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Diagonals of self-adjoint operators 

William Arveson and Richard V. Kadison 

ABSTRACT. The eigenvalues of a self-adjoint n x n matrix A can be put into a 
decreasing sequence>.= (>.1, ... , >.n), with repetitions according to multiplic-
ity, and the diagonal of A is a point of lRn that bears some relation to >.. The 
Schur-Horn theorem characterizes that relation in terms of a system of linear 
inequalities. 

We prove an extension of the latter result for positive trace-class operators 
on infinite dimensional Hilbert spaces, generalizing results of one of us on the 
diagonals of projections. We also establish an appropriate counterpart of the 
Schur inequalities that relate spectral properties of self-adjoint operators in 
I h factors to their images under a conditional expectation onto a maximal 
abelian subalgebra. 

1. Introduction 

This paper presents some of the results of a project begun by the authors that 
is directed toward finding an appropriate common generalization of the Schur-Horn 
theorem (for matrices) to operators on an infinite-dimensional Hilbert space, and 
to operators in finite factors, in a form that would generalize work of one of us on 
projections in Ih factors (Kad02a], (Kad02b]. 

That project continues, and remains unfinished. The results below are satis-
factory in the case of type I factors, but are incomplete for finite factors. We are 
making these partial results public since there is renewed interest in these directions 
(She05], and it seems desirable to avoid duplication of effort. Other aspects of this 
work were presented in Section 5 of (Kad04]. 

We point out that while the results of Section 4 may appear to overlap with 
work of A. Neumann (Neu99], that is actually not the case. Neumann's results 
characterize the closure (in the goo norm) of the set of diagonals of self-adjoint oper-
ators with prescribed spectral properties. Here, on the other hand, we are concerned 
with the diagonals themselves, and not with their limits relative to any topology. 
For example, one should compare Theorem 15 of (Kad02b] - which characterizes 
the diagonals of projections- with the corresponding result of (Neu99] (Theorem 
3.6 and Corollary 2.14) to understand the extent to which subtlety is lost when one 
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takes the closure relative to the £00-norm. Along with the nature of the charac-
terizations below, our methods also differ significantly from those of [Neu99]. We 
thank Daniel Markiewicz for calling our attention to the paper [Neu99] (also see 
[Neu02]). 

2. The Results of Schur and Horn 

We begin by stating the key assertion of Theorem 5 from Alfred Horn's 1954 
paper [Hor54.], which can be formulated as follows. 

THEOREM 2.1 (Horn). Let A1 ?: · · · ?: An and Pl ?: · · · ?: Pn be two decreasing 
sequences of real numbers satisfying Pl + · · · + Pk ~ Al + · · · + Ak, 1 ~ k ~ n- 1, 
and Pl + · · · + Pn = A1 + · · · + An. Then there is a self-adjoint n x n matrix with 
eigenvalues A1 , ... , An whose diagonal entries are Pl, ... , Pn. 

Another proof is offered at the end of this section. In a more coordinate-free 
formulation, Horn's theorem makes the following assertion. Let A be a self-adjoint 
operator on ann-dimensional Hilbert space H with eigenvalues A1 ?: · · · ?: An, and 
let p1 ?: · · · ?: Pn be a decreasing sequence that relates to A as in the hypothesis of 
Theorem 2.1. Then there is an orthonormal basis e1, ... , en for H such that 

(Aek, ek) = Pk, k = 1, ... , n. 

The converse of Theorem 2.1 is also true, and this is the part of the composite 
Schur-Horn theorem that is attributed to Schur [Sch23]: If there is a self-adjoint 
n x n matrix A with eigenvalue sequence A = (A1 , ... , An) with diagonal p 
(p1 , ... ,Pn), both written in decreasing order, then the inequalities 

(2.1) P1 + · · · + Pk ~ A1 + · · · + Ak, 1 ~ k ~ n 

of the hypothesis of Theorem 2.1 are satisfied, with equality holding for k = n. 
That implication follows from classical estimates going back to Weyl [Wey12] (see 
the proof of Theorem 4.1 below). 

There are other formulations of the Schur-Horn theorem that borrow from 
classical inequalities [Har34], the most notable one being the following. Given a 
sequence A= (Al, ... , An) of real numbers, let 0>. be the set of all n x n self-adjoint 
matrices having eigenvalue sequence A. Then the set E(O>.) of all diagonals of 
matrices in Ch is the convex hull A of the set of points A o 1r E !Rn, 1r E Bn, ob-
tained by permuting the components of A. Schur's part of the Schur-Horn theorem 
becomes the assertion E(O>.) ~ A while Theorem 2.1 implies E(O>.) ;2 A. These 
formulations are discussed in [Hor54]. 

The Schur-Horn theorem has led to generalizations in several directions. In 
1973, Kostant [Kos73] put it into the context of actions of compact Lie groups 
(which generalize the unitary group U(n)). Later Atiyah [Ati82], and indepen-
dently Guillemin and Sternberg [GS82], reformulated Kostant's result in the broader 
context of symplectic manifolds M acted on by a torus T, and showed that for every 
moment map <I> for the T-action, the range of <I> is the convex hull of the images of 
the T-fixed points of M. See [KnuOO] for more detail. 

There is some connection between the finite dimensional Schur-Horn theorem 
[Hor54] and Horn's subsequent work on the eigenvalues of sums of matrices that 
culminated in the inequalities conjectured in (Hor62], as described in (KnuOO]. 
The Horn conjecture was recently proved, following work of Klyachko (Kly98] and 
the proof of the saturation conjecture by Knutson and Tao (KT99]. Thus, it may be 
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appropriate to point out that Friedland has obtained a generalization of Klyachko's 
results to finite sums of positive trace-class operators acting on infinite dimensional 
Hilbert spaces [FriOO ]. 

