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Given a commuting d-tuple T̄=(T1, ..., Td) of otherwise arbitrary operators on a
Hilbert space, there is an associated Dirac operator DT̄. Significant attributes of the
d-tuple are best expressed in terms of DT̄, including the Taylor spectrum and the
notion of Fredholmness. In fact, all properties of T̄ derive from its Dirac operator.
We introduce a general notion of Dirac operator (in dimension d=1, 2, ...) that is
appropriate for multivariable operator theory. We show that every abstract Dirac
operator is associated with a commuting d-tuple, and that two Dirac operators are
isomorphic iff their associated operator d-tuples are unitarily equivalent. By relat-
ing the curvature invariant introduced in a previous paper to the index of a Dirac
operator, we establish a stability result for the curvature invariant for pure
d-contractions of finite rank. It is shown that for the subcategory of all such T̄ that
are (a) Fredholm and and (b) graded, the curvature invariant K(T̄) is stable under
compact perturbations. We do not know if this stability persists when T̄ is
Fredholm but ungraded, although there is concrete evidence that it does. © 2002

Elsevier Science (USA)

INTRODUCTION

We introduce an abstract notion of Dirac operator in complex dimension
d=1, 2, ..., and we show that this theory of Dirac operators actually coin-
cides with the theory of commuting d-tuples of operators on a common
Hilbert space H (see Theorem A of Section 3). The homology and coho-
mology of Dirac operators is discussed in general terms, and we relate the
homological picture to classical spectral theory by describing its application
to concrete problems involving the solution of linear equations of the form

T1x1+T2x2+·· ·+Tdxd=y

given y and several commuting operators T1, T2, ..., Td.



These developments grew out of an attempt to understand the stability
properties of a curvature invariant introduced in a previous paper (see [3],
[4]), and to find an appropriate formula that expresses the curvature
invariant as the index of some operator. The results are presented in
Section 4 (see Theorem B and its corollary).
While there is a large literature concerning Taylor’s cohomological
notion of joint spectrum for commuting sets of operators on a Banach
space, less attention has been devoted to the Dirac operator that emerges
naturally in the context of Hilbert spaces (however, see Sections 4 through
6 of [6], where the operator B+Bg is explicitly related to Taylor inverti-
bility and the Fredholm property). We have made no attempt to compile a
comprehensive list of references concerning the Taylor spectrum, but we do
call the reader’s attention to work of Albrecht [1], Curto [5, 6], Douglas
and Voiculescu [7], McIntosh and Pryde [12], Putinar [14, 15], and
Vasilescu [17, 18]. A more extensive list of references can be found in the
survey [6]. Finally, I want to thank Stephen Parrott for useful remarks
based on a draft of this paper, Ryszard Nest for helpful conversation, and
Hendrik Lenstra for patiently enlightening me on homological issues.

1. PRELIMINARIES: CLIFFORD STRUCTURES AND
THE CARS IN DIMENSION d

Since there is significant variation in the notation commonly used for
Clifford algebras and CAR algebras, we begin with explicit statements of
notation and terminology as it will be used below.
Let H be a complex Hilbert space and let d be a positive integer. By a
Clifford structure on H (of real dimension 2d) we mean a real-linear
mapping R: CdQB(H) of the 2d-dimensional real vector space Cd into the
space of self-adjoint operators on H that satisfies

R(z)2=||z||2 1, z ¥ Cd, (1.1)

where for a d tuple z=(z1, ..., zd) of complex numbers, ||z|| denotes the
Euclidean norm

||z||2=|z1 |2+·· ·+|zd |2.

Clifford structures can also be defined as real-linear maps R − of Cd into the
space of skew-adjoint operators on H that satisfy R −(z)2=−||z||2 1, and
perhaps this is a more common formulation. Note however that such a
structure corresponds to a Clifford structure R satisfying (1.1) by way of
R −(z)=iR(z).
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Letting e1=(1, 0, ..., 0), ..., ed=(0, ..., 0, 1) be the usual unit vectors in
Cd we define operators p1, ..., pd, q1, ..., qd ¥B(H) by pk=R(ek), qk=R(iek),
k=1, ..., d. The 2d operators (r1, ..., r2d)=(p1, ..., pd, q1, ..., qd) are self-
adjoint, they satisfy

rkrj+rjrk=2djk1, 1 [ j, k [ 2d, (1.2)

and the complex algebra they generate is a Cg-algebra isomorphic to
M2d(C).
While Clifford structures are real-linear maps of Cd there is an obvious
way to complexify them, and once that is done one obtains a (complex-
linear) representation of the canonical anticommutation relations. This sets
up a bijective correspondence between Clifford structures and reprsenta-
tions of the anticommutation relations. The details are as follows. Since the
2d-dimensional real vector space Cd comes with an a priori complex struc-
ture, any real-linear mapping R of Cd into the self adjoint operators of
B(H) is the real part of a unique complex-linear mapping C: CdQB(H) in
the sense that

R(z)=C(z)+C(z)g, z ¥ Cd, (1.3)

and C is given by C(z)=1
2 (R(z)−iR(iz)), z ¥ Cd. Corresponding to (1.2)

one finds that the operators ck=C(ek)=
1
2 (pk−iqk), 1 [ k [ d satisfy the

canonical anticommutation relations

ckcj+cjck=0

cgkcj+cjc
g
k=djk1.

(1.4)

Equivalently, the complex linear map C: CdQB(H) satisfies

C(z) C(w)+C(w) C(z)=0,

C(w)g C(z)+C(z) C(w)g=Oz, wP 1
(1.5)

for z, w ¥ Cd, Oz, wP denoting the Hermitian inner product

Oz, wP=z1w̄1+·· ·+zdw̄d.

The f-algebra generated by the operators C(z) contains the identity and is
isomorphic to the matrix algebraM2d(C).
Any two irreducible representations of the CAR algebra (in either of its
presentations (1.4) or (1.5)) are unitarily equivalent. The standard irre-
ducible representation of the CAR algebra is defined as follows. Let Z be a
complex Hilbert space of finite dimension d, and let LZ be the exterior
algebra over Z,

LZ=L0Z À L1Z À L2Z À · · · À LdZ
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where LkZ denotes the kth exterior power of Z. By definition, L0Z=C,
and the last summand LdZ is also isomorphic to C. LkZ is spanned by
vectors of the form z1 N z2 N · · · N zk, zk ¥ Z, and the natural inner product
on LkZ satisfies

Oz1 N · · · N zk, w1 N · · · NwkP=det(Ozi, wjP),

the right side denoting the determinant of the k×k matrix of inner pro-
ducts aij=Ozi, wjP. LZ is a direct sum of the (complex) Hilbert spaces
LkZ, and it is a Hilbert space of complex dimension 2d.
For z ¥ Z, the creation operator C(z) maps LkZ to Lk+1Z, and acts on
the generators as

C(z): x1 N · · · Nxk W zNx1 N · · · Nxk.

