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A spin system is a sequence of self-adjoint unitary operators U1, U2, . . . acting on a
Hilbert space H which either commute or anticommute, UiUj = ±UjUi for all i, j; it is
called irreducible when {U1, U2, . . .} is an irreducible set of operators. There is a unique
infinite matrix (cij) with 0, 1 entries satisfying

UiUj = (−1)cij UjUi , i, j = 1, 2, . . . .

Every matrix (cij) with 0, 1 entries satisfying cij = cji and cii = 0 arises from a
nontrivial irreducible spin system, and there are uncountably many such matrices.

In cases where the commutation matrix (cij) is of “infinite rank” (these are the ones
for which infinite dimensional irreducible representations exist), we show that the C∗-
algebra generated by an irreducible spin system is the CAR algebra, an infinite tensor
product of copies of M2(C), and we classify the irreducible spin systems associated with
a given matrix (cij) up to approximate unitary equivalence.

That follows from a structural result. The C∗-algebra generated by the universal
spin system u1, u2, . . . of (cij) decomposes into a tensor product C(X) ⊗ A, where X

is a Cantor set (possibly finite) and A is either the CAR algebra or a finite tensor
product of copies of M2(C). We describe the nature of this decomposition in terms of
the “symplectic” properties of the Z2-valued form

ω(x, y) =
∞
∑

p,q=1

cpqxqyp ,

x, y ranging over the free infninite dimensional vector space over the Galois field Z2.

1. Introduction

A spin system is a sequence u1, u2, . . . of self-adjoint unitary elements of some unital

C∗-algebra which commute up to phase in the sense that

uiuj = λijukuj , i, j = 1, 2, . . .

where the λij are complex numbers. Since uiuju
−1
i = λijuj and u2

j = 1, it follows

that each λij is −1 or +1. Thus there is a unique matrix of zeros and ones cij such

that the commutation relations become

uiuj = (−1)cij ujui , i, j = 1, 2, . . . . (1.1)
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The matrix (cij) is easily seen to be symmetric, and has zeros along the main

diagonal. A concrete spin system U1, U2, . . . ⊆ B(H) is said to be irreducible when

{U1, U2, . . .} is an irreducible set of operators. The purpose of this paper is to

determine the structure of the C∗-algebra generated by an irreducible spin system

associated with a given 0-1 matrix (cij), and to classify such spin systems up to

“approximate” unitary equivalence (Theorem 4.1).

1.1. Quantum spin systems

Spin systems arise naturally in several contexts, including the theory of quantum

spin systems ([4, Sec. 6.2]), and in the theory of quantum computing (especially,

systems involving a large or infinite number of qubits). For example, suppose we

are given a mutually commuting sequence θ1, θ2, . . . of involutive ∗-automorphisms

of B(H), i.e. θ2
j = id, θkθj = θjθk for all j, k = 1, 2, . . . (one can imagine that θk

represents reversing the state of a two-valued quantum observable located at the

kth site). For each k one can find a unitary operator Uk such that θk(A) = UkAU−1
k ,

A ∈ B(H), and by replacing Uk with λUk for an appropriate λ ∈ T if necessary, we

can arrange that U2
k = 1. Since θiθj = θjθi it follows that Ui and Uj must commute

up to phase, hence there is a unique number cij ∈ {0, 1} such that (1.1) is satisfied.

The matrix C = (cij) does not depend on the choices made and is therefore an

invariant attached to the original sequence of automorphisms θ̄ = (θ1, θ2, . . .). The

sequence θ̄ is ergodic in the sense that its fixed algebra is C · 1 if and only if every

spin system Ū = (U1, U2, . . .) associated with it is irreducible.

1.2. Remarks on rank

Consider the commutation matrix (cij) associated with a spin system (1.1). If

all coefficients cij vanish then C∗(u1, u2, . . .) is commutative. More generally,

C∗(u1, u2, . . .) degenerates whenever (cij) is of finite rank, where the rank is defined

as follows. Considering Z2 = {0, 1} as the two-element Galois field we may consider

vector spaces over Z2, and in particular we can form the free infinite dimensional

vector space Γ = Z2⊕Z2⊕. . . over Z2. Elements of Γ are sequences x = (x1, x2, . . .),

xk ∈ Z2, which vanish eventually. The dual of Γ is identified with the vector space

Z∞
2 of all sequences y = (y1, y2, . . .), yk ∈ Z2. The commutation matrix (cij) gives

rise to a linear operator C : Γ → Z∞
2 by way of (Cx)k =

∑∞
j=1 ckjxj , k = 1, 2, . . . .

The rank of the matrix is defined by

rank (cij) = dim(CΓ) .

Actually, what we have defined is the column rank of the matrix (cij), but because

(cij) is a symmetric matrix its column and row ranks are the same. We will see

below that the rank is finite iff the center of C∗(u1, u2, . . .) is of finite codimension

in C∗(u1, u2, . . .) iff every irreducible spin system satisying (1.1) acts on a finite

dimensional Hilbert space. Thus we are primarily concerned with the nondegenerate

cases in which the commutation matrix (cij) is of infinite rank.
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1.3. Remarks on existence and universality

A sequence u1, u2, . . . of unitary operators satisfying a given set of noncommutative

equations fk(u1, u2, . . .) = 0, k = 1, 2, . . . (we leave the precise nature of the non-

commutative polynomials fk unspecified) is said to be universal if every sequence

U1, U2, . . . ∈ B(H) of concrete unitary operators (acting on a separable Hilbert

space) that satisfies the equations can be obtained from it via a representation

π : C∗(u1, u2, . . .) → B(H) such that π(uk) = Uk, k = 1, 2, . . . .

Of course, for bad choices of fk (e.g. fk(x1, x2, . . .) = xk) there may be no unitary

solutions to the set of equations except on the trivial Hilbert space H = {0} (note

that every meaningful operator equation is satisfied on the trivial Hilbert space).

But in all cases there is a universal solution . . . consider the direct sum of all

concrete unitary solutions. Any two universal solutions (u1, u2, . . .) and (v1, v2, . . .)

are equivalent in the sense that there is a unique ∗-isomorphism θ : C∗(u1, u2, . . .) →

C∗(v1, v2, . . .) satisfying θ(uk) = vk for every k. Thus the C∗-algebra generated by a

universal sequence of solutions to the given set S of equations is uniquely determined

by S.