The purpose of this paper is to discuss two infinite dimensional formulations 
of the Schur-Horn Theorem. In Sections 3~4 we present a generalization of the 
Schur-Horn theorem to positive trace class operators on infinite dimensional Hilbert 
spaces. In Sections 5~7, we reformulate these issues in the context of finite factors, 
and we establish appropriate versions of the Schur inequalities. The I h version of 
Horn's result (Theorem 2.1) is left as an open problem. 

The first author wishes to thank Allen Knutson for helpful comments about the 
Schur-Horn theorem including the sketch of a "calculus" proof, and for providing 
some key references. 

PROOF OF THEOREM 2.1. We show how one can deduce Theorem 2.1 from 
two results of [Kad02a]. Let p = (p1, ... ,Pn) and A= (A1, ... , An) be two decreas-
ing sequences satisfying the hypotheses of Theorem 2.1. By lemma 5 of [Kad02a], 
there is a sequence of points x1, ... , Xn in IR.n such that x1 = A, Xn = p, and for 
k = 1, ... , n- 1, Xk+l can be expressed in terms of Xk as follows 

(2.2) 

where tk is a number in the unit interval, Tk is a transposition in Sn, and where 
x o T denotes (xr(1), ... , Xr(n)) E IR.n. 

Given X1 =A, ... , Xn = p E IR.n, t1, ... , tn-1 E [0, 1] and T1, ... , Tn-1 E Sn such 
that the relations (2.2) are satisfied, we exhibit a sequence of self-adjoint matrices 
A1, ... , An such that Ak has eigenvalue list A and diagonal sequence Xk as follows. 
Theorem 6 of [Kad02a] asserts the following: Given a self-adjoint n x n matrix 
A = (aij) with diagonal sequence x, and given a transposition T in Sn and a 
number t E [0, 1], there is a unitary matrix U such that the diagonal of U AU* is 
t·x+(1-t)·xoT. The proof exhibits U = (uij) explicitly; if Tis the transposition (ij) 
then U coincides with the identity matrix except for the four terms Uii, Uij, u1i, u11 
specified by 

( Uii 
Uji 

Uij) _ ( ZCOS0 
Ujj - -zsinO 

sinO 
cosO ), 

where z is a complex number of absolute value 1 such that zaij is pure imaginary, 
and where 0 satisfies cos2 0 = t. Let A1 be the diagonal matrix with diagonal 
A = (Ab ... , An) = x1. Given that A1, · · · , Ak have been defined and satisfy the 
asserted conditions for 1 :=:; k < n, the above result implies that there is a unitary 
matrix uk such that 

diag (UkAkUk) = tk · Xk + (1- tk) · Xk o Tk. 

Setting Ak+1 = UkAkUk and continuing inductively, we obtain a sequence of ma-
trices A1, ... , An whose last term An = Un- 1 · · · U1A1Ui · · · U~_ 1 is a self-adjoint 
matrix having eigenvalue list A and diagonal p. 0 

Part 1. Type ! 00 factors 

We first give a generalization of the Schur-Horn theorem to the case of positive 
trace-class operators acting on a separable infinite-dimensional Hilbert space. 
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3. £ 1-closed unitary orbits 

Let H be a separable Hilbert space and let A be a positive compact operator 
on H. The sequence of eigenvalues of A can be put into decreasing order, with 
repetitions according to the multiplicity of positive terms in the sequence, to obtain 
a sequence A= (A1 , A2 , ... ) satisfying A1 2:: A2 2:: · · · 2:: 0, and we have 

A1 + A2 +···=trace A E [0, +oo]. 

Such a decreasing sequence A will be called an eigenvalue list. The preceding 
formula shows that A is trace-class iff its eigenvalue list belongs to £1 , and the set 
of all eigenvalue lists in £1 is a weak* -closed cone, the weak* -topology on £1 arising 
from the identification of £1 with the dual of c0 . 

The eigenvalue list of A fails to be a complete invariant for unitary equivalence 
because it fails to detect zero eigenvalues except when A is of finite rank. For 
example, if A has infinitely many positive terms Ak in its spectrum and has trivial 
kernel, then A and A EB 0 ( 0 being an the zero operator on some space of positive 
dimension) cannot be unitarily equivalent despite the fact that both have the same 
eigenvalue list. 

The state of affairs for trace-class operators is described as follows. We write 
£ 1 = C1(H) for the Banach space of all trace-class operators on a Hilbert space H 
with respect to the trace norm 

IIAih =trace IAI, 
IAI denoting the positive square root of A* A. Given an eigenvalue list A E £1 , 

O.x will denote the set of all positive trace-class operators on H having ,\ as their 
eigenvalue list. Given a positive trace-class operator A E B(H), O(A) will denote 
the trace-norrr.\ closure of the unitary orbit of A 

O(A) = {U AU* : U E U(H)} -11·111. 

Two trace-class operators A, B are said to be £ 1- equivalent if there is a sequence 
of unitary operators U1,U2, ... such that that IIA- UnBU~II1--+ 0 as n--+ oo; 
equivalently, O(A) = O(B). 

PROPOSITION 3.1. Let A be a positive trace-class operator in B(H) and let ,\ 
be the eigenvalue list of A. 

(i) O(A) is a Polish topological space on which the unitary group of H acts 
minimally. 

(ii) O(A) = O.x; in particular, the eigenvalue list is a complete invariant for 
£ 1-equivalence. 

(iii) Two positive trace-class operators A, B are C1-equivalent iff A EB 0 and 
B EB 0 are unitarily equivalent, where 0 denotes the zero operator on an 
infinde dimensional Hilbert space. 

