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Abstract: An Ep-semigroupy = {a; : t > 0} acting onB(H) is calledpureif its tail
von Neumann algebra is trivial in the sense that

ﬂtat(B(H)) =C1.

We determine all pur&y-semigroups which havewaeakly continuouswvariant statev

and which are minimal in an appropriate sense. In such cases the dynamics of the state
space must stabilize as follows: for every normal stadé B(H) there is convergence

to equilibrium in the trace norm

tlim llpoa; —w| =0.
A normal statev with this property is called aabsorbingstate fora.
Such Ep-semigroups must be cocycle perturbation€£ofR/CCR flows, and we

develop systematic methods for constructing those perturbations which have absorbing
states with prescribed finite eigenvalue lists.

Introduction

An Ep-semigroup is a semigroup of normelendomorphisms: = {a; : ¢t > 0} of
the algebra3(H) of all bounded operators on a separable Hilbert space, which satisfies
a+(1) = 1 and the natural continuity property

lim (oo()6,m) = (@€m), w € BO), &ne H.

There is a sequence Bf-semigroups™,n = 1,2, ..., co that can be constructed using
thenaturalirreducible representations of either the canonical anticommutation relations
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or the canonical commutation relations. Thégesemigroups are called AR/CCR
flows. They occupy a position in the category/§-semigroups roughly analogous to
that of the unilateral shifts (of various multiplicities) in the category of isometries on
Hilbert space.

This paper addresses the perturbation theoy 42/ CC R flows. A cocycle per-
turbation of an Ey-semigroupa is an Ep-semigroups which is related tax by way
of

Bi(x) = Ura(x)UY, r € B(H),t>0

where{U, : ¢t > 0} is a strongly continuous family of unitary operatorsi(¥/) which
satisfies the cocycle equation

Us+t = USO[S(Ut), S,t > 07

We are interested in cocycle perturbatighsf the CAR/CC R flows whose dynamics
“stabilize" in that there should exist a normal statevhich is absorbing in the sense
that for every normal statewe have

Jim [lpo 5, —w]=0. (0.2)

It is obvious that when an absorbing state exists it is invariant under the actjgn of
and is in fact the unique normatinvariant state. Physicists refer to the property (0.1)
asreturn to equilibrium while in ergodic theory the corresponding property is called
mixing.

Every normal state of B(H) has a uniqueigenvalue listthat is, a finite or infinite
sequence of positive numbeXs, A, . .. which is decreasing\¢, > Ag+1, £ > 1) and
which has the property that for some orthonormalget,, . . . in H we have

w(x) =D A (€, k) -
k

ClearlyA\; + A, +--- = 1, and of course there may be a finite number of repetitions of
a given element in the eigenvalue list. Tdet{\; : ¥ > 1} U {0} determined by the
eigenvalue list is the spectrum of the density operatar.dfhe eigenvalue list is finite

iff w is continuous in the weak operator topologyX{f).

If 8 has an absorbing statehenitis obvious from (0.1) that the eigenvalue list.of
contains all of the information that could be obtained from the dynamics of expectation
values observed over the long term. Thus itis natural to ask what the possibilities are, and
how one finds absorbing states for cocycle perturbations of the sinffjestmigroups.

In this paper we will be concerned wifture Eg-semigroups, i.e Ep-semigroupss
with the property that the tail von Neumann algebra is trivial,

Ne B(B(H)) = CL. (0.2)

After discussing the relationship between purity and the existence of absorbing states in
general, we take up the analysisveéakly continuousbsorbing states, and we obtain
more or less complete information about how to construct them. Those results are applied
in Sect. 5 to establish the following

TheoremA. Leta™ betheCAR/CCRflowofindex:,1 < n < co,andletAy, ..., A,
be afinite decreasing sequence of positive numbers sumniinighen there is a cocycle
perturbationg of o™ which has an absorbing state with eigenvalue list\q, ..., A,.
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If n < r? — 1 (and in this event > 2) then one can arrange that is minimal over
the support projection ab.

Conversely, if- > 2 and g is any Ey-semigroup which has an absorbing state
with eigenvalue list\4, . . ., A, and which is minimal over the support projection.of
then 3 is conjugate to a cocycle perturbation @f for somen, 1 < n < 72 — 1.