Given an arbitrary matrix C = (cij) of zeros and ones satisfying the consistency

requirements cij = cji and cjj = 0 for all i, j = 1, 2, . . ., we consider the C∗-algebra

AC = C∗(u1, u2, . . .) generated by a universal spin system satisfying (1.1). The set

of distinct matrices (cij) satisfying these conditions is of cardinality 2ℵ0 , and each

of them is associated with a nontrivial spin system (1.1) (see Proposition 1.1). We

determine the structure of these C∗-algebras AC in Theorem 3.1.

1.4. Spin systems in characteristic p

We have found it helpful, even simplifying, to consider the natural generalization of

spin systems to characteristic p where p is an arbitrary prime. By a spin system in

characteristic p we mean a sequence of unitary operators u1, u2, . . . which are pth

roots of unity in the sense that up
j = 1 for every j, and which satisfy commutation

relations of the form

uiuj = ζcij ujui , i, j = 1, 2, . . . , (1.2)

where ζ = e2πi/p, and where cij ∈ {0, 1, . . . , p − 1} = Zp. Notice that each cij is

uniquely determined by (1.2). If we regard Zp as a finite field in the usual way, then

the matrix is skew-symmetric in that cij = −cji for every i, j = 1, 2, . . . .

The reason for considering the cases p > 2 can be clearly seen when one

specializes the previous paragraph to p = 2. Indeed, in the two-element field we

have x = −x for every x, hence a skew-symmetric matrix over Z2 is the same as

a symmetric matrix with zeros along the main diagonal. We found that viewing

(cij) as a skew-symmetric matrix led in the right direction, whereas viewing it as a

symmetric matrix with zeros along the diagonal led nowhere. Thus the case p = 2

can be misleading, and for that reason we consider the more general case of spin

systems (1.2) in characteristic p.
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Fixing a prime p, assume we are given a skew-symmetric matrix (cij) of elements

of the Galois field {0, 1, . . . , p − 1} = Zp. Since Zp is a field, we can form the

free infinite dimensional vector space Γ over Zp; elements of Γ are sequences x =

(x1, x2, . . .) of elements of Zp satisfying xk = 0 for all but a finite number of k. The

coefficients cij give rise to a bilinear form ω : Γ × Γ → Zp by way of

ω(x, y) =

∞
∑

i,j=1

cijxjyi , x, y ∈ Γ . (1.3)

This bilinear form is skew-symmetric in that it satisfies ω(x, y) = −ω(y, x) for all

x, y ∈ Γ, and it will occupy a central position throughout the sequel. The structure

of such forms is described in Theorem 2.1 and Corollary 2.1.

Consider now the C∗-algebra A generated by a sequence of unitary elements

u1, u2, . . . satisfying up
k = 1 and the commutation relations (1.2). A word is a finite

product of elements from {u1, u2, . . .}, and it is convenient regard the identity 1 as

the empty word. The set of linear combinations of words is a dense ∗-subalgebra

of A which contains 1. Using the commutation relations (1.2), every word can be

written in the form λun1

1 un2

2 · · ·unr
r where λ is a complex scalar. Thus we may use

the elements of Γ to parameterize a spanning set of words as follows,

wx = ux1

1 ux2

2 . . . , x = (x1, x2, . . .) ∈ Γ ,

and one finds that

wxwy = ζω(x,y)wywx , x, y ∈ Γ , (1.4)

where ζ = e2πi/p and ω : Γ × Γ → Zp is the bilinear form (1.3).

We will occasionally make use of a second bilinear form Q : Γ × Γ → Zp,

Q(x, y) =
∑

1≤i<j

cijxjyi , x, y ∈ Γ . (1.5)

Q is related to ω by ω(x, y) = Q(x, y) − Q(y, x), and it is a straightforward com-

putation to verify the “Weyl” relations

wxwy = ζQ(x,y)wx+y , x, y ∈ Γ . (1.6)

We conclude the introduction with a remark about the existence of solutions of

(1.2) for arbitrary coefficient matrices (cij). For p = 2, this generalizes the examples

of finite dimensional spin systems described in [3].

Proposition 1.1. Let p = 2, 3, . . . be a prime and let (cij) be an arbitrary skew-

symmetric matrix over the Galois field Zp = {0, 1, . . . , p− 1}. Then there a Hilbert

space H 6= {0} and a sequence of unitary operators U1, U2, . . . ∈ B(H) such that

Up
k = 1 and UjUk = ζcjkUkUj for every j, k = 1, 2, . . . , where ζ = e2πi/p.
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Proof. Regarding Zp as an additive abelian group, consider the unitary operators

S, V defined on the p-dimensional Hilbert space `2(Zp) by

Sf(k) = f(k + 1) , V f(k) = ζkf(k) , f ∈ `2(Zp) , k ∈ Zp .

We have Sp = V p = 1, SV = ζV S, and in fact SV k = ζkV kS for all k ∈ Z.

Consider the L2-space of the compact abelian group G = Zp ×Zp × . . . . We can

realize L2(G) as the infinite tensor product of copies of `2(Zp) along the stabilizing

vector u ∈ `2(Zp) where u is the constant function u(k) = 1, k ∈ Zp. Thus for any

finite sequence A1, . . . , Ar of operators on `2(Zp) we can form the operator

A1 ⊗ · · · ⊗ Ar ⊗ 1⊗ 1⊗ · · · ∈ B(L2(G)) .

The unitary operators U1, U2, . . . are defined on L2(G) in terms of the given coeffi-

cients cij as follows; U1 = S ⊗ 1⊗ 1⊗ . . . and for k = 2, 3, . . .

Uk = V c1k ⊗ · · · ⊗ V ck−1k ⊗ S ⊗ 1 ⊗ 1⊗ . . . .

One can verify that Up
k = 1, and UjUk = ζcjkUkUj for 1 ≤ k < j.

As the preceding remarks on Quantum spin systems show, commutation rela-

tions of the form uv = λvu where λ ∈ T arise naturally whenever one consid-

ers commuting ∗-automorphisms of B(H). Indeed, many natural contexts lead to

projective representations of groups involving similar commutation relations. For

example, they are associated with ergodic actions of compact groups on C∗-algebras

(see [2, 5] and references therein). Such commutation relations are so ubiquitous

that we have made no effort to compile references to the related literature, even for

the case of spin systems. Finally, we point out that the results of this paper gener-

alize certain results in [6–9] which concern spin systems for which the commutation

matrix depends only on the separation cij = f(i − j).

