) and (1.4), one can show that for each k = 1, . . . , r there is a unique
operator vk : K0 → K such that

(vk ⊗ x)ξ = (1K ⊗ x)ζk, x ∈ B(H),

and one finds that v1, . . . , vr ∈ B(K0, K ) satisfies v∗
1v1 + · · · + v∗

r vr = 1K0 . The r -tuple
(v1, . . . , vr ) depends on the choice of ζ1, . . . , ζr as well as the choice of ξ ∈ K0 ⊗ H .
But it is also a fact that if ζ ′

1, . . . , ζ
′
r is another set of r vectors that satisfies (1.2) and ξ ′ is
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another cyclic vector satisfying (1.4), then the resulting r -tuple of operators (v′
1, . . . , v

′
r )

is related to (v1, . . . , vr ) as follows:

v′
i =

r∑

j=1

λi jv jw, 1 ≤ i ≤ r, (1.5)

where (λi j ) is a unitary r × r matrix of scalars andw is a unitary operator in B(K0) (see
Sect. 8).

For every choice of integers i1, . . . , ir with 1 ≤ i1, . . . , ir ≤ r the tensor product
of operators vi1 ⊗ · · · ⊗ vir belongs to B(K ⊗r

0 , K ⊗r ). Hence we can define an operator
v1 ∧ · · · ∧ vr ∈ B(K ⊗r

0 , K ⊗r ) as the alternating average

v1 ∧ · · · ∧ vr = 1

|G|
∑

π∈G

(−1)πvπ(1) ⊗ · · · ⊗ vπ(r), (1.6)

the sum extended over the group G of all permutations π of {1, . . . , r}. The permutation
group G acts naturally as unitary operators on both K ⊗r

0 and K ⊗r , and we may form
their symmetric and antisymmetric subspaces. For example, in terms of the unitary
representation π → Uπ of G on K ⊗r ,

K ⊗r
+ = {ζ ∈ K ⊗r : Uπζ = ζ, π ∈ G},

K ⊗r− = {ζ ∈ K ⊗r : Uπζ = (−1)π ζ, π ∈ G}.

The operator v1 ∧ · · · ∧ vr maps the symmetric subspace of K ⊗r
0 to the antisymmetric

subspace of K ⊗r , hence its restriction to K ⊗r
0+ is an operator in B(K ⊗r

0+ , K ⊗r− ). This
operator also depends on the choice of ξ , η1, . . . , ηr . However, because of (1.5), the
rank of v1 ∧ · · · ∧ vr �K ⊗r

0+
is a well-defined nonnegative integer that we associate with

the state ρ,

w(ρ) = rank(v1 ∧ · · · ∧ vr �K ⊗r
0+
).

In a similar way, we may form the wedge product of the r -tuple of adjoints v∗
k : K →

K0 to obtain an operator v∗
1 ∧ · · · ∧ v∗

r ∈ B(K ⊗r , K ⊗r
0 ), and restrict it to the symmetric

subspace K ⊗r
+ ⊆ K ⊗r to obtain a second integer w∗(ρ) = rank(v∗

1 ∧ · · · ∧ v∗
r �K ⊗r

+
).

Thus we can make the following

Definition 1.3. The wedge invariant of a state ρ of B(K ⊗ H) is defined as the pair of
nonnegative integers (w(ρ),w∗(ρ)), where

w(ρ) = rank(v1 ∧ · · · ∧ vr �K ⊗r
0+
), w∗(ρ) = rank(v∗

1 ∧ · · · ∧ v∗
r �K ⊗r

+
).

The wedge invariant has two principal features. First, it is capable of detecting entan-
glement because of the following result of Sect. 8:

Theorem 1.4. If ρ is a separable state of B(K ⊗ H), then w(ρ) ≤ 1 and w∗(ρ) ≤ 1.
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This separability criterion differs fundamentally from others that involve positive
linear maps (see [Per96,Sto07], or the survey [HHHH07]).

The second feature of the wedge invariant is that it is associated with subvarieties
of the real algebraic varieties that will be used to parameterize states in the following
sections. To illustrate that geometric feature in broad terms, let Y and Z be finite-
dimensional complex vector spaces, let B(Y, Z) be the space of all linear operators from
Y to Z , and consider the set B(Y, Z)r of all r -tuples v = (v1, . . . , vr ) with components
vk ∈ B(Y, Z). Then for every k = 1, 2, . . . , the set of r -tuples

W r (k) = {v = (v1, . . . , vr ) ∈ B(Y, Z)r : rank(v1 ∧ · · · ∧ vr �Y ⊗r
+
) ≤ k}

is an algebraic set - namely the set of common zeros of a finite set f1, . . . , f p of
real-homogeneous multivariate polynomials fk : B(Y, Z)r → R. This leads to the fol-
lowing fact that provides a key step in the proof of Theorem 9.1 below: Let r = 1, 2, . . .
and let M be a d-dimensional connected real-analytic submanifold of B(Y, Z)r that
contains a point (v1, . . . , vr ) ∈ M for which

rank(v1 ∧ · · · ∧ vr �Y ⊗r
+
) > k (1.7)

for some k ≥ 1. Then (1.7) is generic in the sense that for every relatively open subset
U ⊆ M endowed with real-analytic coordinates, U ∩ W r (k) is a set of d-dimensional
Lebesgue measure zero.

The methods we use are a mix of matrix/operator theory, convexity, and basic real
algebraic geometry. In Sect. 11, we offer some general remarks that address the broa-
der issue of whether one can expect an effective “real-analytic” characterization of
entanglement in general. For the reader’s convenience we have included two appen-
dices containing formulations of some known results about real-analytic varieties of
matrices that are fundamental for our main results. Finally, a significant part of the
background material of Sects. 4 and 5 can be found scattered throughout the litera-
ture of operator algebras or quantum information theory (references to some of it can
be found in the survey [HHHH07]). We have included proofs of everything we need
for readability, and to set the point of view that we take for the main results later
on.

We also point out that further applications to completely positive maps on matrix
algebras are developed in a sequel to this paper [Arv08].

2. The Noncommutative Spheres V r(n, m)

Let m, n be positive integers with m ≥ n. For every r = 1, 2, . . . , we work with the
space V r (n,m) of all r -tuples v = (v1, . . . , vr ) of complex m × n matrices vk such
that

v∗
1v1 + · · · + v∗

r vr = 1n . (2.1)

There is a natural left action of the unitary group U (rm) on V r (n,m), defined as follows.
An element of U (rm) can be viewed as a unitary r ×r matrixw = (wi j )with entrieswi j
in the matrix algebra Mm(C), and it acts on an element v = (v1, . . . , vr ) ∈ V r (n,m)
by way of w · v = v′, where

v′
i =

r∑

j=1

wi jv j , 1 ≤ i ≤ r. (2.2)
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There is also a right action of the unitary group U (n) on V r (n,m), in which u ∈ U (n)
acts on v ∈ V r (n,m) by (v1, . . . , vr ) · u = (v1u, . . . , vr u). Both actions are better
understood in terms of operators, after the identifications of the following paragraph
have been made.

2.1. The varieties V r (H, K ). Note that n precedes m in the notation for V r (n,m). This
convention arises from the interpretation of V r (n,m) as a space of operators rather than
matrices. If H and K are complex Hilbert spaces of respective dimensions n and m,
then the space V r (H, K ) of all r -tuples of operators v = (v1, . . . , vr ) with components
vk ∈ B(H, K ) that satisfy the counterpart of (2.1),

v∗
1v1 + · · · + v∗

r vr = 1H , (2.3)

can be identified with V r (n,m) after making a choice of orthonormal bases for both
H and K , and all statements about V r (n,m) have appropriate counterparts in the more
coordinate-free context of the spaces V r (H, K ). Throughout this paper, it will serve our
purposes better to interpret V r (n,m) as the space of r -tuples of operators V r (H, K ).

V r (H, K ) is a compact subspace of the complex vector space B(H, K )r of all
r -tuples of operators v = (v1, . . . , vr ) with components in B(H, K ), on which the
unitary group U (r · K ) of the direct sum r · K of r copies of K acts smoothly on the
left. Because of the presence of the ∗-operation in (2.3), we can also view the ambient
space B(H, K )r as a finite dimensional real vector space, endowed with the (real) inner
product

〈(v1, . . . , vr ), (w1, . . . , wr )〉 = �
r∑

k=1

tracew∗
kvk, v, w ∈ B(H, K )r . (2.4)

The following result summarizes the geometric structure that V r (H, K ) inherits from
its ambient space, when H and K are Hilbert spaces satisfying n = dim H ≤ m =
dim K < ∞.

Theorem 2.1. For every r = 1, 2, . . . , the space V r (H, K ) is a compact, connected,
real-analytic Riemannian manifold of dimension d = n(2rm − n), on which the unitary
group U(r ·K ) acts as a transitive group of isometries. In particular, the natural measure
associated with its Riemannian metric is proportional to the unique probability measure
on V r (H, K ) that is invariant under the transitive U(r · K )-action.

Proof. We identify the space B(H, K )r of r -tuples of operators as the space B(H, r · K )
of all operators from H into the direct sum r · K of r copies of K , in which an
r -tuple v = (v1, . . . , vr ) of operators in B(H, K ) is identified with the single operator
ṽ : H → r · K defined by

ṽξ = (v1ξ, . . . , vr ξ), ξ ∈ H.

After this identification, V r (H, K ) becomes the space of all isometries in B(H, r · K ),
and Theorem A.2 implies that V r (H, K ) inherits the structure of a connected real-
analytic submanifold of the ambient real vector space B(H, r · K ) ∼= B(H, K )r in
which it is embedded, and that the unitary group U(r · K ) acts transitively on it by left
multiplication.
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The inner product (2.4) on B(H, K )r restricts so as to give a Riemannian metric
on the tangent bundle of V r (H, K ), thereby making it into a compact Riemannian
manifold.

Notice that the action of U(r · K ) is actually defined on the larger inner product space
B(H, K )r , and its action on B(H, K )r is by isometries. Indeed, let u ∈ U (r · K ), and
view u as an r × r matrix (ui j ) of operators ui j in B(K ). Choosing v,w ∈ B(H, K )r

and setting v′ = u · v and w′ = u · w as in (2.2), then
∑

k u∗
ki uk j = δi j 1K because

u = (ui j ) is unitary, hence

〈v′, w′〉 = �
r∑

k=1

trace(w′∗
k v

′
k) = �

r∑

i, j,k=1

trace(w∗
i u∗

ki uk jv j )

= �
r∑

i=1

trace(w∗
i vi ) = 〈v,w〉.

