Infinite Dimensional Analysis, Quantum Probability and Related Topics
Vol. 9, No. 2 (2006) 315–320
© World Scientific Publishing Company

ON THE EXISTENCE OF E_0 -SEMIGROUPS

WILLIAM ARVESON

Department of Mathematics, University of California, Berkeley, CA 94720, USA arveson@math.berkeley.edu

> Received 8 May 2005 Communicated by L. Accardi

Product systems are the classifying structures for semigroups of endomorphisms of $\mathcal{B}(H)$, in that two E_0 -semigroups are cocycle conjugate iff their product systems are isomorphic. Thus it is important to know that every abstract product system is associated with an E_0 -semigroup. This was first proved more than 15 years ago by rather indirect methods. Recently, Skeide has given a more direct proof. In this note we give yet another proof by an elementary construction.

Keywords: Noncommutative dynamics; semigroups of endomorphisms.

AMS Subject Classification: 46L55, 46L09

1. Formulation of the Result

There were two proofs of the above fact^{2,4} (see also Ref. 3), both of which involved substantial analysis. In a recent paper, Michael Skeide⁶ gave a more direct proof. In this note we present an elementary method for constructing an essential representation of any product system. Given the basic correspondence between E_0 -semigroups and essential representations, the existence of an appropriate E_0 -semigroup follows.

Our terminology follows the monograph.³ Let $E = \{E(t) : t > 0\}$ be a product system and choose a unit vector $e \in E(1)$. e will be fixed throughout. We consider the Fréchet space of all Borel-measurable sections $t \in (0, \infty) \mapsto f(t) \in E(t)$ that are locally square integrable

$$\int_0^T \|f(\lambda)\|^2 d\lambda < \infty, \qquad T > 0.$$
(1.1)

Definition 1.1. A locally L^2 section f is said to be *stable* if there is a $\lambda_0 > 0$ such that for almost every $\lambda \ge \lambda_0$, one has

$$f(\lambda + 1) = f(\lambda) \cdot e \,.$$

316 W. Arveson

Note that a stable section f satisfies $f(\lambda + n) = f(\lambda) \cdot e^n$ a.e. for all $n \ge 1$ whenever λ is sufficiently large. The set of all stable sections is a vector space S, and for any two sections $f, g \in S, \langle f(\lambda + n), g(\lambda + n) \rangle$ becomes independent of $n \in \mathbb{N}$ (a.e.) when λ is sufficiently large. Thus we can define a positive semidefinite inner product on S as follows:

$$\langle f,g\rangle = \lim_{n \to \infty} \int_{n}^{n+1} \langle f(\lambda),g(\lambda)\rangle d\lambda = \lim_{n \to \infty} \int_{0}^{1} \langle f(\lambda+n),g(\lambda+n)\rangle d\lambda \,. \tag{1.2}$$

Let \mathcal{N} be the subspace of \mathcal{S} consisting of all sections f that vanish eventually, in that for some $\lambda_0 > 0$ one has $f(\lambda) = 0$ for almost all $\lambda \ge \lambda_0$. One finds that $\langle f, f \rangle = 0$ iff $f \in \mathcal{N}$. Hence $\langle \cdot, \cdot \rangle$ defines an inner product on the quotient \mathcal{S}/\mathcal{N} , and its completion becomes a Hilbert space H with respect to the inner product (1.2). Obviously, H is separable.

There is a natural representation of E on H. Fix $v \in E(t)$, t > 0. For every stable section $f \in S$, let $\phi_0(v)f$ be the section

$$(\phi_0(v)f)(\lambda) = \begin{cases} v \cdot f(\lambda - t), & \lambda > t, \\ 0, & 0 < \lambda \le t \end{cases}$$

Clearly $\phi_0(v)\mathcal{S} \subseteq \mathcal{S}$. Moreover, $\phi_0(v)$ maps null sections into null sections, hence it induces a linear operator $\phi(v)$ on \mathcal{S}/\mathcal{N} . The mapping $(t, v), \xi \in E \times \mathcal{S}/\mathcal{N} \mapsto \phi(v)\xi \in$ H is obviously Borel-measurable, and it is easy to check that $\|\phi(v)\xi\|^2 = \|v\|^2 \cdot \|\xi\|^2$ (see Sec. 2 for details). Thus we obtain a representation ϕ of E on the completion H of \mathcal{S}/\mathcal{N} by closing the densely defined operators $\phi(v)(f + \mathcal{N}) = \phi_0(v)f + \mathcal{N},$ $v \in E(t), t > 0, f \in \mathcal{S}.$

Theorem 1.2. ϕ is an essential representation of E on H.