2. Symplectic Forms in Characteristic p

In this section we work out the symplectic linear algebra that underlies the results

described above. Throughout, F denotes a field, the primary cases being the Galois

field F = Zp of characteristic p where p is any prime including 2. Γ denotes the free

infinite dimensional vector space over F , consisting of all sequences x = (x1, x2, . . .)

of elements xk ∈ F satisfying xk = 0 for all but a finite number of k. The addition

and scalar multiplication are defined pointwise,

x + y = (x1 + y1, x2 + y2, . . .) , λ · x = (λx1, λx2, . . .)

λ being an element of F . A vector space V over F is said to be countably generated

if it contains a sequence v1, v2, . . . such that every element of v is a finite linear

combination of elements of {v1, v2, . . .}. Finite dimensional vector spaces are count-

ably generated, and for every countably generated vector space V over F there is

a linear map L : Γ → V such that V = LΓ.
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We are concerned with skew-symmetric bilinear forms B : Γ × Γ → F . The

kernel of such a bilinear form is the subspace K = {x ∈ Γ : B(x, Γ) = {0}}. B

is called a symplectic form when it is skew-symmetric and has kernel {0}, and

a symplectic vector space is a pair (V, B) consisting of a countably generated

vector space V over F and a symplectic bilinear form B : V × V → F . Two

symplectic vector spaces (V, B) and (V ′, B′) are congruent if there is a linear

isomorphism L : V → V ′ satisfying B′(Lx, Ly) = B(x, y) for all x, y ∈ V .

Any skew-symmeteric bilinear form defined on a vector space B : V × V → F

gives rise to a symplectic vector space as follows. Letting K be the kernel of B, B

promotes natrually to a bilinear form ω : V/K × V/K → F ,

ω(x + K, y + K) = B(x, y) , x, y ∈ V . (2.1)

(V/K, ω) is a symplectic vector space, and it is the trivial symplectic vector space

only when B = 0.

Definition 2.1. The rank of B is the dimension of the vector space V/ kerB.

The rank of B is a nonnegative integer or ∞. We will see presently that when

it is finite it must be an even integer n = 2r, r = 1, 2, . . . .

Remark 2.1. Let C = (cij) be the commutation matrix associated with the

relations (1.1). We have given a different definition of rank in the introduction,

and we want to point out that the rank defined in the introduction is the same

as the rank of the skew-symmetric form ω associated to it by (1.3). To see that

consider the linear map L : Γ → Z∞
2 defined by

Lx = (ω(u1, x), ω(u2, x), . . .) ,

where u1, u2, . . . is the usual sequence of basis vectors in Γ, uk(j) = δkj . Noting

that the kth component of Lx is ω(uk, x) =
∑

j ckjxj , one sees that the range of

L is the linear span of the columns of (cij) and hence its dimension is the rank

of the matrix (cij). On the other hand, the kernel of L is exactly kerω, so that

rankC = dim LΓ = dim(Γ/ kerω), as asserted.

Let (V, ω) be a symplectic vector space. By a symplectic basis for V we mean

a pair of sequences e1, e2, . . . , f1, f2, . . . ∈ V with the properties

ω(ei, ej) = 0 , ω(fi, fj) = 0 , ω(ei, fj) = δij , (2.2)

for all i, j = 1, 2, . . . and which span V in the sense that every element of V is

a finite linear combination of the elements {ei, fj}. The sequences are allowed to

be either finite or infinite, but if one of them is finite then the other is also finite

of the same length. A simple argument shows that any finite set of 2r vectors

e1, . . . , er, f1, . . . , fr which satisfy the relations (2.2) must be linearly independent.

Thus a symplectic basis for V is a countable Hamel basis, and in particular V is

countably generated.
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2.1. The standard examples

We describe the standard models of symplectic vector spaces of dimension n =

2, 4, 6, . . . ,∞ over an arbitrary field F . Consider first the case n = ∞. Let F ∞ =

F ⊕ F ⊕ . . . be the vector space of all infinite sequences x = (x1, x2, . . .), where

xk ∈ F and xk = 0 for all but a finite number of k. The symplectic space (V∞, ω∞)

is defined by V∞ = F∞ ⊕ F∞ and

ω∞((x, y), (x′, y′)) =

∞
∑

k=1

ykx′
k − xky′

k .

(V∞, ω∞) is a countably generated infinite dimensional symplectic vector space,

and it has a natural symplectic basis {ej , fk}, defined by

ek = (uk, 0) , fk = (0, uk) , k = 1, 2, . . .

where uk is the standard unit vector uk(j) = δkj .

For n = 2r finite, we take Vn to be the 2r dimensional subspace F r ⊕F r ⊆ V∞

and define ωn by restricting ω∞ to Vn.

The following result implies that any two countably generated symplectic vector

spaces of the same dimension are congruent.

Theorem 2.1. Let F be a field of arbitrary characteristic.

(1) Every countably generated symplectic vector space (V, ω) over F has a sym-

plectic basis. When the dimension of V is finite it must be even, dim V = 2r,

r = 1, 2, . . . .

(2) Let ω be a skew-symmetric bilinear form on a countably generated vector space

V, let K be the kernel of ω and let L be any vector space complement V = K⊕L.

Then the restriction ωL of ω to L is a symplectic form. If L′ is any other

complement V = K ⊕ L′, then the symplectic spaces (L, ωL) and (L′, ωL′) are

congruent.

Proof of (1). Assume first that V is finite dimensional and nonzero. Choose any

vector e1 6= 0 in V . By nondegeneracy, there is a vector f1 ∈ V with ω(e1, f1) = 1.

The following result provides the inductive step.

Lemma 2.1. Let (V, ω) be a finite dimensional symplectic vector space, let S ⊆ V

be a subspace such that the restriction of ω to S × S is nondegenerate, and let K

be its symplectic complement

K = {x ∈ V : ω(x, S) = {0}} .

Then V = S ⊕ K.

Proof. Obviously, S ∩K = {0} because the restriction of ω to S ×S is nondegen-

erate. We have to show that V = S + K, and since the intersection of these two

spaces is trivial it suffices to show that dim S + dim K = dim V .

In
t. 

J.
 M

at
h.

