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Product systems are the classifying structures for semigroups of endomorphisms of B(H),

in that two E0-semigroups are cocycle conjugate iff their product systems are isomorphic.
Thus it is important to know that every abstract product system is associated with an
E0-semigroup. This was first proved more than 15 years ago by rather indirect methods.
Recently, Skeide has given a more direct proof. In this note we give yet another proof
by an elementary construction.
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1. Formulation of the Result

There were two proofs of the above fact2,4 (see also Ref. 3), both of which involved

substantial analysis. In a recent paper, Michael Skeide6 gave a more direct proof. In

this note we present an elementary method for constructing an essential representa-

tion of any product system. Given the basic correspondence between E0-semigroups

and essential representations, the existence of an appropriate E0-semigroup follows.

Our terminology follows the monograph.3 Let E = {E(t) : t > 0} be a product

system and choose a unit vector e ∈ E(1). e will be fixed throughout. We consider

the Fréchet space of all Borel-measurable sections t ∈ (0,∞) 7→ f(t) ∈ E(t) that

are locally square integrable

∫ T

0

‖f(λ)‖2dλ < ∞ , T > 0 . (1.1)

Definition 1.1. A locally L2 section f is said to be stable if there is a λ0 > 0 such

that for almost every λ ≥ λ0, one has

f(λ + 1) = f(λ) · e .
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Note that a stable section f satisfies f(λ + n) = f(λ) · en a.e. for all n ≥ 1

whenever λ is sufficiently large. The set of all stable sections is a vector space S,

and for any two sections f , g ∈ S, 〈f(λ + n), g(λ + n)〉 becomes independent of

n ∈ N (a.e.) when λ is sufficiently large. Thus we can define a positive semidefinite

inner product on S as follows:

〈f, g〉 = lim
n→∞

∫ n+1

n

〈f(λ), g(λ)〉dλ = lim
n→∞

∫ 1

0

〈f(λ + n), g(λ + n)〉dλ . (1.2)

Let N be the subspace of S consisting of all sections f that vanish eventually, in

that for some λ0 > 0 one has f(λ) = 0 for almost all λ ≥ λ0. One finds that

〈f, f〉 = 0 iff f ∈ N . Hence 〈·, ·〉 defines an inner product on the quotient S/N , and

its completion becomes a Hilbert space H with respect to the inner product (1.2).

Obviously, H is separable.

There is a natural representation of E on H . Fix v ∈ E(t), t > 0. For every

stable section f ∈ S, let φ0(v)f be the section

(φ0(v)f)(λ) =

{

v · f(λ − t) , λ > t ,

0 , 0 < λ ≤ t .

Clearly φ0(v)S ⊆ S. Moreover, φ0(v) maps null sections into null sections, hence it

induces a linear operator φ(v) on S/N . The mapping (t, v), ξ ∈ E×S/N 7→ φ(v)ξ ∈

H is obviously Borel-measurable, and it is easy to check that ‖φ(v)ξ‖2 = ‖v‖2 ·‖ξ‖2

(see Sec. 2 for details). Thus we obtain a representation φ of E on the completion

H of S/N by closing the densely defined operators φ(v)(f + N ) = φ0(v)f + N ,

v ∈ E(t), t > 0, f ∈ S.

Theorem 1.2. φ is an essential representation of E on H.

By Proposition 2.4.9 of Ref. 3, there is an E-semigroup α = {αt : t ≥ 0} that

acts on B(H) and is associated with φ by way of

αt(X) =

∞
∑

n=1

φ(en(t))Xφ(en(t))∗ , X ∈ B(H) , t > 0 , (1.3)

e1(t), e2(t), . . . denoting an arbitrary orthonormal basis for E(t). Since φ is essential,

αt(1) =
∑

n φ(en(t))φ(en(t))∗ = 1, t > 0. Thus we may conclude that the given

product system E can be associated with an E0-semigroup.

2. Proof of Theorem 1.2

The following observation implies that we could just as well have defined the inner

product of (1.2) by

〈f, g〉 = lim
T→∞

∫ T+1

T

〈f(λ), g(λ)〉dλ .
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Lemma 2.1. For any two stable sections f, g, there is a λ0 > 0 such that

〈f, g〉 =

∫ T+1

T

〈f(λ), g(λ)〉dλ

for all real numbers T ≥ λ0.

