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Abstract: A mathematical notion of interaction is introduced for noncommutative dy-
namical systems, i.e., for one parameter groups of∗-automorphisms ofB(H) endowed
with a certain causal structure. With any interaction there is a well-defined “state of the
past” and a well-defined “state of the future”. We describe the construction of many
interactions involving cocycle perturbations of the CAR/CCR flows and show that they
are nontrivial. The proof of nontriviality is based on a new inequality, relating the eigen-
value lists of the “past” and “future” states to the norm of a linear functional on a certain
C∗-algebra.

Introduction, Summary of Results

In this paper we are concerned with one-parameter groups of∗-automorphisms, of the
algebraB(H) of all bounded operators on a Hilbert spaceH , which carry a particular
kind of causal structure. More precisely, Ahistory is a pair(U, M) consisting of a one-
parameter groupU = {Ut : t ∈ R} of unitary operators acting on a separable infinite-
dimensional Hilbert spaceH and a typeI subfactorM ⊆ B(H) which is invariant under
the automorphismsγt (X) = UtXU∗

t for negativet , and which has the following two
properties:

(irreducibility)

(
⋃
t∈R

γt (M))′′ = B(H), (0.1)
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(trivial infinitely remote past)

⋂
t∈R

γt (M) = C · 1. (0.2)

We find it useful to think of the group{γt : t ∈ R} as representing the flow of time in
the Heisenberg picture, and the von Neumann algebraM as representing bounded observ-
ables that are associated with the “past”. However, this paper is concerned with purely
mathematical issues concerning the dynamical properties of histories, with problems
concerning their existence and construction, and especially with the issue of nontrivial-
ity (to be defined momentarily).

An E0-semigroupis a one-parameter semigroupα = {αt : t ≥ 0} of unit-preserving
∗-endomorphisms of a typeI∞ factorM, which is continuous in the natural sense [2–
8,10,11,29–33]. The subfactorsαt (M) decrease ast increases, andα is calledpure if
∩t αt (M) = C1. There are twoE0-semigroupsα−, α+ associated with any history,α−
being the one associated with the “past” by restrictingγ−t to M for t ≥ 0 andα+ being
the one associated with the “future” by restrictingγt to the commutantM ′ for t ≥ 0.
By an interaction we mean a history with the additional property that there are normal
statesω−, ω+ of M, M ′ respectively such thatω− is invariant under the action ofα−
andω+ is invariant under the action ofα+. Bothα− andα+ are pureE0-semigroups,
and when a pureE0-semigroup has a normal invariant state then that state is uniquely
determined, see (4.1) below. Thusω− (resp.ω+) is the unique normal invariant state of
α− (resp.α+).

Remarks.Since the state space of any unitalC∗-algebra is weak∗-compact, the Markov-
Kakutani fixed point theorem implies that everyE0-semigroup has invariant states. But
there is no reason to expect that there is anormal invariant state. Indeed, we have
examples (unpublished) of pureE0-semigroups which have no normal invariant states.
Notice too thatω−, for example, is definedonlyon the algebraM of the past. Of course,
ω− has many extensions to normal states ofB(H), but none of these normal extensions
need be invariant under the action of the groupγ . In fact, we will see that if there is a
normalγ -invariant state defined on all ofB(H) then the interaction must be trivial.

In order to define a trivial interaction we must introduce aC∗-algebra of “local
observables”. For every compact interval[s, t] ⊆ R there is an associated von Neumann
algebra

A[s,t] = γt (M) ∩ γs(M)′. (0.3)

Notice that sinceγs(M) ⊆ γt (M) are both typeI factors, so is the relative commutant
A[s,t]. ClearlyAI ⊆ AJ if I ⊆ J , and for adjacent intervals[r, s], [s, t], r ≤ s ≤ t we
have

A[r,t] = A[r,s] ⊗ A[s,t], (0.4)

in the sense that the two factorsA[r,s] andA[s,t] mutually commute and generateA[r,t]
as a von Neumann algebra. The automorphism groupγ permutes the algebrasAI co-
variantly,

γt (AI ) = AI+t , t ∈ R. (0.5)

Finally, we define the localC∗-algebraA to be thenormclosure of the union of all the
AI , I ⊆ R. A is aC∗-subalgebra ofB(H) which is strongly dense and invariant under
the action of the automorphism groupγ .
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Remarks.It may be of interest to compare the local structure of theC∗-algebraA to its
commutative counterpart, namely the local algebras associated with a stationary random
distribution with independent values at every point [19]. More precisely, suppose that
we are given a random distributionφ; i.e., a linear map from the space of real-valued
test functions onR to the space of real-valued random variables on some probability
space(�, P ). With every compact intervalI = [s, t] with s < t one may consider the
weak∗-closed subalgebraAI of L∞(�, P ) generated by random variables of the form
eiφ(f ), f ranging over all test functions supported inI . When the random distribution
φ is stationary and has independent values at every point, this family of subalgebras of
L∞(�, P ) has properties analogous to (0.4) and (0.5), in that there is a one-parameter
group of measure preserving automorphismsγ = {γt : t ∈ R} of L∞(�, P ) which
satisfies (0.5), and instead of (0.4) we have the assertion that the algebrasA[r,s] and
A[s,t] areprobabilistically independentand generateA[r,t] as a weak∗-closed algebra.

One should keep in mind, however, that this commutative analogy has serious limi-
tations. For example, we have already pointed out that in the case of interactions there
is typically no normalγ -invariant state onB(H), and there is no reason to expect any
normal state ofB(H) to decompose as a product state relative to the decompositions of
(0.4).

There is also some common ground with the Boolean algebras of typeI factors of
Araki and Woods [1], but here too there are significant differences. For example, the
local algebras of (0.3) and (0.4) are associated with intervals (and more generally with
finite unions of intervals), but not with more general Borel sets as in [1]. Moreover, here
the translation group acts as automorphisms of the given structure whereas in [1] there
is no assumption of “stationarity” with respect to translations.

For our purposes, the localC∗-algebraA has two important features. First, it gives
us a way of comparingω− andω+. Indeed, both statesω− andω+ extenduniquelyto
γ -invariant states̄ω− andω̄+ of A. We sketch the proof forω−.

Proposition 0.1.There is a uniqueγ -invariant stateω̄− of A such that

ω̄− �AI
= ω− �AI

for every compact intervalI ⊆ (−∞, 0].
Proof. For existence of the extension, choose any compact intervalI = [a, b] and any
operatorX ∈ AI . Then for sufficiently larges > 0 we haveI − s ⊆ (−∞, 0] and for
these values ofs, ω−(γ−s(X)) does not depend ons becauseω− is invariant under the
action of{γt : t ≤ 0}. Thus we can definēω−(X) unambiguously by

ω̄−(X) = lim
t→−∞ ω−(γt (X)).

This defines a positive linear functionalω̄− on the unital∗-algebra∪IAI , and now we
extendω̄− to all of A by norm-continuity. The extended state is clearly invariant under
the action ofγt , t ∈ R.

The proof of uniqueness of the extension is straightforward, and we omit it.ut
It is clear from the proof of Proposition 0.1 that these extensions ofω− andω+ are

locally normalin the sense that their restrictions to any localized subalgebraAI define
normal states on that typeI factor.
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Definition 0.2. The interaction(U, M), with past and future statesω− andω+, is said
to be trivial if ω̄− = ω̄+.