By Proposition 2.4.9 of Ref. 3, there is an *E*-semigroup $\alpha = \{\alpha_t : t \ge 0\}$ that acts on $\mathcal{B}(H)$ and is associated with ϕ by way of

$$\alpha_t(X) = \sum_{n=1}^{\infty} \phi(e_n(t)) X \phi(e_n(t))^*, \qquad X \in \mathcal{B}(H), \qquad t > 0,$$
(1.3)

 $e_1(t), e_2(t), \ldots$ denoting an arbitrary orthonormal basis for E(t). Since ϕ is essential, $\alpha_t(\mathbf{1}) = \sum_n \phi(e_n(t))\phi(e_n(t))^* = \mathbf{1}, t > 0$. Thus we may conclude that the given product system E can be associated with an E_0 -semigroup.

2. Proof of Theorem 1.2

The following observation implies that we could just as well have defined the inner product of (1.2) by

$$\langle f,g \rangle = \lim_{T \to \infty} \int_{T}^{T+1} \langle f(\lambda),g(\lambda) \rangle d\lambda$$

Lemma 2.1. For any two stable sections f, g, there is a $\lambda_0 > 0$ such that

$$\langle f,g \rangle = \int_{T}^{T+1} \langle f(\lambda),g(\lambda) \rangle d\lambda$$

for all real numbers $T \geq \lambda_0$.

Proof. Let $u : (0, \infty) \to \mathbb{C}$ be a Borel function satisfying $\int_0^T |u(\lambda)| d\lambda < \infty$ for every T > 0, together with $u(\lambda + 1) = u(\lambda)$ a.e. for sufficiently large λ . Then for $k \in \mathbb{N}$, the integral $\int_k^{k+1} u(\lambda) d\lambda$ becomes independent of k when k is large. We claim that for sufficiently large T and the integer $n = n_T$ satisfying $T < n \le T + 1$, one has

$$\int_{T}^{T+1} u(\lambda) d\lambda = \int_{n}^{n+1} u(\lambda) d\lambda \,. \tag{2.1}$$

Note that Lemma 2.1 follows from (2.1) after taking $u(\lambda) = \langle f(\lambda), g(\lambda) \rangle$.

Of course, the formula (2.1) is completely elementary. The integral on the left decomposes into a sum $\int_T^n + \int_n^{T+1}$, and for large T we can write

$$\int_{T}^{n} u(\lambda) d\lambda = \int_{T}^{n} u(\lambda+1) d\lambda = \int_{T+1}^{n+1} u(\lambda) d\lambda.$$

It follows that

$$\int_{T}^{T+1} u(\lambda) d\lambda = \left(\int_{T+1}^{n+1} + \int_{n}^{T+1}\right) u(\lambda) d\lambda = \int_{n}^{n+1} u(\lambda) d\lambda \,,$$

which proves (2.1).

To show that ϕ is a representation, we must show that for every t > 0, every v, $w \in E(t)$, and every $f, g \in S$ one has $\langle \phi_0(v)f, \phi_0(w)g \rangle = \langle v, w \rangle \langle f, g \rangle$. Indeed, for sufficiently large $n \in \mathbb{N}$ we can write

$$\begin{split} \langle \phi_0(v)f, \phi_0(w)g \rangle &= \int_n^{n+1} \langle \phi_0(v)f(\lambda), \phi_0(w)g(\lambda) \rangle d\lambda \\ &= \int_n^{n+1} \langle v \cdot f(\lambda - t), w \cdot g(\lambda - t) \rangle d\lambda \\ &= \langle v, w \rangle \int_n^{n+1} \langle f(\lambda - t), g(\lambda - t) \rangle d\lambda \\ &= \langle v, w \rangle \int_{n-t}^{n-t+1} \langle f(\lambda), g(\lambda) \rangle d\lambda = \langle v, w \rangle \langle f, g \rangle \,, \end{split}$$

where the final equality uses Lemma 2.1.