Remarks. The assertions about minimality relate to dilation theory: i§ an invariant
normal state for atfg-semigroups then the support projectignof w is increasingin
the sense that

Bf(p) Z b, t Z Oa

(see the discussion following Proposition 2.4). It follows that the family of completely
positive linear map® = {P; : t > 0} defined on the hereditary subalgebi®(H)p =
B(pH) by

Py(z) =pBe(x)p,  x € pB(H)p,t >0

is in fact a semigroup of completely positive maps. The minimality assertions of the
second and third paragraphs mean that a minimal dilation ofP in the sense of [2].

If 5is notaminimal dilation of? then there is a projectian> p satisfyings;(q) = ¢
foreveryt > 0and such thatthe compressiorsdd the hereditary subalgebra defined by
¢ is aminimal dilation ofP (see [2]). Thus we may conclude tha§-semigroups having
absorbing states witfinite eigenvalue lista\.4, . . ., A, » > 2 are always associated with
perturbations o€ AR/CCR flows.

Remarks.In [12], Powers constructed a new class of exampldsse$emigroups. Such
an Eg-semigroupa has the property (0.2) and moreover, there is a unit vectorH
such that the pure stat€x) = (z¢, £) is invariant under the action ef; indeedw is an
absorbing state.

In [9], Bratteli, Jorgensen and Price took up the construction of pure invariant states
for single endomorphisms of B(H) satisfying the discrete counterpart of (0.2),

Nna™(BH)) = C - 1,

and they obtain a (hon-smooth) paramaterization of such states. While both of these
results clearly bear some relation to the problems taken up below, we are concerned
here with absorbing states that avet pure. Indeed, Theorem A has little content for
eigenvalue lists of length 1, and the dilation theory associated with a pure invariant state
is trivial.

Finally, it is appropriate to comment briefly on terminology. A semigroup of isome-
triesU = {U, : t > 0} acting on a Hilbert spacH is traditionally callecoureif

ﬂt>oUtH = {0}

A familiar theorem in operator theory asserts that every pure semigroup of isometries is
unitarily equivalent to a direct sum of copies of thtgft semigroupS = {S; : ¢ > 0},
which acts on the Hilbert spadef[0, o) by way of

Sf(x) = {é,(x_t)’ 0.

0<z <t

In the theory of Ep-semigroups, the proper analogue of gfeft of mulitipicity
n=12 ..., 00istheCAR/CC Rflowofindexn. Thereis notheorem ifli;-semigroup
theory analogous to the one cited above for semigroups of isometries. Indeed, the work
of Powers [12, 13] implies that there af®-semigroupsy having the property (0.2)
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which are not cocycle conjugate (@A R/CCR flows. Thus we have elected to use the
termpure for an Ey-semigroup satisfying the condition (0.2), and we reserve the term
shiftfor theCAR/CCR flows.

1. Purity and Absorbing States

In this section we collect some basic observations about pghgemigroups acting on
von Neumann algebras. Afip-semigroupy = {«; : t > 0} acting on a von Neumann
algebra)/ is calledpureif the intersectiom; (M) reduces to the scalar multiples of
the identity. The following result characterizes purity in terms of the actionaf the
predual of)M.

Proposition 1.1. Leta = {«a; : t > 0} be anEp-semigroup acting on a von Neumann
algebra M. Thenn,a; (M) = C1 iff for every pair of normal stateg,, p, of M we
have

timm||ploat —p2oay] =0. (1.1.1)

Proof. We write M, for the von Neumann subalgebrac, (M). Assume first that
satisfies condition (1.1.1). To show thaf,, C C1 it suffices to show that for every
normal linear functionah € M, satisfying\(1) = 0, we have\(M,) = {0}. Choose
such aX and let\ = A1 + i), be its Cartesian decomposition, whevgz*) = A\i(2),
k=1, 2. Since\i(1) = 0, it suffices to prove the assertion for self-adjoint elemarits
the predual of\/.