Hence U(r · K ) acts as isometries on the Riemannian submanifold V r (H, K ).
Finally, the dimension calculation amounts to little more than subtracting the num-

ber of real equations appearing in the matrix equation (2.1) from the real dimension
dimR(B(H, K )r ) of the vector space B(H, K )r . ��
Remark 2.2. [Right action of U(H) on V r (H, K )]. The right action of the unitary group
U(H) on r -tuples of operators in B(H, K )r is defined by

(v,w) ∈ B(H, K )r × U(H) → v · w = (v1w, . . . , vrw).

This action of U(H) commutes with the left action of U(r · K ) and it preserves the inner
product of B(H, K )r . Hence it restricts to a right action of U(H) on V r (H, K ) that
commutes with the transitive left action, and which also acts as isometries relative to the
Riemannian structure of V r (H, K ).

Remark 2.3. [The invariant measure class of V r (H, K )]. Perhaps it is unnecessary to
point out that the natural measure class of V r (H, K ) is that of Lebesgue measure in
local coordinates; more precisely, relative to real-analytic local coordinates on an open
subset of V r (H, K ), the measure µ associated with the Riemannian metric is mutually
absolutely continuous with the transplant of Lebesgue measure to that chart.

2.2. Subvarieties of V r (H, K ). There is an intrinsic notion of real-analytic function
f : V r (H, K ) → R, namely a function such that for every real-analytic isomorphism
u : D → U of an open ball D ⊆ R

d onto an open set U ⊆ V r (H, K ), f ◦ u is a
real-analytic function on D (see Appendix 12). Similarly, given a finite dimensional real
vector space W , one can speak of real-analytic functions

F : V r (H, K ) → W, (2.5)

and though it is rarely necessary to do so, one can reduce the analysis of such vector
functions to that of k-tuples of real-valued analytic functions by composing F with a
basis of linear functionals ρ1, . . . , ρk for the dual of W .
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Remark 2.4. (Homogeneous polynomials). Virtually all of the analytic functions (2.5)
that we will encounter are obtained by restricting homogeneous polynomials defined on
the ambient space B(H, K )r to V r (H, K ). Let V and W be finite dimensional real vector
spaces. A map F : V → W is said to be a real homogeneous polynomial (of degree
k) if it has the form F(v) = G(v, v, . . . , v), where G is a real multilinear mapping
G : V k → W in k variables. Though this terminology is slightly abusive in that the
zero function qualifies as a homogeneous polynomial of every positive degree, it will
not cause problems in this paper. A function F : V → W is a homogeneous polynomial
of degree k iff ρ ◦ F is a scalar-valued homogeneous polynomial of degree k for every
linear functional ρ : W → R.

Definition 2.5. By a subvariety of V r (H, K ) we mean a subspace Z of V r (H, K ) of
the form

Z = {v ∈ V r (H, K ) : F(v) = 0},
where F : V r (H, K ) → W is a real-analytic function taking values in some finite-
dimensional real vector space W .

Subvarieties are obviously compact. As a concrete example, the set

Z = {v = (v1, . . . , vr ) ∈ V r (H, K ) : rank v1 ≤ 2}
is the zero subvariety associated with the restriction to V r (H, K ) of the cubic homoge-
neous polynomial F : B(H, K )r → B(∧3 H,∧3 K ), where

F(v) = (v1 ⊗ v1 ⊗ v1) �H∧H∧H .

Proposition 2.6. Let Z be a subvariety of V r (H, K ) and let µ be the natural measure
of V r (H, K ). If Z �= V r (H, K ), then µ(Z) = 0.

Proof. Let F : V r (H, K ) → W be a real-analytic function taking values in a finite
dimensional real vector space such that

Z = {v ∈ V r (H, K ) : F(v) = 0}.
F cannot vanish identically because Z �= V r (H, K ); and since V r (H, K ) is connected
and F is real-analytic, it cannot vanish identically on any nonempty open subset of
V r (H, K ).

Let d = dim(V r (H, K )) and let µ be the natural measure of V r (H, K ) associated
with its Riemannian metric. To show that µ(Z) = 0, it suffices to show that every point
of V r (H, K ) has a neighborhood U such that µ(U ∩ Z) = 0. To prove that, fix a point
v ∈ V r (H, K ) and choose an open neighborhood U of v that can be coordinatized by
the open unit ball B ⊆ R

d by way of a real-analytic isomorphism u : B → U (see
Appendix 12). The composition F ◦ u : B → W is a real-analytic mapping that does
not vanish identically on B, hence there is a real-linear functional ρ : W → R such that
ρ ◦ F ◦ u does not vanish identically on B. Since ρ ◦ F ◦ u is a real-valued analytic
function of its variables, Proposition B.1 implies that the set Z̃ of its zeros has Lebesgue
measure zero. It follows that u(Z̃) ⊆ U is a set of µ-measure zero that contains U ∩ Z ,
hence µ(U ∩ Z) = 0. ��
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3. The Unbiased Probability Spaces (X r, P r)

Let H , K be Hilbert spaces, with n = dim H ≤ m = dim K < ∞. In Sect. 6, we will
show that the spaces V r (H, K ) can be used to parameterize states of B(K ⊗ H). The
parameterizing map is not injective, but it promotes naturally to an injective map of a
quotient Xr of V r (H, K ). We now introduce these spaces Xr and we show that each
of them carries a unique unbiased probability measure Pr , so that (Xr , Pr ) becomes a
topological probability space that serves to parameterize states faithfully. In this section
we summarize the basic properties of these probability spaces and discuss some of the
random variables that will enter into the analysis of states later on.

The group U (r) of all scalar r × r unitary matrices in Mr (C) is identified with
a subgroup of U(r · K )—consisting of unitary operator matrices with components in
C · 1K , hence it acts naturally on V r (H, K ), in which λ = (λi j ) ∈ U (r) acts on
v = (v1, . . . , vr ) ∈ V r (H, K ) by way of λ · v = v′, where

v′
i =

r∑

j=1

λi jv j , i = 1, 2, . . . , r. (3.1)

Since U (r) is compact and acts smoothly on V r (H, K ), its orbit space is a compact
metrizable space Xr . Moreover, the natural projection

v ∈ V r (H, K ) → v̇ ∈ Xr

is a continuous surjection with the following universal property that we will use repea-
tedly: For every topological space Y and every continuous function f : V r (H, K ) → Y
satisfying f (λ · v) = f (v) for λ ∈ U (r), v ∈ V r (H, K ), there is a unique conti-
nuous function ḟ : Xr → Y such that ḟ (v̇) = f (v), v ∈ V r (H, K ). Note too
that the commutative C∗-algebra C(Xr ) is isomorphic to the C∗-subalgebra A ⊆
C(V r (H, K )) of functions f ∈ C(V r (H, K )) that satisfy f (λ·v) = f (v) for λ ∈ U (r),
v ∈ V r (H, K ).

It follows that the quotient space Xr carries a unique unbiased probability measure
Pr that is defined on Borel subsets E by promoting the unique invariant probability
measure µ of V r (H, K ),

Pr (E) = µ{v ∈ V r (H, K ); v̇ ∈ E}, E ⊆ Xr .

Equivalently, in terms of the identification C(Xr ) ∼= A ⊆ C(V r (H, K )) of the previous
paragraph, Pr is the measure on the Gelfand spectrum Xr of A that the Riesz-Markov
theorem associates with the state

ρ( f ) =
∫

V r (H,K )
f (v) dµ(v), f ∈ A.

In this way we obtain a compact metrizable probability space (Xr , Pr ). Notice that
(Xr , Pr ) depends not only on r , but also H and K - or at least on their dimensions n
and m. However, since H and K will be fixed throughout the discussions to follow, we
can safely lighten notation by omitting reference to these extra parameters.

Remark 3.1. (Right action of U(H) on Xr ). Note that while the left action of the larger
group U(r · K ) acts transitively on V r (H, K ), that symmetry is lost when one passes
to the orbit space Xr because U (r) is not a normal subgroup of U(r · K ). On the other
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hand, the right action of U(H) on V r (H, K ) does promote naturally to a right action
on Xr . Moreover, since the right action on V r (H, K ) preserves the Riemannian metric,
it also preserves the natural measure µ of V r (H, K ). We conclude: The right action
of the unitary group U(H) on Xr gives rise to a compact group of measure-preserving
homeomorphisms of the topological probability space (Xr , Pr ).

Remark 3.2. (The rank variable). We begin by defining a random variable

rank : Xr → {1, 2, . . . , r}.
For v = (v1, . . . , vr ) ∈ V r (H, K ), let Sv = span {v1, . . . , vr } be the complex linear
subspace of B(H, K ) spanned by its component operators. Elementary linear algebra
shows that Sλ·v = Sv for every λ = (λi j ) ∈ U (r), and in particular the dimension of Sv
depends only on the image v̇ of v in Xr . Hence we can define a function rank : Xr →
{1, 2, . . . , r} by

rank(v̇) = dim Sv, v ∈ V r (H, K ). (3.2)

Since the functionv → dim Sv is lower semicontinuous in the sense that {v ∈ V r (H, K ) :
dim Sv ≤ k} is closed for every k, it follows that the rank function is Borel-measurable,
and hence defines a random variable. Moreover, since dim Sv·w = dim Sv for every
w ∈ U(H), the rank variable is invariant under the right action of U(H) on Xr .

Significantly, rank is almost surely constant throughout Xr :

Theorem 3.3. For every r = 1, 2, . . . ,mn, Pr {x ∈ Xr : rank(x) �= r} = 0.

The proof of Theorem 3.3 requires:

Lemma 3.4. For every r = 1, 2, . . . ,mn, V r (H, K ) contains an r-tuple v =
(v1, . . . , vr ) with linearly independent component operators v1, . . . , vr .