 2
00

3.
14

:1
19

-1
37

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 "
IN

D
IA

N
 S

T
A

T
IS

T
IC

A
L

 I
N

ST
IT

U
T

E
, K

O
L

K
A

T
A

" 
on

 0
9/

03
/2

3.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



February 26, 2003 15:50 WSPC/133-IJM 00167

126 W. Arveson & G. Price

Assuming S 6= {0}, let v1, . . . , vr be a basis for S, and consider the linear map

L : V → F r defined by

Lx = (ω(x, v1), . . . , ω(x, vr)) , x ∈ V .

The kernel of L is K, and we claim that LV = F r. To prove that we show that the

only linear functional f : F r → F that vanishes on LV is f = 0. Indeed, writing

f(t1, . . . , tr) =

r
∑

k=1

λktk ,

for certain λj ∈ F , the vector v =
∑

k λkvk ∈ S satisfies ω(x, v) = f(Lx) = 0 for

all x ∈ V . Since ω is nondegenerate we must have v = 0, hence λ1 = · · · = λr = 0,

hence f = 0. We conclude that

dim V = dim ranL + dim kerL = dim F r + dim K = dim S + dim K ,

since dim S = r = dim F r.

Inductively, suppose we have vectors e1, . . . , er, f1, . . . , fr ∈ V which satisfy the

symplectic requirements (2.2) insofar as they make sense, and let S be the subspace

of V spanned by {ek, fj : 1 ≤ j, k ≤ r}. Since {ek, fj} is a symplectic basis for the

restriction of ω to S×S, the latter must be nondegenerate. By Lemma 2.1, we have

V = S + K where K = {x ∈ V : ω(x, S) = {0}}. Thus we can choose a nonzero

vector er+1 in K. Since ω(er+1, S) = {0} and V = S + K, there must be a vector

fr+1 ∈ K for which ω(er+1, fr+1) = 1. An inductive argument completes the proof

in the case where V is finite dimensional.

Remark 2.2. Notice that the preceding argument implies that in a finite dimen-

sional symplectic vector space (V, ω), any set of vectors e1, . . . , er, f1, . . . , fr ∈ V ,

which satisfy the relations (2.2), can be enlarged to a symplectic basis for V . It also

shows that a finite dimensional symplectic vector space over an arbitrary field has

even dimension 2 · r, r = 1, 2, . . . .

Turning now to the infinite dimensional case, we claim that there is an increasing

sequence of finite dimensional subspaces E1 ⊆ E2 ⊆ · · · ⊆ V with ∪nEn = V , such

that the restriction of ω to En × En is nondegenerate for every n. Suppose for

the moment that this has been established. The preceding paragraphs show that

we can find a symplectic basis for E1. Since the restriction of ω to E2 × E2 is

a symplectic form on E2, the preceding remark implies that this symplectic set

can be enlarged to a symplectic basis for E2. Continuing inductively, we obtain an

increasing sequence of symplectic sets, each one being a basis for its corresponding

linear span En, n = 1, 2, . . ., and their union is a symplectic basis for ∪nEn = V .

Thus we have reduced the proof of (B1) to showing how to construct such a

sequence E1 ⊆ E2 ⊆ . . . . In order to carry out the inductive step, we require
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Lemma 2.2. Let (V, ω) be a symplectic vector space and let E be a finite dimen-

sional subspace of V . Then there is a subspace E ′ ⊇ E of dimension at most 2·dim E

such that the restriction of ω to E ′ × E′ is nondegenerate.

Proof. Let K = {x ∈ E : ω(x, E) = 0} be the kernel of the restriction of ω

to E × E, and let k1, . . . , kr be a basis for K. We claim that there are vectors

`1, . . . , `r ∈ V such that

ω(ki, `j) = δij , 1 ≤ i, j ≤ r . (2.3)

To see that, consider the r-dimensional vector space F r = {(t1, . . . , tr) : ti ∈ F},

and consider the linear map L : V → F r defined by

L(x) = (ω(k1, x), ω(k2, x), . . . , ω(kr, x)) , x ∈ V .

We have to show that L is onto: L(V ) = F r. To prove that, we show that the

only linear functional f : F r → F which vanishes on the range of L is the zero

functional. Choosing such an f , we can write

f(t1, . . . , tr) = λ1t1 + · · · + λrtr

for a unique r-tuple of scalars λk ∈ F . Since f(L(x)) = 0 for all x ∈ V we have

ω

(

r
∑

j=1

λjkj , x

)

=

r
∑

j=1

λjω(kj , x) = f(L(x)) = 0 .

By nondegeneracy, we must have
∑

j λjkj = 0, hence λ1 = · · · = λr = 0 because

k1, . . . , kr are linearly independent, thus (2.3) is proved.

Setting L = span{`1, . . . , `r}, notice that (2.3) implies that the restriction of ω

to K × L is nondegenerate in the sense that for every k ∈ K,

ω(k, `) = 0 , for all ` ∈ L ⇒ k = 0 , (2.4)

while for every ` ∈ L,

ω(k, `) = 0 , for all k ∈ K ⇒ ` = 0 . (2.5)

Choose such a set of vectors `1, . . . , `r ∈ V , let L = span{`1, . . . , `r}, and define

E′ = E + L. We show that the restriction of ω to E ′ × E′ is nondegenerate. For

that, suppose that z ∈ E ′ has the property that ω(z, z′) = 0 for every z′ ∈ E′. We

can write z = x + ` where x ∈ E and ` ∈ L. Then

ω(z, z′) = ω(x, z′) + ω(`, z′) = 0

for all z′ ∈ E′. Picking z′ ∈ K and noting that ω(x, K) = {0} (by definition of K),

we conclude that ω(`, z′) = 0 for all z′ ∈ K. Because of (2.5), we conclude that

` = 0. Hence ω(x, E′) = {0}. Since x ∈ E ⊆ E ′ this implies that x is an element of

K for which ω(x, E′) = 0. By (2.4), this implies x = 0.

We now construct the sequence En. Since V is countably generated there is a

spanning sequence of nonzero vectors v1, v2, . . . ∈ V ; we will construct an increasing
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sequence En of finite dimensional subspaces such that En contains v1, . . . , vn and

the restriction of ω to En is nondegenerate. Since v1 6= 0 and ω is nondegenerate,

choose any w ∈ v such that ω(v1, w) = 1, and set E1 = span {v1, w}. The restriction

of ω to E1 is nondegenerate because {v1, w} is a symplectic basis.