Now by the Hahn decomposition, every self-adjoint element of the predus of
which annihilates the identity operator is a scalar multiple of the difference of two normal
states. Thus, after rescaling, we can assume that there are normalstaied M such
that A = p; — p2, and have to show that(x) = py(x) for every element: € M.
Since the restriction of eacly to M, is obviously ax-automorphism of\/,, we can
find a family of operators;; € M., such that,(z;) = = for everyt > 0. We have
|z¢]] = [|ae(ze)|| = ||z|| for everyt and hence

|p1(z) — p2(x)| = [(p1 0 r — p2 o au)(we)| < [|proay — paoay - |z

for everyt. By hypothesis the right side tends to 0 withand we have the desired
conclusion\(x) = p1(x) — p2(x) = 0.
For the converse, letbe an arbitrary normal linear functional ai. We claim that

Jim flpo ol = o e || (12)

For this, we note first that
ool = o Tawa Il (1.3)
Indeed, the inequalit¥ follows from the fact that for every € M,
Ip(ae @) < 1o Tarny || - [leve ()]

While on the other hand, if € «,(M) is an element of norm 1 for which

()] = [lp Tarany |,

then we may findrg € M with x = ay(x0). Noting that||zo|| = ||z|| becausey; is an
isometry, we have
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0 Tavany I = [p(@)] = |p o aulzo)| < [lpoau.

Thus, (1.2) is equivalent to the assertion
M lp T, 1= e far |- (1.4)

Since the range af; is a von Neumann subalgebra bf, we may deduce (1.4) from
general principles. Indeed, i¥/;, ¢ > 0 is a decreasing family of wealclosed lin-
ear subspaces of the dual of a Banach spadeaving intersectionV/,, andp is a
weak:-continuous linear functional oR”, then by a standard argument using weak
compactness of the unit ball &’ we find that the norm§p [, || must decrease to
o Tare |l

Assuming nowthad/, = C1, letp; andp, be normal states @f/ and let\ = p1—ps.
Then the restriction ok to M, vanishes, so by (1.2) we have

lim [|py o —p2oaul = lim [[Aoay| =0,
t—00 t—o0

asrequired. O

Definition 1.5. Leta = {a; : t > 0} be anEy-semigroup acting on a von Neumann
algebra M. An absorbing state fot is a normal statev on M such that for every
normal statep,

Jim Jlpoay —w| =0,

RemarksAn absorbing state is obviouslyinvariantin the sense thatoa; = w,t > 0,

and in fact is theiniquenormal invariant state. Pure absorbing statedfpsemigroups
acting on3(H) were introduced by Powers [13] in his work Ity-semigroups of type
11. Powers’ definition differs somewhat from Definition 1.5, in that he requires only
weak convergence to

Jim plan(a)) =w@). @€ BH),

for every normal statg. But as the following observation shows, the two definitions are
in fact equivalent.

Proposition 1.6. Let{p; : ¢ € I'} be a net of normal states af = 5(H) and letw be
a normal state such that
lim pi(z) = w(z), (1.6.1)

for every compact operatar. Thenlim; ||p; — w|| = 0.

Proof. Chooseec > 0. Sincew is a normal state we can find a finite rank projection
such that
w(p) > 1—ce. 1.7)

SincepMp = B(pH) is a finite dimensional space of finite-rank operators, (1.6.1)
implies that we have norm convergence

“5“ lpi Tparp —w [patp || =0,

and hence

sup  |pi(pxp) — w(pxp)| — O, (1.8)
zeM,||z||<1
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asi — oo. Now in general, we have

lpi —wl| < sup [pi(pzp) — wpzp)| + sup [pi(x — pap)| + sup |w(z — pzp)|.
llzl|<1 llx]I<1 flzlI<1
By (1.8), the first term on the right tends to Oias> oo, and we can estimate the second
and third terms as follows. Writing — pzp = (1 — p)x + pz(1 — p), we find from the
Schwarz inequality that

lpi((1 = p)2)> < pi(L = p)pi(z*z) < (L— pi(p)) |||,
and hence
(1 — p)2)| < (1 — pi(@) |||
Similarly,

lpi(pz(L - p))| < @ — pi@)?|pz|| < (L — pi())? .
It follows that
sup |pi(z — pap)| < 2(1— pi(p)Y2.

lzll <1
Since 1—- p;(p) tends to 1- w(p) < € asi — oo, it follows that

lim sup sup |pi(z — pap)| < 262

i—oo |[lz[|<1

Similar estimates show that

sup |w(z — pap)| < 262,

lzll<1

Using (1.8), we conclude that

lim sup|lp; — w|| < 4¢*/2

and (1.6.1) follows becaugds arbitrary |

RemarksSuppose that: = {«; : t > 0} is a pureEp-semigroup acting on an arbitrary
von Neumann algebr&/, and thatv is a normal state a¥/ which is invariant undetv.
Then for every normal staje Proposition 1.1 implies that

flim lpoar —w| = 75Iim lpoa: —woa =0,
hencew is an absorbing state. Conversely, if Bgtsemigroupy has an absorbing state,
then by Proposition 1.& must be a purdsy-semigroup. Thus we have the following
description of the relationship between absorbing states andfpusemigroups:

Proposition 1.9. Leta = {a; : t > 0} be anEy-semigroup acting on a von Neumann
algebraM which has a normal invariant state. Thena is pure if and only ifv is an
absorbing state.