More generally, the norm‖ω̄− − ω̄+‖ gives some measure of the “strength” of the
interaction, and of course we have 0≤ ‖ω̄− − ω̄+‖ ≤ 2.

If there is a normal stateρ of B(H) which is invariant under the action ofγ , then
sinceω− (resp.ω+) is the unique normal invariant state ofα− (resp.α+) we must have
ρ �M= ω−, ρ �M ′= ω+, and hencēω− = ω̄+ = ρ �A by the uniqueness part of
Proposition 0.1. In particular,if the interaction is nontrivial then neither̄ω− nor ω̄+ can
be extended fromA to a normal state of its strong closureB(H).

The second important feature ofA is that there is a definite “state of the past” and a
definite “state of the future” in the following sense.

Proposition 0.3.For everyX ∈ A and every normal stateρ of B(H) we have

lim
t→−∞ ρ(γt (X)) = ω̄−(X), lim

t→+∞ ρ(γt (X)) = ω̄+(X).

Proof. Consider the first limit formula. The set of allX ∈ A for which this formula
holds is clearly closed in the operator norm, hence it suffices to show that it containsAI

for every compact intervalI ⊆ R.
We will make use of the fact (discussed more fully at the beginning of Sect. 5) that

if ρ is any normal state ofM andA is an operator inM then

lim
t→−∞ ρ(γt (A)) = ω−(A),

see formula (4.1). Choosing a real numberT sufficiently negative thatI +T ⊆ (−∞, 0],
the preceding remark shows that for the operatorA = γT (X) ∈ M we have
lim t→−∞ ρ(γt (A)) = ω−(A), and hence

lim
t→−∞ ρ(γt (X)) = lim

t→−∞ ρ(γt−T (γT (X))) = ω−(γT (X)) = ω̄−(X).

The proof of the second limit formula is similar.ut
Thus, whatever (normal) stateρ one chooses to watch evolve over time on operators

in A, it settles down to becomēω+ in the distant future, it must have come fromω̄− in the
remote past, and the limit states do not depend on the choice ofρ. For a trivial interaction,
nothing happens over the long term: for fixedX andρ the functiont ∈ R 7→ ρ(γt (X))

starts out very near some value (namelyω̄−(X)), exhibits transient fluctuations over
some period of time, and then settles down near the same value again. For a nontrivial
interaction, there will be a definite change from the limit at−∞ to the limit at+∞ (for
some choices ofX ∈ A).

A number of questions arise naturally. 1) How does one construct examples of in-
teractions? 2) How does one determine if a given interaction is nontrivial? 3) What
C∗-dynamical systems can occur as theC∗-algebras of local observables associated
with an interaction? The purpose of this paper is to provide an effective partial solution
of problem 1) and a complete solution of problem 2). The latter involves an inequality
which we feel is of some interest in its own right. These results are summarized as
follows.

By aneigenvalue listwe mean a decreasing sequence of nonnegative real numbers
λ1 ≥ λ2 ≥ . . . with finite sum. Every normal stateω of a typeI factor is associated with
a positive operator of trace 1, whose eigenvalues counting multiplicity can be arranged
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into an eigenvalue list which will be denoted3(ω). If the factor is finite dimensional,
we still consider3(ω) to be an infinite list by adjoining zeros in the obvious way. Given
two eigenvalue lists3 = {λ1 ≥ λ2 ≥ . . . } and3′ = {λ′

1 ≥ λ′
2 ≥ . . . }, we will write

‖3 − 3′‖ =
∞∑

k=1

|λk − λ′
k|

for the`1-distance from one list to the other. A classical result implies that ifρ andσ

are normal states of a typeI factorM, then we have

‖3(ρ) − 3(σ)‖ ≤ ‖ρ − σ‖
(see Sect. 3).

Combining the results of [7] with the results of Sect. 1 below, we obtain the following
result on the existence of interactions having arbitraryfiniteeigenvalue lists.

Theorem A. Letn = 1, 2, . . . ,∞ and let3− and3+ be two eigenvalue lists, each of
which has only finitely many nonzero terms. There is an interaction(U, M) whose past
and future statesω−, ω+ have eigenvalue lists3− and3+, and whose past and future
E0-semigroups are both cocycle perturbations of theCAR/CCR flow of indexn.

Remarks.Theorem A is established in Sect. 3. We conjecture that the finiteness hypoth-
esis of Theorem A can be dropped.

Theorem A gives examples of interactions, but it provides no information about
whether or not these interactions are nontrivial. We will show that this is the case when-
ever the eigenvalue lists ofω− andω+ are different. That conclusion depends on the
following, which is the main result of this paper (and which applies to interactions with
arbitrary...i.e., not necessarily finitely nonzero...eigenvalue lists).

Theorem B. Let (U, M) be an interaction with past and future statesω− andω+, and
let ω̄− andω̄+ denote their extensions toγ -invariant states ofA. Then

‖ω̄− − ω̄+‖ ≥ ‖3(ω− ⊗ ω−) − 3(ω+ ⊗ ω+)‖.
Remarks.Theorem B is proved in Sect. 4. Notice the tensor product of states on the
right. For example,3(ω− ⊗ ω−) is obtained from the eigenvalue list3(ω−) = {λ1 ≥
λ2 ≥ . . . } of ω− by rearranging the doubly infinite sequence of all productsλiλj ,
i, j = 1, 2, . . . into decreasing order. It can be an unpleasant combinatorial chore to
calculate3(ω− ⊗ ω−) even when3(ω−) is relatively simple and finitely nonzero; but
we also show in Sect. 4 that ifA andB are two positive trace class operators such that
3(A ⊗ A) = 3(B ⊗ B), then3(A) = 3(B). Thus we may conclude

Corollary 0.4. Let (U, M), ω−, ω+ be as in Theorem B, and let3− and 3+ be the
eigenvalue lists ofω− andω+ respectively. If3− 6= 3+, then the interaction is non-
trivial.

The following implies that “strong” interactions exist.

Corollary 0.5. Letn = 1, 2, . . . ,∞ and chooseε > 0. There is an interaction(U, M)

having past and future statesω−, ω+, such thatα− andα+ are cocycle perturbations
of theCAR/CCR flow of indexn, for which

‖ω̄− − ω̄+‖ ≥ 2 − ε.
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Theorem B depends on a more general result concerning the asymptotic behavior
of eigenvalue lists, which may be of some interest on its own. Letα = {αt : t ≥ 0}
be anE0-semigroup acting onB(H), which is pure in the sense defined above. The
commutantsNt = αt (B(H))′ are typeI subfactors which increase witht , and because
of purity their union is strongly dense inB(H). Let ρ be a normal state ofB(H). We
require the following information concerning the behavior of the eigenvalue lists of the
restrictionsρ �Nt for larget .

Theorem C. Let α be a pureE0-semigroup acting onB(H), which has a normal in-
variant stateω. Then for every normal stateρ of B(H) we have

lim
t→∞ ‖3(ρ �αt (M)′) − 3(ρ ⊗ ω)‖ = 0.

Remarks.One might expect that since theNt increase toB(H), the restriction of a
normal state toNt should look likeρ itself whent is large. Indeed, if the invariant state
ω is a vector state then its only nonzero eigenvalue is 1 and3(ρ ⊗ ω) = 3(ρ); in this
case Theorem C implies that the restriction ofρ toNt has almost the same list asρ when
t is large. On the other hand, ifω is not a vector state then3(ρ ⊗ ω) is very different
from 3(ρ), and Theorem C shows that this intuition is wrong.