(iv) If,\ has only finitely many nonzero terms, then O.x consists of a single 
unita.ry orbit { U AU* : U E U (H)}. 

PROOF. (:i): O.x is a closed subset of £ 1 and therefore a separable complete 
metric space. The fact that the orbit of every point of O(A) under the action of 
U(H) is dense in O(A) follows from the fact that £ 1-equivalence is a transitive 
relation. 
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(ii): Let B be another positive trace-class operator with eigenvalue list J.L. We 
have to show that A and B are £ 1-equivalent <===? A = J.L· For the implication 
===} we make use of the semiclassical inequality 

00 

L I An- J.Lnl :=:; IIA- Bll1. 
k=1 

a proof of which can be found in the appendix of (Pow67]. Since B can be closely 
approximated in the norm of £ 1 by operators unitarily equivalent to A, this inequal-
ity implies that B must have the same eigenvalue list as A, hence J.L = A. Conversely, 
if A and B are two positive trace-class operators with the same eigenvalue list 

A=(A1,A2, ... ), 
then by the spectral theorem we can decompose A and B as follows 

A= An +R,., 
where An and Bn are finite rank positive operators with eigenvalue list 

(A1, ... ,An,O,O, ... ) 
and where the remainders Rn and Bn satisfy 

00 

IIRnll1 = IIBnll1 = L IAkl· 
k=n+1 

Since An and Bn are obviously unitarily equivalent for every n = 1, 2, ... and since 
IIRnll1 and IIBnll1 tend to zero as n -+ oo, it follows that there is a sequence of 
unitary operators U1, U2, ... such that liB- UnAU~II1 -+ o. 

(iii) is a consequence of (ii), which asserts that A and B are £ 1-equivalent iff 
they have the same eigenvalue list. Indeed, it is obvious that if A and B have the 
same eigenvalue list A then A EEl 0 and B EEl 0 are unitarily equivalent; conversely, 
if A EEl 0 and B EEl 0 are unitarily equivalent then A EEl 0 and B EEl 0 must have the 
same eigenvalue list, hence so do A and B. 

Finally, note that (iii) ===} (iv), since if A is a finite rank positive operator 
with eigenvalue list A, then all but a finite number of components of A are zero, 
hence A is unitarily equivalent to A EEl 0, so that all operators in O.x are unitarily 
equivalent. 0 

4. Diagonals of Trace Class Operators 

Let H be a separable Hilbert space and let e1 , e2 , ... be an orthonormal basis for 
H. The sequence of rank-one projections Ek = [ek], k = 1, 2, ... generates a discrete 
maximal abelian subalgebra As;;; B(H), and the map that replaces an operator A 
with the diagonal part (an, a22, ... ) of its matrix aij = (Aej, ei), i,j = 1, 2, ... , 
relative to (en) can be viewed as the unique trace preserving conditional expectation 
E: B(H)-+ A 

00 00 

E(A) = L EnAEn = LannEn. 
n=1 n=1 

The following result provides an infinite-dimensional generalization of the Schur-
Horn theorem. For a related result that characterizes the norm-closure of E(O(A)) 
for a broader class of operators A, see (Neu99]. 
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THEOREM 4.1. Let A be a discrete maximal abelian von Neumann algebra in 
13(H), let E: B(H) __,A be the trace-preserving conditional expectation on A and 
let A = (A1 2:: A2 2:: · · ·) be a decreasing sequence in £1 with nonnegative terms. 
Then E(C:h) consists of all positive trace-class operators B E A whose eigenvalue 
list p = (Pl 2:: P2 2:: · · · ) satisfies 
( 4.1) n = 1,2, ... 

together with 

(4.2) P1 + P2 + · · · = A1 + A2 + · · · . 
We will deduce Theorem 4.1 from the following more general assertion about 

the diagonals of positive compact operators. 

THEOREM 4.2. Let A~ 13(H) be a discrete maximal abelian algebra with nat-
ural conditional expectation E : 13(H) __, A. Let A E 13(H) be a positive compact 
operator with eigenvalue list A = ( Al 2:: A2 2:: · · · ) , and let B be a positive compact 
operator in A. The following are equivalent. 

(i) There is contraction L E B(H) such that E(L* AL) =B. 
(ii) The eigenvalue list p = (Pl 2:: P2 2:: · · ·) of B satisfies 

n = 1,2, .... 

We require some eigenvalue estimates that go back to work of Weyl [Wey12], 
[Wey49]. Let A be a positive compact operator with eigenvalue list A1 2:: A2 2:: · · · 
and let Pn be the set of all n-dimensional projections in 13(H). Then we have 

(4.3) sup traceAP = max traceAP = A1 +···+An, 
PEPn PEPn 

the maximum being achieved on any n-dimensional projection whose range contains 
eigenvectors fo:r A1 , ... , An. Ky Fan's version of this result can be found on p. 22 
of [Bha87]. 

The proof of Theorem 4.2 also requires a geometric result, asserting that if 
p = (p1, ... ,pn) and A= (A1, ... , An) are two finite eigenvalue lists that satisfy the 
first n inequalities (4.1), then the components of A can be reduced so as to preserve 
the first n - 1 inequalities, with equality in the nth. 

LEMMA 4.:3. Letp = (p1, ... ,pn) and A= (Al, ... ,An) be two decreasing se-
quences of nonnegative reals of length n = 1, 2, ... satisfying 

(4.4) k = 1, 2, ... , n. 

There is a decreasing sequence f..L = (f..L1, ... , f..Ln) such that 

(4.5) 0:::; f..Lk:::; Ak, Pl + · .. + Pk:::; f..Ll + .. · + f..Lk, 

for 1 :::; k :::; n, and Pl + · · · + Pn = f..Ll + · · · + f..Ln. 

