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Abstract: A mathematical notion of interaction is introduced for noncommutative dy-
namical systems, i.e., for one parameter groupsafitomorphisms oB(H) endowed

with a certain causal structure. With any interaction there is a well-defined “state of the
past” and a well-defined “state of the future”. We describe the construction of many
interactions involving cocycle perturbations of the CAR/CCR flows and show that they
are nontrivial. The proof of nontriviality is based on a new inequality, relating the eigen-
value lists of the “past” and “future” states to the norm of a linear functional on a certain
C*-algebra.

Introduction, Summary of Results

In this paper we are concerned with one-parameter grougsaatomorphisms, of the
algebraB(H) of all bounded operators on a Hilbert spaéewhich carry a particular
kind of causal structure. More preciselyfstory is a pair(U, M) consisting of a one-
parameter groupy = {U; : r € R} of unitary operators acting on a separable infinite-
dimensional Hilbert spacH and a typd subfactorM C B(H) which is invariant under
the automorphismg; (X) = U, XU;* for negativer, and which has the following two
properties:

(irreducibility)

(\Jrn)y” = B(H), (0.)

teR
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(trivial infinitely remote past)

(v =C-1 (0.2)
teR

We find it useful to think of the groufy; : r € R} as representing the flow of time in
the Heisenberg picture, and the von Neumann algktaia representing bounded observ-
ables that are associated with the “past”. However, this paper is concerned with purely
mathematical issues concerning the dynamical properties of histories, with problems
concerning their existence and construction, and especially with the issue of nontrivial-
ity (to be defined momentarily).

An Ep-semigroupis a one-parameter semigroup= {c; : ¢t > 0} of unit-preserving
x-endomorphisms of a typk, factor M, which is continuous in the natural sense [2—
8,10,11,29-33]. The subfactars(M) decrease asincreases, and is calledpure if
Nya; (M) = C1. There are twaEp-semigroupse—, ™ associated with any history,”
being the one associated with the “past” by restrictingto M for r > 0 anda™ being
the one associated with the “future” by restrictipgto the commutands’ for ¢ > 0.

By aninteraction we mean a history with the additional property that there are normal
statesw_, w4 of M, M’ respectively such that_ is invariant under the action of~
andw, is invariant under the action of". Botha~ anda™ are pureEg-semigroups,

and when a puré&g-semigroup has a normal invariant state then that state is uniquely
determined, see (4.1) below. Thus (resp.w.) is the unique normal invariant state of
a~ (resp.a™).

Remarks.Since the state space of any unifdtalgebra is weakcompact, the Markov-
Kakutani fixed point theorem implies that evefy-semigroup has invariant states. But
there is no reason to expect that there iscaimal invariant state. Indeed, we have
examples (unpublished) of puf-semigroups which have no normal invariant states.
Notice too thatv_, for example, is definednly on the algebra/ of the past. Of course,
o~ has many extensions to normal state$0f ), but none of these normal extensions
need be invariant under the action of the groupn fact, we will see that if there is a
normaly-invariant state defined on all ¢f(H) then the interaction must be trivial.

In order to define a trivial interaction we must introduc& &algebra of “local
observables”. For every compact interiggls] C R there is an associated von Neumann
algebra

A[s,t] =y (M) Ny (M)/- 0.3

Notice that since/, (M) C y;(M) are both typd factors, so is the relative commutant
Ays.q1- Clearly Ay € Ay if I € J, and for adjacent intervals, s1, [s, t1,r <s <t we
have

Apr = Aprs) ® Aps g, (0.4

in the sense that the two factas, ;1 and.Afs ,; mutually commute and generatg, ,
as a von Neumann algebra. The automorphism ggopermutes the algebras; co-
variantly,

Vi(AD) =Aryy, telR (0.5)
Finally, we define the local'*-algebraA to be thenormclosure of the union of all the

Ar, I CR. AisaC*-subalgebra o8(H) which is strongly dense and invariant under
the action of the automorphism growp



Noncommutative Interactions 65

Remarks.It may be of interest to compare the local structure of@tiealgebraA to its
commutative counterpart, namely the local algebras associated with a stationary random
distribution with independent values at every point [19]. More precisely, suppose that
we are given a random distributiah i.e., a linear map from the space of real-valued
test functions orR to the space of real-valued random variables on some probability
space£2, P). With every compact interval = [s, t] with s < ¢t one may consider the
weak'-closed subalgebrd; of L>°(Q2, P) generated by random variables of the form
¢'?) | f ranging over all test functions supported/inWhen the random distribution

¢ is stationary and has independent values at every point, this family of subalgebras of
L*>°(R2, P) has properties analogous to (0.4) and (0.5), in that there is a one-parameter
group of measure preserving automorphigms= {y, : ¢+ € R} of L°°(2, P) which
satisfies (0.5), and instead of (0.4) we have the assertion that the alggbrasnd

Als.r) areprobabilistically independerdnd generatel;, ;) as a weak-closed algebra.

One should keep in mind, however, that this commutative analogy has serious limi-
tations. For example, we have already pointed out that in the case of interactions there
is typically no normaly-invariant state o8(H), and there is no reason to expect any
normal state of3(H) to decompose as a product state relative to the decompositions of
(0.4).

There is also some common ground with the Boolean algebras of/ tigetors of
Araki and Woods [1], but here too there are significant differences. For example, the
local algebras of (0.3) and (0.4) are associated with intervals (and more generally with
finite unions of intervals), but not with more general Borel sets as in [1]. Moreover, here
the translation group acts as automorphisms of the given structure whereas in [1] there
is no assumption of “stationarity” with respect to translations.

For our purposes, the locél*-algebraA has two important features. First, it gives
us a way of comparing_ andw... Indeed, both states_ andw, extenduniquelyto
y-invariant state&_ anda.. of A. We sketch the proof fap_.

Proposition 0.1.There is a unique -invariant statew_ of A such that

w_ [A,=CU— PA]
for every compact interval C (—oo, 0].

Proof. For existence of the extension, choose any compact intéreala, b] and any
operatorX € A;. Then for sufficiently large > 0 we havel — s C (—o0, 0] and for

these values of, w_(y—;(X)) does not depend anbecausev_ is invariant under the
action of{y; : t+ < 0}. Thus we can defin@_(X) unambiguously by

o-(X) = lim oy (X))

This defines a positive linear functional. on the unitak-algebraJ; A;, and now we
extendw_ to all of A by norm-continuity. The extended state is clearly invariant under
the action ofy;, r € R.