Proof. Fixing r , 1 ≤ r ≤ mn, we claim first that there is a linearly independent set of
operators a1, . . . , ar : H → K such that

ker a1 ∩ · · · ∩ ker ar = {0}. (3.3)

Indeed, since dim B(H, K ) = mn ≥ r , we can find a linearly independent subset
b1, . . . , br ∈ B(H, K ). Set H0 = ker b1 ∩ · · · ∩ ker br and let r · K be the direct sum
of r copies of K . The linear operator B : ξ ∈ H → (b1ξ, . . . , br ξ) ∈ r · K has
kernel H0, hence dim B H + dim H0 = n ≤ m = dim K ≤ dim(r · K ), and therefore
dim H0 ≤ dim(r · K ) − dim B H . Hence there is a partial isometry B ′ in B(H, r · K )
with initial space H0 and final space contained in B H⊥. Writing B ′ξ = (b′

1ξ, . . . , b′
r ξ)

with b′
k ∈ B(H, K ), we set

a1 = b1 + b′
1, a2 = b2 + b′

2, . . . , ar = br + b′
r .

These operators restrict to a linearly independent set of operators from H⊥
0 into K , hence

they are a linearly independent subset of B(H, K ); and since the operator B + B ′ ∈
B(H, r · K ) has trivial kernel, (3.3) follows.

Fix such an r -tuple a1, . . . , ar . Then a∗
1a1 + · · · + a∗

r ar is an invertible operator in
B(H), and we can define a new r -tuple v1, . . . , vr in B(H, K ) by

vk = ak(a
∗
1a1 + · · · + a∗

r ar )
−1/2, k = 1, . . . , r.

The operators vk are also linearly independent, and by its construction, the r -tuple
v = (v1, . . . , vr ) belongs to V r (H, K ). ��



The Probability of Entanglement 293

Proof of Theorem 3.3. Consider the function F : V r (H, K ) → ∧rB(H, K ) obtained
by restricting the homogeneous polynomial defined on B(H, K )r ,

F(v) = v1 ∧ · · · ∧ vr , v = (v1, . . . , vr ) ∈ B(H, K )r ,

to the submanifold V r (H, K ). Obviously, F is real-analytic, and elementary multilinear
algebra implies that for every v = (v1, . . . , vr ) ∈ V r (H, K ),

{v1, . . . , vr } is linearly dependent ⇐⇒ v1 ∧ · · · ∧ vr = 0.

Hence dim Sv < r ⇐⇒ F(v) = 0. It follows from Lemma 3.4 that the polynomial
F does not vanish identically on V r (H, K ), so by Proposition 2.6, its zero variety
Z = {v ∈ V r (H, K ) : F(v) = 0} is a closed subset of V r (H, K ) of µ-measure
zero. Moreover, Z is invariant under the left action of U (r) on V r (K , K ) because for
λ ∈ U (r), v = (v1, . . . , vr ) ∈ V r (H, K ) and λ · v = (v′

1, . . . , v
′
r ) as in (3.1), we have

F(λ · v) = v′
1 ∧ · · · ∧ v′

r = det(λi j ) · v1 ∧ · · · ∧ vr = det(λi j ) · F(v).

It follows that Ż is a closed set of probability zero in Xr ,

Pr ({x ∈ Xr : rank(x) < r}) = Pr (Ż) = µ(Z) = 0,

and Theorem 3.3 follows. ��

4. Operators Associated with Extensions of States

Let H0 be a finite dimensional Hilbert space and let N ⊆ B(H0) be a subfactor - a
∗-subalgebra with trivial center that contains the identity operator. Every state ω of N
can be extended in many ways to a state of B(H0). In this section we show that the
range of the density operator of every extension ρ is linearly isomorphic to a certain
operator space associated with the pair (ρ, ω). While this identification is technically
straightforward, it seems not to be part of the lore of matrix algebras. The details follow.

For every state ω of N , the set E(ω) of all extensions of ω to a state of B(H0) is
a compact convex subset of the state space of B(H0). We begin with some elementary
observations that relate properties of ω to properties of the various states in E(ω). The
support projection of a state ρ of B(H0) is defined as the smallest projection p ∈ B(H0)

such that ρ(p) = 1; the range pH0 of the support projection of ρ is the same as the
range of its density operator, and the dimension of that space is called the rank of ρ.

Lemma 4.1. Let N ⊆ B(H0) be a subfactor, let ω be a state of N , and let p be the
smallest projection in N satisfying ω(p) = 1. Then the range of the density operator of
every state in E(ω) is contained in pH0.

Proof. Choose ρ ∈ E(ω). Since p ∈ N , we have ρ(p) = ω(p) = 1. It follows that the
support projection q ∈ B(H0) of ρ satisfies q ≤ p. ��
Remark 4.2. (Extensions of faithful states). It is significant that for purposes of analyzing
the structure of E(ω), one can restrict attention to extensions of faithful statesω. Indeed,
letting p be as in Lemma 4.1, we see that since every state in E(ω) is supported in pH0,
it can be viewed as a state of B(pH0) = pB(H0)p that extends the faithful state defined
by restricting ω to the corner pN p ⊆ N . Since pN p is also a subfactor of B(pH0), the
asserted reduction is apparent.
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Remark 4.3. (Commutants and tensor products). Let M = N ′ be the commutant of N in
B(H0). M is also a subfactor, and we can identify the C∗-algebra B(H0) with M ⊗ N .
Since we intend to discuss entanglement among the states of E(ω), it is better to view
E(ω) as the set of states ρ on the tensor product M ⊗ N that satisfy

ρ(b) = ω(1M ⊗ b), b ∈ N .

Having made these identifications, we are free to introduce new “coordinates” that realize
M as B(K ), N as B(H), and M ⊗ N as B(K ⊗ H).

Remark 4.4. (Mixed states of N ). Since every extension of a pure state ω of N to M ⊗ N
is easily seen to be separable, the separability problem has content only for extensions
to M ⊗ N of mixed states ω. In view of Remark 4.2, we should analyze extensions of
faithful states of N to M ⊗ N in cases where N = B(H) and dim H ≥ 2.

We collect the following elementary fact – a textbook exercise on the GNS construc-
tion and the representation theory of matrix algebras.

Lemma 4.5. Let H be a finite-dimensional Hilbert space and let ω be a state of B(H)
of rank r . Then there is a unit vector ξω ∈ C

r ⊗ H such that ω(b) = 〈(1Cr ⊗ b)ξω, ξω〉,
b ∈ B(H), and ξω is a cyclic vector for the algebra 1Cr ⊗ B(H). If ξ ′

ω is another vector
in C

r ⊗ H with the same property, then there is a unique unitary operator w ∈ B(Cr )

such that ξ ′
ω = (w ⊗ 1H )ξω.

Proposition 4.6. Letω be a state of B(H), let K0 be a Hilbert space of dimension rank ω,
and let

ω(b) = 〈(1K0 ⊗ b)ξω, ξω〉, b ∈ B(H)
be a representation of ω with the properties of Lemma 4.5.

For every state ρ of B(K ⊗ H) that restricts to ω

ρ(1K ⊗ b) = ω(b), b ∈ B(H),
and for every vector ζ in the range R of the density operator of ρ, there is a unique
operator v ∈ B(K0, K ) such that (v ⊗ 1H )ξω = ζ . Moreover, the natural map
v → (v ⊗ 1H )ξω from the operator space

S = {v ∈ B(K0, K ) : (v ⊗ 1H )ξω ∈ R}
to R defines an isomorphism of complex vector spaces S ∼= R. In particular, rank
ρ = dim S.

Proof. For existence of the operator v, we claim first that for every b ∈ B(H),
(1K0 ⊗ b)ξω = 0 �⇒ (1K ⊗ b)ζ = 0.

Indeed, if (1K0 ⊗b)ξω = 0 thenω(b∗b) = ‖(1K0 ⊗b)ξω‖2 = 0, so that bp = 0, p being
the support projection of ω. Since ζ belongs to the range of the support projection q of ρ
and since q ≤ 1K ⊗ p by Lemma 4.1, it follows that (1K ⊗b)ζ = (1K ⊗b)(1K ⊗ p)ζ =
(1K ⊗ bp)ζ = 0.

Hence we can define an operator ṽ : K0 ⊗ H → K ⊗ H by

ṽ(1K0 ⊗ b)ξω = (1K ⊗ b)ζ, b ∈ B(H).
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It is clear from its definition that ṽ(1K0 ⊗b) = (1K ⊗b)ṽ for b ∈ B(H), so that ṽ admits a
unique factorization ṽ = v⊗1H with v ∈ B(K0, K ), in the sense that ṽ(ξ⊗η) = vξ⊗η,
for ξ ∈ K0, η ∈ H .

Uniqueness of v is a straightforward consequence of the fact that ξω is cyclic for the
algebra 1K0 ⊗ B(H). Finally, the last sentence is apparent from these assertions, since
v → (v ⊗ 1H )ξω ∈ K ⊗ H is a linear map. ��

Proposition 4.6 leads to the following operator-theoretic criterion for separability.
While it does not characterize the property, we will give an operator-theoretic characte-
rization of separability later in Proposition 7.7. It has been pointed out that the following
result can be read out of the assertions of Theorem 4 of [HSR03].

Corollary 4.7. Let ω, ξω, ρ, R and

S = {v ∈ B(K0, K ) : (v ⊗ 1H )ξω ∈ R}

be as in Proposition 4.6. Let v ∈ S and let ζ = (v⊗1)ξω. Then ζ has the form ζ = ξ⊗η
for vectors ξ ∈ K , η ∈ H iff rank(v) ≤ 1. If ρ is a separable state, then the operator
space S has a basis consisting of rank-one operators.

Proof. Fix v ∈ S and assume first that (v⊗1)ξω decomposes into a tensor product ξ⊗η
for vectors ξ ∈ K , η ∈ H . We use the fact that ξω is cyclic for 1K0 ⊗ B(H) to write

vK0 ⊗ H = (v ⊗ 1H )(1K0 ⊗ B(H))ξω = (1K ⊗ B(H))(v ⊗ 1H )ξω

= ξ ⊗ B(H)η = ξ ⊗ H.

It follows that vK0 = C · ξ , as asserted. Conversely, if vK0 = C · ξ for some ξ ∈ K ,
then (v ⊗ 1)ξω ∈ (v ⊗ 1)(K ⊗ H) ⊆ ξ ⊗ H , hence there is a vector η ∈ H such that
(v ⊗ 1)ξω = ξ ⊗ η.

