
Math. Ann. (2009) 343:757–771
DOI 10.1007/s00208-008-0288-2 Mathematische Annalen

Quantum channels that preserve entanglement

William Arveson

Received: 14 January 2008 / Revised: 18 August 2008 / Published online: 24 September 2008
© Springer-Verlag 2008

Abstract Let M and N be full matrix algebras. A unital completely positive (UCP)
map φ : M → N is said to preserve entanglement if its inflation φ⊗ idN : M ⊗ N →
N⊗N has the following property: for every maximally entangled pure stateρ of N⊗N ,
ρ ◦ (φ ⊗ idN ) is an entangled state of M ⊗ N . We show that there is a dichotomy
in that every UCP map that is not entanglement breaking in the sense of Horodecki–
Shor–Ruskai must preserve entanglement, and that entanglement preserving maps of
every possible rank exist in abundance. We also show that with probability 1, all UCP
maps of relatively small rank preserve entanglement, but that this is not so for UCP
maps of maximum rank.

Mathematics Subject Classification (2000) Primary: 46N50,
Secondary: 81P68 · 94B27

1 Introduction

Let H and K be finite dimensional Hilbert spaces. In the literature of quantum infor-
mation theory, a quantum channel (from B(H) to B(K )) can be described equivalently
as a completely positive linear map

ψ : B(H)′ → B(K )′ (1.1)

from the dual of B(H) to the dual of B(K ) that carries states to states. One can view
quantum channels as the morphisms of a category whose objects are the dual spaces
B(H)′ of finite dimensional type I factors B(H). Quantum channels are the adjoints
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758 W. Arveson

of unital completely positive (UCP) maps in the sense that the most general map ψ of
(1.1) must have the form

ψ(ρ) = ρ ◦ φ, ρ ∈ B(H)′,

whereφ : B(K ) → B(H) is a UCP map. In this paper we focus on UCP maps, keeping
in mind that all statements about the category of UCP maps (with objects B(H))
translate contravariantly into statements about the category of quantum channels (with
objects B(H)′).

A state ρ of B(K ⊗ H) is called separable if it is a convex combination of product
states

ρ(a ⊗ b) =
s∑

k=1

tk · σk(a)τk(b), a ∈ B(K ), b ∈ B(H), (1.2)

where σk and τk are states of B(K ) and B(H) respectively, and the tk are positive
numbers with sum 1. States that are not separable are said to be entangled. Since
the set of all separable states of B(K ⊗ H) is compact (see Remark 1.1 of [2]), the
entangled states form a relatively open subset of the state space of B(K ⊗ H).

Since the tensor product of two completely positive maps is completely positive,
every UCP map φ : B(K ) → B(H) gives rise to an inflated UCP map φ ⊗ id :
B(K ⊗ H) → B(H ⊗ H), defined uniquely by sending a ⊗ b to φ(a)⊗ b, a ∈ B(K ),
b ∈ B(H). In turn, φ ⊗ id induces a map from states ρ of B(H ⊗ H) to states
ρ′ = ρ ◦ (φ ⊗ id) of B(K ⊗ H):

ρ′(a ⊗ b) = ρ(φ(a)⊗ b), a ∈ B(K ), b ∈ B(H). (1.3)

The notion of an entanglement breaking channel was introduced and studied in the
papers [6,8]. In our context, a UCP map φ : B(K ) → B(H) is said to be entanglement
breaking iff for every state ρ of B(H ⊗ H), the state ρ′ = ρ ◦ (φ ⊗ id) is a separable
state of B(K ⊗ H). It was pointed out that entanglement breaking UCP maps are the
most degenerate, where in this case “degeneracy” means that the associated quantum
channel can be simulated by a classical channel. That is because, as shown in [6], the
entanglement breaking UCP maps φ : B(K ) → B(H) are precisely those that admit
a representation of the form

φ(x) =
s∑

k=1

ωk(x)ek, x ∈ B(K ), (1.4)

where ω1, . . . , ωs are states of B(K ) and e1, . . . , es are positive operators in B(H)
having sum 1.

We now introduce a class of UCP maps that appear to lie at the opposite extreme
from the entanglement breaking ones. Fix a UCP mapφ : B(K ) → B(H) and consider
the action of the channel φ ⊗ id on pure states ρ of B(H ⊗ H). If
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x ∈ B(H ⊗ H) �→ 〈xξ, ξ 〉 is the pure state corresponding to a unit vector ξ ∈ H ⊗ H ,
then the corresponding state ρξ of B(K ⊗ H) defined by (1.3) becomes

ρξ (a ⊗ b) = 〈(φ(a)⊗ b)ξ, ξ 〉, a ∈ B(K ), b ∈ B(H). (1.5)

Notice that whenever ξ = η ⊗ ζ decomposes into a tensor product of vectors in
H , ρξ decomposes into a tensor product of states. In order to rule out such “classical”
correlations in pure states, we fix attention on unit vectors ξ ∈ H ⊗ H that are
marginally cyclic in the sense that they satisfy

(B(H)⊗ 1)ξ = H ⊗ H, (1.6)

or equivalently (see Remark 1.2), for every b ∈ B(H) one has

(1 ⊗ b)ξ = 0 	⇒ b = 0.