We also remark that Theorem C is itself a special case of a more general result that
is independent of the theory ofE0-semigroups (see [9]).

1. Existence of Dynamics

Flows on spaces are described infinitesimally by vector fields. Flows on Hilbert spaces
(that is to say, one-parameter unitary groups) are described infinitesimally by unbounded
self-adjoint operators. In practice, one is usually presented with a symmetric operator
A that is not known to be self-adjoint (much like being presented with a differential
equation that is not known to possess solutions for all time), and one wants to know
if there is a one-parameter unitary group that can be associated with it. Precisely, one
wants to know ifA can beextendedto a self-adjoint operator.

This problem of the existence of dynamics was solved by von Neumann as follows.
Every densely defined symmetric operatorA has an adjointA∗ with dense domainD∗,
and usingA∗ one defines twodeficiency spacesE−, E+ by

E± = {ξ ∈ D∗ : A∗ξ = ±iξ}.
von Neumann’s result is thatA has self-adjoint extensions iff dimE− = dimE+ (see
[15, Sect. XII.4]). Moreover, whenE− andE+ have the same dimension, von Neumann
showed that for every unitary operator fromE− to E+ there is an associated self-adjoint
extension ofA. The purpose of this section is to establish an analogous result which
locates the obstruction to the existence of dynamics for pairs ofE0-semigroups of the
simplest kind (Corollary 1.1 below). That is based on the following more general result.

Let M be a typeI subfactor ofB(H), and letα, β be twoE0-semigroups acting,
respectively, onM and its commutantM ′. We want to examine conditions under which
there is a one-parameter unitary groupU = {Ut : t ∈ R} acting onH whose associated
automorphism groupγt (A) = UtAU∗

t hasα as its past andβ as its future in the sense
that

γ−t �M= αt , γt �M ′= βt , t ≥ 0. (1.1)

The following result asserts that there is such a unitary groupU if and only if the product
systems ofα andβ areanti-isomorphic.
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Theorem. Let Eα = {Eα(t) : t > 0} and Eβ = {Eβ(t) : t > 0} be the respective
product systems ofα andβ,

Eα(t) = {x ∈ M : αt (y)x = xy, y ∈ M},
Eβ(t) = {x′ ∈ M ′ : βt (y

′)x′ = x′y′, y′ ∈ M ′},
and assume that there is a one-parameter unitary groupU = {Ut : t ∈ R} whose
associated automorphism group satisfies (1.1). ThenEα andEβ are anti-isomorphic.
Indeed, for everyt > 0 we haveUtE

α(t) = Eβ(t), and the mapθ : Eα → Eβ defined
by

θ(v) = Utv, v ∈ Eα(t), t > 0, (1.2)

is an anti-isomorphism of product systems (i.e., it is a Borel-measurable map which
is unitary on fibers, and which satisfiesθ(vw) = θ(w)θ(v) for everyv ∈ Eα(s),
w ∈ Eα(t), s, t > 0).

Conversely, ifθ : Eα → Eβ is any anti-isomorphism of product systems, then for
everyt > 0 there is a unique unitary operatorUt ∈ B(H) which satisfies (1.2) for every
v ∈ Eα(t). {Ut : t > 0} is a strongly continuous semigroup of unitary operators tending
strongly to the identity ast → 0+, and its natural extension to a one-parameter unitary
group gives rise to an automorphism groupγ which satisfies (1.1).

Proof. Assume thatγt (A) = UtAU∗
t , t ∈ R satisfies (1.1). Fixt > 0. We claim first

thatUtE
α(t) ⊆ M ′. Indeed, ifx ∈ M then for everyv ∈ Eα(t) we have

xUtv = Utγ−t (x)v = Utαt (x)v = Utvx.

Next, we claim thatUtE
α(t) ⊆ Eβ(t). For v ∈ Eα(t), the preceding shows that

Utv ∈ M ′, so it suffices to show thatβt (y)Utv = Utvy for everyy ∈ M ′. For that, write

βt (y)Utv = γt (y)Utv = UtyU∗
t Utv = Utyv = Utvy,

the last equality becausev ∈ M commutes withy ∈ M ′.
Next, note thatEβ(t) ⊆ UtE

α(t). Choosingw ∈ Eβ(t), setv = U∗
t w. Note that

v ∈ M because for everyy ∈ M ′ we have

yv = yU∗
t w = U∗

t γt (y)w = U∗
t βt (y)w = U∗

t wy = vy.

Note next that the elementv = U∗
t w ∈ M actually belongs toEα(t). Indeed, for

everyx ∈ M we have
αt (x)v = αt (x)U∗

t w.

Sinceγ−t restricts toαt onM, we haveγt (αt (x)) = x and the right side can be written

U∗
t γt (αt (x)) = U∗

t xw = U∗
t wx = vx.

The above shows that for everyt > 0 we have a linear mapθt : Eα(t) → Eβ(t)

defined byθt (v) = Utv. By assembling these maps we get a Borel-measurable map
θ : Eα → Eβ which is linear on fibers. Notice thatθt is actually unitary, since for
v1, v2 ∈ Eα(t) we have

〈v1, v2〉 1 = v∗
2v1 = (Utv2)

∗(Utv1) = θ(v2)
∗θ(v1) = 〈θ(v1), θ(v2)〉 1.

Finally, θ is an anti-isomorphism, because forv ∈ Eα(s), w ∈ Eα(t) we have

θ(vw) = Us+t vw = Ut(Usv)w = Utθ(v)w = Utwθ(v) = θ(w)θ(v).
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To prove the converse, fix an anti-isomorphismθ : Eα → Eβ . For everyt > 0 pick
an orthonormal basise1(t), e2(t) . . . for Eα(t) (we will have to choose more carefully
presently...but for the moment we choose an arbitrary orthonormal basis for each fiber
space). For everyt > 0 define an operatorUt ∈ B(H) by

Ut =
∞∑

n=1

θ(en(t))en(t)
∗.

One checks easily thatUtU
∗
t = U∗

t Ut = 1, henceUt is unitary.Ut also satisfies (1.2),
for if v ∈ Eα(t) then we haveen(t)

∗v = 〈v, en(t)〉 1 and hence

Utv =
∞∑

n=1

〈v, en(t)〉 θ(en(t)) = θ(
∑
n

〈v, en(t)〉 en(t)) = θ(v).

Note too that since the ranges of the operators inEα(t) spanH , any operatorUt that
satisfies (1.2) is determined uniquely. In particular,Ut does not depend on the choice of
orthonormal basis{en(t)} for Eα(t).

We may choose the orthonormal basis{en(t)} so that each sectiont 7→ en(t) ∈ Eα(t)

is Borel measurable (because of the measurability axiom of product systems [2, Property
1.8 (iii)]), and once this is done we find that the functiont ∈ (0, ∞) 7→ Ut ∈ B(H) is
Borel measurable.

We claim next that{Ut : t > 0} is a semigroup. Indeed, ifw ∈ Eα(s), v ∈ Eα(t),
then sinceθ(v) ∈ M ′ commutes withw ∈ M we have

UsUtvw = Usθ(v)w = Uswθ(v) = θ(w)θ(v) = θ(vw) = Us+t vw.

SinceEα(s + t) is spanned by such productvw and sinceEα(s + t)H spansH , we
conclude thatUsUt = Us+t .