C: ZQB(LZ) is an irreducible representation of the canonical anticom-
mutation relations (1.5). One obtains the standard irreducible Clifford
structure (1.1) by taking the real part of this representation R(z)=
C(z)+C(z)g.

Remarks. In the next section we will define Dirac operators in terms of
Clifford structures. Because of the correspondence cited above, we could
just as well have formulated this notion in terms of the anticommutation
relations, avoiding Clifford structures entirely. We have chosen to use them
because Clifford algebras are associated with the Dirac operators of
Riemannian geometry, and perhaps also for reasons of taste, the single
equation (1.1) being twice as elegant as the two equations of (1.5). On the
other hand, we have found that proofs seem to go more smoothly with the
anticommutation relations (1.5). The preceding observations show that
nothing is lost in passing back and forth as needed.
We also want to emphasize that with any representation of either the
Clifford relations (1.1) or the anticommutation relations (1.5) on a Hilbert
space there are additional objects that are naturally associated with them,
namely a gauge group, a number operator, and a Z2-grading of H. By a
Z2-grading of a Hilbert space H we simply mean a decomposition of H
into two mutually orthogonal subspaces

H=H+ ÀH− .

Vectors in H+ (resp. H− ) are called even (resp. odd). An operator
A ¥B(H) is said to be of odd degree if AH+ ıH− and AH− ıH+, and the
set of all such A is a self-adjoint linear subspace of B(H).
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Proposition A. Let R: CdQB(H) be a Clifford structure and let A be
the finite dimensional Cg-algebra generated by the range of R. There is a
unique strongly continuous unitary representation C of the circle group T on
H satisfying

C(T) ıA

C(l) R(z) C(l)g=R(lz), l ¥ T, z ¥ Cd,

and such that the spectrum of C starts at 0 in the sense that the spectral
subspaces

Hn={t ¥H : C(l) t=lnt for all l ¥ T}, n ¥ Z

satisfy Hn={0} for negative n and H0 ] {0}.
The number operator N is defined as the generator of the gauge group

C(e it)=e itN, t ¥ R,

and is a self-adjoint element of A having spectrum {0, 1, 2, ..., d}. The
Z2-grading of H is defined by

H+= C
n even
Hn, H−= C

n odd
Hn.

Proof. One may check the validity of the proposition explicitly for the
irreducible representation on LCd described above. Since every Clifford
structure is unitarily equivalent to a direct sum of copies of this irreducible
one, Proposition A persists in the general case. L

Remark 1.6. One can single out these objects most explicitly in terms
of the anticommutation relations C: ZQB(H) (1.5) over any d-dimen-
sional one-particle space Z. Here, A is the Cg-algebra generated by C(Z)
and C should satisfy C(l) C(z) C(l)g=lC(z) for z ¥ Z, l ¥ T, along with
the two requirements that (1) the spectrum of C should start at 0 and (2)
the gauge automorphisms of B(H) should be inner in the sense that
C(T) ıA. The number operator and gauge group are given by

N=C(e1) C(e1)g+·· ·+C(ed) C(ed)g, C(e it)=e itN, t ¥ R

e1, ..., ed being any orthonormal basis for the complex Hilbert space Z. The
Z2 grading is defined by the spectral subspaces of C (or equivalently, of N)
as in Proposition A.
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2. DIRAC OPERATORS AND TAYLOR INVERTIBILITY

A Dirac operator is a self-adjoint operator D acting on a Hilbert space
H that has been endowed with a distinguished Clifford structure (1.1),
satisfying three additional conditions. In order to keep the bookkeeping
explicit, we include the Clifford structure as part of the definition.

Definition. A Dirac operator of dimension d is a pair (D, R) consist-
ing of a bounded self-adjoint operator D acting on a Hilbert space H and a
Clifford structure R: CdQB(H), satisfying

(D1) (symmetry about 0): C(−1) DC(−1)g=−D,
(D2) (invariance of the Laplacian): C(l) D2C(l)g=D2, l ¥ T,
(D3) R(z) D+DR(z) ¥A −, z ¥ Cd,

where C: TQB(H) is the gauge group associated with R, and A is the
Cg-algebra generated by the range of R.

Remarks. Let H=H+ ÀH− be the Z2-grading of H induced by
the gauge group. (D1) is equivalent to requiring that DH+ ıH− and
DH− ıH+, i.e., that D should be an operator of odd degree. (D2) implies
that the ‘‘Laplacian’’ D2 associated with D should be invariant under the
action of the gauge group as automorphisms of B(H). (D3) asserts that the
‘‘partial derivatives’’ of D must commute with the operators in R(Cd).
We have already pointed out that Clifford structures are interchangeable
with representations C of the anticommutation relations (1.5). In terms of
C, the definition of Dirac operator would be similar except that (D3)
would be replaced with the following: C(z) D+DC(z) ¥A −, for every
z ¥ Cd.
There is a natural notion of isomorphism for Dirac operators, namely
(D, R) (acting on H) is isomorphic to (D −, R −) (acting on H −) if there is a
unitary operator U: HQH − such that UD=D −U and UR(z)=R −(z) U for
every z ¥ Cd. Notice that the spectrum and multiplicity function of a Dirac
operator are invariant under isomorphism, but of course the notion of
isomorphism involves more than simple unitary equivalence of the opera-
tors D and D −.
We first show how to construct a Dirac operator, starting with a
multioperator (T1, ..., Td). Let T1, ..., Td ¥B(H) be a commuting d-tuple of
bounded operators, let Z be a d-dimensional Hilbert space (which may be
thought of as Cd), and let C0: ZQ LZ be the irreducible representation of
the anticommutation relations (1.5) that was described in Section 1.
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Consider the Hilbert space H̃=H é LZ and let C(z)=1H é C0(z),
z ¥ Z. C obviously satisfies (1.5). Fix any orthonormal basis e1, ..., ed for Z
and define an operator B on H̃ as

B=T1 é C0(e1)+· · ·+Td é C0(ed).

The pair (D, R) is defined as

D=B+Bg, R(z)=C(z)+C(z)g, z ¥ Z. (2.1)

If we use the orthonormal basis to identify Z with Cd, the discussion of
section 1 shows that R satisfies (1.1).

Proposition. (D, R) is a Dirac operator on H̃. For l=(l1, ..., ld) ¥ Cd,
the Dirac operator of the translated d-tuple (T1−l11, ..., Td−ld1) is (Dl, R),
where Dl=D−R(l).

Proof. Noting that the gauge group C is related to B by way of

C(l) BC(l)g=lB, l ¥ T, (2.2)

we find that

C(l) DC(l)g=lB+l̄Bg

from which (D1) follows. (D3) follows after a straightforward computation
using the anticommutation relations (1.4). In order to check (D2), notice
first that B2=0. Indeed, one has

B2= C
d

i, j=1
TiTj é C0(ei) C0(ej).