Note that the second assertion is simply that the state of B(H) defined by ω(b) =
〈(1 ⊗ b)ξ, ξ 〉 should be faithful: ω(b∗b) = 0 	⇒ b = 0.

Definition 1.1 A UCP map φ : B(K ) → B(H) is said to preserve entanglement if
for every marginally cyclic unit vector ξ ∈ H ⊗ H , the state ρξ of (1.5) is an entangled
state of B(K ⊗ H).

Remark 1.2 (Relation to maximally entangled pure states) Let H be a finite dimen-
sional Hilbert space. We offer some remarks to support our singling out of marginally
cyclic vectors as candidates for “highly entangled” pure states of B(H ⊗ H). There is
general agreement in the literature of quantum information theory that the pure states
of B(H ⊗ H) that are associated with vectors of the form

ξ = n−1/2(e1 ⊗ f1 + · · · + en ⊗ fn),

where (ek) and ( fk) are orthonormal bases for H , are properly thought of as the
“maximally entangled” pure states. These pure states are characterized by the property
that their restriction to either subfactor B(H)⊗ 1 or 1 ⊗ B(H) should be the tracial
state.

One can weaken the latter requirement on a pure state ρ of B(H ⊗ H)

ρ(x) = 〈xξ, ξ 〉, x ∈ B(H ⊗ H)

by requiring that its “marginal” state ω, defined on B(H) by

ω(b) = 〈(1 ⊗ b)ξ, ξ 〉, b ∈ B(H),

should have a density operator of maximum rank; or equivalently, thatω should faithful
in the sense that

ω(b∗b) = 0 	⇒ b = 0, b ∈ B(H).
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760 W. Arveson

The latter property is equivalent to the assertion that for every b ∈ B(H),

(1 ⊗ b)ξ = 0 	⇒ b = 0. (1.7)

In turn, since the two von Neumann algebras B(H) ⊗ 1 and 1 ⊗ B(H) are commu-
tants of each other, (1.7) is equivalent to the assertion of (1.6), namely that ξ should
be a marginally cyclic vector. For this reason, we have found it useful to regard a
unit vector ξ ∈ H ⊗ H as “highly entangled” (but perhaps not maximally entangled)
precisely when it is marginally cyclic.

In Sect. 2 we show how the parameterization of states given in [2] can be appropria-
tely adapted to UCP maps so as to make the space 
r of all UCP maps φ : B(K ) →
B(H) of rank ≤ r into a compact probability space that carries a unique unbiased
probability measure Pr , and we show in Sect. 4 that Pr is concentrated on the set
of maps of rank r . Thus, the probability space (
r , Pr ) represents choosing a UCP
map of rank r at random. We prove a zero-one law for channels in Sect. 3 which
expresses in strong probabilistic terms the dichotomy that a UCP map either preserves
entanglement or it has the degenerate form (1.4).

We then apply the main results of [2] to show that there are plenty of entanglement
preserving UCP maps of every possible rank, and that almost surely every UCP map
of relatively small rank preserves entanglement (see Theorem 4.2). We conclude with
a discussion of extreme points of the convex set of UCP maps that implies: Whenever
an extremal UCP map of rank r exists, then almost surely every UCP map of rank r
is extremal.

Since writing this paper, we learned from M. B. Ruskai that a definition of “maxi-
mally entangled pure state” has been proposed in [3,5] that is equivalent to the above
definition of marginally cyclic vector (such vectors are said to have “maximum Schmidt
rank” in [3,5]). Basically, those authors obtain information about the relations between
subspaces M ⊆ H ⊗ H with the property that every unit vector in M has “Schmidt
rank” at least r and they apply their results to some of the measures of entanglement
that have been proposed in the literature of quantum information theory.