RemarksEvery abelian semigroup is amenable. Thus one can make use of a Banach limit
on the additive semigroup of nonnegative reals to averag&gisgmigroup in the point-
weak operator topology to show that there is a statB(@f) which is invariant under

the action of thells-semigroup. However, invariant states constructed by such devices
tend to be singular. Indeed, the results of [6] show that there are fy4semigroups
(acting onB(H)) which do not have normal invariant states.
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2. Pure CP Semigroups

Definition 2.1. A CP semigroup is a semigroup= {P; : t > 0} of normal completely
positive maps oB(H) which satisfies the natural continuity property

Jim (Pa),n) = (w€m), v € BUD), & e H.

P is called unital if P,(1) = 1 for everyt > O.
A unital CP semigroupP is said to be pure if, for every pair of normal stai@s p»
of B(H) we have

lim ||p1o P, — p2o P = 0.
t—oo

Notice that pure CP semigroups are required to be unital. Unital CP semigroups are
often calledquantum dynamical semigroupsthe mathematical physics literature. The
purpose of this section is to briefly discuss the relationship between pure CP semigroups
and purefip-semigroups. This relationship is not bijective, butitis close enough to being
so that results in one category usually have immediate implications for the other.

For example, suppose th&tis a pure CP semigroup acting @&(H). A recent
dilation theorem of B. V. R. Bhat [7, 8] implies that there is a Hilbert spAc® H
and anEp-semigroupa = {oy : t > 0} acting onB(K) which is adilation of P in
the following sense. Lettingg € B(K) be the projection onto the subspaleand
identifying B(H) with the hereditary subalgebialy = poB(K)po of B(K), then we
have

a:(po) = po, and (2.2.1)
Pi(z) = poou(z)po, T € Mo (2.2.2)

for everyt > 0. Because of (2.2.1), the operator
Poo = tILrT;o OCt(pO)

exists as a strong limit of projections, and is therefore a projection fixed under the action
of a. By compressingy to the hereditary subalgebpa, 5(K)p., if necessary, we can
assume thakl = p.. K and hence that

ay(po) T 1k, ast — oo. (2.3)

When (2.3) is satisfied we will say thatis adilation of P.

Dilations in this sense are not unique. In order to obtain uniqueness (up to conjugacy),
one must in general compresdo a smaller hereditary subalgebra(f<). Once that
is donec is called aminimaldilation of P. The issue of minimality is a subtle one, and
we will not have to be very specific about its nature here (see [2] for more detail). For
our purposes, it is enough to know that every dilation can be compressed uniquely to
a minimal dilation, and that minimal dilations are unique up to conjugacy. Moreover,
nonminimal dilations of a given CP semigroup exist in profusion. For example, the trivial
CP semigroup acting dit has many dilations to nontrivial, nonconjugig semigroups
[13]. The following result implies that all such dilations are pure.

Proposition 2.4. Let P = {P; : t > 0} be a pure CP semigroup acting &{H). Then
every dilation ofP to an Ep-semigroup is pure.
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Proof. Let« be a dilation ofP which acts or3(K), K being a Hilbert space containing
H. Lettingpo € B(K) be the projection oii, then by (2.3) we see that the subspaces

Kt = Oét(po)K

increase witht and their union is dense iR. If we let A; denote the set of all normal
states of B(K) which can be represented in the form

pl@) = (b, &),
k

with vectorséy, &, ... € K, then the setdV; increase witht and their union isiorm-
dense in the space of all normal state$36).