It remains to show that ϕ is an essential representation, and for that, we must calculate the adjoints of operators in $\phi(E)$. The following notation from Ref. 3 will be convenient.

318 W. Arveson

Remark 2.2. Fix s > 0 and an element $v \in E(s)$; for every t > 0 we consider the left multiplication operator $\ell_v : x \in E(t) \mapsto v \cdot x \in E(s+t)$. This operator has an adjoint $\ell_v^* : E(s+t) \to E(s)$, which we write more simply as $v^*\eta = \ell_v^*\eta$, $\eta \in E(s+t)$. Equivalently, for s < t, $v \in E(s)$, $y \in E(t)$, we write v^*y for $\ell_v^*y \in E(t-s)$. Note that v^*y is undefined for $v \in E(s)$ and $y \in E(t)$ when $t \leq s$.

Given elements $u \in E(r)$, $v \in E(s)$, $w \in E(t)$, the "associative law"

$$u^*(v \cdot w) = (u^*v) \cdot w \tag{2.2}$$

makes sense when $r \leq s$ (t > 0 can be arbitrary), provided that it is suitably interpreted when r = s. Indeed, it is true *verbatim* when r < s and t > 0, while if s = r and t > 0, then it takes the form

$$u^*(v \cdot w) = \langle v, u \rangle_{E(s)} \cdot w, \qquad u, v \in E(s), \qquad w \in E(t).$$
(2.3)

Lemma 2.3. Choose $v \in E(t)$. For every stable section $f \in S$, there is a null section $g \in \mathcal{N}$ such that

$$(\phi_0(v)^* f)(\lambda) = v^* f(\lambda + t) + g(\lambda), \qquad \lambda > 0.$$

Proof. A straightforward calculation of the adjoint of $\phi_0(v) : S \to S$ with respect to the semidefinite inner product (1.2).

Lemma 2.4 follows from the identification $E(t) \cong E(s) \otimes E(t-s)$ when s < t. We include a proof for completeness.

Lemma 2.4. Let 0 < s < t, let v_1, v_2, \ldots be an orthornormal basis for E(s) and let $\xi \in E(t)$. Then

$$\sum_{n=1}^{\infty} \|v_n^* \xi\|^2 = \|\xi\|^2.$$
(2.4)

Proof. For $n \geq 1$, $\xi \in E(t) \mapsto v_n(v_n^*\xi) \in E(t)$ defines a sequence of mutually orthogonal projections in $\mathcal{B}(E(t))$. We claim that these projections sum to the identity. Indeed, since E(t) is the closed linear span of the set of products E(s)E(t-s), it suffices to show that for every vector in E(t) of the form $\xi = \eta \cdot \zeta$ with $\eta \in E(s)$, $\zeta \in E(t-s)$, we have $\sum_n v_n(v_n^*\xi) = \xi$. For that, we can use (2.2) and (2.3) to write

$$v_n(v_n^*\xi) = v_n(v_n^*(\eta \cdot \zeta)) = v_n((v_n^*\eta) \cdot \zeta) = \langle \eta, v_n \rangle v_n \cdot \zeta ,$$

hence

$$\sum_{n=1}^{\infty} v_n(v_n^*\xi) = \left(\sum_{n=1}^{\infty} \langle \eta, v_n \rangle v_n\right) \cdot \zeta = \eta \cdot \zeta = \xi,$$

as asserted. (2.4) follows after taking the inner product with ξ .

Proof of Theorem 1.2. Since the subspaces $H_t = [\phi(E(t))H]$ satisfy $H_{s+t} = [\phi(E(s))H_t] \subseteq H_t$, it suffices to show that $H_1 = H$. For that, it is enough to show that for $\xi \in H$ of the form $\xi = f + \mathcal{N}$ where f is a stable section

$$\left\langle \sum_{n=1}^{\infty} \phi(v_n) \phi(v_n)^* \xi, \xi \right\rangle = \sum_{n=1}^{\infty} \|\phi_0(v_n)^* f\|^2 = \|f\|^2 = \|\xi\|^2,$$
(2.5)

 v_1, v_2, \ldots denoting an orthonormal basis for E(1). Fix such a basis (v_n) for E(1)and a stable section f. Choose $\lambda_0 > 1$ so that $f(\lambda + 1) = f(\lambda) \cdot e$ (a.e.) for $\lambda > \lambda_0$. For $\lambda > \lambda_0$ we have $\lambda + 1 > 1$, so Lemma 2.4 implies

$$\sum_{n=1}^{\infty} \|v_n^* f(\lambda+1)\|^2 = \|f(\lambda+1)\|^2 = \|f(\lambda) \cdot e\|^2 = \|f(\lambda)\|^2, \quad (a.e.).$$