PROOF. \Ve argue by induction, the case n = 1 being obvious. Fix n 2:: 2 and 
suppose that Lemma 4.3 is true for sequences of length n - 1. Let D be the set 
of all points f..L = (f..Ll, ... , f..Ln) E !Rn satisfying f..Ll 2:: · · · 2:: f..Ln 2:: 0 and f..Lk :::; Ak, 
1 :::; k :::; n, and consider the compact convex set K ~ !Rn 

K = {f..L E D : f..Ll + · · · + f..Lk 2:: P1 + · · · + Pk, k = 1, ... , n - 1}. 
Since f(x) = :z: 1 + · · · + Xn is a linear functional on !Rn, f(K) is a closed interval 
I~ R We have to show that p1 + · · · + Pn E I. For that, it suffices to show that 
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there are points x, y E K such that f ( x) :::; P1 + · · · + Pn :::; f (y). Setting y = A E K, 
we have P1 + · · · + Pn :::; A1 +···+An = f(y) by (4.4). For x, use the induction 
hypothesis to obtain numbers Jl-1 ;::: · · · ;::: J.ln-1 ;::: 0 satisfying 0 :::; J.tk :::; Ak, 
Jl-1 + · · · + J.lk ;::: P1 + · · · + Pk, 1 :::; k :::; n - 1, and J.£1 + · · · + J.tn-1 = P1 + · · · + Pn-1· 
The point x = (J.£1, ... , J.tn- 1. 0) belongs to K and satisfies f ( x) = P1 + · · · + Pn-1 :::; 
P1 + ··· +Pn· 0 

PROOF OF THEOREM 4.2. (i) ==:::;.. (ii): Let e1, e2, ... be an orthonormal basis 
for H with the property that (Bej, ej) = Pk, j = 1, 2, .... Fixing k and letting E 
be the projection onto the span of e1, ... , ek, we have 

P1 + · · · + Pk = trace(BE) = trace(L* ALE)= trace(ALEL*) :::; trace(AF) 
where F is the projection onto the range of the positive contraction LEL*. Since 
F is a projection of rank at most k, the estimate ( 4.3) implies 

trace(AF) :::; sup trace(AF) = A1 + · · · + Ak, 
dimF=k 

and (ii) follows. 
(ii) ==:::;.. (i): Let B be a positive compact operator in A whose eigenvalue list 

p = (p1 ;::: P2 ;::: ···)satisfies the inequalities (ii) and let e1, e2, ... be an orthonormal 
basis for H such that [e1], [e2], ... are the minimal projections of A. Since every 
permutation of the basis {ek} is implemented by a unitary operator W E !3(H) 
satisfying W AW* = A, we may assume without essential loss that Bek = Pkek, 
k = 1,2, .... 

We construct a sequence of operators Ln E B(H), n = 1, 2, ... , as follows. 
Consider the spectral representation of A 

00 

A= LAk~k®~k 
k=1 

where ~ll 6, ... is an orthonormal sequence in H consisting of eigenvectors of A. 
Fix n, let Hn be the linear span of ~ll ... , ~n, and let An be the restriction of A to 
Hn. The eigenvalue list of An is (All ... , An); so by Lemma 4.3, there is a decreasing 
sequence J.t = (J.£1, ... , J.tn) satisfying 0 :::; J.tk :::; Ak for 1 :::; k :::; n, and 

P1 + · · · + Pk :::; J.t1 + · · · + J.tk, k = 1, ... , n, 
with equality holding for k = n. The sequence J.t of course depends on n but we 
suppress that in the notation since J.t will soon disappear. Consider the operator 
Bn defined on Hn by requiring Bn~k = J.tk~k, 1 :::; k :::; n. The eigenvalue list of 
Bn dominates (p1, ... ,pn) as in the hypothesis of Horn's result Theorem 2.1. Thus 
there is an orthonormal basis ein), ... , e~n) for Hn such that 

(Bnekn), ekn)) = Pk, k = 1, ... , n. 
Since 0 :::; Bn :::; An it follows that 

Pk :::; (Anekn), ekn)) = (Aekn), ekn)), k = 1, ... , n. 

Let Ln E B(H) be the operator defined by Lnek = ekn) fork= 1, ... , n, and Ln = 0 
on the orthocomplement of [eln), ... , e~n)]. 

We have constructed a sequence L1 , L2 , . . • of finite rank partial isometries in 
B(H) that satisfies the system of inequalities 
(4.6) n;:::k;:::l. 
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Since the unit ball of B(H) is sequentially compact in its weak operator topology, 
there is a subsequence n1 < n2 < ... and a contraction L 00 E B(H) such that 
(Ln/rJ, () ---+ (L00 ry, () as j ---+ oo, for every ry, ( E H. We claim that L00 satisfies 

(4.7) k = 1,2, .... 

To see that, fix k and note that for sufficiently large j, (4.6) implies 

Pk ~ (ALn1ek, Ln1ek)· 

As j ---+ oo, Lr,1 ek tends to L00 ek in the weak topology of H. Since A is a com-
pact operator, IIALn1ek - ALooekii ---+ 0 as j ---+ oo; hence the inner products 
(ALn1 ek, Ln 1 e~;) converge to (AL 00 ek, Looek), and (4.7) follows. 

Finally, choose t1, t2, · · · E [0, 1] such that Pk = tk(AL00 uk, Loouk) for every k. 
Letting D E l3(H) be the contraction defined by Dek = ../fkek, k ;::: 1, one finds 
that the operawr L = L00 D satisfies 

k = 1,2, ... , 

and the required formula 
00 00 

k=1 k=1 
follows. D 

PROOF OF THEOREM 4.1. Let E1, E2, ... be the minimal projections of A and 
let e1, e2, ... be an orthonormal basis for H such that Ek is the projection [ek], 
k = 1,2, ... . 