Using this observation together with Proposition 1.1, it is enough to show that for
everyt > 0 and every pair of normal statgs, p> € N, we have

lim ||p1oas— p2oasl =0. (2.5)

To prove (2.5), fix > 0 and choose > ¢. We claim that fork = 1,2 andx € B(K)
we have

pr(as()) = pr(ow(Ps—1(porpo)))- (2.6)
Indeed, sincgp < a,_:(po) We have

P_(poxpo) = pocts—¢(poxpo) = pocrs—i(po)ts—¢(x)as—i(po)po = pocts—t(z)po,

so that
a¢(Ps—t(porpo))) = ar(pocts—¢(w)po) = ae(po)ars(x)crs (po).
Hence the right side of (2.6) can be written

pr(a(po)as(z)ay (po)).

Sincep, belongs taV; we must havey, (a:(po)za(po)) = pr(z) for everyz € B(K),
and (2.6) follows.

Letting o, be the restriction opy o oy to Mo = po5(K)po we find that for every
x € B(K),

lp1(as(x)) — pa(as(2))] = [o1(Ps—t(Porpo) — o2(Ps—t(poxpo)|-
Thus
||p1 Olig — P20 as|| = Ha'l o P@—t — 0290 Ps—t”

must tend to 0 as tends tooo, and (2.5) follows. O

Suppose now that we start with a putg-semigroup acting ofs(H). Itis not always
possible to locate a CP semigroup as a compressiabetause we know of no general
method for locating a projectiagny € B(H) satisfyinga.(po) > po for everyt. However,
if o has an invariant normal state then the support projection af provides such a
projectionpg. To see that, simply notice thato o, (1 — pg) = w(1 — pg) = 0, hence
(1 — po) < 1 — po, hencen;(po) > po.

Given such a projectiopg, we can compress to obtain a family of normal com-
pletely positive map® = {P; : t > 0} of B(poH) = poB(H)po by way of

Py(x) = poas()po, t > 0,2 € poB(H)po. (2.7)

The fact thata;(pg) > po insures thatP is in fact a CP semigroup. The following
summarizes these remarks.
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Proposition 2.8. Suppose that is a pure Ep-semigroup acting oil8(H) andw is a
normal a-invariant state with support projectiopy. Then the CP semigroup P defined
by (2.7) is pure, and the restrictian of w to poB(H)po = B(poH) is a faithful normal
P-invariant state which is absorbing in the sense that for every normal stftB(po H ),

lim ||[po P, —wpl| = 0.
t—oo

If w is weakly continuous and not a pure state3§f{), then P may be considered
a CP semigroup acting on a matrix algebid,, (C),n =2,3,.. ..

The preceding discussion shows the extentto which the theory offgtsemigroups
having an absorbing state can be reduced to the theory of CP semigroups Haitimgla
absorbing state. While the latter problem is an attractive one in general, we still lack
tools that are appropriate for arbitrary invariant normal states. The following sections
address the case of weakly continuous invariant states.

3. Perturbations and Invariant States

In order to describe the pure CP semigroups acting on matrix algebras we must first
obtain information about invariant states. More precisely, givéathful statew on a
matrix algebral/ = My (C), N = 2,3, ..., we wantto identify the unital CP semigroups

P ={P,; : t > 0} that leavev invariant in the sense that

wo P, =w, t>0.

It is not obvious that such semigroups exist wheis not a tracial state. In this section

we characterize the generators of such semigroups up to perturbations (Theorem 3.8)
and we give explicit examples in Corollary 3.16. In general, the genefatfra CP
semigroup has a decomposition of the form

L(x) = P(x) + kx + zk*, r e M, (3.1)

whereP is a completely positive map o andk € M [10]. The associated semigroup
{exptL : t > 0} is unital iff
L()=0 (3.2)

and it leavesv invariant iff
woL=0. (3.3)

It is easy to satisfy (3.2), but less easy to satisfy both (3.2) and (3.3). Indeed, setting
x =1in (3.1) we find that (3.2) holds iff has a Cartesian decomposition

k=-1/2P(1) +¢,
where/ is an element of\f satisfying¢* = —/. In this case (3.1) becomes
L(z) = P(z) — 1/2(P()x + xP(1)) + [¢, z]. (3.4)

There is a natural decomposition of this operator corresponding to the Cartesian
decomposition of::
L(z) = Lo(x) + [£, z],

whereLyg is the “unperturbed" part af,
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Lo(z) = P(z) — 1/2(P()z + 2 P(1)). (3.5)

Notice that bothZy and L generate unital CP semigroups, and because of (3.3) the
semigroup generated by leavesw invariant. Ifw is not a trace then the unperturbed
CP semigroup exfilg need not leave invariant (see Proposition 3.18). Thus we are
led to seelperturbationsof Lo which solve both Egs. (3.2) and (3.3).
In order to discuss this issue in more concrete terms leé the density matrix of
the statev,
w(zx) = trace2z), e M.