The proof of unigueness of the extension is straightforward, and we ot it.

It is clear from the proof of Proposition 0.1 that these extensiors cdndw, are
locally normalin the sense that their restrictions to any localized subalgdbrdefine
normal states on that typlefactor.
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Definition 0.2. The interaction(U, M), with past and future states_ andw., is said
to be trivial if o_ = @...

More generally, the normio_— — @4 || gives some measure of the “strength” of the
interaction, and of course we have<Q||&o_ — @4 | < 2.

If there is a normal state of B(H) which is invariant under the action ¢f, then
sincew_ (resp.w4) is the unique normal invariant state®f (resp.«y) we must have
o M= w_, p Ty= w4, and hencev_ = @+ = p [4 by the uniqueness part of
Proposition 0.1. In particulaif,the interaction is nontrivial then neithés_ nor @, can
be extended froml to a normal state of its strong closutt H).

The second important feature dfis that there is a definite “state of the past” and a
definite “state of the future” in the following sense.

Proposition 0.3.For everyX € A and every normal state of B(H) we have
im o(y(X) =a-(X), lIm p(y (X)) = o1 (X).
1——00 t——+00

Proof. Consider the first limit formula. The set of al € A for which this formula
holds is clearly closed in the operator norm, hence it suffices to show that it codtains
for every compact interval C R.

We will make use of the fact (discussed more fully at the beginning of Sect. 5) that
if o is any normal state aff and A is an operator il then

im_p(y,(4) = 0 (A),

see formula (4.1). Choosing a real numifesufficiently negative that+7 C (—o0, 0],
the preceding remark shows that for the operator= yr(X) € M we have
lim;— _ p(¥:(A)) = w_(A), and hence

im p(y (X)) = lim_p(yi—r(yr (X)) = 0-(yr(X)) = o_(X).
——00 ——00
The proof of the second limit formula is similamo

Thus, whatever (normal) stageone chooses to watch evolve over time on operators
in A, it settles down to beconég; in the distant future, it must have come fram in the
remote past, and the limit states do not depend on the chojicé-of a trivial interaction,
nothing happens over the long term: for fix€dandp the functionr € R — p(y;(X))
starts out very near some value (namely(X)), exhibits transient fluctuations over
some period of time, and then settles down near the same value again. For a nontrivial
interaction, there will be a definite change from the limit-at to the limit at+oo (for
some choices oX € A).

A number of questions arise naturally. 1) How does one construct examples of in-
teractions? 2) How does one determine if a given interaction is nontrivial? 3) What
C*-dynamical systems can occur as tfig-algebras of local observables associated
with an interaction? The purpose of this paper is to provide an effective partial solution
of problem 1) and a complete solution of problem 2). The latter involves an inequality
which we feel is of some interest in its own right. These results are summarized as
follows.

By aneigenvalue listve mean a decreasing sequence of nonnegative real numbers
A1 > A2 > ... with finite sum. Every normal stateof a typel factor is associated with
a positive operator of trace 1, whose eigenvalues counting multiplicity can be arranged
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into an eigenvalue list which will be denotedw). If the factor is finite dimensional,
we still considerA (w) to be an infinite list by adjoining zeros in the obvious way. Given
two eigenvalue lists\ = {11 > A2 > ...} andA’ = {A] > A}, > ...}, we will write

o
1A = A =" 1a — Al
k=1

for the ¢1-distance from one list to the other. A classical result implies thatdahdo
are normal states of a tygefactor M, then we have

[A(p) = Al) ] < llp—all

(see Sect. 3).
Combining the results of [7] with the results of Sect. 1 below, we obtain the following
result on the existence of interactions having arbitfariye eigenvalue lists.

TheoremA. Letn = 1,2,...,00 and letA_ and A be two eigenvalue lists, each of
which has only finitely many nonzero terms. There is an intera¢tigrd/) whose past
and future states_, w; have eigenvalue lista _ and A ;, and whose past and future
Eg-semigroups are both cocycle perturbations of ¢v&R/CC R flow of index:.

Remarks.Theorem A is established in Sect. 3. We conjecture that the finiteness hypoth-
esis of Theorem A can be dropped.

Theorem A gives examples of interactions, but it provides no information about
whether or not these interactions are nontrivial. We will show that this is the case when-
ever the eigenvalue lists ef_ andw, are different. That conclusion depends on the
following, which is the main result of this paper (and which applies to interactions with
arbitrary...i.e., not necessarily finitely nonzero...eigenvalue lists).

Theorem B. Let (U, M) be an interaction with past and future states andw.., and
let w_ anda, denote their extensions jo-invariant states of4. Then

o — @y = |A0w- Qw_) — Aoy ® o).

Remarks.Theorem B is proved in Sect. 4. Notice the tensor product of states on the
right. For exampleA (w— ® w_) is obtained from the eigenvalue ligt(w_) = {A1 >

A2 > ...} of w_ by rearranging the doubly infinite sequence of all produgts;,

i,j =1,2,... into decreasing order. It can be an unpleasant combinatorial chore to
calculateA (w— ® w_) even whenA (w-) is relatively simple and finitely nonzero; but
we also show in Sect. 4 that #f and B are two positive trace class operators such that
A(A® A) = A(B ® B),thenA(A) = A(B). Thus we may conclude

Corollary 0.4. Let (U, M), w—, w4+ be as in Theorem B, and leét_ and A be the
eigenvalue lists ofo_ and w; respectively. IfA_ # A, then the interaction is non-
trivial.

The following implies that “strong” interactions exist.

Corollary 0.5. Letn =1, 2, ..., oo and choose > 0. There is an interactiotU, M)
having past and future states_, w,, such thaix~— anda™ are cocycle perturbations
of theCAR/CCR flow of indexx, for which

lo- —dy | =2—e€.
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Theorem B depends on a more general result concerning the asymptotic behavior
of eigenvalue lists, which may be of some interest on its own.alet {«a, : t > 0}
be anEg-semigroup acting o#8(H), which is pure in the sense defined above. The
commutantsV; = o;(B(H))' are typel subfactors which increase withand because
of purity their union is strongly dense i(H). Let p be a normal state df(H). We
require the following information concerning the behavior of the eigenvalue lists of the
restrictionsp [y, for larger.

