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ABSTRACT. Normal endomorphisms of von Neumann algebras need not be ex-
tendable to automorphisms of a larger von Neumann algebra, but they always
have asymptotic lifts. We describe the structure of endomorphisms and their
asymptotic lifts in some detail, and apply those results to complete the iden-
tification of asymptotic lifts of unital completely positive linear maps on von
Neumann algebras in terms of their minimal dilations to endomorphisms.

1. INTRODUCTION

We work in the category whose objects are pairs (M, «) consisting of a normal
unit-preserving x-endomorphism « : M — M of a von Neumann algebra M, and
whose maps are equivariant normal x-homomorphisms that map unit to unit. The
isomorphisms of this category are conjugacies, in which a; : My — M; is said to
be conjugate to as : My — My if there is a x-isomorphism 6 : M7 — My satisfying
foay =as0f.

Consider the problem of extending an endomorphism a : M — M to a *-
automorphism of a larger von Neumann algebra, assuming that the necessary con-
dition ker o = {0} is satisfied. In that case « is an isometric *-endomorphism of
M, and a straightforward construction produces a unital C*-algebra N O M and
a x-automorphism ( of N that restricts to o on M. This extension of a to an
automorphism of a larger C*-algebra is unique up to natural isomorphism provided
one assumes that it is minimal in the sense that M U S~ (M)U B 2(M)U--- is
norm-dense in N.

This procedure is effective for extending endomorphisms of C*-algebras. But it
is poorly suited to this category since there is no natural Wa of completing the
C*-algebra N to a von Neumann algebra so as to obtain a W*-dynamical system
that extends a except in special circumstances— the most natural circumstance be-
ing that in which « preserves a faithful normal state of M. More serious problems
arise when kera # {0}, since in that case even extensions to C*-algebraic auto-
morphisms cannot exist. The proper way to associate a W*-dynamical system to
an endomorphism involves the notion of lifting, a concept introduced in [2] for the
broader category of unital completely positive maps, and which will be described
momentarily. While liftings are typically much “smaller” than the extensions of
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Mt is always possible to carry out such a completion, but that construction does not give rise
to a functor from injective endomorphisms to W*-dynamical systems. [3] addresses the existence
issue for Ep-semigroups acting on von Neumann algebras.

(©2008 American Mathematical Society

Reverts to public domain 28 years from publication

2073



2074 WILLIAM ARVESON AND DENNIS COURTNEY

isometric endomorphisms described above, they always exist within the category
and they enjoy good functorial properties.

We were led to these issues by a problem involving the broader category of normal
unit-preserving completely positive linear maps ¢ : M — M of von Neumann
algebras M (UCP maps). It was shown in [2] that every UCP map ¢ : M — M
has an asymptotic lift, which is unique up to natural isomorphism. Naturally, one
wants to identify the asymptotic lift of ¢ in concrete terms. In [2], the asymptotic
lift of ¢ was identified as the tail flow of the minimal dilation of ¢ in “most” cases—
namely those cases in which the tail flow of the dilated endomorphism has trivial
kernel. But in general, the minimal dilation of ¢ to an endomorphism can have a
nontrivial kernel, and the identification problem was left open in those cases.

The purpose of this note is to identify asymptotic lifts of UCP maps on von Neu-
mann algebras in general. This is accomplished by first giving a description of lifts
of endomorphisms, in the course of which we obtain a basic result on the structure
of surjective endomorphisms of von Neumann algebras that appears to have been
overlooked (Theorem B.]). We apply these results to identify the asymptotic lift of
an arbitrary UCP map in terms of its minimal dilation to an endomorphism of a
larger von Neumann algebra (Theorem[4.1]), thereby completing Theorem 7.1 of [2].

In related work [4], the notion of an asymptotic lift was generalized to normal
positive linear maps acting on von Neumann algebras (also see [0]). It is significant
that since there is no dilation theory for positive linear maps that are not completely
positive, the identification problem becomes a significant issue in such cases and
has been only partially solved. Further discussion can be found in [4].

2. LIFTING ENDOMORPHISMS

Throughout this section, a : M — M will denote an endomorphism acting on
a von Neumann algebra M. By a W*-dynamical system we mean a pair (N, ),
where 3 is a x-automorphism of a von Neumann algebra N.

Definition 2.1. A lifting of o : M — M is a triple (N, 3, E) where (N, ) is a W*-
dynamical system and £ : N — M is a unit-preserving normal #-homomorphism
satisfying Eo 8 =ao F.