Sincew is faithful, Q is a positive invertible operator. More generally, we identify the
dual M’ of M with M itself in the usual way, the isomorphisine M — w, € M’
being defined by

wqe(x) = traceqx), x e M.

For every linear mag : M — M the dual map_., defined onM’ by L.(p) = po L,
becomes
trace( . (y)x) = trace{ L(z)), z,y € M.

Now a linear mag. : M — M satisfiesv o L = 0 iff its dual satisfied...(2) = 0. If
we choose a completely positive m&p: M — M and definelg as in (3.5), then we
seek a skew-adjoint operatbe M satisfying the operator equation

Lo () = (Q — Q. (3.6)

Itis not always possible to solve (3.6). But if a solutirexists then there are infinitely
many, the most general one having the fdrm/y + k, k being a skew-adjoint operator
commuting with<2.

We will show that (3.6) is solvable ifP satisfies a certain symmetry requirement.
The symmetry involves an involution # and is described as follows. For every linear map
L:M — M,letL*¥ : M — M be the linear map

L*(z) = Q@ Y2L (QY22QY?) QY2 (3.7)
For our purposes, the important properties of the operdtien L” are summarized as
follows.

Proposition. L — L*is alinearisomorphism satisfying™ = L, and if L is completely
positive then so i€*.

Sketch of proofThe argument is completely straightforward. A direct computation shows
that
(L#)*($) — Ql/ZL(Qfl/ngzfl/Z)Ql/Z’

from which L# = L is immediate. The fact that # preserves complete positivity follows
from the fact that ifP is a completely positive map then saofs. |

Theorem 3.8. Let w be a faithful state on a matrix algebrd/, let@Q : M — M
be a completely positive linear map, and def@é by (3.7). Then the following are
equivalent.

(i) There is a unital CP semigroup = {P; : ¢t > 0} which leavesv invariant and
whose generator has the form

L(x) = Q(x) + kx + xk*

for somek € M.
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(i) For every minimal spectral projection of Q we haveeQ(1)e = eQ*(1)e.

Our proof of Theorem 3.8 is based on the following general result.A_be the
centralizer algebra a$,

A={a € M :wlax) = w(xa),x € M}.

If we consider the spectral decompositioncf

Q= zT: /\kek,
k=1

whereey, . .., e, are the minimal spectral projections@fand 0< A\; < ... < A, are
the distinct eigenvalues, thehis the commutant of2} and hence

A={a e M :ae,=era,1 <k <r}

Ais a direct sum of full matrix algebras, and the restrictiowdd A is a faithful tracial
state. The natural conditional expectatibn : M — A is given by

EA(ac):Zekgcek7 re M.
k

The following result implies that the solvability of Eq. (3.6) depends only on the com-
pression of to the centralizer algebra.

Lemma 3.9. Let w be a faithful state of\/ and letL : M — M be a linear map
satisfyingL(x)* = L(z*), x € M. The following are equivalent:

(i) There is a skew-adjoint operatdre M such that the perturbation’(z) = L(x) +
[, x] satisfiesv o L' = 0.

(i) The restriction ofw o L to A vanishes.

More generally, settind.oc = E4 LE 4, there is a perturbatiord.(z) = L(x) + [¢, «] of
the form (i) such thab o L' = w o Ly.

Proof. (i)==(ii) Suppose that is an operator inl/ for whichw o L’ = 0, L’ being the
operator of part (i). Since(fa — af) = 0 for all « in the centralizer algebra we have

w(L(a)) = w(L(a) +[¢,a]) = w o L'(a) = O,
hence (ii).
We now prove the general assertion of the last sentence. Noting th#t, = w,

we have
w(Lo(r)) = w(L(Ea(x)), x€ M,

and hence we must exhibit an operatet M satisfying¢* = —¢ and
w(L(z) + [¢,x] — L(E(z))) =0, x € M.
After dualizing, the previous equation becomes
L.(Q2)—[(,Q] — Ea(L«(2)) =0,