Suppose now that we have finite dimensional subspaces E1 ⊆ · · · ⊆ En such

that Ek contains v1, . . . , vk and the restriction of ω to each Ek is nondegener-

ate. Applying Lemma 2.2 to the space spanned by En and vn+1, we find a finite

dimensional space En+1 containing both vn+1 and En such that the restriction

of ω to En+1 × En+1 is nondegenerate. An induction completes the proof of

Theorem 2.1(1).

In order to prove Theorem 2.1(2), consider the natural symplectic space

(V/K, ω) described above. We claim that for every subspace L of V satisfying

L ∩ K = {0} and L + K = V , the symplectic spaces (L, ωL) and (V/K, ω) are

congruent; i.e. there is a linear isomorphism T : L → V/K such that

ω(Tx, Ty) = B(x, y) = ωL(x, y) , x, y ∈ L , (2.6)

where ωL is the restriction of B to L×L. To see that, define Tx = x+K, x ∈ L. T

is a linear isomorphism because L is a complement of K, and (2.6) follows because

for any x, y ∈ V we have ω(x + K, y + K) = B(x, y) by definition of ω, so when

x, y ∈ L we have (2.6).

For any other subspace L′ with V = K ⊕ L′, (L′, ωL′) is also congruent to

(V/K, ω), hence it is congruent to (L, ωL).

Corollary 2.1. Any two countably generated symplectic vector spaces of the same

dimension n = 2r, r = 1, 2, . . . ,∞ are congruent.

Proof. Let (V, ω) be a symplectic vector space of dimension n = 2r, r =

1, 2, . . . ,∞. By Theorem 2.1, we can find a (finite or infinite) symplectic basis

{ek, fj} for V , and once we have that there is an obvious way to transform (V, ω)

congruently to the standard example (Vn, ωn).

2.2. Examples of commutation matrices

The above results have concrete implications about how to exhibit sequences of

unitary operators that generate the infinite dimensional CAR algebra; they also

provide a systematic method for generating all possible skew-symmetric matri-

ces C = (cij) with entries in Z2 which are nondegenerate in the sense that their

associated bilinear forms

ωC(x, y) =

∞
∑

i,j=1

cijxjyi , x, y ∈ Γ (2.7)

have trivial kernel. We abuse our own terminology somewhat in calling such a matrix

C symplectic. Starting with any countably infinite symplectic vector space (V, ω)
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over Z2, such as the standard example (V∞, ω∞) described above, let v1, v2, . . . be

any Hamel basis for V and define

cij = ω(vi, vj) , i, j = 1, 2, . . . .

One verifies directly that C = (cij) is a symplectic matrix. Moreover, the Corollary

of Theorem 2.1 implies that every symplectic matrix arises in this way from some

basis v1, v2, . . . for V .

One can view this construction in more concrete operator-theoretic terms by

making use of the standard self-adjoint generators of the CAR algebra as follows.

Consider the Clifford algebra C generated by an infinite sequence W1, W2, . . . of

unitary operators satisfying

WiWj + WjWi = 2δij1 , i, j = 1, 2, . . . .

Since Wi and Wj anticommute when i 6= j, the commutation matrix A = (aij)

associated with a Clifford sequence is

aij =

{

1 , i 6= j ,

0 , i = j ,

and its associated form is

ωA(x, y) =
∑

p6=q

xqyp =

(

∑

k

xk

)(

∑

k

yk

)

−
∑

k

xkyk .

One verifies easily that ωA is nondegenerate. Choosing an arbitrary Hamel basis

v1, v2, . . . for Γ, we obtain the most general symplectic matrix C = (cij) as follows

cij = ωA(vi, vj) =
∑

p6=q

vi(q)vj(p) . (2.8)

Each element vk in this basis is associated with a word in the original sequence

(Wn), namely Uk = W
vk(1)
1 W

vk(2)
2 . . . . The unitary operators U1, U2, . . . satisfy

UiUj = (−1)cij UjUi i, j = 1, 2, . . . (2.9)

and, after multiplication by suitable phase factors, U1, U2, . . . becomes a spin system

which generates the Clifford algebra C.

3. The Universal C∗-algebra

The purpose of this section is to prove

Theorem 3.1. Let p = 2, 3, . . . be a prime and let u1, u2, . . . be a universal sequence

of unitary operators satisfying up
k = 1 for all k and the commutation relations (1.2).

Let ω : Γ × Γ → Zp be the skew-symmetric form (1.3) and let n = 2r be its rank,

r = 1, 2, . . . ,∞.

Then C∗(u1, u2, . . .) is isomorphic to C(X)⊗B, where X is a totally disconnected

compact metrizable space, and where B = Mpr(C) if r is finite and is a UHF algebra

of type p∞ if r = ∞.
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The center C(X)⊗1 is the closed linear span of the set of words {wx : x ∈ kerω}.

C∗(u1, u2, . . .) is simple iff its center is trivial if and only if ω is a symplectic form.

Remark 3.1. R 3.1 Since every quotient of C(X) for X a compact totally discon-

nected metrizable space is of the form C(Y ) for Y of the same type, it follows that

any sequence of unitary operators U1, U2, . . . that satisfies Up
k = 1 and the relations

(1.2), whether it is universal or not, must generate a C∗-algebra of the same general

type C(Y ) ⊗ B as the universal one C(X) ⊗B. If {U1, U2, . . .} is irreducible and ω

is of infinite rank, then X reduces to a point and C∗(U1, U2, . . .) is a UHF algebra

of type p∞.

A version of Theorem 3.1 was proved in [6] in the case of a spin system of charac-

teristic 2 with translation-invariant relations (1.2), i.e. cij = ci+k,j+k for any i and j

and any non-negative integer k. In that setting it is shown that C∗(u1, u2, . . .) is iso-

morphic to the CAR-algebra if and only if the sequence . . . , c13, c12, c11, c12, c13, . . .

is not periodic. Hence the aperiodicity of this sequence is equivalent to ω being a

symplectic form in the statement of Theorem 3.1. The result in this special case

was also obtained in [9] using a much different approach.

Before giving the proof of Theorem 3.1, we require two elementary results.

Lemma 3.1. L 3.1 Let A be a unital C∗-algebra which is generated by two mutually

commuting unital C∗-subalgebras Z , B with the properties

(i) Z ∼= C(X) is commutative, and

(ii) B is a UHF algebra.

Then Z is the center of A and A ∼= C(X) ⊗ B.