It follows that for every integer $N > \lambda_0$,

$$\begin{split} \sum_{n=1}^{\infty} \int_{N}^{N+1} \|v_{n}^{*}f(\lambda+1)\|^{2} d\lambda &= \int_{N}^{N+1} \sum_{n=1}^{\infty} \|v_{n}^{*}f(\lambda+1)\|^{2} d\lambda \\ &= \int_{N}^{N+1} \|f(\lambda)\|^{2} d\lambda = \|f+\mathcal{N}\|_{H}^{2} \,. \end{split}$$

Lemma 2.3 implies that when N is sufficiently large, the left side is

$$\sum_{n=1}^{\infty} \int_{N}^{N+1} \|(\phi_0(v_n)^* f)(\lambda)\|^2 d\lambda = \sum_{n=1}^{\infty} \|\phi_0(v_n) f\|^2,$$

and (2.5) follows.

Remark 2.5. (Nontriviality of H) Let $L^2((0, 1]; E)$ be the subspace of $L^2(E)$ consisting of all sections that vanish almost everywhere outside the unit interval. Every $f \in L^2((0, 1]; E)$ corresponds to a stable section $\tilde{f} \in S$ by extending it from (0, 1] to $(0, \infty)$ by periodicity

$$f(\lambda) = f(\lambda - n) \cdot e^n$$
, $n < \lambda \le n + 1$, $n = 1, 2, \dots$,

and for every $n = 1, 2, \ldots$ we have

$$\int_{n}^{n+1} \|\tilde{f}(\lambda)\|^{2} d\lambda = \int_{n}^{n+1} \|f(\lambda - n) \cdot e^{n}\|^{2} d\lambda = \int_{0}^{1} f(\lambda)\|^{2} d\lambda.$$

Hence the map $f \mapsto \tilde{f} + \mathcal{N}$ embeds $L^2((0,1]; E)$ isometrically as a subspace of H; in particular, H is not the trivial Hilbert space $\{0\}$.

Remark 2.6. (Purity) An E_0 -semigroup $\alpha = \{\alpha_t : t \ge 0\}$ is said to be *pure* if the decreasing von Neumann algebras $\alpha_t(\mathcal{B}(H))$ have trivial intersection $\mathbb{C} \cdot \mathbf{1}$. The question of whether every E_0 -semigroup is a cocycle perturbation of a pure one has been resistant.³ Equivalently, is every product system associated with a *pure* E_0 -semigroup? While the answer is yes for product systems of type I and II, and it is yes for the type *III* examples constructed by Powers (see Ref. 5 or Chap. 13 of Ref. 3), it is unknown in general.

It is perhaps worth pointing out that we have shown that the examples of Theorem 1.2 are not pure; hence the above construction appears to be inadequate for approaching that issue. Since the proof establishes a negative result that is peripheral to the direction of this note, we have omitted it.

References

- W. Arveson, Continuous Analogues of Fock Space, Mem. Amer. Math. Soc., No. 80 (Amer. Math. Soc., 1989).
- W. Arveson, Continuous analogues of Fock space IV: Essential states, Acta Math. 164 (1990) 265–300.
- W. Arveson, Noncommutative Dynamics and E-semigroups, Monographs in Mathematics (Springer-Verlag, 2003).
- 4. V. Liebscher, On the generators of quantum dynamical semigroups, PR/0306365.
- R. T. Powers, a non-spatial continuous semigroup of *-endomorphisms of B(H), Publ. RIMS (Kyoto University) 23 (1987) 1054–1069.
- M. Skeide, A simple proof of the fundamental theorem about Arveson systems, Inf. Dim. Anal. Quantum Probab. Rel. Topics 9 (2006) 305–314.