Note first that for every lifting (N, 8, E) of «, we have
(2.1) E(N)C Mna(M)na*>(M)n---.
Indeed, every element y = E(x) in the range of F can be written in the form

y=a"(E(B " (x)) € a"(M) for every n = 0,1,2,..., from which the assertion is
evident.

Remark 2.2 (Nondegeneracy). A lifting (N, 3, E) of « is said to be nondegenerate
if for every x € N,

E@"(z))=0, neZ = z=0.
In general, the set
K={xeN:E(@"(z))=0, VneZ}

is a weak*-closed two-sided ideal in N satisfying S(K) = K. Hence there is a (-
fixed central projection ¢ € N such that K = ¢N. It follows that N decomposes
into a sum N = K @ Ny, where (No, 8 [n,, E [n,) is a nondegenerate lift of o and
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E(B"(K)) = {0} for every n € Z. In particular, every lift (N, 3, E) of o can be
reduced to a nondegenerate lift without affecting the range of the homomorphism E.

Let a: M — M be an endomorphism of a von Neumann algebra. The sequence

of von Neumann algebras M, a(M),a?(M), ... decreases as n increases, and their
intersection
oo
My = ) @™(M)
n=1

is called the tail algebra of o. The restriction of a to the tail algebra is a surjective
endomorphism; it is an automorphism iff ker o« N M, = {0}.

Proposition 2.3. Leta: M — M be an endomorphism. For every lifting (N, 3, E)
of a, the following are equivalent:

(i) For every normal linear functional p € M,, one has
(2.2) lim [lpoa”| = oo B,
(ii) E(N) = M.

Proof. Since E is a *-homomorphism of von Neumann algebras, it maps the unit
ball of N onto the unit ball of its range. Hence (ii) is equivalent to
E(ball N) = ball My, = (] a"(ball M).
n=1
The equivalence (i) <= (ii) now follows from the more general assertion of Lemma
3.6 of [2]. O

Definition 2.4. An asymptotic lift of an endomorphism « : M — M is a nonde-
generate lifting (N, 8, F) satisfying the conditions of Proposition 23

Remark 2.5 (Relation to asymptotic lifts of UCP maps). In [2], the term asymptotic
lift refers to a related concept introduced for the broader category of UCP maps
on dual operator systems. It is significant that an asymptotic lift in the sense of
Definition [24]is also an asymptotic lift in the broader sense of Definition 3.1 of [2].

To prove that assertion, it suffices to show that if a lifting (N, 8, E) of an endo-
morphism « : M — M satisfies the equivalent properties (i) and (ii) of Proposition
23] then those properties persist throughout the matrix hierarchy over M. Indeed,
for each n = 1,2,..., the lifting (N, 5, F) of & : M — M induces a natural lift
(M, ® N,id,, ®0,id,, ®F) of the endomorphism id,, ®« : M,, ® M — M, ® M, and
by examining matrix entries one finds that property (ii) persists at level n. Hence
property (i) holds as well for every n = 1,2,..., and (N, 3, F) satisfies Definition
3.1 of [2].

Two liftings (Ng, Ok, Fx), k = 1,2, of an endomorphism « : M — M are said to
be isomorphic if there is an isomorphism of von Neumann algebras v : Ny — Ns
satisfying yo 1 = fo 0y and Fy 0oy = Fj.

Theorem 2.6. Fvery endomorphism o« : M — M of a von Neumann algebra has

an asymptotic lifting that is unique up to isomorphism.

Proof. The proof of Theorem 3.2 of [2] explicitly constructs an asymptotic lift of
a UCP map of that category in terms of the space of inverse sequences of that
map. Since in the present context the map is an endomorphism « : M — M, one
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sees by inspection that the constructed asymptotic lift (N, 5, E) has the following
properties: the space N of inverse sequences is closed under multiplication, § is
a x-automorphism of that von Neumann algebra, and £ : N — M is a normal
*-homomorphism. Hence (N, g, F) is an asymptotic lift in the sense of Definition
24 The proof of uniqueness involves similar observations. O

3. STRUCTURE OF SURJECTIVE ENDOMORPHISMS

In this section we prove that in general, a surjective endomorphism of a von
Neumann algebra admits a natural decomposition into the direct sum of a W*-
dynamical system and an endomorphism of a particularly simple kind, called a
backward shift, that depends only on ker o. That allows us to identify asymptotic
lifts of endomorphisms in very concrete terms.