Proof. The proof is straightforward and we merely sketch the argument. Suppose

first that the subalgebra B is finite dimensional, hence isomorphic to the matrix

algebra Mn(C) for some n = 1, 2, . . .. Pick a set of matrix units eij , 1 ≤ i, j ≤ n for

B. Thus eijekl = δjkeil, e∗ij = eji, and e11 + · · ·+enn = 1. Using these relations and

the fact that the elements of Z commute with the eij one finds that for arbitrary

zij ∈ Z , 1 ≤ i, j ≤ n,

n
∑

i,j=1

zijeij = 0 ⇒ zij = 0 , for all 1 ≤ i, j ≤ n.

Thus if we consider Z ⊗ B to be the C∗-algebra Mn(Z) then the preceding obser-

vation shows that the natural ∗-homomorphism π : Mn(Z) → A defined by

π((zij)) =

n
∑

i.j=1

zijeij

is injective; it also has dense range, hence it is a ∗-isomorphism which carries the

center of Mn(Z) onto Z .
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In the general case, B is the norm closure of an increasing sequence of algebras

Bn of the above type. The preceding argument shows that the natural surjective

∗-homomorphism π : Z⊗B → A restricts to an isometric ∗-homomorphism on each

Z ⊗ Bn, hence it is an isometric ∗-isomorphism.

Lemma 3.2. L 3.2 Let p be a positive integer and let V and W be unitary operators

in some C∗-algebra satisfying V p = W p = 1 and V W = ζWV where ζ = e2πi/p.

Then C∗(V, W ) ∼= Mp(C).

Proof. Since W p = 1, the spectrum σ(W ) of W is contained in the set of pth roots

of unity, and because V WV −1 = ζW , σ(W ) is invariant under multiplication by

ζ. Hence σ(W ) = {1, ζ, ζ2, . . . , ζp−1}. Letting Pk be the spectral projection of W

corresponding to the eigenvalue ζk, k = 0, 1, . . . , p − 1, the commutation relation

V iWV −i = ζiW j implies that V iPj = Pi+jV
i, where the sum i + j is interpreted

modulo p. Together with V p = 1, this implies that the operators eij = V i−jPj ,

0 ≤ i, j ≤ p− 1, are a set of p× p matrix units which have C∗(V, W ) as their linear

span.

Proof of Theorem 3.1. Fix a universal sequence u1, u2, . . . as above and let Z be

the closed linear span of the words of the form wx = ux1

1 ux2

2 . . . where x ∈ kerω.

Notice that because wxwy = (−1)ω(x,y)wywx, it follows that every word wx with

x ∈ kerω belongs to the center of C∗(u1, u2, . . .). Note that for each x ∈ Γ we can

choose a scalar λx ∈ T with the property that (λxwx)p = 1. It is possible to do

this because the relation wswt = ζQ(s,t)ws+t implies that wp
x is a scalar multiple of

wpx = w0 = 1. One can specify λx explicitly, but it is not necessary to do so. Thus

Z is a commutative AF algebra isomorphic to C(X) for X a compact metrizable

totally disconnected space. Because of Lemma 3.1, it is enough to show that there

is a UHF algebra B ⊆ C∗(u1, u2, . . .) of the asserted type such that C∗(u1, u2, . . .)

is generated by Z ∪ B.

By Theorem 2.1, Γ decomposes into a direct sum of vector spaces Γ = kerω⊕L,

where the restriction of ω to L × L is a symplectic form, and where dim L is the

rank of ω. Since L is a vector space, the relation wxwy = ζQ(x,y)wx+y implies that

B = span{wx : x ∈ L} is a C∗-subalgebra of A. Moreover, since Γ = kerω + L, the

set of products of words of the form wxwy = ζQ(x,y)wx+y, x ∈ kerω, y ∈ L have A

as their closed linear span. Thus Z ∪ B generates A.

It remains to show that B is a UHF algebra of the asserted type. Suppose

first that dim L = 2r is finite. By Theorem 2.1, we can find a symplectic basis

e1, . . . , er, f1, . . . , fr for the symplectic vector space (L, ωL) obtained by restricting

ω to L. Consider the operators V1, . . . , Vr, W1, . . . , Wr defined by

Vk = λek
wek

, Wk = λfk
wfk

, (3.1)

where the scalars λx are as above. Every x ∈ L is a linear combination of elements

of e1, . . . , er, f1, . . . , fr, hence the set of all products V m1

1 . . . V mr
r W n1

1 . . . , W nr
r ,
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m1, . . . , mr, n1, . . . , nr = 0, 1, . . . , p − 1, spans B. We have already arranged that

V p
k = W p

k = 1 for every k. Note that for all i, j = 1, . . . , r

ViVj = VjVi , WiWj = WjWi , ViWj = ζδij WjVi , (3.2)

δij denoting the Kronecker delta. Indeed, these relations are immediate conse-

quences of the basic formula wxwy = ζω(x,y)wywx and the fact that {ei, fj} is

a symplectic set for ω. It follows from (3.2) that the C∗-algebras C∗(Vi, Wi) and

C∗(Vj , Wj) commute for i 6= j; and by Lemma 3.2 each C∗(Vk , Wk) is isomorphic

to Mp(C). Thus B is isomorphic to a tensor product of r compies of Mp(C).

If dim L is infinite, then another application of Theorem 2.1 provides an infi-

nite symplectic basis e1, e2, . . . , f1, f2, . . . for L. We define V1, V2, . . . , W1, W2, . . .

by (3.1) as before, and these operators satisfy (3.2). In this case, the C∗-algebra B

generated by Vi, Wj commutes with Z , and is generated by an increasing sequence

of subalgebras B1 ⊆ B2 ⊆ . . .

Bn = C∗(V1, . . . , Vn, W1, . . . , Wn) , n = 1, 2, . . . .

The preceding paragraph shows that Bn is isomorphic Mpn(C). Hence B is a UHF

algebra of type p∞.

The assertions of the third paragraph of Theorem 3.1 are obvious consequences

of what has already been proved.

4. Irreducible Spin Systems

Let C = (cij) be a matrix of zeros and ones, fixed throughout the remainder of this

section; in order to rule out the degeneracies described in the introduction, we also

assume that (cij) is of infinite rank. Thus, the Z2-valued bilinear form

ω(x, y) =
∞
∑

p,q=1

cpqxqyp , x, y ∈ Γ (4.1)

associated with C = (cij) has the property that Γ/ kerω is infinite dimensional,

kerω being the linear subspace {x ∈ Γ : ω(x, Γ) = {0}} ⊆ Γ.