If ρ is separable, then it can be written as a convex combination of pure separable
states of B(K ⊗ H), and this implies that R is spanned by vectors of the form ξ⊗η, with
ξ ∈ K and η ∈ H (this is known as the range criterion for separability in the physics
literature). Hence there is a linear basis for R consisting of vectors of the form ξk ⊗ ηk ,
k = 1, . . . , r . By Proposition 4.6, there are operators v1, . . . , vr ∈ B(K0, K ) such that
(vk ⊗ 1H )ξω = ξk ⊗ηk , and Proposition 4.6 also implies that v1, . . . , vr is a linear basis
for the operator space S. The paragraph above implies rank vk ≤ 1 for all k. ��

5. Sums of Positive Rank-One Operators

We require the following description of the possible ways a positive finite rank operator
A can be represented as a sum of positive rank one operators

A = ξ1 ⊗ ξ̄1 + · · · + ξr ⊗ ξ̄r .

Significantly, the vectors ξ1, . . . , ξr involved in this representation of the operator A
need not be linearly independent - nor even nonzero - and that flexibility is essential for
our purposes. For completeness, we include a proof of this bit of the lore of elementary
operator theory.
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Proposition 5.1. Let ξ1, . . . , ξr and η1, . . . , ηr be two r-tuples of vectors in a Hilbert
space H. Then

ξ1 ⊗ ξ̄1 + · · · + ξr ⊗ ξ̄r = η1 ⊗ η̄1 + · · · + ηr ⊗ η̄r , (5.1)

iff there is a unitary r × r matrix (λi j ) of complex numbers such that

ηi =
r∑

j=1

λi jξ j , ξi =
r∑

j=1

λ̄ j iη j , 1 ≤ i ≤ r. (5.2)

Proof. In the statement of Proposition 5.1, the notation ξ ⊗ ξ̄ denotes the operator
ζ → 〈ζ, ξ 〉ξ . In order to show that (5.1) implies (5.2), consider the two operators
A, B : C

r → H defined by

A(λ1, . . . , λr ) =
∑

k

λkξk, B(λ1, . . . , λr ) =
∑

k

λkηk .

The adjoint of A is given by A∗ζ = (〈ζ, ξ1〉, . . . , 〈ζ, ξr 〉), with a similar formula for B∗,
and the hypothesis (5.1) becomes AA∗ = B B∗. It follows that ‖A∗ζ‖ = ‖B∗ζ‖ for all
ζ ∈ H , and we can define a partial isometry w0 with initial space A∗ H and final space
B∗H by setting w0(A∗ζ ) = B∗ζ , ζ ∈ H . Since C

r is finite-dimensional, w0 can be
extended to a unitary operator w ∈ B(Cr ), and we have B = Aw−1. Letting e1, . . . , er
be the usual basis for C

r , we find that the matrix (λi j ) of w−1 relative to (ek) satisfies

ηi = Bei = Aw−1ei =
r∑

j=1

λi j Ae j =
r∑

j=1

λi jξ j .

The second formula of (5.2) follows from the line above after substituting these formulas
for ηk in

∑
k λ̄kiηk and using unitarity of the matrix (λi j ).

The converse is a straightforward calculation using unitarity of the matrix (λi j ) that
we omit. ��

6. Parameterizing the Extensions of a State

Let H , K be Hilbert spaces satisfying n = dim H ≤ m = dim K < ∞. Given a state ω
of B(H), we consider the compact convex set E(ω) of all extensions of ω to a state of
B(K ⊗ H). Remark 4.2 shows that without loss of generality, we can restrict attention
to the case in which ω is a faithful state of B(H), and we do so.

Consider the filtration of E(ω) into compact subspaces

E1(ω) ⊆ E2(ω) ⊆ · · · ⊆ Emn(ω) = E(ω),

where Er (ω) denotes the space of all states of E(ω) satisfying rank ρ ≤ r . The spaces
Er (ω) are no longer convex; but since dim K ≥ dim H , one can exhibit pure states in
E(ω)—for example, the state ρ(x) = 〈xζ, ζ 〉, where ζ is a unit vector in K ⊗ H of the
form

ζ = √
λ1 · f1 ⊗ e1 + · · · +

√
λn · fn ⊗ en, (6.1)

where e1, . . . , en is an orthonormal basis for H consisting of eigenvectors of the density
operator ofωwith λ1, . . . , λn the corresponding eigenvalues, and where f1, . . . , fn is an
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arbitrary orthonormal set in K . In particular, the spaces Er (ω) are nonempty for every
r ≥ 1.

Now fix an integer r in the range 1 ≤ r ≤ mn. We define a map from the noncom-
mutative sphere V r (H, K ) to Er (ω) as follows. Since ω is faithful, Lemma 4.5 implies
that there is a vector ξω ∈ H ⊗ H such that

span (1H ⊗ B(H))ξω = H ⊗ H, ω(b) = 〈(1 ⊗ b)ξω, ξω〉, b ∈ N . (6.2)

Choose an r -tuple v = (v1, . . . , vr ) ∈ V r (H, K ). Since each vk ⊗ 1H maps H ⊗ H to
K ⊗ H , we can define a linear functional ρv on B(K ⊗ H) as follows:

ρv(x) =
r∑

k=1

〈x(vk ⊗ 1H )ξω, (vk ⊗ 1H )ξω〉, x ∈ B(K ⊗ H). (6.3)

Clearly ρv is positive, and since v∗
1v1 + · · · + v∗

r vr = 1H , we have

ρv(1K ⊗ b) =
r∑

k=1

〈(v∗
k vk ⊗ b)ξω, ξω〉 = 〈(1H ⊗ b)ξω, ξω〉 = ω(b),

for all b ∈ B(H). It is obvious that the rank of ρv cannot exceed r , hence ρv ∈ Er (ω).
The purpose of this section is to prove:

Theorem 6.1. Let H, K be Hilbert spaces of respective dimensions n ≤ m, let ω be a
faithful state of B(H), fix a vector ξω ∈ H ⊗ H as in (6.2), and define a map

v ∈ V r (H, K ) → ρv ∈ Er (ω)

as in (6.3). Then ρv = ρv′ iff there is an r × r unitary matrix of scalars λ ∈ U (r) such
that v′ = λ·v. Moreover, for every r = 1, 2, . . . ,mn, this map is a continuous surjection
that maps open subsets of V r (H, K ) to relatively open subsets of Er (ω).

If ξ ′
ω ∈ H is another vector satisfying (6.2), giving rise to another map

v ∈ V r (H, K ) → ρ′
v ∈ Er (ω),

then there is a unitary operator w ∈ B(H) satisfying ρ′
v = ρv·w for all v, where

(v1, . . . , vr ) · w = (v1w, . . . , vrw) denotes the right action of w ∈ U(H) on
v = (v1, . . . , vr ) ∈ V r (H, K ).

Proof of Theorem 6.1. Let v = (v1, . . . , vr ) and v′ = (v′
1, . . . , v

′
r ) belong to Vr (H, K ),

and assume first that ρv = ρv′ . Define vectors ξk, ξ
′
k ∈ K ⊗ H by ξk = (vk ⊗ 1H )ξω,

ξ ′
k = (v′

k ⊗ 1H )ξω, k = 1, . . . , r . The density operators of ρv and ρv′ are

r∑

k=1

ξk ⊗ ξ̄k, and
r∑

k=1

ξ ′
k ⊗ ξ̄ ′

k

respectively, so that the hypothesis ρv = ρv′ is equivalent to the assertion

r∑

k=1

ξk ⊗ ξ̄k =
r∑

k=1

ξ ′
k ⊗ ξ̄ ′

k .
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By Proposition 5.1, there is a unitary r × r matrix (λi j ) of scalars such that

ξ ′
i =

r∑

j=1

λi jξ j , 1 ≤ i ≤ r.

Proposition 4.6 implies that v′
i = ∑

j λi jv j , 1 ≤ i ≤ r , hence v′ = λ · r .
Conversely, suppose there is a unitary matrix λ = (λi j ) ∈ Mr (C) such that v′ = λ ·v,

and consider the vectors in K ⊗ H defined by ξk = (vk ⊗ 1H )ξω, ξ ′
k = (v′

k ⊗ 1K )ξω,
1 ≤ k ≤ r . The relation v′ = λ · v implies that

ξ ′
i =

r∑

j=1

λi jξ j , (6.4)

and the density operators of ρv and ρv′ are given respectively by

r∑

k=1

ξk ⊗ ξ̄k,

r∑

k=1

ξ ′
k ⊗ ξ̄ ′

k .

Substitution of (6.4) into the term on the right gives

r∑

k=1

ξ ′
k ⊗ ξ̄ ′

k =
r∑

k,p,q=1

λkpλ̄kqξp ⊗ ξ̄q .

Since (λi j ) is a unitary matrix, this implies
∑

k ξ
′
k ⊗ ξ̄ ′

k = ∑
p ξp ⊗ ξ̄p, and ρv′ = ρv

follows.
The preceding paragraphs imply that the mapping v → ρv factors through the quo-

tient Xr = V r (H, K )/U (r)

v ∈ V r (H, K ) → v̇ ∈ Xr → ρv,

and that the second map v̇ → ρv is continuous and injective. Hence it is a homeomor-
phism of Xr onto its range, and the composite map v → ρv is continuous and maps
open sets to relatively open subsets of its range.

It remains to show that every state of Er (ω) belongs to the range of v → ρv . Choose
ρ ∈ Er (ω). Since the rank of ρ is at most r we can write it in the form

ρ(x) =
r∑

k=1

〈xζk, ζk〉, x ∈ B(K ⊗ H), (6.5)

where the ζk are vectors in K ⊗ H , perhaps with some being zero.
By Proposition 4.6, there are operators v1, . . . , vr ∈ B(H, K ) such that ζk = (vk ⊗

1H )ξω for each k, and we claim that
∑

k v
∗
k vk = 1H . Indeed, for all b1, b2 ∈ B(H) we

have

〈(
∑

k

v∗
k vk)⊗ b1)ξω, (1H ⊗ b2)ξω〉 =

∑

k

〈(vk ⊗ b∗
2b1)ξω, (vk ⊗ 1H )ξω〉

=
∑

k

〈(1K ⊗ b∗
2b1)ζk, ζk〉 = ρ(1K ⊗ b∗

2b1)

= ω(b∗
2b1) = 〈(1H ⊗ b1)ξω, (1H ⊗ b2)ξω〉,

and
∑

k v
∗
k vk = 1H follows from cyclicity: H ⊗ H = (1H ⊗ B(H))ξω.
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Substituting back into (6.5), we see that v = (v1, . . . , vr ) ∈ V r (H, K ) has been
exhibited with the property ρ = ρv .