We show first that for every positive trace class operator A E B(H) with 
eigenvalue list A, the eigenvalue list p = (P1, P2, ... ) of B = E (A) must satisfy 
(4.1) and (4.2). By permuting the elements of the basis {ek} appropriately and 
changing notation, we may assume that Bek = Pkek, k = 1, 2, .... Let Pn be the 
projection on je1, ... , en]· Since A is a positive compact operator with eigenvalue 
list A, we can make use of (4.3) to write 

n 

P1 + · · · + Pn = L(Bek, ek) = traceAPn ~ A1 +···+An· 
k=1 

Moreover, P1 + P2 + · · · = (Au1, u1) + (Au2, u2) +···=trace A= A1 + A2 + · · ·. 
Conversely, let p and A be two summable eigenvalue lists that satisfy ( 4.1) -

( 4.2), and let B be a positive trace-class operator in A with list p. Again, by 
relabeling the orthonormal basis {ek}, we may assume that Bek = Pkek, k = 
1, 2, .... Choose any positive trace-class operator A E B(H) having eigenvalue list 
A, and let P be the projection onto the closure of AH. Theorem 4.2 implies that 
there is a contraction L E B(H) satisfying Pk = (ALek, Lek) fork ;::: 1. By replacing 
L with PL if necessary, we may also assume that LH is contained in PH, and in 
that case we claim: 

(4.8) LL* = P. 

Indeed, P-LL * ;::: 0 because L is a contraction whose range is contained in PH, and 
it suffices to show that the positive operator A 112 ( P-LL *)A 112 = A-A 1/ 2 LL *A 112 
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has trace zero; equivalently, trace A 112 LL *A 112 = trace A. Using trace X X* = 
trace X* X for X = A 112 L, we have 

00 

traceA112LL* A 112 =trace£* AL = L (ALen, Len) 
n=1 

= P1 + P2 + · · · = >-.1 + >-.2 + · · · = trace A. 

Lis a co-isometry by (4.8); hence it can be changed into a unitary operator 
U : H --+ H EB ker L by making use of the projection Q : H --+ ker L as follows: 
U~ = L~ EB Q~, ~ E H. Now consider the operator 

Ao EB 0 E 13(PH EB ker L), 

Ao denoting the restriction of AtoP H = AH. Since U ek = LekEBQek, k = 1, 2, ... , 
we have 

k = 1,2, .... 

Therefore U*(Ao EB O)U is a positive trace class operator in 13(H) satisfying 
00 

E(U*(Ao EB O)U) = LPkEk =B. 
k=1 

Since U*(Ao EB O)U has the same eigenvalue list as A, Proposition 3.1 implies that 
it must belong to O(A) = O.x, and the proof is complete. 0 

In the series [Kad02a], [Kad02b], one of us carried out a study of the pos-
sible diagonals of projections acting on a separable Hilbert space. The results of 
this paper do not address the most difficult case where the projection has infinite 
rank and infinite co-rank; but Theorem 4.1 does give the result of Theorem 13 of 
[Kad02b], as follows. We formulate that in terms of the Hilbert space C2 and its 
standard orthonormal basis (uk)k>1, with the associated realization of operators as 
matrices relative to this basis. 

COROLLARY 4.4. Let p = (P1,P2, ... ) be a sequence of numbers in the unit 
interval 0 :::; Pk :::; 1, and let m be a positive integer. The following are equivalent 

(i) There is a rank m projection P E 13(£2 ) whose matrix hasp as its diagonal. 
(ii) P1 + P2 + · · · = m. 

PROOF. We prove the nontrivial implication (ii) ==? (i). Since (ii) implies that 
the sequence Pn converges to zero and since permutations of N are implemented by 
unitary operators on £2 (N) in the obvious way, it suffices to address the case where 
the sequence is decreasing P1 ~ P2 ~ · · · . The eigenvalue list of a projection of 
rank m is 

).. = (1, ... ' 1, 0, 0, ... ), ...____... 
m times 

and O.x consists of all rank m projections in 13(£2 ). The hypothesis (ii), together 
with 0 :::; Pk :::; 1, implies that P1 + · · · + Pn :::; A1 + ···+An holds for every n ~ 1. 
Hence Theorem 4.1 implies that there is an operator in O.x with diagonal sequence 
p. 0 
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Part 2. Type Ih Factors 

We turn now to the case of self-adjoint operators A in a finite factor. In 
this context, the appropriate counterpart of the eigenvalue list is a finite positive 
measure on the real line, called the spectral distribution of A. After working out the 
basic properties of the spectral distribution and relating it to approximate unitary 
equivalence, we establish a generalization of the Schur inequalities for I h factors. 

5. Spectral distribution of a self-adjoint operator 

In the remainder of this paper we work within the context of a finite factor M 
with normalized trace r. For every self-adjoint operator A E M there is a unique 
probability measure mA on the Borel subsets of the real line whose moments are 
given by 

(5.1) /_: >..n dmA(>..) = r(An), n = 0, 1,2, .... 

DEFINITION 5.1. The measure mA is called the spectral distribution of A. 