Since TiTj=TjTi whereas C0(ei) C0(ej)=−C0(ej) C0(ei), this sum must
vanish.
It follows that D2=BgB+BBg. By (2.2), both BBg and BgB commute
with the gauge group, hence so does D2. The last sentence is immediate
from (2.1). L

Remark. A routine verification shows that the isomorphism class of
this Dirac operator (D, R) does not depend on the choice of orthonormal
basis, and depends only on the commuting d-tuple T̄=(T1, ..., Td). For this
reason we sometimes write DT̄ rather than (D, R), for the Dirac operator
constructed from a multioperator T̄.

Comments on homology, cohomology and the Taylor spectrum. Joseph
Taylor [16] introduced a notion of invertibility (and therefore joint spec-
trum) for commuting d-tuples of operators T1, ..., Td acting on a complex
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Banach space. Taylor’s notion of invertibility can be formulated as follows.
Let

H̃=H̃0 À H̃1 À · · · À H̃d

be the natural decomposition of H̃=H é LZ induced by the decomposi-
tion of the exterior algebra LZ into homogeneous forms of degree
k=0, 1, ..., d

H̃k=H é LkZ.

The operator B=T1 é c1+·· ·+Td é cd of formula (1.6) satisfies

BH̃k ı H̃k+1

and as we have already pointed out, B2=0. Thus, the pair H̃, B defines a
complex (the Koszul complex of the C[z1, ..., zd]-module H), and when the
range of B is closed and of finite codimension in ker B, we can define the
cohomology of this complex. Taylor defines the underlying d-tuple to be
invertible if the cohomology is trivial: BH̃=ker B. As we will see presently,
for Hilbert spaces invertibility becomes a concrete property of the Dirac
operator: a d-tuple of commuting operators on H is Taylor-invertible if and
only if its Dirac operator D is invertible in B(H é LCd).
The Taylor spectrum of a commuting d-tuple T̄=(T1, ..., Td) is defined
as the set of all complex d-tuples l=(l1, ..., ld) ¥ Cd with the property that
the translated d-tuple

(T1−l11, ..., Td−ld1)

is not invertible. In terms of the Dirac operator (D, R) of T̄, this is the set
of all l ¥ Cd such that D−R(l) is not invertible. The relation between this
‘‘Clifford spectrum’’ and the ordinary spectrum of D is not very well
understood.
The Taylor spectrum and Taylor’s notion of invertibility are important
not only because they lead to the ‘‘right’’ theorems about the spectrum in
multivariable operator theory (see [6]), but also and perhaps more signifi-
cantly, because they embody the correct multivariable generalization of
classical spectral theory as it is defined in terms of solving linear equations.
In order to discuss the latter it is necessary to cast Taylor’s cohomologi-
cal picture of the joint spectrum into a homological picture; once that is
done, a clear interpretation of the Taylor spectrum will emerge in terms of
solving linear equations. In more detail, consider the canonical anticom-
mutation relations in the form (1.4) and let c1, ..., cd be the irreducible
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representation described in Section 1, where ci acts as follows on the
generators of LkCd

ci: z1 N · · · N zk W ei N z1 N · · · N zk,

e1, ..., ed denoting an orthonormal basis for Cd. Starting with a commuting
d-tuple T1, ..., Td ¥B(H), we have defined a cohomological boundary
operator on H é LCd by

B=T1 é c1+·· ·+Td é cd.

Instead, let us consider the homological boundary operator

B̃=T1 é cg1+·· ·+Td é cgd . (2.3)

Formula (2.1) defines a Dirac operator (D, R), and we now show that the
operators

D̃=B̃+B̃g, R̃(z)=R(z̄), z ¥ Cd

also define a Dirac operator (D̃, R̃), R being the Clifford structure of
(2.1) and z̄ denoting the natural conjugation in Cd, for z=(z1, ..., zd),
z̄=(z̄1, ..., z̄d).

Proposition: Homology vs Cohomology. The pair (D̃, R̃) is a Dirac
operator on H é LCd, and it is isomorphic to the Dirac operator (D, R)
of (2.1). The gauge group C̃ of (D̃, R̃) is related to the gauge group C of
(D, R) by C̃(l)=ldC(l−1).

Proof. Consider the annihilation opertors ak=c
g
k , 1[ k[ d. Obviously, the

operators a1, ..., ad and their adjoints form an irreducible set of operators
satisfying (1.4), hence there is a unitary operator U ¥B(LCd) such that
UckUg=cgk , k=1, ..., d. Letting C0 and C̃0 be the corresponding anti-
commutation relations in the form (1.5),

C0(z)=z1c1+·· ·+zdcd, C̃0(z)=z1c
g
1+·· ·+zdc

g
d ,

we have C̃0(z)=C0(z̄)g, and moreover C̃0(z)=UC0(z) Ug, z ¥ Cd. It
follows that the unitary operator W=1H é U ¥B(H é LCd) satisfies
WC(z) Wg=C(z̄)g, z ¥ Cd. Since

R̃(z)=R(z̄)=C(z̄)+C(z̄)g=W(C(z)g+C(z)) Wg=WR(z) Wg

and since B̃=WBWg, W implements an isomorphism of the pair (D, R)
and the pair (D̃, R̃). Thus, (D̃, R̃) is a Dirac operator isomorphic to (D, R).
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Letting Ck=1 é ck, k=1, ..., d the number operators Ñ and N of
(D̃, R̃) and (D, R) are seen to be

Ñ=Cg
1C1+·· ·+C

g
dCd, N=C1C

g
1+·· ·+CdC

g
d ,

so by the anticommutation relations (1.4) we have Ñ=d·1−N, and the
formula relating C̃ to C follows from Remark 1.6. L

In particular, the preceding proposition implies that the Taylor spectrum
can be defined in either cohomological terms (using (D, R) and its asso-
ciated coboundary operator B) or in homological terms (using (D̃, R̃) and
its boundary operator B̃). It is the homological formulation that leads to
the following interpretation.
Classical spectral theory starts with the problem of solving linear equa-
tions of the form Tx=y, where T is a given operator in B(H), y is a given
vector in H, and x is to be found; T is said to be invertible when for every
y there is a unique x. Taylor’s notion of invertibility in its homological form
provides the correct generalization to higher dimensions of this fundamen-
tal notion in dimension one. In dimension two for example, one has a pair
T1, T2 of commuting operators acting on a Hilbert space H, and one is
interested in solving equations of the form

T1x1+T2x2=y, (2.4)

where y is a given vector in H. Of course the pair (x1, x2) is never uniquely
determined by y, since if (x1, x2) solves this equation then so does (x

−

1, x
−

2)
where x −1=x1+T2z and x

−

2=x2−T1z where z ¥H is arbitrary. Equiva-
lently,

x −1=x1+T1t11+T2t12

x −2=x2+T1t21+T2t22,

where the vectors tij, 1 [ i, j [ 2 satisfy tji=−tij for all i, j but are
otherwise arbitrary (note that t11=t22=0 and t12=−t21=z above). Such
perturbations (x −1, x

−

2) can be written down independently of any properties
of the given operators T1, T2 (beyond commutativity, of course), and for
that reason we will call them tautological perturbations of the given solu-
tion x1, x2. In order to understand how to solve such equations one needs
to determine what happens modulo tautological perturbations, and for that
one must look at the homology of (2.4).
Since we are in dimension two we can write

H é LC2=W0 À W1 À W2,
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where W0=H, W1={(x1, x2): xk ¥H}, and W2 is parameterized as a space
of ‘‘antisymmetric’’ sequences as

W2={(tij): 1 [ i, j [ 2, tij=−tji for all i, j}.