Theorem C. Leta be a pureEg-semigroup acting o8(H ), which has a normal in-
variant statew. Then for every normal stajeof B(H) we have

t!}r‘rgo Ao [a,my) — Alp @ w)|| = 0.

Remarks.One might expect that since thé increase ta3(H), the restriction of a
normal state taV, should look likep itself whenr is large. Indeed, if the invariant state
w is a vector state then its only nonzero eigenvalue is 1/8idl® ») = A(p); in this
case Theorem C implies that the restrictiopadb N, has almost the same list asvhen
t is large. On the other hand, df is not a vector state thefi(p ® w) is very different
from A(p), and Theorem C shows that this intuition is wrong.
We also remark that Theorem C is itself a special case of a more general result that
is independent of the theory @f-semigroups (see [9]).

1. Existence of Dynamics

Flows on spaces are described infinitesimally by vector fields. Flows on Hilbert spaces
(thatis to say, one-parameter unitary groups) are described infinitesimally by unbounded
self-adjoint operators. In practice, one is usually presented with a symmetric operator
A that is not known to be self-adjoint (much like being presented with a differential
equation that is not known to possess solutions for all time), and one wants to know
if there is a one-parameter unitary group that can be associated with it. Precisely, one
wants to know ifA can beextendedo a self-adjoint operator.

This problem of the existence of dynamics was solved by von Neumann as follows.
Every densely defined symmetric operatohas an adjoini* with dense domai®*,
and usingA* one defines twaleficiency spaces_, £; by

Ep = € D*: A*¢ = +if).

von Neumann'’s result is that has self-adjoint extensions iff digf. = dim&, (see
[15, Sect. XI1.4]). Moreover, whefi_ and& have the same dimension, von Neumann
showed that for every unitary operator fréin to £, there is an associated self-adjoint
extension ofA. The purpose of this section is to establish an analogous result which
locates the obstruction to the existence of dynamics for paifsefemigroups of the
simplest kind (Corollary 1.1 below). That is based on the following more general result.

Let M be a typel subfactor ofB(H), and lete, 8 be two Eg-semigroups acting,
respectively, oM and its commutant/’. We want to examine conditions under which
there is a one-parameter unitary grduip= {U; : t € R} acting onH whose associated
automorphism group, (A) = U, AU;" hasw as its past ang as its future in the sense
that

Vot M=, vi lw=p, t=0. 1.

The following result asserts that there is such a unitary gtoiffand only if the product
systems ofr andg areanti-isomorphic.
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Theorem. Let E* = {E%(r) : t > 0} and E# = {EP(r) : t > 0} be the respective
product systems of and 8,
E() ={xeM:a(y)x =xy, ye M}
Efty={x"eM :B(O)x' =x"y, y eM},
and assume that there is a one-parameter unitary group= {U; : t € R} whose
associated automorphism group satisfies (1.1). TE&rand E# are anti-isomorphic.
Indeed, for every > 0 we havel; E% (1) = EP(t), and the map : E* — EP defined
by
O(w) =Uv, veE“~), t>0, 1.2
is an anti-isomorphism of product systems (i.e., it is a Borel-measurable map which
is unitary on fibers, and which satisfiésvw) = 6(w)6(v) for everyv € E%(s),
w e E“(t),s, t > 0).
Conversely, it : E* — EP is any anti-isomorphism of product systems, then for
everyt > Othere is a unique unitary operatadr, € 3(H) which satisfies (1.2) for every
v e E“().{U; : t > 0} is a strongly continuous semigroup of unitary operators tending

strongly to the identity as— 0+, and its natural extension to a one-parameter unitary
group gives rise to an automorphism groypvhich satisfies (1.1).

Proof. Assume that, (A) = U, AU/, t € R satisfies (1.1). Fix > 0. We claim first
thatU, E%(t) € M’. Indeed, ifx € M then for every € E%(r) we have

xU,v = Uty,;(x)v = Ula;(x)v = Utvx.

Next, we claim that/; E*(r) € Ef(r). Forv € E%(r), the preceding shows that
U;v € M, so it suffices to show tha# (y)U;v = U;vy for everyy € M’. For that, write

B:(MUv = y;(Uiv = U;yUUv = Upyv = Upvy,

the last equality becausee M commutes withy € M’.
Next, note thatE# () C U, E*(t). Choosingw € E#(t), setv = Ujw. Note that
v € M because for every € M’ we have

yv=yUjw=Uy(y)w = UB(y)w = Uwy = vy.

Note next that the element= Ufw € M actually belongs t&“(r). Indeed, for
everyx € M we have
o (X)v = o () U w.

Sincey_, restricts tax; on M, we havey; («, (x)) = x and the right side can be written
Uy (x)) = U xw = Uf wx = vx.

The above shows that for every> 0 we have a linear maf) : E%(r) — Ef(r)
defined by9,(v) = U;v. By assembling these maps we get a Borel-measurable map
6 : E* — EP which is linear on fibers. Notice tha is actually unitary, since for
v1, v2 € E%(t) we have

(v1, v2) 1 = vzv1 = (U;v2)*(Urv1) = 6(v2)"0(v1) = (9 (v1), 6 (v2)) 1.
Finally, 6 is an anti-isomorphism, because foe E“(s), w € E*(¢t) we have

O(vw) = Ugprvw = Uy (Usv)w = U (v)w = Uywb (v) = 0(w)O (v).
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To prove the converse, fix an anti-isomorphi@mE® — Ef. For everyr > 0 pick
an orthonormal basig, (1), e2(¢) ... for E*(¢) (we will have to choose more carefully
presently...but for the moment we choose an arbitrary orthonormal basis for each fiber
space). For every > 0 define an operatdd, € B(H) by

Ur =) 0(en()en(t)".

n=1

One checks easily théf, U;" = U;U, = 1, hencel, is unitary.U, also satisfies (1.2),
for if v € E%(¢) then we have, (1)*v = (v, e,(¢)) 1 and hence

o]

Ui =Y (v,e,(t)) 0(en()) =00 (v, en (1)) €n(t)) = 0(v).

n=1

Note too that since the ranges of the operator&4it) spanH, any operatolU; that
satisfies (1.2) is determined uniquely. In particulardoes not depend on the choice of
orthonormal basige, (1)} for E“(z).