Proof. Let u : (0,∞) → C be a Borel function satisfying
∫ T

0 |u(λ)|dλ < ∞ for

every T > 0, together with u(λ + 1) = u(λ) a.e. for sufficiently large λ. Then for

k ∈ N, the integral
∫ k+1

k
u(λ)dλ becomes independent of k when k is large. We

claim that for sufficiently large T and the integer n = nT satisfying T < n ≤ T +1,

one has
∫ T+1

T

u(λ)dλ =

∫ n+1

n

u(λ)dλ . (2.1)

Note that Lemma 2.1 follows from (2.1) after taking u(λ) = 〈f(λ), g(λ)〉.

Of course, the formula (2.1) is completely elementary. The integral on the left

decomposes into a sum
∫ n

T
+
∫ T+1

n
, and for large T we can write

∫ n

T

u(λ)dλ =

∫ n

T

u(λ + 1)dλ =

∫ n+1

T+1

u(λ)dλ .

It follows that
∫ T+1

T

u(λ)dλ =

(

∫ n+1

T+1

+

∫ T+1

n

)

u(λ)dλ =

∫ n+1

n

u(λ)dλ ,

which proves (2.1).

To show that φ is a representation, we must show that for every t > 0, every v,

w ∈ E(t), and every f , g ∈ S one has 〈φ0(v)f, φ0(w)g〉 = 〈v, w〉〈f, g〉. Indeed, for

sufficiently large n ∈ N we can write

〈φ0(v)f, φ0(w)g〉 =

∫ n+1

n

〈φ0(v)f(λ), φ0(w)g(λ)〉dλ

=

∫ n+1

n

〈v · f(λ − t), w · g(λ − t)〉dλ

= 〈v, w〉

∫ n+1

n

〈f(λ − t), g(λ − t)〉dλ

= 〈v, w〉

∫ n−t+1

n−t

〈f(λ), g(λ)〉dλ = 〈v, w〉〈f, g〉 ,

where the final equality uses Lemma 2.1.

It remains to show that φ is an essential representation, and for that, we must

calculate the adjoints of operators in φ(E). The following notation from Ref. 3 will

be convenient.

In
fi

n.
 D

im
en

s.
 A

na
l. 

Q
ua

nt
um

. P
ro

ba
b.

 R
el

at
. T

op
. 2

00
6.

09
:3

15
-3

20
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 "

IN
D

IA
N

 S
T

A
T

IS
T

IC
A

L
 I

N
ST

IT
U

T
E

, K
O

L
K

A
T

A
" 

on
 1

0/
09

/2
3.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



June 5, 2006 14:48 WSPC/102-IDAQPRT 00239

318 W. Arveson

Remark 2.2. Fix s > 0 and an element v ∈ E(s); for every t > 0 we consider the

left multiplication operator `v : x ∈ E(t) 7→ v · x ∈ E(s + t). This operator has an

adjoint `∗v : E(s+t) → E(s), which we write more simply as v∗η = `∗vη, η ∈ E(s+t).

Equivalently, for s < t, v ∈ E(s), y ∈ E(t), we write v∗y for `∗vy ∈ E(t − s). Note

that v∗y is undefined for v ∈ E(s) and y ∈ E(t) when t ≤ s.

Given elements u ∈ E(r), v ∈ E(s), w ∈ E(t), the “associative law”

u∗(v · w) = (u∗v) · w (2.2)

makes sense when r ≤ s (t > 0 can be arbitrary), provided that it is suitably

interpreted when r = s. Indeed, it is true verbatim when r < s and t > 0, while if

s = r and t > 0, then it takes the form

u∗(v · w) = 〈v, u〉E(s) · w , u, v ∈ E(s) , w ∈ E(t) . (2.3)

Lemma 2.3. Choose v ∈ E(t). For every stable section f ∈ S, there is a null

section g ∈ N such that

(φ0(v)∗f)(λ) = v∗f(λ + t) + g(λ) , λ > 0 .

Proof. A straightforward calculation of the adjoint of φ0(v) : S → S with respect

to the semidefinite inner product (1.2).

Lemma 2.4 follows from the identification E(t) ∼= E(s) ⊗ E(t − s) when s < t.

We include a proof for completeness.