The purpose of these section is to discuss the basic properties of this invariant. 
The spectral distribution is the appropriate generalization to I I 1 factors of the 
eigenvalue list invariant of self-adjoint n x n matrices. Indeed, if A is a self-adjoint 
n x n matrix with eigenvalue list A = {>..1 ;:::: >..2 ;:::: • • • }, then mA is the discrete 
measure 

1 
ffiA = ;;;(8Al +···+<)An), 

8 A denoting the unit point mass concentrated at >.. E JR. 
mass to singletons { >..} of JR. as follows 

Equivalently, mA assigns 

mA(>..) = {~(multiplicityof >..), 
0, 

if>.. E a(A) 
otherwise. 

We require the following observation, which asserts that the spectral distribution 
of an operator in a I h factor can be arbitrary. 

PROPOSITION 5.2. Let A ~ M be a MASA in a Ih factor and let m be a 
compactly supported probability measure on the real line. Then there is a self-adjoint 
opemtor A E A such that m = m A. 

PROOF. A contains a countably-generated nonatomic subalgebra, which must 
be isomorphic: to £ 00 [0, 1) in such a way that the restriction of the tracer corre-
sponds to the state of £ 00 [0, 1) given by 

r(f) = 11 f(x) dx, f E L00 [0, 1). 

Thus it suffices to show that there is a real-valued function f E £ 00 [0, 1) such 
that J; f(x)n dx = J >..n dm(>..) for n = 0, 1, ... or equivalently, for every Borel set 
s ~JR., 
(5.2) r{x E [0, 1) : f(x) E S} = m(S), 
where we abuse notation slightly by also writing r for Lebesgue measure on the unit 
interval. Let K be the closed support of m. The pair (K, m) defines a separable 
measure algebra which may have a finite or countable number of atoms. On the 
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other hand, ([0, 1], T) gives rise to a nonatomic separable measure algebra. Letting 
x 17 x 2 , ... be the points of K having positive m-measure, we find a sequence of 
disjoint Borel sets E1, E 2, · · · ~ [0, 1] such that T(Ek) = m( {xk}) for all k. Define f 
on UkEk so that it takes on the constant value Xk throughout Ek. f is a measure-
preserving map of UkEk onto the atomic part of (K, T). Since T([O, 1] \ UkEk) = 
m( K \ { x 17 x2, ... } ) and since the remaining parts of both measure spaces are 
nonatomic and separable, there is a surjective Borel map of [0, 1] \ UnEn onto 
K \ { x1, x2, ... } that pushes Lebesgue measure forward to m, and we can use this 
map to extend the definition off to all of [0, 1] in the obvious way. D 

The eigenvalue list is a complete invariant for £ 1-equivalence of positive trace-
class operators in type I factors. We now show that the spectral distribution 
invariant occupies a similar position. 

DEFINITION 5.3. Operators A, B E M are said to be approximately equivalent 
if there is a sequence of unitary operators U1 , U2 , •.• in M such that 

(5.3) lim IIUnAU~ - Bll = 0. 
n-+oo 

The set of all operators in the norm-closed unitary orbit of A is written OA. 

THEOREM 5.4. Let A be a self-adjoint operator in M, let mA be the spectral 
distribution of A, and let 0 A be the norm-closed unitary orbit of A. Then 0 A 
is closed in the strong operator topology, and consists of all self-adjoint operators 
BE M satisfying mn = mA. 

Before giving the proof we collect an elementary observation. 

LEMMA 5.5. Let E1 ::; E2 ::; · · · ::; En and F1 ::; F2 ::; · · · ::; Fn be two linearly 
ordered sets of projections in M such that T(Ek) = T(Fk) for k = 1, ... , n. Then 
there is a unitary operator U in M such that UEkU* = Fk, k = 1, ... , n. 

PROOF. By adjoining the identity to the end of each list if necessary, we can 
assume that En = Fn = 1. Setting Eo = Fo = 0, the hypothesis implies that 
T(Ek - Ek-1) = T(Fk - Fk-1) for each k = 1, ... , n. Since M is a finite factor, 
projections with the same trace must be Murray-von Neumann equivalent. Thus 
there are partial isometries U~, ... , Un EM with UZUk = Ek - Ek-1 and UkUk = 
Fk- Fk-1 for all k. The projections UiU1, ... , U~Un add up to En = 1, and 
similarly U1Ui + · · · + UnU~ = 1. It follows that W = U1 + · · · + Un is a unitary 
operator in M with the property W(Ek - Ek-1)W* = Fk - Fk-1 for every k = 
1, ... , n, hence W Ek W* = Fk for k = 1, ... , n. D 

PROOF OF THEOREM 5.4. We will show that a self-adjoint operator B belongs 
to OA iff mn = mA. Once that is established, it will follow that OA is strongly 
closed, because the relation mn = mA is characterized by the sequence of equations 
(5.4) T(Bn) = T(An), n = 0, 1, 2, ... 
and each of the monomials B 1--+ T(Bn) is strongly continuous on bounded subsets 
ofM. 

Every operator B E M that is unitarily equivalent to A must satisfy the formu-
las (5.4), and hence a norm-limit of such operators will satisfy the same formulas. 
It follows that mn = mA for every Bin the norm-closed unitary orbit of A. 

Conversely, let A, B be self-adjoint operators of M satisfying mA = mn, and 
let [a, b] be an interval with the property that mA = mn is supported in the interior 
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(a, b). Then the spectra of A and Bare both contained in (a, b). For every a::::; t::::; b 
let Et (resp. l'f) be the spectral projection of A (resp. B) corresponding to the 
subinterval [a, t] s;; R Then by hypothesis we have 

(5.5) a::::; t::::; b. 