We may choose the orthonormal bagig(r)} so that each sectian— ¢, () € E%(¢)
is Borel measurable (because of the measurability axiom of product systems [2, Property
1.8 (iii)]), and once this is done we find that the functioa (0, co) — U, € B(H) is
Borel measurable.

We claim next thatU, : ¢+ > 0} is a semigroup. Indeed, it € E%(s), v € E*(t),
then sinceéd (v) € M’ commutes withw € M we have

UsUivw = U (W)w = Usgwb (v) = 0(w)0(v) = 0(vw) = Usvw.

Since E*(s + t) is spanned by such produety and sinceE*(s + t) H spansH, we
conclude that,U; = Usy;.

At this point, we use the measurability proposition [2, Prop. 2.5 (ii)] (stated there for
the more general case of cocycles) to conclude th&t & strongly continuous infor
t > 0, and b)U; tends strongly td ast — 0+. Now extendU in the obvious way to
obtain a strongly continuous one-parameter unitary group actirfg.on

Lety,(A) = U,AU/}, A € B(H), t € R. It remains to show that for every> 0 we
havey_; [y= o, andy;, [y'= B;.

Choosex € M. To show thaty_,(x) = «;(x), it suffices to show thay_;(x)v =
as(x)v for everyv € E*(t) (because is spanned by the ranges of the operators in
E*(1)). But for such av we have

Y—t(X)v =U_1xUpv = U_;x0(v) = U_;0(v)x = vx = o (x)v.

Choosey € M’. Toshowthai;(y) = B;(y) itsufficesto showthat (y)w = B:(y)w
forall w € E#(¢). For such av we havew = 6(v) = U,v for somev € E%(r), hence

vi(Yw = U;yU,*Utv = Uryv = Uy = wy = B(y)w,
and the proof is completen

We view the following result as a counterpart for noncommutative dynamics of von
Neumann’s theorem on the existence of self-adjoint extensions of symmetric operators
in terms of deficiency indices.
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Corollary 1.1. Leta and 8 be twoEp-semigroups, acting o8(H) and B(K) respec-
tively, each of which is a cocycle perturbation of a CCR/CAR flow. There is a one-
parameter group of automorphisms®fH ® K) which satisfies the condition of (1.1)

if, and only if, and 8 have the same numerical index.

Proof. Consider the typé subfactorM of B(H ® K) defined by
M =B(H)Q® 1lg.

We haveM’ = 15 ® B(K), anda (resp.B) is conjugate to the action o (resp.M’)
defined byA ® 1x — o;(A) ® 1k (resp.ly ® B — 1y ® B;(B)),t > 0.

Now the product system of ar§AR/CCR flow is anti-isomorphic to itself. This
follows, for example, from the structural results on divisible product systems of [2,
Sect. 6]. Alternately, one can simply write down explicit anti-automorphisms of the
product systems described on pp. 12—-14 of [2]. Since the structure of the product system
of any Eg-semigroup is stable under cocycle perturbations, the same is true of cocycle
perturbations of CAR/CCR flows.

The preceding theorem implies that there is a one-parameter group of automorphisms
y ={y; :t € R} of B(H ® K) satisfying

V-1(A®1x) =/ (A)®1k, vi(ln ® B) =1n ® Bi(B)

for everyr > 0 iff the product systemg&® and Eg are anti-isomorphic. The preceding
paragraph shows that this is true Hf, and Eg are isomorphic; and sineeandg are
simply cocycle perturbations of CAR/CCR flows, the latter holdsifind 8 have the
same numerical indexo

Corollary 1.2. Leta and 8 be two pureEg-semigroups which are cocycle-conjugate to
theCAR/CCR flow of indexn = 1,2, ..., co. Then there is a historyU, M) whose
past and future semigroups are conjugate, respectively,and 8.

Remarks on the existence and nonexistence of dynamics: generalcaseatural to

ask if everyEq-semigroupx can represent both the past and future of some history. More
precisely, is there a history whose past and futidgesemigroups are both conjugate to
cocycle perturbations af? This is certainly the case for thttAR/CCR flows, by
Corollary 1.2.

But in general the answer can be no. We have recently received a manuscript of
Boris Tsirelson [34] in which examples of product systems are constructed which are
notanti-isomorphic to themselves. It is shown in [3] that every abstract product system
is isomorphic to the product system of soiigsemigroup. It follows that there argy-
semigroups whose product systems are not anti-isomorphic themselves. Since cocycle
perturbations offp-semigroups must have isomorphic product systems, the theorem
proved above implies that sudy-semigroups (i.e., those whose product systems are
not anti-isomorphic to themselves) cannot serve as both the past and future of any history.

On the other hand, for everlyg-semigroupx acting onB(H ), which is pure in the
sense that,«; (B(H)) = C-1, there is a history whose past is conjugate.tdo see why
this is so, letE be its product system. Lét* be the product system oppositeAqE* is
defined as the same structurerasxcept for multiplication, and i&* multiplication is
defined by reversing the multiplication @&f). SinceE* is a product system, the results
of [3] imply that there is anEg-semigroups, acting onB(K), whose product system
is isomorphic toE* and therefore anti-isomorphic t6. We may conclude from the



72 W. Arveson

theorem proved above that there is a one parameter group of automorphisttiag
onB(H ® K) which satisfies (1.1) by having® 1 (acting on3(H) ® 1) as its past and
1® B (acting onl ® B(K)) as its future.

2. Eigenvalue Lists of Normal States

In this section we emphasize the importance of the “eigenvalue list” invariant that can be
associated with normal states of typéactors, and we summarize its basic properties.
An eigenvalue lists a decreasing sequence> A, > ... of nonnegative real numbers
satisfying) ", A, < 0co. If A ={A1 > A2 > ...} andA’ = {A] = 1, > ...} are two

such lists we write

o
1A= A =" 1A —
n=1

for the ¢1-distance fromA to A’, thereby making the space of all eigenvalue lists into a
complete metric space.

Let A be a positive trace class operator acting on a separable Hilbert shaldee
positive eigenvalues of (counting multiplicity) can be arranged in decreasing order, and
if there are only finitely many nonzero eigenvalues then we extend the list by appending
zeros in the obvious way. This defines the eigenvalueilist) of A. Notice that even
whenH is finite dimensionalA (A) is an infinite list.

The following basic properties of eigenvalue lists will be used repeatedly.