2 Real-analytic parameters for UCP maps

Let H and K be finite dimensional Hilbert spaces with n = dim H , m = dim K and
fix a UCP map φ : B(K ) → B(H). A straightforward application of Stinespring’s
theorem (as formulated in Appendix A) implies that there is an r -tuple of operators
v1, . . . , vr ∈ B(H, K ) such that

φ(a) = v∗
1av1 + · · · + v∗

r avr , a ∈ B(K ), (2.1)

and that the operators vk satisfy

v∗
1v1 + · · · + v∗

r vr = 1H . (2.2)
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Moreover, one can arrange that v1, . . . , vr are linearly independent, and in that case
the integer r is called the rank of φ. Let 
r (K , H) be the compact space of all UCP
maps φ : B(K ) → B(H) of rank at most r . Since H and K will be held fixed, we
lighten notation by writing 
r for 
r (K , H).

In this section we show that for every r = 1, 2, . . . ,mn, there is a convenient
parameterization of the space 
r and we describe its basic properties. While this is
a reformulation of some of the results of [2], there are enough differences in the two
formulations that it is appropriate to discuss this parameterization of
r in some detail.

Given two r -tuples (v1, . . . , vr ) and (v′
1, . . . , v

′
r ) of operators in B(H, K ) which

are not necessarily linearly independent, then by Proposition A.1 of Appendix A,

v∗
1 xv1 + · · · + v∗

r xvr = v′∗
1 xv′

1 + · · · + v′∗
r xv′

r , x ∈ B(K )

iff there is a unitary r × r matrix (λi j ) ∈ Mr (C) such that

v′
i =

r∑

j=1

λi jv j , i = 1, 2, . . . , r. (2.3)

Now consider the space V r (H, K ) of all r -tuples v = (v1, . . . , vr ) with operator
components vk ∈ B(H, K ) that satisfy v∗

1v1 +· · ·+v∗
r vr = 1H (we do not require that

the component operators are linearly independent). Theorem 2.1 of [2] implies that
V r (H, K ) is a compact connected real-analytic Riemannian manifold that is acted
upon transitively by a compact group of isometries. For every v = (v1, . . . , vr ) ∈
V r (H, K ),

φv(x) = v∗
1 xv1 + · · · + v∗

r xvr , x ∈ B(K ) (2.4)

defines a UCP map φv : B(K ) → B(H) of rank at most r . The following result
summarizes the properties of this parameterization v �→ φv and is a direct consequence
of the preceding remarks. We write U (r) for the group of all unitary r × r matrices.

Proposition 2.1 Fix two finite dimensional Hilbert spaces H, K with dim H = n,
dim K = m. For every r = 1, 2, . . . ,mn, let 
r be the compact space of all UCP
maps φ : B(K ) → B(H) of rank ≤ r .

Every element of
r has the form (2.4) for some v ∈ V r (H, K ). This parameteriza-
tion v �→ φv is continuous and one has φv = φv′ iff v and v′ belong to the same U (r)
orbit as in (2.3). Hence the map v �→ φv promotes uniquely to a homeomorphism of
the orbit space V r (H, K )/U (r) onto the space 
r of UCP maps of rank ≤ r .

Fixing H , K as in Proposition 2.1, consider the integer q = m2n2 + 1, and the
much larger unitary group U (q). We single out the following subset of V r (H, K ),

Sep(V r (H, K )) =
⋃

λ∈U (q)

Zλ,
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where

Zλ = {w = (w1, . . . , wr ) ∈ V r (H, K ) : rank(
r∑

j=1

λi jw j ) ≤ 1, 1 ≤ i ≤ q}.

The key property of Sep(V r (H, K )) is described as follows.

Proposition 2.2 Let φ : B(K ) → B(H) be a UCP map of rank r , choose v ∈
V r (H, K ) so that φ = φv , and let ξ ∈ H ⊗ H be a marginally cyclic unit vector.
Then the state ρξ of B(K ⊗ H) defined by

ρξ (a ⊗ b) = 〈(φv(a)⊗ b)ξ, ξ 〉, a ∈ B(K ), b ∈ B(H)

is separable iff v ∈ Sep(V r (H, K )).

Proof This is a restatement of Proposition 7.7 of [2]. ��
After noting that the condition v ∈ Sep(V r (H, K )) does not depend on the choice

of marginally cyclic vector ξ , we can combine Proposition 2.2 with a result of [6] to
conclude:

Corollary 2.3 Let φ : B(K ) → B(H) be an arbitrary UCP map and let Sφ be the
set of all states ρ of B(K ⊗ H) of the form

ρ(a ⊗ b) = 〈(φ(a)⊗ b)ξ, ξ 〉, a ∈ B(K ), b ∈ B(H), (2.5)

where ξ ranges over the set of marginally cyclic unit vectors in H ⊗ H. If Sφ contains
a single entangled state then every state of Sφ is entangled and φ preserves entangle-
ment. Otherwise, φ is entanglement breaking.