To prove the last paragraph, choose another ξ ′
ω ∈ H satisfying (6.2). Then we have

‖(1 ⊗ b)ξω‖2 = ω(b∗b) = ‖(1 ⊗ b)ξ ′
ω‖ for every b ∈ B(H), hence there is a unique

unitary operator in the commutant of 1⊗B(H) that maps ξω to ξ ′
ω. Such an operator has

the form w ⊗ 1 for a unique unitary operator w ∈ B(H), hence ξ ′
ω = (w ⊗ 1)ξω. From

the definition of the map (6.3), it follows that the corresponding state ρ′
v is defined on

x ∈ B(K ⊗ H) by

ρ′
v(x) =

r∑

k=1

〈x(vk ⊗ 1)ξ ′
ω, (vk ⊗ 1)ξ ′

ω〉 =
r∑

k=1

〈x(vkw ⊗ 1)ξω, (vkw ⊗ 1)ξω〉,

and the right side is seen to be ρv·w(x). ��

7. The Role of (X r, P r) in Entanglement

In this section we give an operator-theoretic characterization of separable states and
show that the probability of entanglement is positive at all levels (see Theorem 7.9).

Assume that n = dim H ≤ m = dim K < ∞, fix r = 1, 2, . . . ,mn, choose a
faithful state ω of B(H), and choose a vector ξω as in (6.2). Theorem 6.1 implies that
the parameterizing map v ∈ V r (H, K ) → ρv ∈ Er (ω) decomposes naturally into a
composition of two maps

v ∈ V r (H, K ) → v̇ ∈ Xr → ρv ∈ Er (ω). (7.1)

We can promote the invariant probability measure µ on V r (H, K ) all the way to
Er (ω) by way of the composite map

v ∈ V r (H, K ) → ρv ∈ Er (ω),

thereby obtaining a compact metrizable probability space (Er (ω), Pr,ω).

Remark 7.1. (Independence of the choice of ω). After noting that the second map of
(7.1) implements a measure-preserving homeomorphism of topological probability
spaces (Xr , Pr ) ∼= (Er (ω), Pr,ω), we conclude that each of the probability spaces
(Er (ω), Pr,ω) associated with faithful states of B(H) is isomorphic to the intrinsic
space (Xr , Pr ), hence they are all isomorphic to each other.

Remark 7.2. (Independence of the choice of ξω). If we choose another vector ξ ′
ω ∈ H

satisfying (6.2), the resulting parameterization v → ρ′
v of Er (ω) differs from that of

(7.1), hence the resulting probability measure Pr,ω′ on Er (ω) appears to differ from
the one Pr,ω promoted through the map v → ρv . However, Theorem 6.1 implies that
there is a unitary operator w ∈ U(H) such that ρ′

v = ρv·w, v ∈ V r (H, K ), so that Pr,ω

and Pr,ω′ are respectively promotions (through the same map v → ρv) of the measure
Pr and its transform Pr ′ under the right action of w on Xr . Remark 3.1 implies that
Pr ′ = Pr , hence Pr,ω′ = Pr,ω, and therefore (Er (ω), Pr,ω) does not depend on the
choice of ξω.
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Remark 7.3. (Invariance of rank and separability). It is not obvious that spatial properties
of states such as rank and separability are preserved under these identifications. For
example, it is not clear that the integer-valued random variable that represents rank on
the probability space (Er (ω), Pr,ω)

ρ ∈ Er (ω) → rank ρ ∈ {1, 2, . . . , r}
is preserved under the isomorphism (Er (ω1), Pr,ω1) ∼= (Er (ω2), Pr,ω2) for different
faithful states ω1 and ω2. Similarly, we require that these identifications should preserve
separability and entanglement. We establish the invariance of these properties in Propo-
sitions 7.4 and 7.7 below by identifying them appropriately in terms of random variables
on the intrinsic probability space (Xr , Pr ).

We first establish the invariance of rank.

Proposition 7.4. Let ω be a faithful state of B(H), fix r = 1, 2, . . . ,mn and consider
the factorization (7.1) through Xr of the parameterization map v → ρv . For every
v ∈ V r (H, K ), one has

rank(v̇) = rank ρv, (7.2)

and almost surely, states of (Er (ω), Pr,ω) have rank r .

Proof. Formula (7.2) simply restates the last sentence of Proposition 4.6, and the second
phrase follows from Theorem 3.3. ��
Remark 7.5. (Convex hulls of sets in R

k). We recall some basic lore of convexity theory.
A classical result of Carathéodory [Car07,Car11] asserts that every convex combination
of points from a subset E of R

k can be written as a convex combination of at most k + 1
points of E . It follows that the convex hull of a compact subset E of R

k is compact.
Since the set of all product states of M ⊗ N is compact, we conclude that the set of
separable states of M ⊗ N is compact as well as convex, and the set of entangled states
is a relatively open subset of the state space of M ⊗ N.

One can do slightly better for states. Let H be an n dimensional Hilbert space. The
self-adjoint operators in B(H) form a real vector space of dimension n2, and the set of
self-adjoint operators A satisfying trace A = 1 is a hyperplane of dimension n2 − 1.
So Caratheodory’s theorem implies that every state of B(H) that belongs to the convex
hull of an arbitrary set P of states can be written as a convex combination of at most n2

states of P .

These remarks lead to the following known result:

Lemma 7.6. Every separable state of B(K ⊗ H) is a convex combination of at most
m2n2 pure separable states.

Throughout the remainder of this section, we set q = m2n2 and let U (q) be the group
of all q × q unitary matrices µ = (µi j ) ∈ Mq(C).

Proposition 7.7. Let ω be a faithful state of B(H), let ρ ∈ Er (ω), and choose
v ∈ V r (H, K ) such that ρ = ρv . Then ρ is separable iff there is a unitary matrix
µ = (µi j ) in U (q) such that

rank(
r∑

j=1

µi jv j ) ≤ 1, i = 1, 2, . . . , q. (7.3)
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Proof. Assume first thatρ is separable. By Lemma 7.6, there are vectors ξi ∈ K , ηi ∈ H ,
1 ≤ i ≤ q, such that

ρ(x) =
q∑

i=1

〈x(ξi ⊗ ηi ), ξi ⊗ ηi 〉, x ∈ B(K ⊗ H).

Let v′
i = vi if 1 ≤ i ≤ r , set v′

i = 0 for r < i ≤ q and choose a vector ξω ∈ H ⊗ H
that represents ω(b) = 〈(1 ⊗ b)ξω, ξω〉 as in Lemma 4.5. Then the formula ρ = ρv can
be rewritten

ρ(x) =
q∑

i=1

〈x(v′
i ⊗ 1)ξω, (v′

i ⊗ 1)ξω〉, x ∈ B(K ⊗ H).

By Proposition 5.1, there is a unitary q × q matrix λ = (λi j ) such that

ξi ⊗ ηi =
q∑

j=1

λi j (v
′
j ⊗ 1)ξω = (

r∑

j=1

λi jv j ⊗ 1)ξω, i = 1, . . . , q. (7.4)

Proposition 4.6 implies that for every i = 1, . . . , q there is a unique operatorwi : H →
K such that (wi ⊗ 1)ξω = ξi ⊗ ηi , and (7.4) plus uniqueness implies

wi =
r∑

j=1

λi jv j , i = 1, 2, . . . , q.

Finally, Corollary 4.7 implies that wi is of rank at most 1, and (7.3) follows.
All of these steps are reversible, and we leave the proof of the converse assertion for

the reader. ��
We can now identify the subsets of Xr that correspond to separable or entangled

extensions of faithful states of B(H).
Proposition 7.8. For every r = 1, 2, . . . ,mn, let Sep(V r (H, K )) be the subset of
V r (H, K ) defined by the conditions of (7.3),

Sep(V r (H, K )) = {v : ∃ µ ∈ U (q) s. t. rank(
r∑

j=1

µi jv j ) ≤ 1, 1 ≤ i ≤ q}.

The natural projection v → v̇ of V r (H, K ) on Xr carries Sep(V r (H, K )) onto a closed
subset Sep(Xr ) of Xr that is invariant under the right action of U(H), and which has
the following properties: For every faithful state ω of B(H) and every v ∈ V r (H, K ),

(i) ρv is a separable state of Er (ω) iff v̇ ∈ Sep(Xr ),
(ii) ρv is an entangled state of Er (ω) iff v̇ ∈ Xr \ Sep(Xr ).

Proof. For a fixed faithful state ω of B(H), Proposition 7.7 implies that the homeo-
morphism v̇ → ρv maps Sep(Xr ) onto the space of separable states in Er (ω). Since
the separable states form a closed subset of the state space of B(K ⊗ H), it follows
that Sep(Xr ) is closed. Invariance under the right action of U(H) on Xr follows from
the fact that for every operator v ∈ B(H, K ) and every unitary operator w on H ,
rank(vw) = rank(v). Assertion (i) is a restatement of Proposition 7.7, and (ii) follows
from (i) since entangled states and separable states are complementary sets. ��
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The following result implies that there are plenty of entangled states of all possible
ranks. We will obtain sharper results in Sects. 9 and 10.

Theorem 7.9. For every r = 1, 2, . . . ,mn, Sep(Xr ) is a proper closed subset of Xr , and
for every faithful state ω of B(H), the probability p of entanglement in (Er (ω), Pr,ω)

is independent of the choice of ω and satisfies

p = 1 − Pr (Sep(Xr )) = Pr (Xr \ Sep(Xr )) > 0.

Proof. Fix r = 1, 2, . . . ,mn. We claim first that there is a faithful state ω of B(H)
such that Er (ω) contains an entangled state. To see that, choose an orthonormal basis
e1, . . . , en for H , an orthonormal set f1, . . . , fn ∈ K , and let ζ be the unit vector

ζ = 1√
n
( f1 ⊗ e1 + · · · + fn ⊗ en) ∈ K ⊗ H.

It is well known that ρ(x) = 〈xζ, ζ 〉, x ∈ B(K ⊗ H), defines a pure entangled state of
B(K ⊗ H) that restricts to the tracial state on B(H).