Proposition 2.1.

2.1.1For every positive trace class operatar we haveA(A) = A(A @ Ox), O
denoting the infinite dimensional zero operator.

2.1.2For positive trace class operatorsand B, A(A) = A(B) iff A ® O is unitarily
equivalent toB @ 0.

2.1.3If L is any Hilbert-Schmidt operator from a Hilbert spaég to a Hilbert space
Ho, thenA(L*L) = A(LL¥).

2.1.4For positive trace class operators, B we haveA (A) = A(B) iff

tracgA") = tracgB") foreveryn =1,2,...

Proof. The assertion (2.1.1) is obvious, and (2.1.2) follows after a routine application
of the spectral theorem for self-adjoint compact operators.

Proof of (2.1.3)Let K1 € H; be the initial space of. and letk, = LK1 C H be its
closed range. The polar decomposition implies #hat ¢, andLL* [k, are unitarily
equivalent. Hencd.*L & 0., and LL*®, are unitarily equivalent and the assertion
(2.1.3) follows from (2.1.2).0

Proof of (2.1.4)If A(A) = {A1 > 12 > ...} then

oo
tracgA”) =Y Af, n=12 ..
k=1
ThusA(A) = A(B) implies that traceA™) = trace B") for everyn > 1.
Conversely, suppose that traaé) = tracg B") for everyn = 1,2, ... Choose a
positive numbeM so large that the intervél), M] contains the spectra of both operators
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A and B. The linear functionalf +— tracgAf(A)) defined on the commutative*-
algebraC[0, M] is positive, hence there is a unique finite positive meaauréefined
on [0, M] such that

M
/0 f(x)dpa(x) =tracgAf(A), [ e C[O, M].

The restriction ofe 4 to (0, M] is concentrated ot (A) N (0, M], and for every positive
eigenvalue. of A we have

wa({A}) = A - multiplicity of A.
Doing the same for the operatBr, we find that by hypothesis

M M
f x”dMA(x)zf x"dug(x), n=0,12,...,
0 0

and hence by the Weierstrass approximation theqrgrand. g define the same linear
functional onC[0, M]. It follows thatus = wp, and the preceding observations lead
us to conclude that (A) = A(B). O

We will also make use of the following classical result, originating in work of Hermann
Weyl around 1912.

Proposition 2.2.1f A, B are positive trace class operators acting on the same Hilbert
spaceH, then
ACA) — A(B)|| < tracdA — B|.

Proof. A proof can be found in the appendix of [291a

Remarks.Notice that sinceA (A) depends only on the unitary equivalence clasd of
Proposition 2.2 actually implies that

[ACA) — A(B)| = jng tracgA’ — B'l,
:7

whereA’ (resp.B’) ranges over all operators unitarily equivalentitéresp.B). Indeed,
though we do not require the fact, it is not hard to show fliatA) — A(B)|| is exactly

the distance (relative to the trace norm) from the unitary equivalence classd

to the unitary equivalence class Bf® 0. Thus the eigenvalue lisk (A) provides

a more-or-less complete invariant for classifying positive trace class operators up to
unitary equivalence.

On the other hand, the eigenvalue list is also a subtle invariant. To illustrate the point,
suppose that has only two positive eigenvalueg8Band ¥4, and thatB has only three
positive eigenvalues/3, 1/5, 1/5. The spectrum ofA & B is the union of the spectra
and the spectrum ol ® B is the set of products of elements from the two spectra;
however, both of these sets must be rearranged in decreasing order. Thus

A(A @ B) = {3/4,3/5,1/4,1/5,1/5,0, ...},
A(A ® B) = {9/20, 3/20, 3/20, 3/20,1/20, 1/20,0, ... }.

Notice thatA has only eigenvalues of multiplicity B has eigenvalues of multiplicities
1 and 2, but that ® B has an eigenvalue of “peculiar” multiplicity 3. In the case of
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larger spectra, the relation between ga§A ® B) and the individual listsA (A) and

A(B) depends in a complex way on the relative sizes of eigenvalues, and the problem
of rearranging the set of products into decreasing order can be a difficult combinatorial
chore.

Turning now to normal states, |laf be a typel, factor,n = 1,2,..., 00 (one can
assume without essential loss thdtis concretely represented as a subfactaB Qi)
for some Hilbert spacéfl), and letp be a normal state af/. There is a Hilbert space
K of dimensionn such thatM is isomorphic as &-algebra to3(K), and in this case
any suchk-isomorphism must be isometric and normal. Thus we may ideptif§th a
normal state of3(K), and consequently there is a positive oper&ar B(K) of trace
1 such that

p(T) =tracdRT), T € B(K).

The eigenvalue lisof p is defined byA(p) = A(R). The preceding discussion leads
immediately to the following.

Proposition 2.3.

2.3.1If p1 and p2 are normal states of typefactors M1 and M2, and if p; and p are
conjugate in the sense that there isésomorphisn® of M, onto M» such that
p2 06 = p1,thenA(p1) = A(p2).

2.3.21f p1 and p> are two normal states of a typefactor M, then

[A(p1) = Alp2)|l = [lp1 = p2l.

Proof. The first assertion is apparent after we realizieas5(Hy), k = 1, 2, use the fact

that ax-isomorphism of3( H1) onto3( H2) isimplemented by a unitary operator frdi

to Hp, and make use of (2.1.2). The second assertion is the inequality of Proposition 2.2.
O

3. CP Semigroups and the Existence of Interactions

The corollary of Sect. 1 implies that any pair of putg-semigroupsx_, a4, which
are both cocycle conjugate to the sama R/CCR flow, can be assembled so as to
obtain a historyU, M) whose past and futurEy-semigroups are conjugated¢a and
a4. Moreover, if bothw_ ando have normal invariant states théti, M) is in fact an
interaction.

Thus we are led to ask what the possibilities are. More precisely, suppose we are given
an eigenvalue lish = {x1 > A2 > ...} with }_ 1, = 1 and a nonnegative integer
n=12,...,00. Does there exist a cocycle perturbatwof the CAR/CCR flow of
indexn which is pure, and which leaves invariant a normal state whose eigenvalue list
isA?