Of course, W2 is isomorphic to H by way of the map that associates to a
vector z ¥H the antisymmetric sequence t11=t22=0, t12=z, t21=−z.
The homological boundary operator B=T1 é cg1+T2 é cg2 of the complex

0P W0 P W1 P W2 P 0 (2.5)

acts as follows. On W1, B(x1, x2)=T1x1+T2x2, and on W2

B(tij)=(T1t11+T2t12, T1t21+T2t22)=(T2t12, −T1t12).

Apparently, (2.4) has a solution iff y belongs to BW1=T1H+T2H. Given a
solution (x1, x2) of (2.4) and another pair of vectors (x

−

1, x
−

2), (x
−

1, x
−

2) is
also a solution iff the difference (x1−x

−

1, x2−x
−

2) belongs to ker B. Given
that (x −1, x

−

2) is a solution, then it is a tautological perturbation of (x1, x2)
iff the difference (x1−x

−

1, x2−x
−

2) belongs to BW2. Finally, the kernel of
the boundary operator at W2 is identified with ker T1 5 ker T2. We conclude
that the complex (2.5) is exact iff (a) T1H+T2H=H, (b) ker T1 5 ker T2
={0}, and (c) solutions of (2.4) are unique up to tautological pertur-
bations. While the algebra is more subtle in higher dimensions the
fundamental issues are the same, and that is why the Taylor spectrum is
important in multivariable spectral theory.
We will not have to delve into homological issues here; but the above
comments do show that the theory of abstract Dirac operators is rooted in
concrete problems of linear algebra that are associated with solving linear
equations involving commuting sets of operators.
Taylor’s definition of invertibility can be reformulated in terms of the
Dirac operator DT̄, and then extended to define Fredholm d-tuples and
their index. In more detail, in the proof of the previous proposition we
have already pointed out that D2=BgB+BBg; and since BH̃ and BgH̃ are
orthogonal, we conclude that BH̃=ker B iff D2 is invertible.
Conclusion: A commuting d-tuple (T1, ..., Td) is invertible if and only if
its Dirac operator is invertible.
By a Fredholm d-tuple we mean one whose Dirac operator (D, R) is
Fredholm in the sense that the self-adjoint operator D has closed range and
finite dimensional kernel. The index of a Fredholm d-tuple is defined as
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follows. By property (D1) we have DH̃+ ı H̃− and DH̃− ı H̃+. Thus we
may consider the operator

D+=D AH+ ¥B(H̃+, H̃−),

whose adjoint is given by

Dg
+=D AH− ¥B(H̃− , H̃+).

For a Fredholm d-tuple T̄=(T1, ..., Td), D+ is a Fredholm operator from
H̃+ to H̃− , and the index of T̄ is defined by

ind(T̄)=dim ker(D+)−dim ker(D
g
+).

One can define semi-Fredholm d-tuples similarly, but we do not require the
generalization here.

3. DIRAC OPERATORS AND HILBERT MODULES
OVER C[z1, ..., zd]

In this section we prove the following result, which implies that Dirac
operators (D, R) contain exactly the same geometric information as mul-
tioperators T̄. In that sense, the Dirac operator of a d-contraction fills a
position analogous to the Sz.-Nagy Foias characteristic operator function
of a single contraction, for operator theory in higher dimensions.

Theorem A. For every d-dimensional Dirac operator (D, R) there is a
commuting d-tuple T̄=(T1, ..., Td) acting on some other Hilbert space H
such that (D, R) is isomorphic to DT̄. If T̄ −=(T

−

1, ..., T
−

d) is another com-
muting d-tuple acting on H −, then DT̄ and DT̄ − are isomorphic if and only
if there is a unitary operator U: HQH − such that UTk=T

−

kU for every
k=1, ..., d.

Proof. Let K be the underlying Hilbert space of (D, R), so that
D=Dg ¥B(K) and R: CdQB(K) is a Clifford structure (1.1) that satisfy
(D1), (D2), (D3).
Consider the map C: CdQB(K) defined by C(z)=(1/2)(R(z)−iR(iz)).
The discussion of Section 1 implies that C satisfies the anticommutation
relations (1.5), and R(z)=C(z)+C(z)g. C is unitarily equivalent to a direct
sum of copies of the standard irreducible representation C0 of the anti-
commutation relations on LCd; thus by replacing (D, R) with an iso-
morphic copy we may assume that there is a Hilbert space H such that
K=H é LCd and that R(z)=C(z)+C(z)g where C(z) is defined on
H é LCd by

C(z)=1H é C0(z), z ¥ Cd.
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We must exhibit a commuting set of operators T1, ..., Td on H so that
D=B+Bg where

B=T1 é C0(e1)+· · ·+Td é C0(ed),

e1, ..., ed being the usual orthonormal basis for Cd.
To that end, let A be the finite dimensional Cg-algebra A=1H é

B(LCd). The Cg-algebras generated by R(Cd) and C(Cd) are the same, and
in fact

Cg(R(Cd))=Cg(C(Cd))=A. (3.1)

By (D1), R(z) D+DR(z) must commute with A for every z ¥ Cd and, in
view of the relation C(ek)g=2(R(ek)+iR(iek)) we have C(ek)g D+DC(ek)g

¥A −. Thus for every k there is a unique operator Tk ¥B(H) such that

C(ek)g D+DC(ek)g=Tk é 1LCd. (3.2)

For each k=1, ..., d, let ck=C0(ek) ¥B(LCd), and consider the operator

B=T1 é c1+·· ·+Td é cd ¥B(H é LCd). (3.3)

In order to show that D=B+Bg we will make use of the following:

Lemma. Let R: CdQB(K) be a Clifford structure on K and let
C: TQB(K) be its gauge group. Every operator A ¥B(K) satisfying
R(z) A+AR(z)=0 for every z ¥ Cd admits a decomposition A=A0C(−1),
where A0 belongs to the commutant of Cg(R(Cd)). In particular, such an
operator must also be gauge invariant in the sense that C(l) AC(l)g=A,
l ¥ T.