Given E > 0 we can find a partition a = t0 < t1 < · · · < tn = b of [a, b] fine enough 
that 

n 

It- L)kX(tk_ 1 ,tkJ(t)1::::; E, a::::; t::::; b. 
k-1 

Letting Ao, B0 be the operators 
n n 

Ao = L)k(Etk - Etk_J, Bo = I.>k(Ftk- Ftk_J, 
k=l k=l 

we find that IIA-Aoll ::::; E and liB-Boll ::::; f. (5.5) implies T(Etk) = T(Ftk) for every 
k, so by the Lemma there is a unitary operator W E M such that W Etk W* = Ftk 
for all k, hence W AoW* = Bo. An obvious estimate now implies IIW AW*- Bll ::::; 
2E, and since E is arbitrary it follows that A and B are approximately equivalent. 0 

Theorem b.4 implies that the spectral distribution is a complete invariant for 
approximate unitary equivalence, and it is natural to ask if two self-adjoint oper-
ators that are approximately equivalent must be unitarily equivalent, or at least 
conjugate by way of a *-automorphism. The following class of examples shows that 
the answer is no. 

Example. Let R be a I h factor and let A and B be two MASAs in R that 
are not conjugate by way of an automorphism of R. For example, A can be taken 
to be a regular MASA and B a singular one. Since both A and B are isomorphic to 
L00 [0, 1] by w~'Y of an isomorphism that carries the trace to Lebesgue measure, it 
follows that a) there is a *-isomorphism o: of A onto B satisfying T(o:(X)) = T(X) 
for all X E .A, and b) A is the von Neumann algebra W*(A) generated by a 
single self-adjoint operator A. Let B = o:(A). Then T(An) = T(Bn) for every 
n = 0, 1, 2, ... and hence mA = mB. It follows from Theorem 5.4 that A and 
B are approximately equivalent. On the other hand, there is no unitary operator 
U E R satisfying U AU* = B, since that would imply that B(X) = U XU* is an 
automorphism of R that carries A= W*(A) onto B = W*(B). 

6. Schur-type inequalities for I h factors 

The purpose of this section is to formulate an appropriate counterpart of the 
Schur inequalities for self-adjoint operators in I h factors. This is not the only for-
mulation possible, and we refer the reader to Section 5 of [Kad04] for an alternate 
approach. Here, we seek to formulate the Schur inequalities in terms of spectral 
distributions. That formulation is based on the following observations. 

PROPOSITION 6.1. For any two compactly supported probability measures m, n 
on the real line, the following are equivalent: 

(i) m and n have the same first moment 

1 )..dm(>-.) = 1 )..dn(>-.), 
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and for every t E JR. we have 

100 m([s,oo))ds:::::; 100 n([s,oo))ds. 

(ii) m and n have the same first moment, and for every t E JR. we have 

r (,\- t) dm(,\) :::::; r (,\- t) dn(,\). 
lrt,oo) lrt,oo) 

(iii) For every continuous convex function defined on a closed interval I= [c, d] 
that supports both measures m and n, we have 1 f(,\) dm(,\) :::::; 1 f(,\) dn(,\). 

PROOF. The equivalence (i) {::::::::} (ii) is a consequence of the classic integration 
by parts formula of Riemann-Stieltjes integration, which can be applied as follows. 
Fix t E JR., let m be a compactly supported measure defined on JR., and choose 
a, bE JR. so that a< t < band such that (a, b) contains the closed support of both 
m and n. Let a: JR.--+ JR. be the decreasing function a(s) = m([s, oo)) and let f be 
the continuous increasing function f(s) = max(s-t, 0). An application of Theorem 
9-6 of [Apo57] gives 

1b f(x) da(x) + 1b a(x) df(x) = f(b)a(b)- f(a)a(a). 

In this case, a(b) = f(a) = 0, and straightforward computations show that 

1b f(x) da(x) =- r (x- t) dm(x), 
a lrt,oo] 

1b a(x) df(x) = 100 m([x, oo)) dx. 

It follows that r (,\- t) dm(,\) = 100 m([s, oo)) ds, 
. lrt,ooJ t 

and the equivalence of (i) and (ii) follows. 
(ii) ===? (iii): This will follow if we show that every continuous real-valued con-

vex function f defined on a compact interval I ~ JR. can be uniformly approximated 
on I by functions 

(6.1) f(,\) =a+ b,\ + g(,\) 
where a and b are real constants and g belongs to the cone generated by the "an-
gular" functions 

9t(,\) =max(,\- t, 0) = (,\- t)X[t,oo)(,\), tER 

To see how the approximation (6.1) is achieved, one first approximates f uniformly 
on I with a twice continuously differentiable convex function g. Since g' is an 
increasing function, it can be uniformly approximated by an increasing step function 
having the form a+ h(,\) where a is constant and h belongs to the cone generated 
by the step functions X[t,oo)> t E R After one integrates this approximation of g' 
one obtains an approximation to g(,\) of the form a,\+ b + J h(,\) d,\. Moreover, 
since the indefinite integral of a step function X[t,oo) (,\) has the form c+ 9t(,\) where 
cis a constant, this approximation of g has the form (6.1). 
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The implication (iii) ===} (ii) is an immediate consequence of the fact that 
functions of the form (6.1) are continuous and convex. 0 

DEFINITION 6.2. Let m and n be two compactly supported probability mea-
sures on the real line. We write m ~ n if m is dominated by n in the equivalent 
senses of Proposition 6.1, i.e., if fiR Adm(A) =fiR Adn(A), and 

(6.2) 100 m([s,oo))ds::;: 100 n([t,oo))ds, t E R 

The relation ~ is obviously a partial ordering on the set of all compactly sup-
ported probability measures on the real line. Given two self-adjoint operators A, B 
in a Ih factor M, we interpret the relation mA ~ mB as the appropriate counter-
part of the Schur inequalities (2.1) that relate the eigenvalue lists of A and B. This 
interpretation is justified by Proposition 6.1 and the following remarks. 