Proof To prove the last sentence, let e1, . . . , en be an orthonormal basis for H and let
ξ be the marginally cyclic unit vector

ξ = 1√
n
(e1 ⊗ e1 + · · · + en ⊗ en).

The implications B ⇐⇒ C of Theorem 4 of [6] are equivalent to the assertion that φ
is entanglement breaking iff the state ρ is separable, hence the assertion follows from
the first two sentences of Corollary 2.3. ��

3 A zero-one law for UCP maps

The unit sphere S(H) = {ξ ∈ H : ‖ξ‖ = 1} of an n dimensional Hilbert space H
is S2n−1, a real-analytic Riemannian symmetric space that carries a unique unitarily
invariant probability measure µH .
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Fix a UCP map φ : B(K ) → B(H). Every vector ξ in the unit sphere of H ⊗ H
gives rise to a state ρξ of B(K ⊗ H) by way of

ρξ (a ⊗ b) = 〈(φ(a)⊗ b)ξ, ξ 〉, a ∈ B(K ), b ∈ B(H), (3.1)

thereby obtaining a map φ̂ : ξ �→ ρξ from S(H ⊗H) to states of B(K ⊗H) that we can
view as a random variable associated with the probability space (S(H ⊗ H), µH⊗H ).
We now show that it is possible to determine whether φ preserves entanglement in
a way that makes no reference to marginally cyclic vectors, but rather to properties
of the random variable φ̂. Indeed, Theorem 3.1 frames the dichotomy of UCP maps
as follows: The channel associated with an arbitrary UCP map φ : B(K ) → B(H)
either maps all pure states to separable states, or it maps almost all pure states to
entangled states. Perhaps that assertion is expressed more concisely as a zero-one law:

µH⊗H {ξ ∈ S(H ⊗ H) : φ̂(ξ) is entangled } = 0 or 1.

Theorem 3.1 For every UCP map φ : B(K ) → B(H), the following are equivalent:

(i) For almost every vector ξ ∈ S(H ⊗ H), the state ρξ is entangled.
(ii) For every vector ξ in some Borel subset of S(H ⊗ H) of positive measure, the

state ρξ of (3.1) is entangled.
(iii) φ preserves entanglement.

The proof of Theorem 3.1 requires:

Lemma 3.2 The set of marginally cyclic unit vectors of H ⊗ H is relatively open and
dense in S(H ⊗ H) and its complement has measure zero.

Proof Let Z be the set of all vectors ξ ∈ S(H ⊗ H) that are not marginally cyclic.
Since µH⊗H assigns positive mass to nonempty open subsets of the unit sphere, it
suffices to show that Z is a closed set of µH⊗H -measure zero. Since the unit sphere
S(H ⊗ H) is a connected real-analytic submanifold of its ambient space H ⊗ H , for
every real-analytic function

F : S(H ⊗ H) → W (3.2)

that takes values in a finite dimensional real vector space W , either F vanishes iden-
tically or the set of zeros of F is a closed set of µH⊗H -measure zero (see Proposition
B.1 of [2]). Thus, in order to show that µH⊗H (Z) = 0, it suffices to exhibit a real-
analytic function F as in (3.2) that does not vanish identically on S(H ⊗ H) such that
Z = {ξ ∈ S(H ⊗ H) : F(ξ) = 0}.

We exhibit such a function F as follows. We view H ⊗ H as C
n ⊗ H , where

n = dim H , in which case C
n ⊗ H is identified with the direct sum of n copies

of H , 1Cn ⊗ B(H) is identified with n × n diagonal operator matrices (bi j ) with
b11 = · · · = bnn ∈ B(H), and its commutant B(Cn)⊗ 1H is identified with the set of
all n × n operator matrices with entries in C · 1H .
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764 W. Arveson

Let ξ = (ξ1, . . . , ξn) be a unit vector in C
n ⊗ H . Viewing ξ as a column vector,

straightforward verification shows that ξ is marginally cyclic, i.e., (B(Cn) ⊗ 1)ξ =
C

n ⊗ H , iff its components satisfy

span {ξ1, . . . , ξn} = H,

or equivalently, iff {ξ1, . . . , ξn} is linearly independent.
Consider the function F : C

n ⊗ H → ∧n H = H ∧ · · · ∧ H defined by

F(ξ1, . . . , ξn) = ξ1 ∧ ξ2 ∧ · · · ∧ ξn .

F is a homogeneous polynomial of degree n, and elementary multilinear algebra shows
that for every (ξ1, . . . , ξn) ∈ C

n ⊗ H , the components ξk form a linearly independent
set iff ξ1 ∧ · · · ∧ ξn �= 0. Hence the restriction of F to the unit sphere S(Cn ⊗ H)
is a real-analytic function with the property Z = {ξ̄ ∈ S(Cn ⊗ H) : F(ξ̄ ) = 0}.
Obviously, F does not vanish identically on S(Cn ⊗ H), since it is nonzero on any
n-tuple ξ̄ = (ξ1, . . . , ξn) with linearly independent components ξk . ��
Proof of Theorem 3.1 (i) 	⇒ (ii) is trivial.