It is easy to see that there is a self-adjoint operator c ∈ B(K ⊗ H) such that ρ(c) < 0
and such that for all states σ1 of B(K ) and σ2 of B(H), one has

(σ1 ⊗ σ2)(c) ≥ 0, (7.5)

e.g., see [HHH96]. We sketch the construction for completeness. Since ζ is not a tensor
product, we have |〈ξ ⊗ η, ζ 〉| < 1 for every pair of unit vectors ξ ∈ K , η ∈ H ; and
since the unit spheres of K and H are compact, we can choose α ∈ (0, 1) such that

max{|〈ξ ⊗ η, ζ 〉|2 : ξ ∈ K , η ∈ H, ‖ξ‖ = ‖η‖ = 1} ≤ α < 1.

Set c = α · 1 − ζ ⊗ ζ̄ . A calculation shows that ρ(c) < 0, and by its construction, c
satisfies (7.5) for pure states σ1 and σ2. Equation (7.5) follows in general, since every
state is a convex combination of pure states.

Now choose any projection p of rank r in B(K ⊗ H) whose range contains ζ . Then
for every t ∈ (0, 1),

σt (x) = t

r
trace(px) + (1 − t) · ρ(x), x ∈ B(K ⊗ H)

is a state of rank r that restricts to a faithful state ωt of B(H). Moreover, for sufficiently
small t , we will have σt (c) < 0; and for such t (7.5) implies that σt is not a convex
combination of product states, proving the claim.

Choose a faithful stateω ofB(H) such that Er (ω) contains an entangled stateρ0. Then
the inverse image x0 ∈ Xr of ρ0 under the map v̇ ∈ Xr → ρv ∈ Er (ω) is a point in the
complement of Sep(Xr ), hence Sep(Xr ) �= Xr . The set Xr \Sep(Xr ) is a nonempty open
subset of Xr which therefore has positive Pr -measure. It follows from Proposition 7.8
that the probability p of entanglement in (Er , Pr,ω) satisfies p = Pr (X \Sep(Xr )) > 0.
Finally, Proposition 7.8 and Remark 7.1 imply that the same assertions are true for the
probability space (Er (ω′), Pr,ω′

) associated with any faithful state ω′ of B(H), and that
the probability of entanglement in (E(ω′), Pr,ω′

) does not depend on the choice of ω′.
��
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8. Properties of the Wedge Invariant

Proposition 7.8 implies that among the states ρv of Er (ω), the separability property is
determined by membership of v̇ in the closed set Sep(Xr ). Hence, in order to calculate
or estimate the probability of entanglement in the spaces (Er (ω), Pr,ω), one needs to
calculate or estimate Pr (Sep(Xr )). Writing q = m2n2 as in the preceding section, the
set Sep(Xr ) is identified in Propositions 7.7 and 7.8 as

Sep(Xr ) =
⋃

µ∈U (q)

{v̇ ∈ Xr : rank(
r∑

j=1

µi jv j ) ≤ 1, 1 ≤ i ≤ q}. (8.1)

The set on the right defines an uncountable union of subvarieties of V r (H, K ), but it is
not a subvariety itself nor even a countable union of subvarieties (see Sect. 11). In this
section we reformulate the definition of the wedge invariant (Definition 1.3) as a pair of
random variables

ẇ, ẇ∗ : Xr → {0, 1, 2, . . . }.
We show that these random variables provide a nontrivial test for separability – i.e.,
membership in Sep(Xr ) – and that they define subvarieties

A = {v ∈ V r (H, K ) : ẇ(v̇) ≤ 1}, A∗ = {v ∈ V r (H, K ) : ẇ∗(v̇) ≤ 1},
with the property that Sep(Xr ) ⊆ Ȧ ∩ Ȧ∗. The latter property is critical for the applica-
tions of Sect. 9.

Fix r = 1, 2, . . . ,mn and choose v = (v1, . . . , vr ) ∈ V r (H, K ). We can form the
operator v1 ∧· · ·∧vr ∈ B(H⊗r , K ⊗r ) as in (1.6), and this operator maps the symmetric
subspace of H⊗r to the antisymmetric subspace of K ⊗r . If v and v′ belong to the same
U (r)-orbit, say v′ = λ ·v with λ = (λi j ) ∈ U (r), then by elementary multilinear algebra
we have

v′
1 ∧ · · · ∧ v′

r = det(λi j ) · v1 ∧ · · · ∧ vr . (8.2)

It follows that v′
1 ∧ · · · ∧ v′

r (H
⊗r
+ ) = v1 ∧ · · · ∧ vr (H

⊗r
+ ). Similarly, we can form

v∗
1 ∧· · ·∧v∗

r ∈ B(K ⊗r , H⊗r ), and (v∗
1 ∧· · ·∧v∗

r )(K
⊗r
+ ) depends only on the U (r) orbit

of v. Thus we can define integer-valued random variables ẇ, ẇ∗ : Xr → {0, 1, 2, . . . }
by

ẇ(v̇) = rank(v1 ∧ · · · ∧ vr �H⊗r
+
), ẇ∗(v̇) = rank(v∗

1 ∧ · · · ∧ v∗
r �K ⊗r

+
), (8.3)

for v ∈ V r (H, K ). The following result implies that these random variables can detect
entanglement. Note too that both random variables ẇ and ẇ∗ are invariant under the
right action of U(H) on Xr .

Proposition 8.1. For every x ∈ Sep(Xr ), we have ẇ(x) ≤ 1 and ẇ∗(x) ≤ 1.

Proof. We claim that ẇ ≤ 1 on Sep(Xr ). Indeed, every point of Sep(Xr ) has the form
x = v̇, where v = (v1, . . . , vr ) is an r -tuple in V r (H, K ) whose associated state ρv
is separable. We have to show that the restriction of the operator v1 ∧ · · · ∧ vr to the
symmetric subspace H⊗r

+ has rank ≤ 1.
To see that, note that Corollary 4.7 implies that there is a linearly independent set

of operators w1, . . . , wr ∈ B(H, K ) that has the same linear span as v1, . . . , vr , such
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that rankwk = 1 for every k. Since v1, . . . , vr and w1, . . . , wr are linearly independent
subsets of B(H, K ) that have the same linear span S, elementary multilinear algebra
implies that there is a complex number d �= 0 such that

v1 ∧ · · · ∧ vr = d · w1 ∧ · · · ∧ wr ;

indeed, d is the determinant of the linear operator defined on S by stipulating that it
should carry one basis to the other. Hence it is enough to show that the restriction of
w1 ∧ · · · ∧ wr to H⊗r

+ has rank at most 1.
For every vector ζ ∈ H we have

(w1 ∧ · · · ∧ wr )(ζ
⊗r ) = w1ζ ∧ w2ζ ∧ · · · ∧ wrζ.

Now since eachwk is of rank at most 1, for every k there are vectors ζk ∈ H and ξk ∈ K
such that wkζk = ξk and wk = 0 on {ζk}⊥. For each k we can write ζ = µkζk + ζ ′

k ,
where µk ∈ C and ζ ′

k belongs to the kernel of wk . Hence the term on the right takes the
form

w1(µ1ζ1) ∧ w2(µ2ζ2) ∧ · · · ∧ wr (µrζr ) = (µ1µ2 · · ·µr ) · ξ1 ∧ ξ2 ∧ · · · ∧ ξr ,

so that (w1 ∧ · · · ∧ wr )(ζ
⊗r ) ∈ C · ξ1 ∧ ξ2 ∧ · · · ∧ ξr . Finally, a standard polarization

argument shows that the symmetric subspace of H⊗r is spanned by vectors of the form
ζ⊗r with ζ ∈ H , and the desired assertion

(w1 ∧ · · · ∧ wr )(H
⊗r
+ ) ⊆ C · ξ1 ∧ ξ2 ∧ · · · ∧ ξr

follows.
The proof that

ẇ∗(v̇) = rank(v∗
1 ∧ · · · ∧ v∗

r �K ⊗r
+
) ≤ 1

is similar, since the operatorsw∗
1, . . . , w

∗
r form a basis for the operator space S∗ consis-

ting of rank-one operators. ��
We have already pointed out that the analysis of states of B(K ⊗ H) can be reduced

to the analysis of states that restrict to faithful states on B(H). Hence the result stated in
Theorem 1.4 of the introduction follows from Proposition 8.1 and the fact that for every
faithful state ω of B(H) and every state ρ ∈ Er (ω) for r = 1, 2, . . . ,mn, we have

w(ρv) = ẇ(v̇), w∗(ρv) = ẇ∗(v̇), v ∈ V r (H, K ). (8.4)

Most significantly, the wedge invariant is associated with subvarieties:

Proposition 8.2. For every r = 1, 2, . . . ,mn, let

A = {v ∈ V r (H, K ) : ẇ(v̇) ≤ 1}, A∗ = {v ∈ V r (H, K ) : ẇ∗(v̇) ≤ 1}.

Then both A and A∗ are subvarieties of V r (H, K ).
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Proof. The set A consists of all r -tuples v ∈ V r (H, K ) such that the operator G(v) =
v1 ∧· · ·∧vr �H⊗r

+
∈ B(H⊗r

+ , K ⊗r− ) satisfies rank G(v) ≤ 1, or equivalently, that G(v)∧
G(v) = 0, where G(v) ∧ G(v) is now viewed as an operator from H⊗r

+ ∧ H⊗r
+ to

K ⊗r− ∧ K ⊗r− . Hence F(v) = G(v) ∧ G(v) is a homogeneous polynomial of degree 2r
with the property

A = {v ∈ V r (H, K ) : F(v) = 0},

thereby exhibiting A as a subvariety. A similar argument with v∗
k replacing vk shows

that A∗ is a subvariety. ��

Propositions 8.1 and 8.2 provide no information as to whether the wedge invariant is
nontrivial, but the following result does.

Proposition 8.3. Assume that dim K ≥ dim H ≥ 2. Then for every integer r satisfying
1 ≤ r ≤ dim H/2 there is a point x ∈ Xr such that rank x = r and ẇ∗(x) > 1, and the
following equivalent assertions are true:

(i) The subvariety A∗ of Proposition 8.2 is proper; A∗ �= V r (H, K ).
(ii) For every faithful state ω of B(H) there is a state of rank r in Er (ω) such that

w∗(ρ) > 1.

Proof. It suffices to exhibit an r -tuple v = (v1, . . . , vr ) ∈ V r (H, K ) such that rank(v∗
1 ∧

· · · ∧ v∗
r �K ⊗r

+
) > 1. Since v∗

1 ∧ · · · ∧ v∗
r �= 0, the operators v∗

1 , . . . , v
∗
r are linearly

independent, hence so are v1, . . . , vr . Proposition 4.6 will then imply that the associated
state ρv has rank r , and it will satisfy w∗(ρv) > 1 because of the asserted properties of
v1, . . . , vr .