or
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L.(Q) — EA(L«(R)) =42 — QL. (3.10)
Let T be the left side of (3.10) is a self-adjoint operator satisfying(7) = 0. Thus

if .
Q= Z )\kek
k=1

is the spectral decomposition ©fthen we have, Te;, = 0 for all k. Set

1
(= Z ﬁezTe]
i T

It is obvious that’* = —/¢, and sincee;, = e, Q2 = \re;, for all £ we have

g
QY = Z m@iTej,
iz Y
/Q = Z #eiTej.
7 N T
Hence
I1Q — QU= ZeiTej = CZ—‘7
i7j
as required.
The implication (ii)=>(i) follows immediately, for ifw o L(a) = 0 for alla € A,

then because o E4 = w we havew o Ly = 0. Thus the preceding argument gives a
perturbation’ of the form (i) satisfyingu o L' =w o Ly =0 O

Proof of Theorem 3.8.et (Q be a completely positive map and defihe M — M by
L(z) = Q(z) — 1/2(Q(D)z + zQ(1)).

The assertion (i) of Theorem 3.8 is equivalent to the existence of a skew-adjoint operator
¢ € M such that

w(L(x)+[¢,2]) =0, x e M. (3.11)
By Lemma 3.9, the latter is equivalent to
w(L(a)) =0, a € A. (3.12)

Thus we have to show that (3.12) is equivalent to the operator equation
EA(Q(D) = Ea(Q*(1)). (3.13)
Looking first at (3.12), we have
w(L(a)) = w(Q(a)) — 1/2w(Q(Da + aQ(1)).

Now since every elemente A commutes with2 we have

1/2w(Q(Da + aQ(1)) = 1/2traceQQ(L)a + QLaQ(1))
trace2Q(Da) = w(Q(Da).

Hence (3.12) asserts that
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w(Q(a)) — w(Q(L)a) = 0, a € A. (3.14)
Writing

w(Q(a)) = traceQ(a)) = trace@.(RQ)a)
= trace2 - QY2Q.(QY? - QY2)QV2a) = w(Q*(1)a),

we rewrite (3.14) as
w(@"(1) - Q()a)=0, acA
Sincew o B4 =w andE 4(xa) = E4(z)a for a € A the preceding formula becomes
w(EAQH() - QM)a)=0, acA
Sincew [ 4 is a faithful trace o4, the latter is equivalent to Eq. (3.13). O
Remark 3.15.1n the important case wheteis the tracial state on/ the density matrix
of w is a scalar, the map # reduces to the dual mappihg L., andE 4 is the identity

map. In this case the criterion (ii) of Theorem 3.8 degeneratéy(1d = Q.(1). For
example, ifQ has the form

Qx) =Y vy,

k=1

wherevy, vy, . .., v. € M, then condition (ii) becomes

T T
E VEUE = E VLU
k=1 k=1

Moreover, when this condition is satisfied ands the tracial state no perturbation is
necessary. One simply shows by a direct calculation that the mapping

L(z) = Q(z) — 1/2QD)z + 2Q(1))
satisfies trace L = 0 iff Q(1) = Q.(2).

Corollary 3.16. Letw be afaithful state oA/ with density matrix2 and letvy, ..., v, €
M satisfy
Z VRUy = Z VLU
k=1 k=1
Then there is a unitab-preserving CP semigroup whose generator has the form
L(z) = 9_1/2(2 vpzv)) QY2 + ka + ok*

k=1

for some operatok € M.
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Proof. Let @) be the completely positive map

Qx) = Qfl/z(z vkva)Qfl/z.

k=1

By Theorem 3.8 it suffices to show th@f'(1) = Q(1). A direct computation shows that
the dual ofQ is given by

Q.(x) = Z UZQ_l/sz_l/zvk
k—1

Hence .
Q') = QU Y = VA v V2
k=1
The right side i9)(1) because of the hyposthesisan. . ., v,. O
Remark 3.17. The necessity of perturbationsiew of Remark 3.15 it is natural to ask
if nontrivial perturbations are really necessary, and we conclude this section with some

remarks concerning that issue. Suppose ihé& a normal completely positive map of
M andL is the unperturbed generator

L(z) = P(z) — 1/2(P(1)z + zP(1)). (3.18)

Proposition 3.19. Letw be a faithful state o/ = My (C) which is not a trace. Then
there is an operatol. of the form (3.18) and a skew-adjoint operatoe M such that
if L'(z) = L(xz) + [¢, 2] thenw o L Z0whilew o L' = 0.