The purpose of this section is to classify the irreducible spin systems associated

with C. Thus we consider irreducible spin systems Ū = (U1, U2, . . .) acting on an

infinite dimensional Hilbert space H , satisfying

UiUj = (−1)cij UjUi , i, j = 1, 2 . . . . (4.2)

Theorem 3.1 implies that C∗(U1, U2, . . .) is the CAR algebra, and since the CAR

algebra is a simple C∗-algebra not of type I, there can be no meaningful classification

of such sequences Ū up to unitary equivalence. The equivalence relation that is

appropriate for irreducible spin systems is weaker than unitary equivalence, and

is defined as follows. Two spin systems Ū and V̄ , acting on infinite dimensional

Hilbert spaces H and K, respectively, are said to be equivalent (written Ū ∼ V̄ ) if

there is a sequence of unitary operators W1, W2, . . . : H → K such that

lim
n→∞

‖WnUkW−1
n − Vk‖ = 0 k = 1, 2, . . . .
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We first introduce an invariant for irreducible spin systems Ū . For every x ∈ Γ

there is a word

Wx = Ux1

1 Ux2

2 . . . , x ∈ Γ ,

and we have WxWy = (−1)Q(x,y)Wx+y for all x, y ∈ Γ, where Q : Γ×Γ → Z2 is the

bilinear form (1.5). If x ∈ kerω then by (1.4), Wx commutes with all words, and

by irreducibility it must be a scalar multiple of the identity

Wx = f(x)1 , x ∈ kerω .

This defines a function f : kerω → T satisfying the functional equation

f(x)f(y) = (−1)Q(x,y)f(x + y) , x, y ∈ kerω . (4.3)

f is called the standard invariant associated with the irreducible spin system

Ū . Notice that (4.3) implies that f(0) = 1. Since f(x)2 = (−1)Q(x,x)f(2x) =

(−1)Q(x,x)f(0) = ±1, it follows that f must take values in the multiplicative group

of fourth roots of unity,

f(x)4 = 1 , x ∈ kerω .

Proposition 4.1. Let Ū = (U1, U2, . . .) and Ū ′ = (U ′
1, U

′
2, . . .) be two irreducible

spin systems on Hilbert spaces H, H ′ which satisfy the relations C, and let π, π′

be the representations of the universal C∗-algebra AC = C∗(u1, u2, . . .) defined by

π(uk) = Uk, π′(uk) = U ′
k, k = 1, 2, . . . . The following are equivalent.

(i) Ū ∼ Ū ′.

(ii) kerπ = kerπ′.

(iii) Ū and Ū ′ have the same standard invariant.

(iv) For every n = 1, 2, . . . , there is a unitary operator Wn : H → H ′ such that

WnUkW−1
n = U ′

k , k = 1, 2, . . . , n .

Proof. The implications (i) ⇒ (ii) ⇒ (iii) and (iv) ⇒ (i) are straightforward. We

prove (iii) ⇒ (iv). For that we require another elementary result (see [1]).

Lemma 4.1. Let B be a finite dimensional C∗-algebra and let π1, π2 be two faithful

nondegenerate representations of B on Hilbert spaces H1, H2 such that πj(B)∩Kj =

{0} for j = 1, 2, Kj denoting the compact operators on Hj . Then π1 and π2 are

unitarily equivalent.

Proof. For every nonzero minimal central projection E of B there is a (finite

dimensional) irreducible representation σE of B which carries E to 1. Let σ be the

direct sum ⊕EσE . σ is a finite dimensional representation having uniform multiplic-

ity one; and it is enough to show that any faithful nondegenerate representation π

of B on a Hilbert space H , for which π(B) contains no nonzero compact operators,

is unitarily equivalent to an infinite direct sum of copies of σ.
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Fixing such a representation π, for every nonzero central projection E ∈ B, π(E)

must be an infinte dimensional projection, hence it defines a subrepresentation on

π(E)H which is unitarily equivalent to an infinite direct sum of copies of σE . Since

π is nondegenerate, these subrepresentations sum to π, hence π is equivalent to an

infinite direct sum of copies of σ.

Let f and f ′ be the respective standard invariants of Ū and Ū ′. Assuming that

f = f ′ as in (iii), we have to verify (iv), and by replacing the spin system Ū ′ with

a unitarily equivalent one, we may assume that both Ū and Ū ′ act on the same

Hilbert space. Consider the words wx = ux1

1 ux2

2 . . . in AC corresponding to elements

x ∈ kerω. Since f = f ′ we have

π(wx) = Ux1

1 Ux2

2 · · · = f(x)1 = f ′(x)1 = π′(wx) , x ∈ kerω .

Since by Theorem 3.1, the central words of this type have the center Z of AC as

their closed linear span, it follows that π �Z= π′ �Z . Theorem 3.1 also implies that

AC is isomorphic to C(X)⊗C where C is the CAR algebra, hence any two irreducible

representations that agree on the center must have the same kernel (corresponding

to some point p ∈ X). Hence kerπ = kerπ′.

It follows that for every operator A ∈ AC we have ‖π(A)‖ = ‖π′(A)‖, hence

there is a unique ∗-isomorphism α : C∗(U1, U2, . . .) → C∗(U ′
1, U

′
2, . . .) such that

α ◦ π = π′. Both of these are simple unital C∗-algebras (they are isomorphic

to the CAR algebra), and hence contain no nonzero compact operators. Noting

that the restriction of α to C∗(U1, . . . , Un) is a ∗-isomorphism onto C∗(U ′
1, . . . , U

′
n)

which carries the n-tuple of operators (U1, . . . , Un) to (U ′
1, . . . , U

′
n), an application

of Lemma 4.1 implies that each of these restrictions is implemented by a unitary

operator Wn ∈ B(H), and (iv) follows.

We now discuss how the irreducible spin systems associated with a commutation

matrix C can be described and classified in terms of any one of them. For any

irreducible spin system Ū = (U1, U2, . . .), we consider the spin systems that can

be obtained from it by changing phases as follows. For every sequence of numbers

γ = (γ1, γ2, . . .) in {0, 1} = Z2 consider the sequence of unitary operators

Ūγ = ((−1)γ1U1, (−1)γ2U2, . . .) .

It is clear that Ūγ is an irreducible spin system satisfying the same commutation

relations as Ū . We now show that these “phase shifted” versions of Ū provide all

possible standard invariants.