Proof. Since C(−1) R(z) C(−1)g=R(−z)=−R(z) it follows that
C(−1) anticommutes with R(z) for every z ¥ Cd. Since A also anticommutes
with R(z), the operator A0=AC(−1) must commute with R(z), and we
have A=AC(−1)2=A0C(−1) as required. The last assertion follows from
this decomposition, because for every l ¥ T, C(l) belongs to the Cg-algebra
generated by the range of R and hence commutes with both factors A0 and
C(−1). L
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We now show that for B as in (3.3) we have D=B+Bg. Indeed, since
C(ek)=1H é ck and the ck satisfy the anticommutation relations (1.4) we
have

C(ek) B+BC(ek)=C
d

j=1
Tj é (ckcj+cjck)=0,

C(ek)g B+BC(ek)g=C
d

j=1
Tj é (cgkcj+cjcgk )=C

d

j=1
Tj é djk1=Tk é 1.

Using the definition of Tk (3.2) it follows from the preceding calculation
that the difference D−B−Bg must anticommute with all of the operators
C(ej), C(ek)g, 1 [ j, k [ d. Since R(z)=C(z)+C(z)g it follows that D−B
−Bg anticommutes with R(z) for every z ¥ Cd.
By the lemma, there is a (necessarily unique) operator X ¥B(H) such
that

D−B−Bg=X é C0(−1), (3.4)

where C0: TQB(LCd) is the natural gauge action on LCd and C(l)=
1H é C0(l). We want to show that X=0. For that, recall that D is odd
(property (D1)) and B is clearly odd by its definition (3.3). Hence
D−B−Bg is odd, so it must anticommute with the unitary operator
C(−1)=PH+ −PH− . On the other hand (3.4) implies that it commutes with
C(−1). Since C(−1) is invertible, D−B−Bg=0.
What remains to be proved is that the operators Tk of (3.2) commute
with each other. Indeed, we claim first that B2=0. Since we have estab-
lished that D=B+Bg we can write

D2=BgB+BBg+B2+Bg2. (3.5)

From the definition of B (3.3) we have

C(l) BC(l)g=C
d

k=1
Tk é C0(l) ckC0(l)g=l C

d

k=1
Tk é ck=lB, l ¥ T.

It follows that BgB and BBg are invariant under the action of the gauge
group, and that C(l) B2C(l)g=l2B2. Thus

C(l) D2C(l)g=BgB+BBg+l2B2+l̄2Bg2. (3.6)

Because of (D2), the left side of (3.6) does not depend on l. Hence by
equating Fourier coefficients on left and right we find that B2=Bg2=0.
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We can now show that the operators Tk defined by (3.2) mutually
commute. Consider the operator C defined on H é LCd by

C= C
1 [ j < k [ d

(TjTk−TkTj) é cjck. (3.7)

Since the operators {cjck: 1 [ j < k [ d} ıB(LCd) are linearly indepen-
dent, it is enough to show that C=0. To see this, we use the anticommu-
tation relations ckcj+cjck=djk1 to write

C= C
1 [ j < k [ d

TjTk é cjck− C
1 [ j < k [ d

TkTj é cjck

= C
1 [ j < k [ d

TjTk é cjck+ C
1 [ j < k [ d

TkTj é ckcj

= C
1 [ p, q [ d

TpTq é cpcq=B2=0.

That completes the proof that every Dirac operator is associated with a
commuting d-tuple.
Suppose now that we are given two commuting d-tuples T̄ and T̄ −, acting
on Hilbert spaces H and H −. It is obvious that if U: HQH − is a unitary
operator satisfying UTk=T

−

kU for every k=1, ..., d, thenW=U é 1 : H é
LCdQH − é LCd is a unitary operator which implements an isomorphism
of the respective Dirac operators.
Conversely, let W: H é LCdQH − é LCd be a unitary operator imple-
menting an isomorphism of the respective Dirac operators (D, R) and
(D −, R −) associated with T̄ and T̄ −. Let R0: CdQ LCd be the irreducible
Clifford structure defined in Section 1. Since R(z)=1H é R0(z) and
R −(z)=1H − é R0(z), it follows that H and H − have the same dimension
(namely the common multiplicity of the unitarily equivalent Clifford struc-
tures R and R −=WRWg). Thus by replacing T̄ − with a unitarily equivalent
d-tuple, we can assume that H=H −, i.e., that both d-tuples act on the same
Hilbert space H.
In these ‘‘coordinates,’’ the relation

W(1H é R0(z)) Wg=1H é R0(z), z ¥ Cd

implies that W commutes with 1H éB(LCd), the Cg-algebra generated
by R(Cd). Thus W decomposes W=U é 1LCd where U is a uniquely
determined unitary operator on H. Now according to the definition of
Dirac operators (2.1), we have D=B+Bg, D −=B −+B −g, where

B=T1 é c1+·· ·+Td é cd, B −=T −1 é c1+·· ·+T −d é cd,
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c1, ..., cd being the irrecucible representation of the canonical anticommu-
tation relations (1.4) associated with R0. Letting Ck=1H é ck and using
(1.4), a routine calculation gives

Cg
kD+DC

g
k=Tk é 1, Cg

kD
−+D −Cg

k=T
−

k é 1, k=1, ..., d.

Since U é 1=W commutes with all Cg
k and satisfies WDW

g=D −, it
follows that for every k=1, ..., d we have

UTkUg é 1=W(Cg
kD+DC

g
k ) W

g=CkD −+D −C
g
k=T

−

k é 1,

and hence U implements a unitary equivalence of T̄ and T̄ −. That completes
the proof of Theorem A. L

Remark 3.8. It is worth pointing out that the proof of Theorem A
shows how one may go directly from a Dirac operator (D, R) (acting on
H) to the Koszul complex of its underlying d-tuple T̄ (the operators
T1, ..., Td acting on some other Hilbert space) without making explicit
reference to T̄. Indeed, considering the spectral representation of the gauge
group of R

C(l)= C
.

n=−.
lnEn=C

d

n=0
lnEn, l ¥ T,

and the operator B=;n En+1DEn, from the proof of Theorem A one finds
that

B2=0, D=B+Bg. (3.9)

Moreover, the spectral subspaces Hn=EnH satisfy BHn ıHn+1, BgHn
ıHn−1, and the Koszul complex is given by

0QH0 QH1 Q · · · QHd Q 0

with cohomology defined by B.