We do not know the answer in general, but we conjecture that itis yes. The purpose of
this section is to provide an affirmative answer for the cases in whibhs only a finite
number of nonzero terms (Theorem A). This is essentially the main result of [7] (together
with Corollary 1.1), and we merely summarize the main ideas so as to emphasize the
role of dilation theory and semigroups of completely postive maps (sometimes called
quantum dynamical semigroups) acting on matrix algebras, for such constructions.
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Suppose that = {o; : + > 0} is an Eg-semigroup acting of8(H), and assume
further that there is a normal stateof B(H) which is invariantw o a; = w, t > 0.
Letting 2 be the density operator af,

w(T) =tracgQT), T € B(H),

then the projectiorP on the closed range @&t is the support projection ab, i.e., the
largest projection with the property that{ P) = 0. Usingw o o; = w, we find that
ol — o (P)) = ol (PH) = w(Pt) =0, hencel — o, (P) < 1— P, hence

a(P)> P, t>0. (3.2)

The inequality (3.1) has the following consequence. If we iderify H) with the
cornerPB(H) P, then for every > 0 we can compress So as to obtain a completely
positive mapp, on B(P H),

¢1(X) = Poy(X) [pn, X € PB(H)P.

More significantly, because of (3.1) we have the semigroup propely; = ¢s+;, as
one can easily verify usin@a;(A)P = Pa,(PAP)P for A € B(H). Thus we have
defined a semigroup = {¢, : ¢t > 0} of normal completely positive maps 6f( P H)
satisfyinge, (1) = 1for r > 0, together with the natural continuity property

lim (¢:(X)§, n) = (o (X)E, 1),
t—1o
&, ne PH, X € B(PH).

We appear to have lost ground, in that we started with a semigrowgenfiomor-
phisms and now have merely a semigroup of completely positive maps. However, notice
that the restriction ofv to B(PH) = PB(H)P is afaithful normal state which is
invariant under the action @f, w o ¢; = w, t > 0.

Notice too that in case there are only a finite number of positive eigenvalues in the list
A(w) thenP H isfinite dimensional, and thus= {¢, : + > 0} is a CP semigroup acting
essentially on anatrix algebra which leaves invariant a faithful state with prescribed
eigenvalues; > 12 > --- > A, > 0. If « began life as a pur&gp-semigroup thew is
anabsorbingstate forg in the sense that for every normal statef B(P H),

lim ||po¢; — | =O. (3.2)
11— 00

Conversely and most significantly, if we can create a @ait) satisfying the condi-
tions of the preceding paragraph then it is possible to reconstruct @paiy consisting
of an Eg-semigroupx having an invariant normal statewith the expected eigenvalue
list by a “dilation” procedure which reverses the “compression” procedure we have de-
scribed above. Moreover, if the CP semigrgupas a bounded generator (as it will surely
have in the case wheiH is finite dimensional), then its dilation to dp-semigroup
will be cocycle-conjugate to @AR/CCHRlow whose index can be calculated directly in
terms ofp (the details can be found in [6] and [7]). The following summarizes the result
of the construction of¢, w) for finite eigenvalue lists given in [7, Theorem 5.1].
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Theorem 3.1.LetA; > A2 > --- > A, > 0 be a list of positive numbers and let
be a state of the matrix algeb, (C) whose density operator has this ordered list of
eigenvalues.

There is a semigroup = {¢, : t > 0} of unital completely positive maps a#,. (C)
which leavesy invariant, satisfies (3.2), and which can be dilated to a pure cocycle
perturbation of a CAR/CCR flow having a normal invariant state whose eigenvalue list
has exactly.; > --- > A, as its nonzero elements.

Theorem 3.3 leads to the following (see pp. 40-42 of [7]).

Corollary 3.2. Letn = 1,2,...,00 and letA = {x1 > A2 > ...} be an eigenvalue
list which has only a finite number of nonzero terms. There is a cocycle perturlation
of the CAR/CCR flow of indexwhich is pure, and which has an invariant normal state
with eigenvalue listA.

Using Corollary 1.1 of, we deduce Theorem A of the introduction.

TheoremA. Letn = 1,2,...,00 and letA_ and A be two eigenvalue lists having
only a finite number of nonzero terms. There is an interactidonM) whose past and
future normal state®_, w have eigenvalue lista _, A, respectively, and whose past
and futureEq-semigroups are cocycle conjugate to the CAR/CCR flow of index

4. The Interaction Inequality

Theorem A provides many examples of interactions, but it says nothing about whether
or not these interactions are nontrivial. For that we need the inequality of Theorem B
of the introduction. The purpose of this section is to prove Theorem B and discuss its
consequences for interactions. Theorem B is based on the following more general result
aboutEg-semigroups. ArEg-semigroupx = {«; : ¢ > 0} acting onB(H) is said to be
pureif

(e (B(H)) =C- 1.

>0

Purity implies that for any two normal statgs and pa,
lim |jp1 00, — p20a/]| =0,
11— 00

see Proposition 1.1 of [7]. In particular, if there imarmal statew which is invariant
undera in the sense that o a; = w for everyr > 0 thenw must be arabsorbingstate
in the sense that for every normal statef 53(H) we have

lim [lp oo, — || = 0. (4.1)
11— 00

Thus, if a pureEg-semigroup has a normal invariant state then it is unique, and in
particular the eigenvalue list (w) of a normal invariant state provides a conjugacy
invariant of pureEp-semigroups.

Given a pureEg-semigroup acting o8(H), the commutant®; = «;(B(H))' are
type I subfactors of3(H) which increase with, and by purity their union is a strongly
densex-subalgebra o5(H). Let p be any normal state d#(H). SinceN; is a typel
factor, the restriction gf to N; has an eigenvalue list, defined as in Sect. 3. The following
result shows how these eigenvalue lists behave for large
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Theorem C. Leta = {«, : t > 0} be a pureEp-semigroup having a normal invariant
statew, and letN; be the commutant, (B(H))’. Then for every normal stajeof B(H)
we have

timoo IA(p [N,) — Alp @ )|l = 0.

The proof of Theorem C requires some preparation.