At this point, we use the measurability proposition [2, Prop. 2.5 (ii)] (stated there for
the more general case of cocycles) to conclude that a)Ut is strongly continuous int for
t > 0, and b)Ut tends strongly to1 ast → 0+. Now extendU in the obvious way to
obtain a strongly continuous one-parameter unitary group acting onH .

Let γt (A) = UtAU∗
t , A ∈ B(H), t ∈ R. It remains to show that for everyt > 0 we

haveγ−t �M= αt andγt �M ′= βt .
Choosex ∈ M. To show thatγ−t (x) = αt (x), it suffices to show thatγ−t (x)v =

αt (x)v for everyv ∈ Eα(t) (becauseH is spanned by the ranges of the operators in
Eα(t)). But for such av we have

γ−t (x)v = U−t xUtv = U−t xθ(v) = U−t θ(v)x = vx = αt (x)v.

Choosey ∈ M ′. To show thatγt (y) = βt (y) it suffices to show thatγt (y)w = βt (y)w

for all w ∈ Eβ(t). For such aw we havew = θ(v) = Utv for somev ∈ Eα(t), hence

γt (y)w = UtyU∗
t Utv = Utyv = Utvy = wy = βt (y)w,

and the proof is complete.ut
We view the following result as a counterpart for noncommutative dynamics of von

Neumann’s theorem on the existence of self-adjoint extensions of symmetric operators
in terms of deficiency indices.



Noncommutative Interactions 71

Corollary 1.1. Let α andβ be twoE0-semigroups, acting onB(H) andB(K) respec-
tively, each of which is a cocycle perturbation of a CCR/CAR flow. There is a one-
parameter group of automorphisms ofB(H ⊗ K) which satisfies the condition of (1.1)
if, and only if,α andβ have the same numerical index.

Proof. Consider the typeI subfactorM of B(H ⊗ K) defined by

M = B(H) ⊗ 1K.

We haveM ′ = 1H ⊗ B(K), andα (resp.β) is conjugate to the action onM (resp.M ′)
defined byA ⊗ 1K 7→ αt (A) ⊗ 1K (resp.1H ⊗ B 7→ 1H ⊗ βt (B)), t ≥ 0.

Now the product system of anyCAR/CCR flow is anti-isomorphic to itself. This
follows, for example, from the structural results on divisible product systems of [2,
Sect. 6]. Alternately, one can simply write down explicit anti-automorphisms of the
product systems described on pp. 12–14 of [2]. Since the structure of the product system
of anyE0-semigroup is stable under cocycle perturbations, the same is true of cocycle
perturbations of CAR/CCR flows.

The preceding theorem implies that there is a one-parameter group of automorphisms
γ = {γt : t ∈ R} of B(H ⊗ K) satisfying

γ−t (A ⊗ 1K) = αt (A) ⊗ 1K, γt (1H ⊗ B) = 1H ⊗ βt (B)

for everyt ≥ 0 iff the product systemsEα andEβ are anti-isomorphic. The preceding
paragraph shows that this is true iffEα andEβ are isomorphic; and sinceα andβ are
simply cocycle perturbations of CAR/CCR flows, the latter holds iffα andβ have the
same numerical index.ut
Corollary 1.2. Letα andβ be two pureE0-semigroups which are cocycle-conjugate to
theCAR/CCR flow of indexn = 1, 2, . . . ,∞. Then there is a history(U, M) whose
past and future semigroups are conjugate, respectively, toα andβ.

Remarks on the existence and nonexistence of dynamics: general case.It is natural to
ask if everyE0-semigroupα can represent both the past and future of some history. More
precisely, is there a history whose past and futureE0-semigroups are both conjugate to
cocycle perturbations ofα? This is certainly the case for theCAR/CCR flows, by
Corollary 1.2.

But in general the answer can be no. We have recently received a manuscript of
Boris Tsirelson [34] in which examples of product systems are constructed which are
notanti-isomorphic to themselves. It is shown in [3] that every abstract product system
is isomorphic to the product system of someE0-semigroup. It follows that there areE0-
semigroupsα whose product systems are not anti-isomorphic themselves. Since cocycle
perturbations ofE0-semigroups must have isomorphic product systems, the theorem
proved above implies that suchE0-semigroups (i.e., those whose product systems are
not anti-isomorphic to themselves) cannot serve as both the past and future of any history.

On the other hand, for everyE0-semigroupα acting onB(H), which is pure in the
sense that∩t αt (B(H)) = C·1, there is a history whose past is conjugate toα. To see why
this is so, letE be its product system. LetE∗ be the product system opposite toE (E∗ is
defined as the same structure asE except for multiplication, and inE∗ multiplication is
defined by reversing the multiplication ofE). SinceE∗ is a product system, the results
of [3] imply that there is anE0-semigroupβ, acting onB(K), whose product system
is isomorphic toE∗ and therefore anti-isomorphic toE. We may conclude from the
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theorem proved above that there is a one parameter group of automorphismsγ acting
onB(H ⊗K) which satisfies (1.1) by havingα ⊗ 1 (acting onB(H)⊗ 1) as its past and
1 ⊗ β (acting on1 ⊗ B(K)) as its future.

2. Eigenvalue Lists of Normal States

In this section we emphasize the importance of the “eigenvalue list” invariant that can be
associated with normal states of typeI factors, and we summarize its basic properties.
An eigenvalue listis a decreasing sequenceλ1 ≥ λ2 ≥ . . . of nonnegative real numbers
satisfying

∑
n λn < ∞. If 3 = {λ1 ≥ λ2 ≥ . . . } and3′ = {λ′

1 ≥ λ′
2 ≥ . . . } are two

such lists we write

‖3 − 3′‖ =
∞∑

n=1

|λn − λ′
n|

for the`1-distance from3 to 3′, thereby making the space of all eigenvalue lists into a
complete metric space.

Let A be a positive trace class operator acting on a separable Hilbert spaceH . The
positive eigenvalues ofA (counting multiplicity) can be arranged in decreasing order, and
if there are only finitely many nonzero eigenvalues then we extend the list by appending
zeros in the obvious way. This defines the eigenvalue list3(A) of A. Notice that even
whenH is finite dimensional,3(A) is an infinite list.

The following basic properties of eigenvalue lists will be used repeatedly.

Proposition 2.1.

2.1.1For every positive trace class operatorA we have3(A) = 3(A ⊕ 0∞), 0∞
denoting the infinite dimensional zero operator.

2.1.2For positive trace class operatorsA andB, 3(A) = 3(B) iff A ⊕ 0∞ is unitarily
equivalent toB ⊕ 0∞.

2.1.3If L is any Hilbert-Schmidt operator from a Hilbert spaceH1 to a Hilbert space
H2, then3(L∗L) = 3(LL∗).

2.1.4For positive trace class operatorsA, B we have3(A) = 3(B) iff

trace(An) = trace(Bn) for everyn = 1, 2, . . .

Proof. The assertion (2.1.1) is obvious, and (2.1.2) follows after a routine application
of the spectral theorem for self-adjoint compact operators.

Proof of (2.1.3).Let K1 ⊆ H1 be the initial space ofL and letK2 = LK1 ⊆ H2 be its
closed range. The polar decomposition implies thatL∗L �K1 andLL∗ �K2 are unitarily
equivalent. HenceL∗L ⊕ 0∞ andLL∗⊕∞ are unitarily equivalent and the assertion
(2.1.3) follows from (2.1.2). ut

Proof of (2.1.4).If 3(A) = {λ1 ≥ λ2 ≥ . . . } then

trace(An) =
∞∑

k=1

λn
k, n = 1, 2, . . .