(ii) 	⇒ (iii): Let E be a Borel subset of S(H ⊗ H) of positive measure such that ρξ
is entangled for every ξ ∈ E . By Lemma 3.2, the set M of marginally cyclic vectors in
S(H ⊗ H) is an open dense set whose complement has measure zero. Hence M ∩ E
must have positive measure, and is therefore nonempty. Every element of M ∩ E is a
marginally cyclic unit vector ξ for which ρξ is entangled, and at this point (iii) follows
from Corollary 2.3.

(iii) 	⇒ (i): This is immediate from Corollary 2.3 and Lemma 3.2. ��

4 Abundance of entanglement preserving maps

Throughout this section, H and K denote Hilbert spaces of respective finite dimensions
n and m, and for the main results below we require that n ≤ m. Proposition 2.1 asserts
that for every r = 1, 2, . . . ,mn, the map

v ∈ V r (H, K ) �→ φv ∈ 
r

promotes to a homeomorphism of the orbit space V r (H, K )/U (r) onto the compact
space 
r of all UCP maps φ : B(K ) → B(H) of rank ≤ r . The unique invariant
probability measure µ of V r (H, K ) promotes to a probability measure Pr on 
r ,
defined on Borel sets E ⊆ 
r by

Pr (E) = µ{v ∈ V r (H, K ) : φv ∈ E},

and Theorem 3.3 of [2] is equivalent to the following key assertion about this nonatomic
topological probability space (
r, Pr ):

Theorem 4.1 For each r = 1, . . . ,mn, the measure Pr is concentrated on the rela-
tively open subset of 
r consisting of UCP maps of rank = r .
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We conclude that for every r = 1, 2, . . . ,mn, the probability space (
r , Pr ) repre-
sents “choosing a UCP map of rank r at random”.

In the following result we convert the principal results of [2] into assertions about
the probability space (
r, Pr ). We write E P(
r ) for the set of all entanglement
preserving maps in 
r .

Theorem 4.2 Let H, K satisfy n = dim H ≤ m = dim K < ∞.

(i) For every r = 1, 2, . . . ,mn, E P(
r ) is a relatively open subset of
r of positive
measure.

(ii) For every r satisfying 1 ≤ r ≤ n/2, Pr (E P(
r )) = 1.
(iii) For the maximum rank r = mn one has 0 < Pmn(E P(
mn)) < 1.

The proof requires some material from [2], which we summarize for the reader’s
convenience.

Remark 4.3 (Subvarieties of V r (H, K )) By a subvariety of V r (H, K ) we mean a
subset of the form Z = {v ∈ V r (H, K ) : F(v) = 0}, where

F : V r (H, K ) → W

is a real-analytic function taking values in a finite dimensional real vector space W . Let
µ be the unique probability measure on V r (H, K ) that is invariant under the transitive
action by isometries. Proposition 2.6 of [2] asserts that every proper subvariety Z �=
V r (H, K ) has µ-measure zero.

Remark 4.4 (The wedge invariant) In [2] we introduced an invariant of states cal-
led the wedge invariant. The wedge invariant can be interpreted as a pair of ran-
dom variables on the probability space (V r (H, K ), µ) as follows. Every r -tuple
v = (v1, . . . , vr ) ∈ V r (H, K ) gives rise to an operator v1 ∧ · · · ∧ vr from ⊗r H
to ⊗r K as in (1.5) of [2], and v1 ∧ · · · ∧ vr maps the symmetric subspace ⊗r H+ of
⊗r H to the antisymmetric subspace ∧r K of ⊗r K . Similarly, v∗

1 ∧ · · · ∧ v∗
r maps the

symmetric subspace of ⊗r K to the antisymmetric subspace of ⊗r H . Thus we obtain
a pair of integer-valued random variables w(·), w∗(·) defined on V r (H, K ) by

w(v) = rank(v1 ∧ · · · ∧ vr �⊗r H+), w∗(v) = rank(v∗
1 ∧ · · · ∧ v∗

r �⊗r K+).

These functions w(·) and w∗(·) are associated with subvarieties as follows. Proposi-
tions 8.1 and 8.2 of [2] imply that for every r = 1, . . . ,mn,

A = {v ∈ V r (H, K ) : w(v) ≤ 1}, A∗ = {v ∈ V r (H, K ) : w∗(v) ≤ 1}

are subvarieties of V r (H, K ) and that Sep(V r (H, K )) ⊆ A ∩ A∗.