Lemma 4.2. Let Ū be an irreducible spin system, let f : kerω → T be its standard

invariant, and let g : kerω → T be any function satifying the same functional

Eq. (4.3)

g(x)g(y) = (−1)Q(x,y)g(x + y) , x, y ∈ kerω .

Then there is a γ = (γ1, γ2, . . .) ∈ Z∞
2 such that g is the standard invariant of Ūγ .
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Proof. For γ ∈ Z∞
2 , we can express the standard invariant fγ of Ūγ in terms of

the standard invariant f of Ū as follows. For every x ∈ Γ the word for Ūγ is

(−1)
∑

k
γkxkUx1

1 Ux2

2 . . . ,

hence for x ∈ kerω we have

fγ(x) = (−1)
∑

k γkxkf(x) . (4.4)

Now both g and f satisfy (4.3), hence the function h : kerω → T defined by

h(x) = g(x)/f(x) satisfies

h(x + y) = h(x)h(y) , x, y ∈ kerω .

Notice too that since x + x = 0 for all x ∈ kerω we have h(x)2 = h(x)h(x) =

h(x + x) = h(0) = 1. It follows that h(x) = ±1 for all x ∈ kerω. Thus there is a

unique function θ : kerω → {0, 1} = Z2 satisfying

g(x)/f(x) = h(x) = (−1)θ(x) , x ∈ kerω , (4.5)

and we have θ(x + y) = θ(x) + θ(y) relative to the addition in the field Z2 because

h(x + y) = h(x)h(y) for x, y ∈ kerω.

We may consider θ : kerω → Z2 as a linear functional defined on the vector

space kerω ⊆ Γ. A familiar argument implies that a linear functional defined on a

subspace of a vector space can be extended to a linear functional defined on the

entire space. Thus we may find a function θ̃ : Γ → Z2 such that θ̃(x+y) = θ̃(x)+θ̃(y)

for all x, y ∈ Γ and which restricts to θ on kerω. Letting u1, u2, . . . be the usual basis

of unit vectors for Γ, uk(j) = δkj , we define γ = (γ1, γ2, . . .) ∈ Z∞
2 by γk = θ̃(uk),

k = 1, 2, . . . . For every x = (x1, x2, . . .) ∈ Γ we have θ̃(x) =
∑∞

k=1 θ̃(uk)xk =
∑∞

k=1 γkxk. Substituting the latter into (4.5), we find that

g(x) = (−1)θ(x)f(x) = (−1)
∑

∞

k=1
γkxkf(x) , x ∈ kerω .

By (4.4), this is the standard invariant fγ of Ūγ .

Theorem 4.1. Let Ū be any irreducible spin system satisfying the commutation

relations (1.1) and let ω be the skew-symmetric form (1.3). Every irreducible spin

system satisying the same commutation relations is equivalent to Ūγ for some γ ∈

Z∞
2 . Given two sequences γ, γ ′ in Z∞

2 , the spin systems Ūγ and Ūγ′

are equivalent

iff γ and γ′ define the same linear functional on kerω in the sense that

∞
∑

k=1

γkxk =

∞
∑

k=1

γ′
kxk , x ∈ kerω .

In particular, if kerω is of finite dimension d as a vector space over Z2, then

there are exactly 2d equivalence classes of irreducible spin systems associated with

C. If kerω is infinite dimensional then the set of distinct equivalence classes of

irreducible spin systems has the cardinality of the continuum 2ℵ0 .
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Proof. Fix an irreducible spin system Ū as above, and let γ and γ ′ be two sequences

in Z∞. We show first that Ūγ ∼ Ūγ′

⇐⇒

∞
∑

k=1

(γk)xk =

∞
∑

k=1

γ′
kxk , x ∈ kerω . (4.6)

Indeed, lettting fγ and fγ′

be the standard invariants for Ūγ and Ūγ′

, we see from

(4.4) that

fγ(x) = (−1)
∑

k
γkxkf(x) , fγ′

(x) = (−1)
∑

k
γ′

kxkf(x) , x ∈ kerω

and hence fγ = fγ′

if and only if (4.6) holds. By the characterization (iii) of

Proposition 4.1, that is equivalent to Ūγ ∼ Ūγ′

.

Now let V = (V1, V2, . . .) be an arbitrary irreducible spin system associated with

C, and let g : kerω → T be its standard invariant. Lemma 4.2 implies that there is

a γ ∈ Z∞
2 such that g = fγ , and by Part (iii) of Proposition 4.1, we conclude that

V̄ ∼ Ūγ .

It remains only to establish the results on cardinality, and in view of what has

been proved, we simply have to count the distinct functions g : kerω → T that

satisfy the functional Eq. (4.3). Letting f be the standard invariant of Ū , the proof

of Lemma 4.2 shows that every such g is obtained from it by way of

g(x) = (−1)θ(x)f(x) , x ∈ kerω ,

where θ : kerω → Z2 is a (necessarily unique) linear functional. Thus the set of all

such g is in bijective correspondence with the set of linear functionals on kerω. If

kerω is of finite dimension d then by choosing a basis e1, . . . , ed for kerω we find

that the set of all such θ is in bijective correspondence with the set of all functions

from {e1, . . . , ed} to Z2, and the cardinality of that set is 2d.

If kerω is infinite dimensional, then since it is a countably generated vector

space it has a Hamel basis {e1, e2, . . .}. As in the preceding paragraph, the set of

all standard invariants is in bijective correspondence with the set of all linear func-

tionals on kerω, which in turn corresponds bijectively with the set of all functions

from {e1, e2, . . .} to Z2, a set of cardinality 2ℵ0 .

We have indicated in (2.8) how one can generate all possible symplectic matrices

C = (cij) over Z2. When the commutation matrix is symplectic one has the follow-

ing uniqueness result.

Corollary 4.1. Let C = (cij) be an infinite matrix of zeros and ones which is skew-

symmetric and nondegenerate. Then any two irreducible spin systems satisfying the

commutation relations UiUj = (−1)cij UjUi are approximately unitarily equivalent.

Proof. Somce ωC is nondegenerate, Theorem 4.1 implies that there is just one

equivalence class of irreducible spin systems associated with C.
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Remark 4.1. R 4.1 In such cases the C∗-algebra AC associated with C is the

CAR algebra, and is therefore simple not of type I . In view of Proposition 4.1, the

corollary remains valid verbatim if one deletes the irreducibility hypothesis.
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