Thus3(A) = 3(B) implies that trace(An) = trace(Bn) for everyn ≥ 1.
Conversely, suppose that trace(An) = trace(Bn) for everyn = 1, 2, . . . Choose a

positive numberM so large that the interval[0, M] contains the spectra of both operators
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A andB. The linear functionalf 7→ trace(Af (A)) defined on the commutativeC∗-
algebraC[0, M] is positive, hence there is a unique finite positive measureµA defined
on [0, M] such that

∫ M

0
f (x) dµA(x) = trace(Af (A)), f ∈ C[0, M].

The restriction ofµA to (0, M] is concentrated onσ(A)∩ (0, M], and for every positive
eigenvalueλ of A we have

µA({λ}) = λ · multiplicity of λ.

Doing the same for the operatorB, we find that by hypothesis
∫ M

0
xn dµA(x) =

∫ M

0
xn dµB(x), n = 0, 1, 2, . . . ,

and hence by the Weierstrass approximation theoremµA andµB define the same linear
functional onC[0, M]. It follows thatµA = µB , and the preceding observations lead
us to conclude that3(A) = 3(B). ut

We will also make use of the following classical result, originating in work of Hermann
Weyl around 1912.

Proposition 2.2.If A, B are positive trace class operators acting on the same Hilbert
spaceH , then

‖3(A) − 3(B)‖ ≤ trace|A − B|.
Proof. A proof can be found in the appendix of [29].ut
Remarks.Notice that since3(A) depends only on the unitary equivalence class ofA,
Proposition 2.2 actually implies that

‖3(A) − 3(B)‖ ≤ inf
A′,B′

trace|A′ − B ′|,

whereA′ (resp.B ′) ranges over all operators unitarily equivalent toA (resp.B). Indeed,
though we do not require the fact, it is not hard to show that‖3(A) − 3(B)‖ is exactly
the distance (relative to the trace norm) from the unitary equivalence class ofA ⊕ 0∞
to the unitary equivalence class ofB ⊕ 0∞. Thus the eigenvalue list3(A) provides
a more-or-less complete invariant for classifying positive trace class operators up to
unitary equivalence.

On the other hand, the eigenvalue list is also a subtle invariant. To illustrate the point,
suppose thatA has only two positive eigenvalues 3/4 and 1/4, and thatB has only three
positive eigenvalues 3/5, 1/5, 1/5. The spectrum ofA ⊕ B is the union of the spectra
and the spectrum ofA ⊗ B is the set of products of elements from the two spectra;
however, both of these sets must be rearranged in decreasing order. Thus

3(A ⊕ B) = {3/4, 3/5, 1/4, 1/5, 1/5, 0, . . . },
3(A ⊗ B) = {9/20, 3/20, 3/20, 3/20, 1/20, 1/20, 0, . . . }.

Notice thatA has only eigenvalues of multiplicity 1,B has eigenvalues of multiplicities
1 and 2, but thatA ⊗ B has an eigenvalue of “peculiar” multiplicity 3. In the case of
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larger spectra, the relation between say3(A ⊗ B) and the individual lists3(A) and
3(B) depends in a complex way on the relative sizes of eigenvalues, and the problem
of rearranging the set of products into decreasing order can be a difficult combinatorial
chore.

Turning now to normal states, letM be a typeIn factor, n = 1, 2, . . . ,∞ (one can
assume without essential loss thatM is concretely represented as a subfactor ofB(H)

for some Hilbert spaceH ), and letρ be a normal state ofM. There is a Hilbert space
K of dimensionn such thatM is isomorphic as a∗-algebra toB(K), and in this case
any such∗-isomorphism must be isometric and normal. Thus we may identifyρ with a
normal state ofB(K), and consequently there is a positive operatorR ∈ B(K) of trace
1 such that

ρ(T ) = trace(RT ), T ∈ B(K).

Theeigenvalue listof ρ is defined by3(ρ) = 3(R). The preceding discussion leads
immediately to the following.

Proposition 2.3.

2.3.1If ρ1 andρ2 are normal states of typeI factorsM1 andM2, and ifρ1 andρ2 are
conjugate in the sense that there is a∗-isomorphismθ of M1 ontoM2 such that
ρ2 ◦ θ = ρ1, then3(ρ1) = 3(ρ2).

2.3.2If ρ1 andρ2 are two normal states of a typeI factorM, then

‖3(ρ1) − 3(ρ2)‖ ≤ ‖ρ1 − ρ2‖.
Proof. The first assertion is apparent after we realizeMk asB(Hk), k = 1, 2, use the fact
that a∗-isomorphism ofB(H1)ontoB(H2) is implemented by a unitary operator fromH1
toH2, and make use of (2.1.2). The second assertion is the inequality of Proposition 2.2.
ut

3. CP Semigroups and the Existence of Interactions

The corollary of Sect. 1 implies that any pair of pureE0-semigroupsα−, α+, which
are both cocycle conjugate to the sameCAR/CCR flow, can be assembled so as to
obtain a history(U, M) whose past and futureE0-semigroups are conjugate toα− and
α+. Moreover, if bothα− andα+ have normal invariant states then(U, M) is in fact an
interaction.

Thus we are led to ask what the possibilities are. More precisely, suppose we are given
an eigenvalue list3 = {λ1 ≥ λ2 ≥ . . . } with

∑
n λn = 1 and a nonnegative integer

n = 1, 2, . . . , ∞. Does there exist a cocycle perturbationα of theCAR/CCR flow of
indexn which is pure, and which leaves invariant a normal state whose eigenvalue list
is 3?

We do not know the answer in general, but we conjecture that it is yes. The purpose of
this section is to provide an affirmative answer for the cases in which3 has only a finite
number of nonzero terms (TheoremA). This is essentially the main result of [7] (together
with Corollary 1.1), and we merely summarize the main ideas so as to emphasize the
role of dilation theory and semigroups of completely postive maps (sometimes called
quantum dynamical semigroups) acting on matrix algebras, for such constructions.
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Suppose thatα = {αt : t ≥ 0} is anE0-semigroup acting onB(H), and assume
further that there is a normal stateω of B(H) which is invariant,ω ◦ αt = ω, t ≥ 0.
Letting� be the density operator ofω,

ω(T ) = trace(�T ), T ∈ B(H),

then the projectionP on the closed range of� is the support projection ofω, i.e., the
largest projection with the property thatω(P ⊥) = 0. Usingω ◦ αt = ω, we find that
ω(1 − αt (P )) = ω(αt (P

⊥)) = ω(P ⊥) = 0, hence1 − αt (P ) ≤ 1 − P , hence

αt (P ) ≥ P, t ≥ 0. (3.1)

The inequality (3.1) has the following consequence. If we identifyB(PH) with the
cornerPB(H)P , then for everyt ≥ 0 we can compressαt so as to obtain a completely
positive mapφt onB(PH),

φt (X) = Pαt (X) �PH , X ∈ PB(H)P.