Proof of Theorem 4.2 (i): Combining the discussion preceding Theorem 4.2 with the
discussion of Sect. 2, one sees that the parameterization map v �→ φv gives rise to
a measure preserving surjection of topological probability spaces (V r (H, K ), µ) →
(
r , Pr ), which carries the closed set Sep(V r (H, K )) to the space of entanglement
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766 W. Arveson

breaking maps of 
r and carries its complement to E P(
r ). Hence the assertion (i)
is that for every r one has µ(Sep(V r (H, K )) < 1, which follows from Theorem 7.8
of [2].

(ii): We have seen that E P(V r (H, K )) = V r (H, K )\ Sep(V r (H, K )) is an open
set. We make use of the random variable of Remark 4.4

w∗ : V r (H, K ) → Z+

as follows. By Remark 4.4 above, Sep(V r (H, K )) ⊆ A∗ and A∗ is a subvariety of
V r (H, K ). The critical fact is that since r does not exceed n/2, Proposition 8.3 of
[2] implies that A∗ is a proper subvariety of V r (H, K ), and therefore has µ-measure
zero. Hence µ(Sep(V r (H, K )) = 0.

(iii): The remark following Proposition 2.2 makes it clear that Theorem 10.1 of [2]
is equivalent to the assertion that E P(
mn) is a relatively open subset of
r for which
0 < Pr (E P(
r )) < 1. ��
Remark 4.5 (Estimating the critical rank) Item (i) of Theorem 4.2 asserts that there
are plenty of entanglement preserving UCP maps of every possible rank. (ii) asserts
that essentially all UCP maps of relatively small rank must preserve entanglement,
while (iii) implies that this breaks down for maps of maximum rank. Hence there is
a critical rank r0 ≤ mn with the property that essentially all UCP maps of rank < r0
preserve entanglement, while 0 < Pr0(E P(
r0)) < 1. As we have pointed out in
the context of states in Remark 12.3 of [2], both bounds n/2 < r0 ≤ mn that follow
directly from Theorem 4.2 seem overly conservative, and one would hope to have
considerably more information about the size of r0 in the future.

5 Abundance of extremals

In this section we continue in the context of UCP maps φ : B(K ) → B(H) where
n = dim H ≤ dim K = m < ∞. In [9], it was shown (in its dual form) that the
extremal UCP maps φ : B(H) → B(H) are dense in the set of all UCP maps of
rank at most n, generalizing a result of [7] for 2 × 2 matrix algebras. Our final result
makes essentially the following assertion about extreme points of the convex set of
UCP maps φ : B(K ) → B(H): If there is an extremal UCP map of rank r , then almost
surely every UCP map of rank r is extremal.

Theorem 5.1 For every integer r satisfying 1 ≤ r ≤ n, the extremals of rank r in
(
r , Pr ) are a relatively open dense set having probability 1. There are no extremal
UCP maps φ : B(K ) → B(H) of rank > n.

The proof of Theorem 5.1 requires

Lemma 5.2 Let r be an integer satisfying 1 ≤ r ≤ n ≤ m. Then there is an
r-tuple v = (v1, . . . , vr ) ∈ V r (H, K ) such that {v∗

i v j : 1 ≤ i, j ≤ r} is a linearly
independent subset of B(H).
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Proof Let e1, . . . , er be an orthonormal set in H , let p be the projection onto the
linear span of e1, . . . , er and let f be a unit vector in K . For each i = 1, . . . , r let
ui be the rank-one partial isometry uiξ = 〈ξ, ei 〉 f . Note that {u∗

i u j : 1 ≤ i, j ≤ r}
defines a system of matrix units for which u∗

1u1 + · · · + u∗
r ur = p, and in particular,

{u∗
i u j : 1 ≤ i, j ≤ r} is a linearly independent subset of B(H).
The rank of p⊥ is n − r ≤ n − 1 ≤ m − 1, hence there is a projection q ∈ B(K )

with rank q = rank p⊥ whose range is orthogonal to f . Let w be a partial isometry
in B(H, K ) having initial projection p⊥ and final projection q, and set

vi = ui + r−1/2w, i = 1, 2, . . . , r.

One finds that v∗
i v j = u∗

i u j + r−1 p⊥, hence v∗
1v1 + · · · + v∗

r vr = 1H , and the set of
all v∗

i v j = u∗
i u j ⊕ r−1 p⊥ is obviously linearly independent. ��

Remark 5.3 Note that for any set of operators v1, . . . , vr ∈ B(H, K ) for which {v∗
i v j :

1 ≤ i, j ≤ r} is linearly independent, {v1, . . . , vr } must be linearly independent. For
if λi ∈ C such that λ1 · v1 + · · · + λr · vr = 0, then

∑
i j λ̄iλ j · v∗

i v j = 0, hence

λ̄iλ j = 0 for all i, j , hence |λi |2 = 0 for all i .