Let K be a von Neumann algebra and consider the von Neumann algebra
¢ (N, K) of all singly-infinite bounded sequences

x = (x1,22,...), i € K.
Define an endomorphism o of £*°(N, K) as follows:
(3.1) or(x1,22,...) = (22,23,...), (x1,22,...) € L°(N,K).
Obviously, o4 is a normal surjective unit-preserving endomorphism, and
kero, =K®000®--- = K.

Such an endomorphism o is called the backward shift based on K.

We can modify the backward shift o, based on K in a nontrivial way by choosing
an automorphism J of another von Neumann algebra P and letting 8 & o4 be the
endomorphism of P @ (*°(N, K) defined by

(3-2) B@oy:xdye POLT(N,K)— B(z)©oy(y).

This is a surjective endomorphism whose kernel is isomorphic to K, but it has a
summand P on which it restricts to an automorphism.

Theorem 3.1. Every normal surjective endomorphism o of a von Neumann al-
gebra M is conjugate to one of the form [B.2l), where oy is the backward shift
based on K = ker o, and where (3 is the x-automorphism defined by restricting « to
P =(1-c¢)M, c being the a-fized central projection

(3.3) c= lim ¢,
n—oo
where ¢c1 < cg < -+ is the sequence of central projections ker a™ = ¢, M.
Proof. Since ker a” is a weak*-closed ideal in M for every n = 1,2,..., it has the

form ¢, M where ¢, is a central projection; and since ker o™ C ker o™ t!, it follows
that ¢, < cpi1.

We claim: a(c,41) = cp, for every n = 1,2,.... Since kera® = ¢, M and
a(M) = M, this is equivalent to the assertion a(kera™*!) = kera™. Obviously,
r € kera™! = a(x) € kera™. For the opposite inclusion, choose y € ker a™.
Since M = «(M), we can find © € M such that y = a(z). This  must satisfy
a1 (z) = a"(a(r)) = a™(y) = 0, hence x € kera™*!, and therefore y = a(r) €
a(ker a™t1). These formulas a(c,41) = ¢, clearly imply that the limit ¢ of (B3] is
an a-fixed central projection.
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Let P = (1 — ¢)M. Note that a(P) = a(1 — ¢)a(M) = (1 — ¢)M = P. Since
the kernel of o is e;M C ¢M we have P Nkera = {0}, hence « restricts to a
s-automorphism of P.

Turning now to the summand cM, we claim that for every n > 2, a™ ! restricts
to an isomorphism of von Neumann algebras

a1 (cn — en—1)M Z kera = 1 M.

Indeed, the restriction of a”~! to (¢, — ¢,_1)M is injective because ker a"~1 =

cn—1M intersects trivially with the algebra on the left. It is surjective because after
iterating the formulas a(ck11) = ¢ we find that

" H(en = eno1)M) = " ey M) = " Hep) M = a2 (e 1) M
=--=afeca)M =1 M.

Now consider the von Neumann algebra £°° (N, ker «), the algebra of all uniformly
bounded sequences y = (y1, 92, ...) with yx € kera for k > 1. Every element x €
cM admits a unique decomposition into a bounded sequence of mutually orthogonal
central slices x = 1 + 29 + 23 + -+, where z; = ¢c;x and x = (¢ — cx—1)x for
k > 2. Moreover, the preceding paragraph implies that o*~!(z}) € ker « for every
k > 2. Thus we can define a normal homomorphism of von Neumann algebras
0 :cM — £°° (N, ker o) by

0(x) = (21, ax2), &(x3),...), x €cM.

We have also seen that for each k& > 2, k=1 restricts to an isomorphism from
(ck — cx—1)M to ker a; and since cM = 1M @© (coa —c1)M & (c3 —co)M @ -+, it
follows that 6 is an isomorphism of von Neumann algebras.

One can now directly verify that § o = o4 00, where o4 denotes the backward
shift on £°°(N, ker o). We conclude that 6 implements a conjugacy of the restriction
of a to ¢cM and the backward shift based on ker a. (I

The W*-dynamical system (P, « [p) is called the automorphic summand of a.. Tt
is clear from the preceding proof that two surjective endomorphisms are conjugate
iff their automorphic summands are conjugate W*-dynamical systems and their
kernels are isomorphic von Neumann algebras.

Theorem [3.I]leads to the following description of the asymptotic lifts of arbitrary
endomorpisms of von Neumann algebras.