We exhibit such operators v1, . . . , vr as follows. Write dim H = 2r + s with s ≥ 0
and choose an orthonormal basis for H , enumerated by

{e1, . . . , er , f1, . . . , fr }, or {e1, . . . , er , f1, . . . , fr , g1, . . . , gs},

according to whether s = 0 or s > 0. Let {e′
i , f ′

j , g′
k} be a similarly labelled orthonormal

set in K . For each k = 1, . . . , r , let vk be the unique operator in B(H, K ) satisfying
vkei = δki e′

1 and vk fi = δki f ′
1 for 1 ≤ i ≤ r if s = 0, and otherwise it satisfies the

additional conditions v1g j = g′
j and v2g j = · · · = vr g j = 0 for j = 1, . . . , s when

s > 0. Each vk is a partial isometry whose adjoint v∗
k maps e′

i to δikek and f ′
i to δik fk for

1 ≤ k ≤ r . It follows that v∗
1v1 + · · ·+v∗

r vr = 1H , so that v = (v1, . . . , vr ) ∈ V r (H, K ).

Now consider the operator v∗
1 ∧ · · · ∧ v∗

r , restricted to the symmetric subspace K ⊗r
+

of K ⊗r . We have

(v∗
1 ∧ · · · ∧ v∗

r )(e
′
1 ⊗ · · · ⊗ e′

1) = v∗
1e′

1 ∧ v∗
2e′

1 ∧ · · · ∧ v∗
r e′

1 = e1 ∧ e2 ∧ · · · ∧ er ,

and similarly (v∗
1 ∧ · · · ∧ v∗

r )( f ′
1 ⊗ · · · ⊗ f ′

1) = f1 ∧ f2 ∧ · · · ∧ fr . Since the vectors
e1 ∧ e2 ∧ · · · ∧ er and f1 ∧ f2 ∧ · · · ∧ fr are mutually orthogonal unit vectors in ∧r H ,
it follows that rank(v∗

1 ∧ · · · ∧ v∗
r �K ⊗r

+
) ≥ 2. ��
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9. Entangled States of Small Rank

We now assemble the results of the previous section into a main result. Fix Hilbert spaces
H , K with 2 ≤ n = dim H ≤ m = dim K < ∞.

Theorem 9.1. Let r be a positive integer satisfying 1 ≤ r ≤ n/2, let ω be a faithful state
of B(H), and let (Er (ω), Pr,ω) be the probability space of Sect. 7. Then almost every
state of (Er (ω), Pr,ω) is entangled.

Proof. By Theorem 6.1 and Proposition 8.1, the set of separable states of Er (ω) is a
closed subset of

{ρv : v ∈ V r (H, K ), w∗(ρv) ≤ 1},
hence it suffices to show that the set A∗ = {v ∈ V r (H, K ) : w∗(ρv) ≤ 1} hasµ-measure
zero. But by Propositions 8.2 and 8.3, A∗ is a proper subvariety of V r (H, K ), so that
µ(A∗) = 0 follows from Proposition 2.6. ��
Remark 9.2. (The meaning of “relatively small rank”). In somewhat more prosaic terms,
Theorem 9.1 has the following consequence. Let ρ be an arbitrary state of Mm(C) ⊗
Mn(C) and let ω be its marginal ω(a) = ρ(1 ⊗ a), a ∈ Mn(C). Then whenever the
inequalities 2 · rank ρ ≤ rank ω ≤ m are satisfied, one can infer from Theorem 9.1 that
ρ is entangled, or else one has made a statistically impossible choice of ρ that cannot
be reproduced.

Remark 9.3. (States of very small rank). We note that if r <
√

n in the hypothesis of
Theorem 9.1, then every state of Er (ω) is entangled - or equivalently, Sep Xr = ∅.
To sketch the elementary proof of that fact, let ρ be a separable state of B(K ⊗ H)
such that rank ρ = r , with n = dim H ≤ dim K < ∞, and let R ⊆ K ⊗ H be
the r -dimensional range of the density operator of ρ. Since ρ is separable it has a
representation

ρ =
s∑

k=1

pk · ωk

in which the pk are positive numbers summing to 1 and the ωk are pure product states
of B(K ⊗ H). Since each pk > 0, the vector ξk ⊗ ηk associated with each ωk must
belong to R, and we can view the above formula as a relation between states of B(R).
At this point, Caratheodory’s theorem (see Remark 7.5) implies that there is a subset
S ⊆ {ξ1 ⊗ η1, . . . , ξs ⊗ ηs} ⊆ R containing at most r2 vectors such that ρ can be
written

ρ =
r2∑

k=1

p′
k · ω′

k,

where the p′
k are nonnegative numbers with sum 1 and the ω′

k are pure product states
associated with vectors in S. Assuming now that ρ ∈ Er (ω), then ρ restricts to a faithful
state of B(H) and hence r2 ≥ n. It follows that Er (ω) contains no separable states
when r <

√
n. I am indebted to an anonymous referee for pointing out the idea behind

this observation.
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10. Entangled States of Large Rank

Let H , K be Hilbert spaces with n = dim H ≤ m = dim K < ∞. We conclude with an
observation showing that the behavior of Theorem 9.1 does not persist through states of
large rank. While the first sentence of Theorem 10.1 is essentially known (for example,
see [GB02,GB05]), we sketch a proof for completeness.

Theorem 10.1. The set of separable states of B(K ⊗H) of rank mn contains a nonempty
relatively open subset of the state space of B(K ⊗ H).

Moreover, for every faithful state ω of B(H), the set of entangled states of Emn(ω) is
a relatively open subset that is neither empty nor dense in Emn(ω), and its probability
p satisfies 0 < p < 1.

Proof. Note first that the set of faithful separable states must linearly span the self adjoint
part S of the dual of B(K ⊗ H); equivalently, for every nonzero self adjoint operator x ,
there is a faithful separable state ω such that ω(x) �= 0. Indeed, fixing x , we use the fact
that the separable states obviously span S to find a separable stateω for whichω(x) �= 0,
and then we can make small changes in the decomposable vector states that sum to ω
so as to find a faithful separable state ω′ close enough to ω that ω′(x) �= 0. Since the
separable states of rank mn span S, we can find a basis for S consisting of separable
states of rank mn.

Finally, since the convex hull of a basis for S consisting of states must contain
a nontrivial open subset of the state space of B(K ⊗ H), it follows that Sep(Xmn)

has nonempty interior and therefore has positive Pmn-measure. Theorem 7.9 implies
0 < Pmn(Sep(Xmn)) < 1, and the remaining assertions of Theorem 10.1 follow. ��

11. Constructibility, Entanglement, and Zero-One Laws

In this section we digress in order to make some observations about set-theoretic issues
that seem to add perspective to the results of Sects. 9 and 10, and which address the
broader question of whether entanglement can be detected by way of a more detailed
analysis of real-analytic varieties.

Let H , K be Hilbert spaces with n = dim H ≤ m = dim K < ∞ and fix
r = 1, 2, . . . ,mn. The subvarieties of V r (H, K ) (see Definition 2.5) generate a
σ -algebra A of subsets of V r (H, K ). This σ -algebra consists of Borel sets and it sepa-
rates points of V r (H, K ). In the context of descriptive set theory, A consists of all
Borel sets that can be constructed by way of a transfinite hierarchy of operations consis-
ting of countable unions and complementations, starting with subvarieties. Let B be the
somewhat larger σ -algebra consisting of all Borel sets E ⊆ V r (H, K ) which agree
almost surely with sets of A in that there are sets A1, A2 ∈ A such that A1 ⊆ E ⊆ A2
and µ(A2 \ A1) = 0, µ being the natural probability measure on V r (H, K ).

Significantly, the “constructible” sets in A and B satisfy a zero-one law.

Proposition 11.1. For every E ∈ B, µ(E) = 0 or 1.

Proof. It clearly suffices to show that µ �A is {0, 1}-valued. To prove that, let Z be
the family of all proper subvarieties Z �= V r (H, K ). By Proposition 2.6, every set
in Z has measure zero. Consider the family C of all Borel subsets E ⊆ V r (H, K )
with the property that either E or its complement is contained in some countable union
Z1 ∪ Z2 ∪· · · of sets Zk ∈ Z . One checks easily that C is closed under countable unions,
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complementation, and it contains Z . Hence C is a σ -algebra containing A. But for every
set E ∈ C we have µ(E) = 0 if E is contained in a countable union of sets from Z ,
or µ(E) = 1 if the complement of E is contained in a countable union of sets from Z .
Hence µ(E) = 0 or 1. In particular, µ �A is {0, 1}-valued. ��

Now fix a faithful state ω of B(H), fix r = 1, 2, . . . ,mn, and consider the space of
all separable states in Er (ω). The inverse image of this space under the parameterizing
map v ∈ V r (H, K ) → ρv ∈ Er (ω), namely

Sep(V r (H, K )) = {v ∈ V r (H, K ) : ρv is separable},
is a compact subspace of V r (H, K ). Proposition 7.8 shows that its structure determines
the properties of separable states in Er (ω), and its complement determines the properties
of entangled states in Er (ω).

Remark 11.2. (Structure of Sep(V r (H, K )) for small r ). The key fact in the proof of
Theorem 9.1 is that for relatively small values of r , Sep(V r (H, K )) is contained in a
proper subvariety A∗. It follows that Sep(V r (H, K )) belongs to the σ -algebra B when
r satisfies 1 ≤ r ≤ n/2.

Remark 11.3. (Structure of Sep(V r (H, K )) for large r ). On the other hand, for large
values of r the set Sep(V r (H, K )) has different properties. Indeed, Theorem 10.1 asserts
that the probability of Sep(V mn(H, K )) is neither 0 nor 1, so that Proposition 11.1
implies that Sep(V mn(H, K )) cannot belong to the σ -algebra A of “real-analytically
constructible” sets, nor even to its somewhat larger relative B. Perhaps this set-theoretic
phenomenon helps to explain the computational difficulties that arise from attempts to
decide whether a concretely presented state of a tensor product of matrix algebras is
entangled.