Proof of Theorem 5.1 Consider the complex vector space

W = ∧r2B(H) = B(H) ∧ · · · ∧ B(H),

the exterior product of r2 copies of B(H), and let F : V r (H, K ) → W be the function
obtained by restricting the function

v = (v1, . . . , vr ) ∈ B(H, K )r �→
∧

1≤i, j≤r

v∗
i v j ∈ W

to V r (H, K ). Since the above function is a real-homogeneous polynomial of degree
2r , its restriction to V r (H, K ) is real-analytic. Moreover, Lemma 5.2 implies that
there is a point v ∈ V r (H, K ) for which F(v) �= 0. It follows that the set Z = {v ∈
V r (H, K ) : F(v) = 0} of zeros of F is a proper subvariety and therefore has measure
zero and empty interior (see Remark 4.3). By Remark 5.3 and the remarks following
(B.2), for every v ∈ V r (H, K ), the associated UCP map φv is extremal of rank r iff
v /∈ Z . This proves that the set of extremals of rank r in 
r is an open dense subset
whose complement has measure zero.

The second sentence follows from the fact that if φ(x) = v∗
1 xv1 + · · · + v∗

r xvr

is extremal of rank r , then by the remarks following (B.2), the set of r2 operators
{v∗

i v j : 1 ≤ i, j ≤ r} in B(H) is linearly independent. Since dim B(H) = n2, it
follows that r2 ≤ n2, hence r ≤ n. ��

Appendix A: Remarks on Stinespring’s theorem

Stinespring’s theorem (Theorem 1 of [10]) provides a familiar and useful repre-
sentation of completely positive maps. Along with the existence of this represen-
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tation there are notions of minimality and uniqueness—both of which have significant
consequences, though neither minimality nor uniqueness was mentioned in the origi-
nal source [10]. We briefly review these facts here since we shall have to make use of
all of them in this paper, referring the reader to pp. 143–146 of [1] for more detail.

Let A be a unital C∗-algebra and let φ : A → B(H) be an operator-valued comple-
tely positive linear map. The principal assertion of Stinespring’s theorem is that there
is a pair (π, V ) consisting of a representation π of A on another Hilbert space K and
an operator V : H → K such that

φ(x) = V ∗π(x)V, x ∈ A. (A.1)

Such a pair (π, V ) will be called a Stinespring pair for φ. Two Stinespring pairs
(π1, V1) and (π1, V2) are said to be equivalent if there is a unitary operator U : K1 →
K2 such that

U V1 = V2, and Uπ1(x) = π2(x)U, x ∈ A. (A.2)

A Stinespring pair (π, V ) is said to be minimal if V H is a cyclic subspace for the
representation π in the sense that

K = span {π(x)V ξ : x ∈ A, ξ ∈ H}. (A.3)

The requirement (A.3) is equivalent to the following assertion about the relation of
the subspace V H to the commutant π(A)′:

∀ b ∈ π(A)′, b �V H = 0 	⇒ b = 0. (A.4)

Every Stinespring pair (π, V ) can be reduced to a minimal one by replacing π with
the subrepresentation obtained by restricting π to the reducing subspace of K defined
by the right side of (A.3). The uniqueness assertion is simply that any two minimal
Stinespring pairs for φ are equivalent.

The immediate consequences of these results for UCP maps φ : B(H1) → B(H2)

between finite dimensional type I factors are as follows. Taking A = B(H1) and noting
that the most general finite dimensional representation of B(H1) is unitarily equivalent
to a direct sum of r = 1, 2, . . . copies of the identity representation, we conclude that
there is a minimal Stinespring pair of the form (π, V ) where π is the representation
on r · H1 defined by

π(x) =

⎛

⎜⎜⎜⎝

x 0 · · · 0
0 x · · · 0
...
...
...
...