More significantly, because of (3.1) we have the semigroup propertyφs ◦ φt = φs+t , as
one can easily verify usingPαs(A)P = Pαs(PAP)P for A ∈ B(H). Thus we have
defined a semigroupφ = {φt : t ≥ 0} of normal completely positive maps ofB(PH)

satisfyingφt (1) = 1 for t ≥ 0, together with the natural continuity property

lim
t→t0

〈φt (X)ξ, η〉 = 〈
φt0(X)ξ, η

〉
,

ξ, η ∈ PH, X ∈ B(PH).
We appear to have lost ground, in that we started with a semigroup of∗-endomor-

phisms and now have merely a semigroup of completely positive maps. However, notice
that the restriction ofω to B(PH) = PB(H)P is a faithful normal state which is
invariant under the action ofφ, ω ◦ φt = ω, t ≥ 0.

Notice too that in case there are only a finite number of positive eigenvalues in the list
3(ω) thenPH is finite dimensional, and thusφ = {φt : t ≥ 0} is a CP semigroup acting
essentially on amatrix algebra, which leaves invariant a faithful state with prescribed
eigenvaluesλ1 ≥ λ2 ≥ · · · ≥ λr > 0. If α began life as a pureE0-semigroup thenω is
anabsorbingstate forφ in the sense that for every normal stateρ of B(PH),

lim
t→∞ ‖ρ ◦ φt − ω‖ = 0. (3.2)

Conversely and most significantly, if we can create a pair(φ, ω) satisfying the condi-
tions of the preceding paragraph then it is possible to reconstruct a pair(α, ω) consisting
of anE0-semigroupα having an invariant normal stateω with the expected eigenvalue
list by a “dilation” procedure which reverses the “compression” procedure we have de-
scribed above. Moreover, if the CP semigroupφ has a bounded generator (as it will surely
have in the case wherePH is finite dimensional), then its dilation to anE0-semigroup
will be cocycle-conjugate to aCAR/CCRflow whose index can be calculated directly in
terms ofφ (the details can be found in [6] and [7]). The following summarizes the result
of the construction of(φ, ω) for finite eigenvalue lists given in [7, Theorem 5.1].
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Theorem 3.1.Let λ1 ≥ λ2 ≥ · · · ≥ λr > 0 be a list of positive numbers and letω

be a state of the matrix algebraMr(C) whose density operator has this ordered list of
eigenvalues.

There is a semigroupφ = {φt : t ≥ 0} of unital completely positive maps onMr(C)

which leavesω invariant, satisfies (3.2), and which can be dilated to a pure cocycle
perturbation of a CAR/CCR flow having a normal invariant state whose eigenvalue list
has exactlyλ1 ≥ · · · ≥ λr as its nonzero elements.

Theorem 3.3 leads to the following (see pp. 40–42 of [7]).

Corollary 3.2. Let n = 1, 2, . . . , ∞ and let3 = {λ1 ≥ λ2 ≥ . . . } be an eigenvalue
list which has only a finite number of nonzero terms. There is a cocycle perturbationα

of the CAR/CCR flow of indexn which is pure, and which has an invariant normal state
with eigenvalue list3.

Using Corollary 1.1 of, we deduce Theorem A of the introduction.

Theorem A. Let n = 1, 2, . . . , ∞ and let3− and3+ be two eigenvalue lists having
only a finite number of nonzero terms. There is an interaction(U, M) whose past and
future normal statesω−, ω+ have eigenvalue lists3−, 3+ respectively, and whose past
and futureE0-semigroups are cocycle conjugate to the CAR/CCR flow of indexn.

4. The Interaction Inequality

Theorem A provides many examples of interactions, but it says nothing about whether
or not these interactions are nontrivial. For that we need the inequality of Theorem B
of the introduction. The purpose of this section is to prove Theorem B and discuss its
consequences for interactions. Theorem B is based on the following more general result
aboutE0-semigroups. AnE0-semigroupα = {αt : t ≥ 0} acting onB(H) is said to be
pure if ⋂

t≥0

αt (B(H)) = C · 1.

Purity implies that for any two normal statesρ1 andρ2,

lim
t→∞ ‖ρ1 ◦ αt − ρ2 ◦ αt‖ = 0,

see Proposition 1.1 of [7]. In particular, if there is anormalstateω which is invariant
underα in the sense thatω ◦ αt = ω for everyt ≥ 0 thenω must be anabsorbingstate
in the sense that for every normal stateρ of B(H) we have

lim
t→∞ ‖ρ ◦ αt − ω‖ = 0. (4.1)

Thus, if a pureE0-semigroup has a normal invariant state then it is unique, and in
particular the eigenvalue list3(ω) of a normal invariant stateω provides a conjugacy
invariant of pureE0-semigroups.

Given a pureE0-semigroup acting onB(H), the commutantsNt = αt (B(H))′ are
typeI subfactors ofB(H) which increase witht , and by purity their union is a strongly
dense∗-subalgebra ofB(H). Let ρ be any normal state ofB(H). SinceNt is a typeI

factor, the restriction ofρ toNt has an eigenvalue list, defined as in Sect. 3. The following
result shows how these eigenvalue lists behave for larget .
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Theorem C. Let α = {αt : t ≥ 0} be a pureE0-semigroup having a normal invariant
stateω, and letNt be the commutantαt (B(H))′. Then for every normal stateρ of B(H)

we have
lim

t→∞ ‖3(ρ �Nt ) − 3(ρ ⊗ ω)‖ = 0.

The proof of Theorem C requires some preparation.

Lemma 4.1.Let{Ai : i ∈ I } be a net of positive trace class operators acting on a Hilbert
spaceH and letB be a positive trace class operator such thattrace(Ai) = trace(B)

for everyi ∈ I . Suppose there is a setS ⊆ H , havingH as its closed linear span, such
that

lim
i

〈Aiξ, η〉 = 〈Bξ, η〉 , ξ, η ∈ S.

Thentrace|Ai − B| → 0, asi → ∞.

Proof. By Proposition 1.6 of [7] it suffices to show that

lim
i→∞ trace(AiK) = trace(BK)

for every compact operatorK ∈ B(H). The setS of compact operatorsK for which the
assertion is true is a norm-closed linear space which contains all rank-one operators of
the formζ 7→ 〈ζ, ξ〉 η, with ξ, η ∈ S. SinceS spansH , it follows thatS is the space of
all compact operators.ut

The next three lemmas relate to the following situation. We are given a normal∗-
endomorphismα of B(H) satisfyingα(1) = 1. Let E be the linear space of operators

E = {v ∈ B(H) : α(x)v = vx, x ∈ B(H)}.
If u, v are any two elements ofE thenv∗u is a scalar multiple of the identity operator,
and in factE is a Hilbert space relative to the inner product defined on it by

v∗u = 〈u, v〉E 1.

For any orthonormal basisv1, v2, . . . of E we have

α(x) =
∑
n

vnxv∗
n, x ∈ B(H).

Letρ be a normal state ofB(H). It is clear thatu, v ∈ E 7→ ρ(uv∗) defines a bounded
sesquilinear form on the Hilbert spaceE , hence by the Riesz lemma there is a unique
bounded operatorA ∈ B(E) such that

〈Au, v〉E = ρ(uv∗), u, v ∈ E .

A is obviously a positive operator and in fact we have traceA = 1, since for any
orthonormal basisv1, v2, . . . for E ,

traceA =
∑
n

〈Avn, vn〉 =
∑
n

ρ(vnv
∗
n) = ρ(α(1)) = ρ(1) = 1.