4. STABILITY OF THE CURVATURE INVARIANT:
GRADED CASE

Recall from [3] that a commuting d-tuple of operators (T1, ..., Td) on a
Hilbert space H is said to be graded if it is circularly symmetric in the sense
that there is a strongly continuous unitary representation C: TQB(H)
such that

C(l) TkC(l)g=lTk, k=1, ..., d, l ¥ T.
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Many examples of graded d-contractions were described in [3]; in partic-
ular, all examples of d-contractions that were associated with projective
algebraic varieties (and their finitely generated modules) are graded.
It was shown in ([3], see Theorem B) that the curvature invariant of a
pure graded finite rank d-contraction is an integer, namely the Euler char-
acteristic of a certain finitely generated algebraic module over C[z1, ..., zd]
that is associated naturally with T̃. However, in the ungraded case this
formula fails: both sides of this formula still make sense in the ungraded
case, but examples are given in [3] for which they are unequal. This led us
to ask in [3], [4] if K(T̄) is an integer even when T̄ is ungraded. That has
been recently proved by Greene, Richter and Sundberg [10], and in fact
the results of [10] show that the integer K(T̄) can be expressed in terms of
the (almost everywhere constant) rank of the boundary values of a certain
operator-valued ‘‘inner’’ function that is naturally associated with T̄ via
dilation theory. A fuller discussion of this inner operator and its relation to
T̄ can be found in [2]. It is fair to say that the rank of this inner function is
not easily computed in terms of the operator theory of T̄.
It is also noteworthy that the asymptotic formula for the curvature
(Theorem C of [3]) implies that it has certain stability properties; for
example, the curvature is stable under the operation of restricting to an
invariant subspace of finite codimension. But nothing was known about
stability of the curvature invariant under more general compact perturba-
tions.
These considerations led us to search for another formula for the curva-
ture invariant that looks more like an index theorem in the sense that it
equates the curvature invariant to the index of some operator. Such a
formula would presumably lead to stability under compact perturbations, it
would imply that the curvature invariant is in all cases an integer, and
it would more closely resemble the Gauss-Bonnet-Chern formula in its
modern incarnation as an index theorem (for example, see p. 311 of [9]).
As a first step in this direction, we offer the following.

Theorem B. Let T̄=(T1, ..., Td) be a pure d-contraction of finite rank
acting on a Hilbert space H. Assume that T̄ is graded and let (D, R) be its
Dirac operator. Then both ker D+ and ker D

g
+ are finite dimensional and

(−1)d K(T̄)=dim ker D+−dim ker D
g
+.

Remark. Note that we have not assumed that D is a Fredholm
operator. However, when it is Fredholm we have the following stability.

Corollary. Let T̄=(T1, ..., Td) and T̄ −=(T
−

1, ..., T
−

d) be two pure
d-contractions of finite rank acting on respective Hilbert spaces H, H −.
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Assume that both T̄ and T̄ − are graded, that T̄ is Fredholm, and that they are
unitarily equivalent modulo compacts in the sense that there is a unitary
operator U: HQH − such that

UTk−T
−

kU is compact, k=1, ..., d.

Then K(T̄)=K(T̄ −).

Proof of Corollary. Let (D, R) and (D −, R −) be the Dirac operators
of T̄ and T̄ −, acting on respective Hilbert spaces H̃=H é LCd
and H̃ −=H − é LCd. The hypothesis implies that the unitary operator
W: U é 1: H̃Q H̃ − satisfies WR(z)=R̃(z) W for all z ¥ Cd, and WD−D −W
is compact. The first of these two relations implies that W implements an
equivalence of the respective gauge groupsWC(l)=C −(l) W, and henceW
carries the Z2-grading of H̃ to that of H̃ −. It follows that the restrictions of
W to the even and odd subspaces of H̃ implement a unitary equivalence
modulo compact operators of the two operators D+ and D

−

+. Since
D+ is Fredholm by hypothesis, D

−

+ must be Fredholm as well, and more-
over they must have the same index. From Theorem B we conclude that
K(T̄)=K(T̄ −). L

Before giving the proof of Theorem B, we recall some algebraic prelimi-
naries. Let A be the complex polynomial algebra C[z1, ..., zd]. By an
A-module we mean a complex vector space M that is endowed with a
commuting d-tuple of linear operators T1, ..., Td, the module structure
being defined by f·t=f(T1, ..., Td) t, f ¥A, t ¥M. M is said to be
finitely generated if there is a finite set t1, ..., ts of vectors inM such that

M={f1 ·t1+·· ·+fs ·ts : f1, ..., fs ¥A}.

The free module of rank 1 is defined to be A itself, with the module action
associated with multiplication of polynomials. The free module of rank
r=1, 2, ... is the direct sum of r copies of the free module of rank 1, with
the obvious module action on r-tuples of polynomials.
Hilbert’s Syzygy theorem implies that every finitely generated A-module
has a finite free resolution [8] in the sense that there is an exact sequence
ofA-modules

0Q Fn Q · · · Q F1 QMQ 0 (4.1)

where each Fk is a free module of finite rank. In [3], we defined the Euler
characteristic ofM in terms of finite free resolutions (4.1) as follows

q(M)=C
n

k=1
(−1)k+1 rank(Fk). (4.2)
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This integer does not depend on the particular resolution of M chosen to
define it.
We must relate q(M) to the alternating sum of the Betti numbers of the
Koszul complex ofM; since the latter is also called the Euler characteristic,
we distinguish it from q(M) by calling it the Euler number of M and by
writing it as e(M). The Euler number is defined as follows.
The Koszul complex of anA-moduleM is defined as theA-module

M é LCd=W0 À W1 À · · · À Wd,

where Wk=M é LkCd is the submodule of k-forms, with coboundary
operator

B=T1 é c1+·· ·+Td é cd

exactly as we have done above in the case where M is a Hilbert space and
the Tk are bounded linear operators. Letting Bk be the restriction of B to Wk

we have a corresponding cohomology space Hk(M)=ker Bk/ran Bk−1 for
1 [ k [ d, H0(M)=ker B0, which may or may not be finite dimensional.
M is said to be of finite type if Hk(M) is finite dimensional for every
0 [ k [ d, and in that case the Euler number is defined by

e(M)=C
d

k=0
(−1)k dimHk(M). (4.3)

Taking M to be the free module A of rank one, it is well-known that
Hk(A)=0 for 0 [ k [ d−1 and that Hd(A)=A/(z1A+·· ·+zdA) 5 C
is one-dimensional. It follows that for a free module F of arbitrary finite
rank, we have

e(F)=(−1)d · rank F. (4.4)

The following result is part of the lore of commutative algebra; we
sketch a proof for the reader’s convenience.

Lemma 1. Let 0QKQ LQMQ 0 be a short exact sequence of A
modules, some two of which are of finite type. Then all are of finite type and
we have

e(L)=e(K)+e(M).
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Proof. Letting o(N) denote the Koszul complex of an A-module N,
one sees that o(N) has d+1 nonzero terms, and the corresponding
sequence of complexes

0Q o(K)Q o(L)Q o(M)Q 0

is exact. Thus by fundamental principles we obtain a long exact sequence
of cohomology spaces which contains at most 3d+3 nonzero terms. Two
of any three consecutive terms in the latter sequence are finite dimensional
because two of the three modules K, L, M are assumed to have finite
dimensional cohomology. By exactness all cohomology spaces are finite
dimensional and the alternating sum of their dimensions must be zero. The
asserted formula follows. L

Lemma 2. Every finitely generatedA-moduleM is of finite type, and

e(M)=(−1)d q(M).

Proof. Choose a finite free resolution ofM in the form (4.1)

0Q Fn Q · · · Q F1 QMQ 0.