Lemma 2.4. Let 0 < s < t, let v1, v2, . . . be an orthornormal basis for E(s) and

let ξ ∈ E(t). Then

∞
∑

n=1

‖v∗nξ‖2 = ‖ξ‖2 . (2.4)

Proof. For n ≥ 1, ξ ∈ E(t) 7→ vn(v∗nξ) ∈ E(t) defines a sequence of mutually

orthogonal projections in B(E(t)). We claim that these projections sum to the

identity. Indeed, since E(t) is the closed linear span of the set of products E(s)E(t−

s), it suffices to show that for every vector in E(t) of the form ξ = η·ζ with η ∈ E(s),

ζ ∈ E(t− s), we have
∑

n vn(v∗nξ) = ξ. For that, we can use (2.2) and (2.3) to write

vn(v∗nξ) = vn(v∗n(η · ζ)) = vn((v∗nη) · ζ) = 〈η, vn〉vn · ζ ,

hence

∞
∑

n=1

vn(v∗nξ) =

(

∞
∑

n=1

〈η, vn〉vn

)

· ζ = η · ζ = ξ ,

as asserted. (2.4) follows after taking the inner product with ξ.

In
fi

n.
 D

im
en

s.
 A

na
l. 

Q
ua

nt
um

. P
ro

ba
b.

 R
el

at
. T

op
. 2

00
6.

09
:3

15
-3

20
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 "

IN
D

IA
N

 S
T

A
T

IS
T

IC
A

L
 I

N
ST

IT
U

T
E

, K
O

L
K

A
T

A
" 

on
 1

0/
09

/2
3.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



June 5, 2006 14:48 WSPC/102-IDAQPRT 00239

On the Existence of E0-Semigroups 319

Proof of Theorem 1.2. Since the subspaces Ht = [φ(E(t))H ] satisfy Hs+t =

[φ(E(s))Ht] ⊆ Ht, it suffices to show that H1 = H . For that, it is enough to show

that for ξ ∈ H of the form ξ = f + N where f is a stable section
〈

∞
∑

n=1

φ(vn)φ(vn)∗ξ, ξ

〉

=

∞
∑

n=1

‖φ0(vn)∗f‖2 = ‖f‖2 = ‖ξ‖2 , (2.5)

v1, v2, . . . denoting an orthonormal basis for E(1). Fix such a basis (vn) for E(1)

and a stable section f . Choose λ0 > 1 so that f(λ + 1) = f(λ) · e (a.e.) for λ > λ0.

For λ > λ0 we have λ + 1 > 1, so Lemma 2.4 implies

∞
∑

n=1

‖v∗nf(λ + 1)‖2 = ‖f(λ + 1)‖2 = ‖f(λ) · e‖2 = ‖f(λ)‖2 , (a.e.) .

It follows that for every integer N > λ0,

∞
∑

n=1

∫ N+1

N

‖v∗nf(λ + 1)‖2dλ =

∫ N+1

N

∞
∑

n=1

‖v∗nf(λ + 1)‖2dλ

=

∫ N+1

N

‖f(λ)‖2dλ = ‖f + N‖2
H .

Lemma 2.3 implies that when N is sufficiently large, the left side is

∞
∑

n=1

∫ N+1

N

‖(φ0(vn)∗f)(λ)‖2dλ =

∞
∑

n=1

‖φ0(vn)f‖2 ,

and (2.5) follows.

Remark 2.5. (Nontriviality of H) Let L2((0, 1]; E) be the subspace of L2(E) con-

sisting of all sections that vanish almost everywhere outside the unit interval. Every

f ∈ L2((0, 1]; E) corresponds to a stable section f̃ ∈ S by extending it from (0, 1]

to (0,∞) by periodicity

f̃(λ) = f(λ − n) · en , n < λ ≤ n + 1 , n = 1, 2, . . . ,

and for every n = 1, 2, . . . we have
∫ n+1

n

‖f̃(λ)‖2dλ =

∫ n+1

n

‖f(λ − n) · en‖2dλ =

∫ 1

0

f(λ)‖2dλ .

Hence the map f 7→ f̃ + N embeds L2((0, 1]; E) isometrically as a subspace of H ;

in particular, H is not the trivial Hilbert space {0}.

Remark 2.6. (Purity) An E0-semigroup α = {αt : t ≥ 0} is said to be pure if

the decreasing von Neumann algebras αt(B(H)) have trivial intersection C · 1. The

question of whether every E0-semigroup is a cocycle perturbation of a pure one

has been resistant.3 Equivalently, is every product system associated with a pure

E0-semigroup? While the answer is yes for product systems of type I and II , and
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it is yes for the type III examples constructed by Powers (see Ref. 5 or Chap. 13

of Ref. 3), it is unknown in general.

It is perhaps worth pointing out that we have shown that the examples of

Theorem 1.2 are not pure; hence the above construction appears to be inadequate

for approaching that issue. Since the proof establishes a negative result that is

peripheral to the direction of this note, we have omitted it.
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