0 0 · · · x

⎞

⎟⎟⎟⎠ , x ∈ B(H1) (A.5)

and where V : H2 → r · H1 = H1 ⊕ · · · ⊕ H1 is a linear map from H2 to a
direct sum of r copies of H1. The operator V : H2 → r · H1 must have the form
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V ξ = (v1ξ, . . . , vrξ), ξ ∈ H2 (viewed as a column vector), where v1, . . . , vr is a
uniquely determined r -tuple of operators in B(H2, H1). After these adjustments, the
formula φ(x) = V ∗π(x)V becomes

φ(x) = v∗
1 xv1 + · · · + v∗

r xvr , x ∈ B(H1). (A.6)

Since the commutant of π(B(H1)) consists of all r × r operator matrices with
entries in C · 1H1 , the equivalence of (A.3) and (A.4) implies that the minimality of
(π, V ) becomes this assertion: For every λ1, . . . , λr ∈ C

λ1v1 + · · · + λr · vr = 0 	⇒ λ1 = · · · = λr = 0,

i.e., iff the set of operators {v1, . . . , vr } that implements (A.6) should be linearly
independent. In particular, these remarks show that the integer r is uniquely defined
by the formula (A.6) when v1, . . . , vr is linearly independent; r is called the rank of
the completely positive map φ : B(H1) → B(H2).

The r -tuple (v1, . . . , vr ) that implements (A.6) is certainly not unique; but if
(v′

1, . . . , v
′
r ) is another such r -tuple, then the operator V ′ : H2 → r · H1 defined

by

V ′ξ = (v′
1ξ, . . . , v

′
r ξ), ξ ∈ H2

defines another Stinespring pair (π, V ′) associated with the same representation of
(A.5). After recalling the structure of the commutant of π(B(H1)), one can apply
the uniqueness assertion of Stinespring’s theorem to conclude that there is a unique
unitary matrix of scalars (λi j ) ∈ U (r) such that

v′
i =

r∑

j=1

λi j · v j , i = 1, 2, . . . , r. (A.7)

We require the following somewhat stronger form of uniqueness—known as the
Choi–Kraus representation in the physics literature—in which the hypothesis of linear
independence is dropped. Notice however that its proof is fundamentally the same as
the proof of the preceding uniqueness assertion. Note too the resemblance between
this result and Proposition 5.1 of [2], which characterizes the possible representations
of finite sums of positive rank one Hilbert space operators. Indeed, though we do
not require the fact, there is a common generalization of both assertions to Hilbert
C∗-modules.

Proposition A.1 Let (v1, . . . , vr ) and (v′
1, . . . , v

′
r ) be two r-tuples of operators in

B(H2, H1). Then one has

v∗
1 xv1 + · · · + v∗

r xvr = v′∗
1 xv′

1 + · · · + v′∗
r xv′

r (A.8)

for all x ∈ B(H1) iff there is a unitary r × r matrix (λi j ) ∈ U (r) that relates
(v′

1, . . . , v
′
r ) to (v1, . . . , vr ) as in (A.7).
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Proof Assuming that (A.8) is satisfied, one can set x equal to the identity operator
and argue as in the proof of Proposition 5.1 of [2] to obtain the desired unitary matrix
(λi j ). The converse is left for the reader. ��

Appendix B: Remarks on extremal UCP maps

Let A be a unital C∗-algebra. The extremal UCP maps from A to B(H) were first
determined in Theorem 1.4.6 of [1], which makes the following assertion in that case.

Theorem B.1 For every UCP map φ : A → B(H), the following are equivalent.

(i) φ is an extreme point of the convex set of all UCP maps from A to B(H).
(ii) Let (π, V ) be a minimal Stinespring pair for φ. Then for every operator b in

the commutant of π(A),

V ∗bV = 0 	⇒ b = 0. (B.1)

Notice that in general, the condition (B.1) is stronger than the condition (A.4) for
minimality. Now specialize to the case in which H1 and H2 are finite dimensional
Hilbert spaces and φ : B(H1) → B(H2) is a UCP map. Choosing an r -tuple of
operators v1, . . . , vr ∈ B(H2, H1) as in (A.6)

φ(x) = v∗
1 xv1 + · · · + v∗

r xvr , x ∈ B(H1)

and letting π be the representation of B(H1) on r · H1 defined in (A.5), we obtain a
Stinespring pair (π, V ) for φ by defining V : H2 → r · H1 as in Appendix A, viewing
V ξ = (v1ξ, . . . , vr ξ) for ξ ∈ H2 as a column vector with components in H1. Noting
the structure of the commutant of π(B(H1)) pointed out in Appendix A following
(A.6), one finds that the condition (B.1) for extremality becomes this: for every r × r
matrix of scalars (λi j )

r∑

i, j=1

λi j · v∗
i v j = 0 	⇒ λi j = 0, 1 ≤ i, j ≤ r, (B.2)

and from Theorem B.1 we conclude that φ is extremal iff the set of operators {v∗
i v j :

1 ≤ i, j ≤ r} is linearly independent. The latter result is known as Choi’s theorem in
the quantum information theory literature, which cites [4] as the source.

Acknowledgments I thank Mary Beth Ruskai for helpful remarks concerning material in [6] and for
pointing out several references.
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