Let Rk ı Fk−1 be the image of Fk in Fk−1, 2 [ k [ n, and let R1 ıM be the
image of F1. Starting at the left of (4.1) we have a short exact sequence of
modules

0Q Fn Q Fn−1 Q Rn−1 Q 0,

the first two of which are of finite type. By Lemma 1, Rn−1 is of finite type
and

e(Rn−1)=e(Fn−1)−e(Fn).

Moving one step to the right, the same argument applied to

0Q Rn−1 Q Fn−2 Q Rn−2 Q 0

shows that Rn−2 is of finite type and

e(Rn−2)=e(Fn−2)−e(Rn−1)=e(Fn−2)−e(Fn−1)+e(Fn).

Continuing in this way to the end of the sequence, we arrive at the conclu-
sion thatM is of finite type and

e(M)=C
n

k=1
(−1)k+1 e(Fk)=(−1)d C

n

k=1
(−1)k+1 rank(Fk)=(−1)d q(M),

where in the second equality we have made use of (4.4). L
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Proof of Theorem B. We are assuming that T̄ is graded; this means
that there is a continuous unitary representation of the circle group
U: TQB(H) such that

UlTkU
g
l=lTk, 1 [ k [ d. (4.5)

Let D=(1−T1T
g
1 − · · · −TdT

g
d)
1/2 be the defect operator of T̄. By hypoth-

esis, D is of finite rank, and the canonical algebraic module MH associated
with T̄

MH=span{f(T1, ..., Td) z: f ¥A, z ¥ DH}

is a finitely generated A module. Because T̄ is pure,MH is dense in H (see
[3], Proposition 5.4).
It follows that MH é LCd is dense in H̃=H é LCd. Let D ¥B(H̃) be
the Dirac operator of T̄. We will show that both ker D+ and ker D

g
+ are

finite dimensional subspaces ofMH é LCd, and that in fact we have

dim ker(D+)= C
k even
dimHk(MH), dim ker(D

g
+)= C

k odd
dimHk(MH),

(4.6)

where MH é LCd is viewed as the Koszul complex of MH. Assuming for
the moment that (4.6) has been established we find that

dim ker D+−dim ker D
g
+=C

d

k=0
(−1)k dimHk(MH)=e(MH),

and by Lemma 2 the right side is (−1)d q(MH). By Theorem B of [3], the
latter is (−1)d K(H), and the proof of Theorem B above will be complete.
In order to establish (4.6) we make use of the grading as follows. Let
c1, ..., cd be operators on Cd satisfying the anticommutation relations (1.4)
and let

B=T1 é c1+·· ·+Td é cd

be the coboundary operator on H̃. Since D2=BgB+BBg, the kernel of D
is given by ker D=ker B 5 ker Bg. Let V: TQB(H̃) be the unitary repre-
sentation corresponding to U, Vl=Ul é 1LCd, l ¥ T. By (4.5) we have

VlBV
g
l=lB,
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and it follows that both ker B and ker Bg are invariant under the action of
V. Since the spectral subspaces of U and V

Hk={t ¥H : Ult=lkt, l ¥ T}, H̃k={z ¥ H̃ : Vlz=lkz, l ¥ T}

are related by H̃k=Hk é LCd, it follows that both ker B and ker Bg

decompose into orthogonal sums

ker B=C
k
ker B 5 H̃k, ker Bg=C

k
ker Bg 5 H̃k.

We conclude that

ker D=C
k
ker D 5 H̃k=C

k
ker B 5 ker Bg 5 H̃k.

It was shown in [3], Proposition 5.4, that each Hk is a finite dimensional
subspace of MH, hence H̃k is a finite dimensional subspace of MH é LCd.
Since the restriction BMH of B to MH é LCd is the boundary operator of
the Koszul complex of MH it follows that for the restriction Bk of B to
MH 5 H̃k we have

dim(ker D 5 H̃k)=dim(ker B 5 ker Bg 5 H̃k)=dim(ker Bk/ran Bk−1).

Summing on k we find that

dim ker D=dim(ker BMH/ran BMH ).

The right side of the preceding formula is finite, because the Koszul
complex ofMH has finite dimensional cohomology by Lemma 2.
By restricting this argument respectively to the even and odd subspaces
of H̃, one finds in the same way that dim ker D+ and dim ker D

g
+ are,

respectively, the total dimensions of the even and odd cohomology of the
Koszul complex ofMH, and that gives the two formulas of (4.6). L

Concluding remarks, examples, problems. It is natural to ask if Theorem
B remains valid when one drops the hypothesis that T̄ is graded. On the
surface, this may appear a foolish question since it is not known if the
Dirac operator associated with a finite rank pure d-contraction is
Fredholm; and if it is not Fredholm then what does the index of D+ mean?
The Dirac operator is known to be Fredholm for classes of concrete
examples (see the following proposition for some, and the discussion of
Problems 1 and 2 for others), but the issue of Fredholmness for general
pure finite rank d-contractions remains somewhat mysterious.
Nevertheless, Stephen Parrott has proved a result [13] for single opera-
tors that implies that Theorem B is true verbatim for the one-dimensional
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case d=1 and an arbitrary pure contraction T of finite rank, graded or
not. His result implies that T is necessarily a Fredholm operator. Sub-
sequently, R. N. Levy [11] gave a simpler alternate proof of Parrott’s
result.
To illustrate higher dimensional phenomena, we describe a class of
examples of finite rank pure d-contractions T̄=(T1, ..., Td) in arbitrary
dimension d=1, 2, ... . Most are ungraded. We show that these examples
are Fredholm and we compute all three integer invariants (the index of the
Dirac operator, the curvature invariant K(T̄), and the Euler characteristic
q(T̄) of [3]). For some of these examples the formula K(T̄)=q(T̄) of
([3], Theorem B) holds, but for most of them it fails. On the other hand, in
all cases the formula of Theorem B above

(−1)d K(T̄)=dim ker D+−dim ker D
g
+ (4.7)

is satisfied. Indeed, we know of no examples for which (4.7) fails.
Fix d=1, 2, ... and let r be a positive integer. Following the notation
and terminology of [2, 3] we will consider the d-shift S̄=(S1, ..., Sd) of
multiplicity r+1. S̄ acts on the Hilbert space (r+1) ·H2, a direct sum of
r+1 copies of the basic free Hilbert module H2=H2(Cd). We consider
certain invariant subspaces M ı (r+1) ·H2 and their quotient Hilbert
modules H=(r+1) ·H2/M. The d-shift compresses to a pure d-con-
traction T̄=(T1, ..., Td) acting on H, and the rank of T̄ is at most r+1.
For the examples below, the rank is r+1 and T̄ will have the properties
asserted above. The subspaces M are defined as follows. Let f1, f2, ..., fr
be a set of multipliers of H2 and set

M={(f, f1f, f2f, ..., frf): f ¥H2} ı (r+1) ·H2.