The following result shows how to compute the eigenvalue list of the restriction ofρ to
the commutant ofα(B(H)) in terms of this “correlation” operatorA.
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Lemma 4.2.Let ρ be a normal state ofB(H) and letA be the positive trace class
operator onE defined by〈Au, v〉E = ρ(uv∗), u, v ∈ E . Then

3(ρ �α(B(H))′) = 3(A).

Proof. By Proposition 2.3.1, it suffices to exhibit a normal∗-isomorphismθ of B(E)

ontoα(B(H))′ with the property that

ρ(θ(T )) = trace(AT ), T ∈ B(E). (4.2)

Consider the tensor product of Hilbert spacesE ⊗ H . In order to defineθ we claim first
that there is a unique unitary operatorW : E ⊗H → H which satisfiesW(v ⊗ ξ) = vξ ,
v ∈ E , ξ ∈ H . Indeed, forv, w ∈ E , ξ, η ∈ H we have

〈vξ, wη〉H = 〈
w∗vξ, η

〉 = 〈v, w〉E 〈ξ, η〉 = 〈v ⊗ ξ, w ⊗ η〉E⊗H .

It follows that there is a unique isometryW : E ⊗ H → H with the stated property.W
is unitary because its range spans all ofH (indeed, any vectorζ orthogonal to the range
of W has the propertyv∗ζ = 0 for everyv ∈ E , henceζ = α(1)ζ = ∑

n vnv
∗
nζ = 0).

For everyX ∈ B(H) we have

W(1 ⊗ X)v ⊗ ξ = W(v ⊗ Xξ) = vXξ = α(X)vξ = α(X)W(v ⊗ ξ),

henceW(1 ⊗ X)W ∗ = α(X). It follows thatα(B(H))′ = W(B(E) ⊗ 1)W ∗, and thus
we can define a∗-isomorphismθ : B(E) → α(B(H))′ by θ(T ) = W(T ⊗ 1)W ∗.

Writing u × v̄ for the rank-one operator onE defined byu × v̄ : w 7→ 〈w, v〉E u, we
claim that

θ(u × v̄) = uv∗, for everyu, v ∈ E . (4.3)

Indeed, if we pick a vector inH of the formη = wξ = W(w ⊗ ξ), wherew ∈ E and
ξ ∈ H then we have

θ(u × v̄)η = θ(w × v̄)W(w ⊗ ξ) = W((u × v̄) ⊗ 1)w ⊗ ξ = W((u × v̄)w ⊗ ξ)

= 〈w, v〉E W(u ⊗ ξ) = 〈w, v〉E uξ = uv∗wξ = uv∗η,

and (4.3) follows becauseH is spanned by all such vectorsη.
Now for every rank-one operatorT = u × v̄ ∈ B(E) we have

ρ(θ(T )) = ρ(θ(u × v̄)) = ρ(uv∗) = 〈Au, v〉E = trace(AT ).

Formula (4.2) follows for finite rankT ∈ B(E) by taking linear combinations, and the
general case follows by approximating an arbitrary operatorT ∈ B(E) in the strong oper-
ator topology with finite dimensional compressionsPT P , P ranging over an increasing
sequence of finite dimensional projections with limit1. ut

The following formulas provide a key step.

Lemma 4.3.Letα, E be as above, letρ be a normal state ofB(H) and letR ∈ L1(H)

be its density operatorρ(X) = trace(RX), X ∈ B(H). Define a linear operatorL from
E into the Hilbert spaceL2(H) of all Hilbert-Schmidt operators onH byLv = R1/2v,
v ∈ E . Then

4.3.1〈L∗Lu, v〉E = ρ(uv∗), u, v ∈ E , and
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4.3.2 for all ξ1, ξ2, η1, η2 ∈ H we have

〈
LL∗(ξ1 × ξ̄2), η1 × η̄2

〉
L2(H)

=
〈
α(η2 × ξ̄2)R

1/2ξ1, R
1/2η1

〉
H

.

Proof of (4.3.1).Simply write

〈
L∗Lu, v

〉
E = 〈Lu, Lv〉L2(H) =

〈
R1/2u, R1/2v

〉
L2(H)

= trace(v∗Ru) = ρ(uv∗). ut

Proof of (4.3.2).We have
〈
LL∗(ξ1 × ξ̄2), η1 × η̄2

〉
L2(H)

= 〈
L∗(ξ1 × ξ̄2), L

∗(η1 × η̄2)
〉
E . (4.4)

Pick an orthonormal basisv1, v2, . . . for E . Then the right side of (4.7) can be rewritten
as follows: ∑

n

〈
L∗(ξ1 × ξ̄2), vn

〉
E

〈
vn, L

∗(η1 × η̄2)
〉
E

=
∑
n

〈
ξ1 × ξ̄2, R

1/2vn

〉
L2(H)

〈
R1/2vn, η1 × η̄2

〉
L2(H)

=
∑
n

trace(v∗
nR1/2ξ1 × ξ̄2)trace(R1/2vnη2 × η̄1) =

∑
n

〈
v∗
nR1/2ξ1, ξ2

〉
H

〈
R1/2vnη2, η1

〉
H

.

On the other hand,
〈
α(η2 × ξ̄2)R

1/2ξ1, R
1/2η1

〉
H

=
∑
n

〈
vn(η2 × ξ̄2)v

∗
nR1/2ξ1, R

1/2η1

〉
H

=
∑
n

〈
(η2 × ξ̄2)v

∗
nR1/2ξ1, v

∗
nR1/2η1

〉
H

=
∑
n

〈
v∗
nR1/2ξ1, ξ2

〉
H

〈
η2, v

∗
nR1/2η1

〉
H

,

and the last expression agrees with the bottom line of the previous formula.ut

Lemma 4.4.For a pair A, B of self-adjoint compact operators onH , let A ◦ B be the
bounded operator defined on the Hilbert spaceL2(H) of Hilbert-Schmidt operators by
A ◦ B(T ) = AT B. ThenA ◦ B is unitarily equivalent toA ⊗ B ∈ B(H ⊗ H).

Proof. Pick orthonormal basese1, e2, . . . andf1, f2, . . . for H consisting of eigenvec-
tors of A andB, Aen = αnen, Bfn = βnfn, n = 1, 2, . . . Letting em × f̄n be the
rank-one operatorζ 7→ 〈ζ, fn〉 en, then{em × f̄n : m, n = 1, 2, . . . } is an orthonormal
basis forL2(H) and we have

A ◦ B(em × f̄n) = αmβnem × f̄n, m, n = 1, 2, . . .

Thus the unitary operatorW : L2(H) → H ⊗ H defined byW(em × f̄n) = em ⊗ fn,
m, n = 1, 2, . . . satisfiesW(A ◦ B)(em × f̄n) = (A ⊗ B)W(em × f̄n) for every
m, n = 1, 2, . . . , and henceW(A ◦ B)W ∗ = A ⊗ B. ut
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Proof of Theorem C.Let R ∈ B(H) be the density operator of the normal stateρ,
trace(RT ) = ρ(T ),T ∈ B(H). For everyt > 0 letEt be the Hilbert space of intertwining
operators associated withαt ,

Et = {T ∈ B(H) : αt (A)T = T A, A ∈ B(H)},
and letLt : Et → L2(H) be the operator of Lemma 3,Ltv = R1/2v, v ∈ Et .

Lemma 4.3.1 implies thatρ(uv∗) = 〈
L∗

t Ltu, v
〉
E , hence the correlation operator of

ρ �αt (B(H))′ is L∗
t Lt . By Lemma 4.2

3(L∗
t Lt ) = 3(ρ �αt (B(H))′).