Lemma4.1.Let{A; : i € I} beanetofpositive trace class operators acting on a Hilbert
spaceH and let B be a positive trace class operator such thace(A;) = trace(B)

for everyi € 1. Suppose there is a sS&tC H, havingH as its closed linear span, such
that

lim (A&, n) = (BE.n), &.n€S.
ThentracgA; — B| — 0, asi — oc.
Proof. By Proposition 1.6 of [7] it suffices to show that
lim tracgA;K) = trac& BK)

11— 00

for every compact operatd € B(H). The setS of compact operatork for which the
assertion is true is a norm-closed linear space which contains all rank-one operators of
the form¢ — (¢, &) n, with &, n € S. SinceS spansH, it follows thatS is the space of

all compact operators

The next three lemmas relate to the following situation. We are given a ne#mal
endomorphisna of B(H) satisfyinga (1) = 1. Let £ be the linear space of operators

E={veB(H): :ax)v=vx, x¢€ B(H)}.

If u, v are any two elements ¢f thenv*u is a scalar multiple of the identity operator,
and in fact€ is a Hilbert space relative to the inner product defined on it by

viu = (u, v)g L.

For any orthonormal basig, vo, ... of £ we have

alx) = Zvnxv;f, x € B(H).

Letp be anormal state &(H). Itisclearthait, v € £ — p(uv*) defines abounded
sesquilinear form on the Hilbert spa€ehence by the Riesz lemma there is a unique
bounded operatot € B(£) such that

(Au, v)g = p(uv™), u,vecl.

A is obviously a positive operator and in fact we have trace- 1, since for any
orthonormal basiss, vo, ... for &,

traceA = Z (Avg, vy) = Zp(vnv;k) =pa@)=p0 =1

The following result shows how to compute the eigenvalue list of the restrictiprtmf
the commutant o (B3(H)) in terms of this “correlation” operatot.



78 W. Arveson

Lemma 4.2.Let p be a normal state of5(H) and let A be the positive trace class
operator on€ defined by Au, v)e = p(uv*), u, v € £. Then

Ao la@BE)y) = A(A).

Proof. By Proposition 2.3.1, it suffices to exhibit a normaisomorphismy of B(E)
ontoa (B(H))' with the property that

p(0(T)) = tracgAT), T € B(E). (4.2)

Consider the tensor product of Hilbert spaées H. In order to defin® we claim first
that there is a unique unitary operaibr: £ ® H — H which satisfiedV (v ® &) = vé,
ve& &e H. Indeed, fow, w € £,&,n € H we have

(&, wn)y = (W*vE, n)= (v, w)g E.n) = (VRE WRN) ey -

It follows that there is a unique isomet : £ ® H — H with the stated propertyy

is unitary because its range spans alHofindeed, any vectar orthogonal to the range

of W has the property*; = 0 for everyv € £, hencet = a(1)¢ =, v,v¢ = 0).
For everyX € B(H) we have

WARX)w®E =W XE) =vXE =a(X)vE =a(X)W ),

henceW (1 ® X)W* = «a(X). It follows thata(B(H)) = W(B(€) ® 1)W*, and thus
we can define a-isomorphisnm? : B(E) — a(B(H)) by o(T) = W(T @ LHW*.
Writing u x v for the rank-one operator ¢hdefined byu x v : w — (w, v)g u, we
claim that
O(u x v) = uv*, foreveryu,v e €. (4.3)

Indeed, if we pick a vector i of the formn = wé = W(w ® &), wherew € £ and
& € H then we have
Oux N =0wx DWW E) =W({(ux0)@Dwt=W(ux dw®E&)
= (w,v)e Wu ®§&) = (w, v)g ué = uv*wé = uv*n,

and (4.3) follows becausH is spanned by all such vectays
Now for every rank-one operatd@r = u x v € B(E) we have

pO(T)) = pO(u x v)) = p(uv*) = (Au, v)g = tracgAT).

Formula (4.2) follows for finite rani” € B(€) by taking linear combinations, and the
general case follows by approximating an arbitrary opefatarB(&) in the strong oper-
ator topology with finite dimensional compressiahg P, P ranging over an increasing
sequence of finite dimensional projections with lithit O

The following formulas provide a key step.

Lemma 4.3.Letw, £ be as above, let be a normal state d(H) and letR € £L1(H)
be its density operatgs (X) = tracg RX), X € B(H). Define a linear operatof. from
£ into the Hilbert spaceC?(H) of all Hilbert-Schmidt operators ofl by Lv = RY?v,
v e & Then

4.3.1(L*Lu,v)g = p(uv*), u,veé&, and
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4.3.2 forall &1, &, n1, n2 € H we have

(LL* 6 % &2). 1 x ) o gy = (2 x EDRM 260, RY?ma)

Proof of (4.3.1) Simply write

=tracqv*Ru) = p(uv™). 0O

1/2 1/2
<L*Lu, v)g = (Lu, Lv) p2(gy) = (R 12y, RY v)£2(1-1)

Proof of (4.3.2)We have
(LL* (&1 x &2), 11 X 12} pa gy = (L* (€1 X §2), L* (1 X 72)) ¢ - (4.4)

Pick an orthonormal basig, vo, ... for £. Then the right side of (4.7) can be rewritten
as follows:

D (L1 x E2), va)g (v, L* (01 x 712))¢

n

= x_,R1/2v> (Rl/zv, x_>
;(51 &2 " 2 ML X2

= Ztrace(v;‘Rl/ 281 x Ex)trac RY?v,mo x 1) =
n

> <U:R1/2§1, éz)H <R1/2Un7727 771>H :
n
On the other hand,

P 1/2 1/2 P 1/2 1/2
(e x E)RY 251, RY21) =3 (v x E2)us RY 261, RY2m)

n

=2 <(n2 x E)uy RY 21, vy Rl/z’“)y
n
1/2 1/2
= 3 (o e ), iRV

and the last expression agrees with the bottom line of the previous fornmila.

Lemma 4.4.For a pair A, B of self-adjoint compact operators di, let A o B be the
bounded operator defined on the Hilbert spat%& H) of Hilbert-Schmidt operators by
Ao B(T) = AT B. ThenA o B is unitarily equivalenttiA ® B € B(H ® H).