REMARK 6.3 (Relation to the classical inequalities of Schur). Let T be the 
normalized trace on the matrix algebra Mn(C), and let A and B be self-adjoint 
n x n matrices. We have discussed the relation between the eigenvalue list of A and 
the spectral distribution mA in Section 5. We now examine the relation between 
the integrals 100 mA([s, oo)) ds 

appearing in (6.2) and the eigenvalue list A1 2: · · · 2: An of A. For simplicity, we 
consider the case where the eigenvalues are simple ones. For every t in the interval 
Ak+l < t <\~:one has m([t,oo)) = kjn, and after a straightforward integration 
and cancellation one finds that for Ak-l < t < Ak, 

1oo ([ )) d _ A1 + A2 + · · · + Ak- kt mA s,oo s- . 
t n 

Let B be another self-adjoint matrix with eigenvalue list /-Ll > 
preceding formula shows that the system of inequalities 

(6.3) 100 mA([s, oo)) ds :S: 100 mB([s, oo)) ds, t E !R, 

> f..Ln· The 

differs somewhat from the system of classical Schur inequalities, which in terms of 
the normalized trace would assert 

(6.4) Al + · · · + Ak /-Ll + · · · + /-Lk -----::;: , 
n n 

k = 1,2, ... ,n. 

However, if T(A) = T(B) then A1 +···+An = f..Ll + · · · + f..Lni and in that event 
the inequalities (6.3) are equivalent to the Schur inequalities (6.4) because they 
are equivalent to the inequalities of assertion (iii) of Proposition 6.1. That is a 
consequence of classical results of Hardy, Littlewood and Polya [Har34] which are 
summarized in Theorem 1 of [Hor54]. The relevant result asserts that for two 
finite eigenvalue lists 

which satisfy .>'1 +···+An= /-Ll + · · · + f..Ln, the following are equivalent: 
(1) A1 + · · · + Ak :S: f..Ll + · · · + f..Lk, for every k = 1, ... , n. 
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( 2) For every convex function f defined on an interval containing all Ai and 
J.lj, one has 

n n 

L f(Ak) :::; L f(J.Lk)· 
k=l k=l 

Thus, when taken together with the equivalence of (1) and (2), Proposition 6.1 
implies that the system of inequalities {6.2) is an appropriate generalization of the 
Schur inequalities (6.4) to I h factors. 

7. Proof of the Schur inequalities 

We require a convexity inequality for operators in a I h factor. While related 
results can be found in the literature, we have been unable to find references ap-
propriate for this particular result, and we include a proof for completeness. Let 
A be a maximal abelian self-adjoint subalgebra of a I h factor M with normalized 
trace T, and let E: M-> A be the T-preserving conditional expectation. 

PROPOSITION 7.1. Let f be a real-valued continuous convex function defined 
on a compact interval I = [a, b] ~ ~- Then for every self-adjoint operator A E M 
with spectrum contained in I, the spectrum of E(A) is also contained in I and we 
have 

(7.1) · f(E(A)):::; E(f(A)). 

PROOF. For every self-adjoint operator A E M, we write A+ for the positive 
part of A, defined by A+ = AP+ = P+A where P+ is the spectral projection of A 
associated with the nonnegative real axis [0, oo). We claim first that 

(7.2) 

Indeed, in the natural ordering of self-adjoint operators in M we have A :::; A+ and 
hence E(A) :::; E(A+)· Thus E(A+) is a positive operator that dominates E(A). 
Since A is abelian, E(A)+ is the smallest positive operator in A that dominates 
E(A), and (7.2) follows. 

In order to prove (7.1), chooser E ~ and let 9r(A) =max( A- r, 0). We may 
apply (7.2) to the operator A- rl to obtain 

9r(E(A)) = (E(A)- rl)+ = E(A- rl)+ :::; E((A- rl)+) = E(gr(A)). 

It follows that for every convex function fo : ~ -> ~ of the form 
n 

(7.3) fo(A) =a+ bA + L Ck9rk (A) 
k=l 

where a, b, r 1 , ... , rn E ~and c1, ... , Cn ~ 0, one has 

fo(E(A)):::; E(fo(A)). 

Since every continuous convex function f : [a, b] -> ~ can be uniformly approxi-
mated by functions fo of the form (7.3), one deduces (7.1) for continuous convex 
functions from these inequalities. 0 

The following result establishes the Schur inequalities for operators in a I h 
factor. 
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THEOREM 7.2. Let A be a MASA in M and let E : M ---+ A be the trace-
preserving conditional expectation. For every self-adjoint operator A in M, the 
spectral distrib·ation of B = E(A) is related to that of A by mB :::S mA. 

PROOF. Let [a, b] be the smallest closed interval containing a(A) Ua(B). Since 
both mB and mA are probability measures, Proposition 3.1 implies that mB :::S mA 
iff for every continuous convex function f E C[a, b], 

1 f(>.) dmB(>.) S 1 f(>.) dmA(>.). 

Since the left side is T(j(B)) = T(j(E(A))) and the right side is T(j(A)), the 
preceding inequality follows from formula (7.1). D 

Theorem 7.2 makes the following assertion about the norm-closed unitary orbit 
0 A of a self-adjoint operator: E ( 0 A) is contained in the set of all self-adjoint 
operators B E A satisfying mB :::S mA. Thus, an affirmative reply to the following 
question would appear to be a natural generalization of Horn's Theorem for n x n 
matrices. 

Problem. Let A be aMASA in a Ih factor M, let E: M---+ A be the trace-
preserving conditional expectation, and let A be a self-adjoint operator in M. Does 
E(OA) contain the set of all self-adjoint operators BE A satisfying mB :::S mA? 
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