Proposition. Assume that the set of r+1 functions {1, f1, f2, ..., fr} is
linearly independent, and let T̄=(T1, ..., Td) be the d-tuple of operators
associated with the quotient Hilbert module H=(r+1) ·H2/M. T̄ is a pure
d-contraction of rank r+1, it is Fredholm, and its index and curvature
invariant are given by

dim ker(D+)−dim ker D
g
+=(−1)

d · r, K(T̄)=r.

If each fk is a homogeneous polynomial of some degree nk then the Euler
characteristic is also given by q(T̄)=r. If, on the other hand, M contains
no nonzero element (p0, p1, ..., pr) with polynomial components pk, then
q(T̄)=r+1.
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Remark. For example, if each fk is the exponential of some nontrivial
polynomial (or more generally, if no fk is a rational function), then the
only r+1-tuple of polynomials (p0, p1, ..., pr) that belongs toM is the zero
r+1-tuple.

Proof. We sketch the key elements of the argument.
Let us first deal first with the Euler characteristic. This invariant is
associated with the finitely generalted algebraic C[z1, ..., zd]-module

MH=span{f(T1, ..., Td) z : f ¥ C[z1, ..., zd], z ¥ DH},

D being the finite rank defect operator D=(1−T1T
g
1 − · · · −TdT

g
d)
1/2.

Realizing the quotient H=(r+1) ·H2/M as the orthogonal complement
M + ı (r+1) ·H2, let E0 ¥B((r+1) ·H2) be the projection onto the r+1-
dimensional space of constant vector functions. The operators T1, ..., Td are
obtained by compressing S1, ..., Sd to M + , and a straghtforward computa-
tion shows that D is identified with the square root of the compression of
E0 toM + . This operator is of rank r+1 because of the linear independence
hypothesis on {1, f1, ..., fr} (for example, see 8.4.3 of [2]). It follows that
MH is identified with the projection onto M + of the space of all vector
polynomials

S={(p0, p1, ..., pr): pk ¥ C[z1, ..., zd]}.

The C[z1, ..., zd]-module action of a polynomial f ¥ C[z1, ..., zd] onMH is
given by

f·P +
M (p0, p1, ..., pr)=P

+
M (fp0, fp1, ..., fpr).

Now assume that M contains no nonzero element having polynomial
components, and let F=(r+1) ·C[z1, ..., zd] denote the free C[z1, ..., zd]-
module of rank r+1. Consider the linear map

L: (f0, f1, ..., fr) ¥ FW PM + (f0, f1, ..., fr) ¥MH.

L is injective by hypothesis, its range is all of MH, and it is obviously a
homomorphism of C[z1, ..., zd]-modules. Hence MH is a free module of
rank r+1 and its Euler characteristic is r+1. This shows that q(T̄)=r+1
in this case.
On the other hand, if each fk is a homogeneous polynomial then one
may extend the argument of the proof of ([2], Proposition 7.4, which
addresses the case r=1 explicitly) in straightforward way to show that
T̄ is a graded d-contraction. It follows from Theorem B of [3] that
q(T̄)=K(T̄). We will show momentarily that in all cases we have
K(T̄)=r, and this calculates the Euler characteristic for the asserted cases.
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We show next that T̄ is Fredholm of index (−1)d r. For that, it is enough
to show that T̄ is similar to a Fredholm d-tuple whose index is known to be
(−1)d r. The latter d-tuple is the d-shift of multiplicity r. In more detail,
consider the linear mapping A: (r+1) ·H2Q r ·H2 defined by

A(f0, f1, f2, ..., fr)=(f1−f1f0, f2−f2f0, ..., fr−frf0).

It is clear that A is bounded, surjective, has kernel M, and intertwines the
action of S̄ (acting on (r+1) ·H2) and the multiplicity r d-shift acting
on r ·H2. Thus A promotes to an invertible map of Hilbert spaces
Ã: HQ r ·H2 which implements a similarity of T̄ and the d-shift of mul-
tiplicity r. The latter is a graded pure d-contraction of finite rank which is
essentially normal by Proposition 5.3 of [2], and therefore Fredholm.
Since the curvature invariant of the d-shift of multiplicity r is known to be
r, Theorem B implies that its index is (−1)d r.
We may not infer from this argument that K(T̄)=K(S̄)=r since unlike
the Fredholm index, the curvature invariant is not known to be invariant
under similarity. In order to calculate K(T̄) we appeal to a result of
Greene, Richter and Sundberg [10] as follows. Identifying H with
M + ı (r+1) ·H2, we have already seen that the natural projection
L=PM + : (r+1) ·H2QH is the minimal dilation of H in the sense of [2],
and obviously L is a co-isometry with LgL=1−PM. Now if one evaluates
all of the functions in M at a point z in the open unit ball of Cd, one
obtains the following linear subspace of C r+1

M(z)={(l, lf1(z), lf2(z), ..., lfr(z)): l ¥ C}.

This is a one-dimensional space having codimension (r+1)−1=r, and the
same assertion is valid for almost every point z on the boundary of the unit
ball. By the results of [10], the codimension of M(z) ı C r+1 is equal to
K(T̄) for almost every z in the boundary of the unit ball. Thus,
K(T̄)=r. L

A number of fundamental issues require clarification. We conclude by
describing two related problems concerning the index theory of Dirac
operators.

Problem 1. Is the Dirac operator of every pure finite rank d-contrac-
tion a Fredholm operator?
If the answer is yes then the index of D, dim ker D+−dim ker D

g
+, is well-

defined. It would then be natural to ask if the curvature invariant of the
d-tuple is related to the index of D by the formula (4.7) of Theorem B in
general. If so, it would follow that the curvature invariant is stable under
compact perturbations, similarity, and homotopy within the category of
pure finite rank d-contractions.
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Now if a pure finite rank d-contraction T̄=(T1, ..., Td) is essentially
normal in the sense that its self-commutators TkT

g
j −T

g
j Tk are all compact,

then it is not hard to see that its Dirac operator DT̄ is Fredholm. Thus an
affirmative answer to the following would lead to significant progress on
Problem 1 for the d-contractions that arise from modules associated with
projective algebraic varieties.

Problem 2. Let T̄ be a pure finite rank d-contraction which is graded.
Do the self-commutators TkT

g
j −T

g
j Tk belong to the Schatten–von Neumann

classLp for every p > d?
We have shown in unpublished work that Problem 2 has an affirmative
answer in the simplest cases (for example, when H=H2/M is the quotient
of H2 by a closed invariant subspace M that is generated by a set of
monomials of the form za=za11 z

a2
2 · · · z

ad
d , ak \ 0). Note that since these

examples are graded, Theorem B implies that the index formula (4.7) holds.
However, such quotients are associated with somewhat trivial algebraic
varieties: the essence of Problem 2 involves quotients of the form H2/M
where M is generated by a set of more general homogeneous polynomials.
For example, we do not even know the answer to Problem 2 (or Problem 1
for that matter) for the particular case H2(C2)/M whereM is the invariant
subspace of H2(C2) generated by a single homogeneous polynomial of the
form p(z1, z2)=z

3
1+lz

3
2, with l a positive real constant.
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