Proof. Pick orthonormal bases, e», ... and fi, f», ... for H consisting of eigenvec-
tors of A and B, Ae, = ane,, Bfy, = Bufu,n = 1,2,... Letting e, x f, be the

rank-one operatar — (¢, fu)en, then{e,, x f, :m,n=1,2,...}is an orthonormal
basis for£2(H) and we have

AOB(eme-n):amﬂnem X.fnv mn=12,...
Thus the unitary operatd¥ : £2(H) — H ® H defined byW (e, x f,i)_z em ® fu,

m,n = 1,2, ... satisfiesW(A o B)(e, X f,) = (A ® BYW(e, x f,) for every
m,n=12...,andhencéV (Ao B)W*=AQ® B. O
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Proof of Theorem ClLet R € B(H) be the density operator of the normal state
tracgRT) = p(T),T € B(H).Forevery > 0let&, be the Hilbert space of intertwining
operators associated widh,

§ ={T € B(H): a,(A)T =TA, AeB(H)),

and letL, : & — L2(H) be the operator of Lemma 8,v = RY?v, v € &,.
Lemma 4.3.1 implies that (uv*) = (L;‘L,u, v)S, hence the correlation operator of
P la,Bcyy 1S LYL:. By Lemma 4.2

ALTL) = AP [oyBH)))-

On the other hand, (2.1.3) implies thatL;L,) = A(L,L}). Thus it suffices to show
that the eigenvalue lists of the operatdrd.; B(L?(H)) converge taA(p @ w), as
t — o0, in the metric of eigenvalue lists.

By (4.3.2) we have

(LiL; 61 % B 1 X ) 2 gy, = o2 x EDRY P60, RYPma) . (45)

for all &1, &2, n1, n2 € H. Now sincex is purea, (X) converges in the weékopology
tow(X)1ast — oo (indeed, for every normal state o (o, (X)) converges ta (X) =
o (w(X)1), and the assertion follows because every element of the predBalFf is
a linear combination of normal states). Thus if we take the limit omthe right side of
(4.4) we obtain

lim (c (n2 x E)RY261, RY2m1) = w2 x &) (RY261, RM?na)
t—00 H H

whereQ is the density operator @f, w (T) = traceQT), T € B(H).
Let R o  be the operator 0i2(H) defined in Lemma 4.4, and notice that the right
side of the preceding expressiofiiso Q (§1 x &2), n1 x 72) Indeed, by definition

of R o Q we haveR o (&1 x &) = R& x Q&, and

L2(H)

(R&1 x Q&2, 11 X 12) 5y = raCE2 X 71 - REL x QE2)
= (R&1, n1) y tracenz x wé2)
<R%—19 nl>H (UZs Q%_Z)H 5

which, as asserted, agrees with the right side of the previous expression.
Thus we have shown that
Lmoo (L/L}(A), B)LZ(H) = (Ro Q(A), B) r2(sp)
for rank-one operatord, B € £2(H). Now Lemma 4.4 implies thak o Q is unitarily
equivalenttoR ® 2 € B(H ® H), and henceR o Q is a positive trace class operator
for which
A(RoQ)=AR® Q) =A(p Q@ w).

On the other hand, Lemma 4.1 implies that

lim tracgL,L} — Ro Q| =0.
11— 00
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By the inequality (2.3.2) we conclude that
limsup||A(L:L}) — A(Ro Q)| < tIim tracdL,Lf — Ro Q| =0.
—> 00

t—>0o0

We have already seen thatR o Q) = A(p ®w), and thatA (L;L}) = Ao [, BH)))-
Thus Theorem C is provedno

We now readily deduce the interaction inequality.

Theorem B. Let (U, M) be an interaction with past and future states andw., and
let@_ anda. be their natural extensions to the loaaf-algebra.A. Then

o — o] = [[Alo- @ w-) = Ao @ o).

Proof. Fix ¢ > 0. By Theorem C we can findl > 0 large enough so that for all> T
we have
1A (@4 [ 4,) — Aoy ®w)| <€

as well as
[A(w- A, o) — Alo-@w-_)| <e.
Now fort > T,
loy —o—|l =@t oy —w—oy—ll = ot oy [a_,,; —@—0 V=t [A_, | 4.6)
= ||w+ O Vi rA[,t,,] —W—_0 Y fA[,,,,] “ '

Sincey; gives rise to a-isomorphism ofA;_; ;; onto Ao 2, While y_; gives rise to a
x-isomorphism of4;_; ,; onto A[_2 o7, (2.3.1) implies that
At oy Ta,,) = Aoy [44,), and

Ao-—oy—t [A_ ) = Moo= [A_yq)-

Thus by Proposition 2.3 the last term of (4.5) is at least
IA (@4 TAp2) = Alo— T4 o)l
which by our initial choice off" is at least
1Ay ® wy) — Alw- ® w_ )| — 2e.

Sincee is arbitrary, the asserted inequality follows

Corollary 4.5. Let (U, M) be an interaction with past and future states, w.. If
A(w-) # A(w4), then the interaction is nontrivial.

Proof. Contrapositively, suppose that the interaction is trivial anddetand 2 be

the respective density operatorssdf andw.. Theorem B implies tha2_ ® ©_ and

Q4 ® Q4+ must have the same eigenvalue list. (2.1.4) of Proposition 2.1 implies that for
everyn = 1,2, ... we have

trace 2" )% = trace (- ® Q_)") = trace (24 ® Q1)") = traca " )?.

Taking the square root we find that tra@¥ ) = traceg2’} ) for everyn = 1,2, ... and
another application of (2.1.4) leadsAaq2_) = A(Q4). O
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Corollary 4.6. Letn = 1, 2, ..., co and choose > 0. There is an interactioU, M)
whose past and futur&g-semigroups are cocycle-conjugate to the CAR/CCR flow of
indexn such that

loy —o-|| =2 —e.

Proof. Choose positive integeys < ¢ and consider the eigenvalue lists

A_={1/p,1/p,...,1/p,0,0,...},
Ay ={1/q,1/q,...,1/4,0,0,...},

where ¥ p is repeateg times and 1q is repeated times. Theorem A implies that there
is an interaction(U, M) whose past and futurEy semigroups are cocycle-conjugate to
the CAR/CCR flow of index, for whichA(w-) = A_ andA(w4+) = A4. By Theorem

B;

ot —o-|| =z A0t @ wy) = Alo- @ w-)|.

If we neglect zeros, the eigenvalue listof ® w_ consists of the single eigenvalue
1/p?, repeategp? times, and that ob, ® w,. consists of 142 repeated;? times. Thus

IA (01 ® wy) — Alo- @ wo)|| = p?(1/p* — 1/¢%) + (¢* — pD)/q* = 2 - 2p?/4%,

and the inequality of Corollary 2 follows whenewgis larger tharp./2/e. O
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