Corollary 3.2. Let a« : M — M be an endomorphism with tail algebra M., =
Ny>1 @ (M). Let K =ker aNM, let o be the backward shift acting on (>°(N, K),
and let (P, 3) be the automorphic summand of o | pr_

By Theorem 3], there is an isomorphism of von Neumann algebras

0:Pol*(N,K)— My

that satisfies 0 o (B ® o) = aof. Let o be the bilateral shift acting on the von
Neumann algebra £>°(Z, K) by way of o(xy,) = (nt1), and define a homomorphism
E:Pol>*(Z,K)— My by

E(® (zn) =0(p © (z1,22,...)),  peP, (2n) €LF(Z,K).
Then (P @ (*(Z,K), B ® o, E) is the asymptotic lift of o: M — M.



2078 WILLIAM ARVESON AND DENNIS COURTNEY

Proof. Tt is obvious that (P® ¢ (Z,K),B3® o) is a W*-dynamical system and that
F is a homomorphism of von Neumann algebras with range

E(P®(*(Z,K))=0P®(*(N,K)) = M.
Moreover,

Eo(f@o)(pe (zn)) = E(B(p) & (zn41)) = 0(8(p) & (w2, 73,...))

- o(ﬂ(p) EBO—-F(:Ela:EQa .- )) =« Oa(p@ (951,1'2, . ))

= aoE(p® (za)),
hence Eo (8@ o) = ao E. We conclude that (P & (>*(Z,K),3® o, E) is a lifting
of « that satisfies condition (ii) of Proposition 23] and it remains only to show
that this lifting is nondegenerate. But if p € P and (z,) € ¢>°(Z,K) are such
that E((Boa)*(p® (v,)) = 0(B*(p) ® (441, Thya,...)) = 0 for every k € Z, then
B*(p) = 0 and zx,1 = O for every k € Z. The desired formula p @ (z,) = 0
follows. O

4. AprPLICATION TO UCP MAPS ON VON NEUMANN ALGEBRAS

Let ¢ : M — M be a UCP map acting on a von Neumann algebra M. In
this section we identify the asymptotic lift of ¢ in terms of its minimal dilation to
an endomorphism of a larger von Neumann algebra. This solves the identification
problem in general by strengthening Theorem 7.1 of [2] that was restricted to the
case in which the minimal dilation has trivial kernel. Indeed, the following result
applies to dilations of ¢ that are not necessarily minimal (see Chapter 8 of [I]).

Theorem 4.1. Let o : N — N be an endomorphism of a von Neumann algebra
and let p € N be a projection that satisfies a(p) > p and a™(p) T 1 asn T co. Let
M =pNp and let ¢ : M — M be the UCP map defined by

¢(x) =pa(z)p,  x€ M =pNp.
Let (N,&, E) be the asymptotic lift of o described in Corollary B2l Then the
asymptotic lift of ¢ is (N, &, E), where E: N — M is the UCP map
(4.1) E(z) = pE(z)p, zeN.

Proof. Obviously E : N — M is a UCP map and we claim ¢ o E = E o &. Indeed,
we can use pa(p) = a(p)p =p and ao E = E o & to write

¢(E(x)) = pa(E(x))p = pa(p)a(E(x))a(p)p = pE(a(z))p = E o a(x).
Hence (N,Nd,l:?) is a lifting of ¢. To see that it is nondegenerate, choose = € N
such that E(a*(x)) =0, k € Z. Then for n > 1 we can apply a” to E(a""(z)) =0
and use oo ' = F o & to obtain

0=a"(E(a"(x)) = a"(p)a"(E(a~"(x)))a"(p) = " (p) E(z)a" (p).

Since a”(p) T 1 as n T oo, it follows that E(z) = 0. Replacing z with ak(z), k ez,
and using nondegeneracy of (N, &, E), we conclude that « = 0.
We claim that for every p € M,,

(4.2) lim [lpo 6™ = [lpo Bl
n—oo
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To prove ([€2), fix p and define a normal functional p € N, by p(y) = p(pyp). For
every x € N we have p o E(x) = p(pE(x)p) = po E(x), and as in the proof of
formula (7.2) of [2], we obtain the following formulas for n > 1:

(4.3) lpog™ll=lpoa™l,  llpoEl=poEl
Since (N, &, E) is the asymptotic lift of o : N — N, ||poa™|| converges to ||po E|| as
n — oo, and ([4.2) follows. Similarly, one can promote ([{2]) throughout the matrix

hierarchy over M exactly as in the proof of Theorem 7.1 of [2] to complete the proof
of Theorem E.T] O
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