On the other hand, (2.1.3) implies that3(L∗
t Lt ) = 3(LtL

∗
t ). Thus it suffices to show

that the eigenvalue lists of the operatorsLtL
∗
t ∈ B(L2(H)) converge to3(ρ ⊗ ω), as

t → ∞, in the metric of eigenvalue lists.
By (4.3.2) we have

〈
LtL

∗
t (ξ1 × ξ̄2), η1 × η̄2

〉
L2(H)

=
〈
αt (η2 × ξ̄2)R

1/2ξ1, R
1/2η1

〉
H

, (4.5)

for all ξ1, ξ2, η1, η2 ∈ H . Now sinceα is pure,αt (X) converges in the weak∗-topology
to ω(X)1 ast → ∞ (indeed, for every normal stateσ , σ(αt (X)) converges toω(X) =
σ(ω(X)1), and the assertion follows because every element of the predual ofB(H) is
a linear combination of normal states). Thus if we take the limit ont in the right side of
(4.4) we obtain

lim
t→∞

〈
αt (η2 × ξ̄2)R

1/2ξ1, R
1/2η1

〉
H

= ω(η2 × ξ̄2)
〈
R1/2ξ1, R

1/2η1

〉
H

= 〈�η2, ξ2〉H 〈Rξ1, η1〉H ,

where� is the density operator ofω, ω(T ) = trace(�T ), T ∈ B(H).
Let R ◦ � be the operator onL2(H) defined in Lemma 4.4, and notice that the right

side of the preceding expression is
〈
R ◦ �(ξ1 × ξ̄2), η1 × η̄2

〉
L2(H)

. Indeed, by definition

of R ◦ � we haveR ◦ �(ξ1 × ξ̄2) = Rξ1 × �ξ2, and
〈
Rξ1 × �ξ2, η1 × η̄2

〉
L2(H)

= trace(η2 × η̄1 · Rξ1 × �ξ2)

= 〈Rξ1, η1〉H trace(η2 × ωξ2)

〈Rξ1, η1〉H 〈η2, �ξ2〉H ,

which, as asserted, agrees with the right side of the previous expression.
Thus we have shown that

lim
t→∞

〈
LtL

∗
t (A), B

〉
L2(H)

= 〈R ◦ �(A), B〉L2(H)

for rank-one operatorsA, B ∈ L2(H). Now Lemma 4.4 implies thatR ◦ � is unitarily
equivalent toR ⊗ � ∈ B(H ⊗ H), and henceR ◦ � is a positive trace class operator
for which

3(R ◦ �) = 3(R ⊗ �) = 3(ρ ⊗ ω).

On the other hand, Lemma 4.1 implies that

lim
t→∞ trace|LtL

∗
t − R ◦ �| = 0.
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By the inequality (2.3.2) we conclude that

lim sup
t→∞

‖3(LtL
∗
t ) − 3(R ◦ �)‖ ≤ lim

t→∞ trace|LtL
∗
t − R ◦ �| = 0.

We have already seen that3(R ◦�) = 3(ρ ⊗ω), and that3(LtL
∗
t ) = 3(ρ �αt (B(H))′).

Thus Theorem C is proved.ut
We now readily deduce the interaction inequality.

Theorem B. Let (U, M) be an interaction with past and future statesω− andω+, and
let ω̄− andω̄+ be their natural extensions to the localC∗-algebraA. Then

‖ω̄− − ω̄+‖ ≥ ‖3(ω− ⊗ ω−) − 3(ω+ ⊗ ω+)‖.
Proof. Fix ε > 0. By Theorem C we can findT > 0 large enough so that for allt > T

we have
‖3(ω+ �A[0,t]) − 3(ω+ ⊗ ω+)‖ ≤ ε

as well as
‖3(ω− �A[−t,0]) − 3(ω− ⊗ ω−)‖ ≤ ε.

Now for t ≥ T ,

‖ω̄+ − ω̄−‖ = ‖ω̄+ ◦ γt − ω̄− ◦ γ−t‖ ≥ ‖ω̄+ ◦ γt �A[−t,t] −ω̄− ◦ γ−t �A[−t,t] ‖
= ‖ω+ ◦ γt �A[−t,t] −ω− ◦ γ−t �A[−t,t] ‖. (4.6)

Sinceγt gives rise to a∗-isomorphism ofA[−t,t] ontoA[0,2t] while γ−t gives rise to a
∗-isomorphism ofA[−t,t] ontoA[−2t,0], (2.3.1) implies that

3(ω+ ◦ γt �A[−t,t]) = 3(ω+ �A[0,2t]), and

3(ω− ◦ γ−t �A[−t,t]) = 3(ω− �A[−2t,0]).

Thus by Proposition 2.3 the last term of (4.5) is at least

‖3(ω+ �A[0,2t]) − 3(ω− �A[−2t,0])‖,
which by our initial choice ofT is at least

‖3(ω+ ⊗ ω+) − 3(ω− ⊗ ω−)‖ − 2ε.

Sinceε is arbitrary, the asserted inequality follows.ut
Corollary 4.5. Let (U, M) be an interaction with past and future statesω−, ω+. If
3(ω−) 6= 3(ω+), then the interaction is nontrivial.

Proof. Contrapositively, suppose that the interaction is trivial and let�− and�+ be
the respective density operators ofω− andω+. Theorem B implies that�− ⊗ �− and
�+ ⊗ �+ must have the same eigenvalue list. (2.1.4) of Proposition 2.1 implies that for
everyn = 1, 2, . . . we have

trace(�n−)2 = trace((�− ⊗ �−)n) = trace((�+ ⊗ �+)n) = trace(�n+)2.

Taking the square root we find that trace(�n−) = trace(�n+) for everyn = 1, 2, . . . and
another application of (2.1.4) leads to3(�−) = 3(�+). ut
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Corollary 4.6. Letn = 1, 2, . . . , ∞ and chooseε > 0. There is an interaction(U, M)

whose past and futureE0-semigroups are cocycle-conjugate to the CAR/CCR flow of
indexn such that

‖ω̄+ − ω̄−‖ ≥ 2 − ε.

Proof. Choose positive integersp < q and consider the eigenvalue lists

3− = {1/p, 1/p, . . . , 1/p, 0, 0, . . . },
3+ = {1/q, 1/q, . . . , 1/q, 0, 0, . . . },

where 1/p is repeatedp times and 1/q is repeatedq times. TheoremA implies that there
is an interaction(U, M) whose past and futureE0 semigroups are cocycle-conjugate to
the CAR/CCR flow of indexn, for which3(ω−) = 3− and3(ω+) = 3+. By Theorem
B,

‖ω̄+ − ω̄−‖ ≥ ‖3(ω+ ⊗ ω+) − 3(ω− ⊗ ω−)‖.
If we neglect zeros, the eigenvalue list ofω− ⊗ ω− consists of the single eigenvalue
1/p2, repeatedp2 times, and that ofω+ ⊗ ω+ consists of 1/q2 repeatedq2 times. Thus

‖3(ω+ ⊗ ω+) − 3(ω− ⊗ ω−)‖ = p2(1/p2 − 1/q2) + (q2 − p2)/q2 = 2 − 2p2/q2,

and the inequality of Corollary 2 follows wheneverq is larger thanp
√

2/ε. ut
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