Finally, note that for any r , (8.1) implies that Sep(V r (H, K )) can be expressed as an
uncountable union of proper subvarieties ∪{Zλ : λ ∈ U (q)} parametrized by the group
U (q), q = m2n2. But since the union is uncountable, that fact provides no information
about whether Sep(V r (H, K )) belongs to the constructible σ -algebra A.

12. Concluding Remarks

Remark 12.1. (States versus completely positive maps). While we have focused on states
of matrix algebras and their extensions in this paper, all of the above results have equi-
valent formulations as statements about completely positive maps. In more concrete
terms, note that with every r -tuple v = (v1, . . . , vr ) ∈ V r (H, K ) one can associate a
unit-preserving completely positive (UCP) map φv : B(K ) → B(H) by way of

φv(a) =
r∑

k=1

v∗
k avk, a ∈ B(K ),

and there is a simple notion of rank in the category of completely positive maps in
which φv has rank ≤ r (see [Arv03], Remark 9.1.3). Indeed, this map promotes to a
homeomorphism v̇ ∈ Xr → φv of Xr onto the space of UCP maps of rank ≤ r . This
parameterization v → φv of UCP maps of rank ≤ r corresponds to the parameterization
v → ρv ∈ Er (ω) of (6.3) via

ρv(a ⊗ b) = 〈(φv(a)⊗ b)ξω, ξω〉, a ∈ B(K ), b ∈ B(H). (12.1)
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Indeed, the bijective correspondence (12.1) between states and UCP maps exists
independently of the issues taken up in this paper, and it is useful. For example, the
connection between states of A ⊗ Mn (where A is a unital C∗-algebra) and completely
positive maps of A into Mn was first exploited in the proof of the extension theorem for
completely positive maps (see Lemma 1.2.6 of [Arv69]).

Remark 12.2. (Quantum channels). A quantum channel is a completely positive map
ψ : M ′ → N ′ between the duals of matrix algebras M and N that carries states
to states. Quantum channels are the adjoints of UCP maps. Indeed, the most general
quantum channel ψ as above has the form ψ(ρ) = ρ ◦ φ, ρ ∈ M ′, where φ : N → M
is a UCP map. In particular, quantum channels of rank ≤ r are parameterized by the
same real-analytic noncommutative sphere that serves to parameterize UCP maps of
rank ≤ r .

Remark 12.3. (Better estimates of the critical rank). Fix Hilbert spaces H , K of dimen-
sions n ≤ m respectively, and let ν(n,m) be the largest integer such that the probability of
entanglement in (Xr , Pr ) is 1 for every r = 1, 2, . . . , ν(n,m). Together, Theorems 9.1
and 10.1 make the assertion

n/2 ≤ ν(n,m) < nm.

Our feeling is that each of these two bounds is far from best possible, and the problem
of improving these bounds deserves further study.

Remark 12.4. (Bitraces). By a bitrace we mean a state ρ of B(H ⊗ H) such that ρ(a ⊗
1) = ρ(1 ⊗ a) = τ(a), a ∈ B(H), τ being the tracial state of B(H). There has been
recent work on identifying the extremal bitraces, of which we mention only [Par05,PS07]
and, in the equivalent context of UCP maps, [LS93]. After associating bitraces with UCP
maps as in (12.1), one finds that bitraces are in one-to-one correspondence with the set
of all UCP maps φ : B(H) → B(H) that preserve the trace. In turn, the space of
all trace-preserving UCP maps of rank ≤ r corresponds to the subspace of V r (H, H)
consisting of all r -tuples v = (v1, . . . , vr ) that satisfy

v∗
1v1 + · · · + v∗

r vr = v1v
∗
1 + · · · + vrv

∗
r = 1H .

The latter equations define a proper subvariety of V r (H, H) (Definition 2.5) that is nei-
ther homogeneous nor connected, and whose structure is considerably more complicated
than that of V r (H, H) itself. It is unclear to what extent the results of this paper have
counterparts for bitraces.

Acknowledgement. I want to thank David Gale and Mike Christ for helpful conversations concerning aspects
of this paper. Thanks to Mary Beth Ruskai for providing help with references and advice on other issues. I
also thank an anonymous referee for suggesting a significant shortening of the original proof of Theorem 10.1
as well as for other useful comments.

Appendix

Appendix A. Existence of Real-Analytic Structures

Theorem A.2 below is essentially known; but since it is basic to our main result, we
include a proof. The argument we give makes use of the following result, which para-
phrases a special case of Theorem 10.3.1 of [Die69]. It asserts that a real analytic map
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of R
n to R

m whose derivative has constant rank can be realized locally as a linear map
L : R

n → R
m after a real-analytic distortion of both coordinate systems. Let U, V be

open subsets of R
n . A real-analytic isomorphism of U on V is a bijection u : U → V

such that both u and u−1 are real-analytic mappings.

Theorem A.1. Let D ⊆ R
n be an open set and let f : D → R

m be a real-analytic
mapping such that rank f ′(x) = r is constant for x ∈ D. Then for every a ∈ D, there
exist

(i) a real-analytic isomorphism u of the open unit ball of R
n onto an open set U ⊆ R

n

satisfying a ∈ U ⊆ D,
(ii) a real-analytic isomorphism v of the open unit ball of R

m onto an open set
V ⊆ R

m satisfying f (U ) ⊆ V ,

such that f �U admits a factorization f = v ◦ L ◦ u−1, where L : R
n → R

m is the
linear map L(x1, . . . , xn) = (x1, . . . , xr , 0, · · · , 0).

Theorem A.2. Let H, K be finite-dimensional Hilbert spaces with dim H ≤ dim K .
Then the space S of all isometries in B(H, K ) is a connected real-analytic manifold,
and a homogeneous space relative to a smooth transitive action of the unitary group
U(K ). In particular, there is a unique probability measure on S that is invariant under
the U(K )-action.

Proof. To introduce a real-analytic structure onS, consider the mapping f : B(H, K ) →
B(H) given by f (v) = v∗v. If we view f as a real-analytic map of finite-dimensional
real vector spaces, then the derivative of f at v ∈ B(H, K ) is the real-linear map
f ′(v) : h ∈ B(H, K ) → v∗h + h∗v ∈ B(H). The range of f ′(v) is contained in the real
vector space B(H)sa of self-adjoint operators on H .

Let D be the set of all v ∈ B(H, K ) such that v∗v is invertible. Then D is an open set
containing S, and we claim that f ′(v) has range B(H)sa for every v ∈ D. Indeed, the
most general real linear functional on B(H)sa has the form ω(y) = trace(�y) for some
� = �∗ ∈ B(H), and we have to show that if ω annihilates the range of f ′(v) for some
v ∈ D then ω = 0. Since � = �∗, we can replace h with

√−1h in the formula

trace(�(v∗h + h∗v)) = ω( f ′(v)(h)) = 0

to obtain trace(�v∗h − h∗v)) = 0. After adding these two expressions we obtain
trace(�v∗h) = 0 for all h ∈ B(H, K ), hence �v∗ = 0 for all v ∈ D. It follows
that �v∗v = 0 and finally � = 0 since v∗v is invertible for every v ∈ D.

Hence the rank of f ′(v) is constant throughout D. Theorem A.1 now implies that the
subspace S = {v ∈ D : f (v) = 1H } of D can be endowed locally with a real-analytic
structure, and moreover, that these local structures are mutually compatible with each
other. Hence S is a real-analytic submanifold of B(H, K ).

For the remaining statements, fix u, v ∈ S. We claim that there is a unitary operator
w ∈ B(K ) such that wu = v. Indeed, since ‖uξ‖ = ‖vξ‖ = ‖ξ‖ for every ξ ∈ H , we
can define an isometry w0 from the range of u to the range of v by setting w0(uξ) = vξ

for all ξ ∈ H . Since K is finite-dimensional, w0 can be extended to a unitary operator
w ∈ U(K ), and w satisfies wu = v. It follows that the natural action of U(K ) on S is
smooth and transitive.

The preceding observation implies that S is arcwise connected. Indeed, for any two
isometries u, v ∈ S, there is a unitary operator w ∈ U(K ) such that wu = v; and since
the unitary group of K is arcwise connected, it follows that u can be connected to v by
an arc of isometries. ��
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Remark A.3. (Identification of the invariant measure on S). The U(K )-invariant proba-
bility measure µ on S can be described more concretely as follows. The space S is
embedded in the space of all operators B(H, K ), and we can view the latter as a real
Hilbert space with inner product

〈a, b〉 = � trace(b∗a), a, b ∈ B(H, K ).

The unitary group U(K ) acts as isometries of this real Hilbert space by left multiplication
(u, a) ∈ U(K )×B(H, K ) → ua ∈ B(H, K ). In turn, since the tangent spaces of S are
naturally embedded in B(H, K ), this inner product gives rise to a Riemannian metric
on S, which in turn gives rise to a natural probability measure µ̃ after renormalization.
Since the group U(K ) acts as isometries relative to the Riemannian structure of S, the
measure µ̃ must be invariant under the action of U(K ), and hence µ = µ̃. In particular,
µ is mutually absolutely continuous with Lebesgue measure in smooth local coordinate
systems for S.

Appendix B. Zeros of Real-Analytic Functions

While the result of this Appendix is well known, we lack a convenient reference and
include a simple proof, the idea of which was shown to me by Michael Christ.

Proposition B.1. Let D ⊆ R
n be a connected open set and let f : D → R be a real-

analytic function that does not vanish identically. Then the set of zeros of f has Lebesgue
measure zero.

Proof. Let Z = {x ∈ D : f (x) = 0}. It suffices to show that for every point a ∈ D there
is an open set U containing a such that Z ∩ U has measure zero. Choose a point a ∈ D.
The power series expansion of f about a cannot have all zero coefficients, since that
would imply that f vanishes on an open set, hence identically. Therefore some mixed
partial of f of order N must be nonzero at a. This implies that the N th derivative of f
in some direction must be nonzero at a. By rotating the coordinate system of R

n about
a, we can assume that ∂N f/∂x N

1 is nonzero at a, and therefore on some open rectangle
U centered at a. Let L be any line of the form x2 = c2, . . . , xd = cd , where c2, . . . , cd
are constants. If L ∩U �= ∅, then the restriction of f to L ∩U is a nonzero real-analytic
function of the single variable x1—which has isolated zeros. Hence the intersection of Z
with L ∩U has linear Lebesgue measure zero. By Fubini’s theorem, Z ∩U has measure
zero. ��
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