Proof. Consider the spectral decomposition of the density matrix, of

Q= zr: /\kek.
k=1

We must haver > 2 becausev is not a trace. Choose a nonzero partial isometry
satisfyingv*v < e; andvv* < e. Sincef2 is an invertible positive operator there is an
e > 0 such that

Q =Q+e(v+v")

is positive. Since the trace 6f is 1 we may consider the statéhaving density matrix
Q. Let P be a normal completely positive map satisfyiRgl) = 1 andw o P = o'
(there are many such maps, the simplest one bBiag = w’(z)1), and define

L(z) = P(x) — x.

Thenwo L =w'" —w #0.
On the other hand, sind@, () = Q' we have

PH1) = Q V2P (@)@ Y2 = 2o Y2

Thus, letting

s

FEa(z) = Z erpxe

k=1



Pure Ep-Semigroups and Absorbing States 33

be the conditional expectation onto the centralizer algebra ahd usingE 4(v) =
Ea(v*) =0, we haveE4(Q) = E4(R). Hence

EA(P*1) = Q Y2EL(Q)Q Y2 =1

From Theorem 3.8 we may conclude that there is a skew-adjoint opdratmh that
the perturbation
L'(z) = L(z) + [¢, 2]

satisfiesvo L' =0 O

4. Ergodicity and Purity

The purpose of this section is to give a concrete characterization of the generators of pure
CP semigroups acting on matrix algebras, given that the CP semigroup has a faithful
invariant state (Theorem 4.4).

Definition 4.1. A unital CP semigroupP? = {P; : ¢ > 0} acting onB(H) is called
ergodic if the only operators satisfyingP;(z) = z for everyt > 0 are scalars.

The setd = {z € B(H) : Pi(x) = z,t > 0} is obviously a weakclosed self-
adjoint linear subspace &f(H) containing the identity. In general it need not be a von
Neumann algebra, but as we will see presently, it is a von Neumann algebra in the cases
of primary interest for our purposes here.

Proposition 4.2. Every pure CP semigroup is ergodic.

Proof. Suppose® = {P; : t > 0} is pure andr is an operator satisfyinfjz|| < 1 and
Py(x) = x for everyt. To show thatr must be a scalar multiple dfit suffices to show
that for every normal linear functionalon B(H) satisfyingp(1) = O we havep(x) = 0.
Since any normal linear functionalsatisfyingp(1) = 0 can be decomposed into a sum
of the form

p =blp1 — p2) +ic(ps — pa),
whereb andc are real numbers and tlg are normal states, we conclude from the purity
of P that

Jim [po Py =0.

Sincez is fixed under the action adP we have
lp(@)| = [p(Pe(2))] < [[po Pl
for everyt > 0, from whichp(z) = 0 follows. O

Proposition 4.3. LetP = { P, : t > 0} be a unital CP semigroup which leaves invariant
some faithful normal state &(H). Then

A={a € B(H): Pia) =a,t > 0}

is a von Neumann algebra. Assuming further tRatas a bounded generatdr repre-
sented in the form

L(z) = Z vav; +kx + ak” (4.3.1)
J

for operatorsk, v, vo, . .. € B(H), thenA isthe commutant of the von Neumann algebra
generated by{k, vy, vy, ...}
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Proof. In view of the preceding remarks, the first paragraph will follow if we show that
A is closed under operator multiplication. By polarization, it is enough to show that
a € A= a*a € A. For eachu € A we have by the Schwarz inequality

a*a = Py(a)* Py(a) < Pi(a”a)

foreveryt > 0. Lettingw be a faithful state invariant und&we havev(P;(a*a)—a*a) =
0, and hencé’(a*a) = a*a. Thusa*a € A.

Suppose now thalP has a bounded generator of the form (4.3.1), andlbe the
x-algebra generated Hy, vy, vy, .. .}. Noting thatA = {z € M : L(z) = 0}, we show
thatA = B'. If z € B’ then (4.3.1) becomes

L(z) = 2> _vjv; +k+k*) =2L(1) = 0.
J

It follows that expt L(x) = x for everyt, hencer € A.
For the inclusiond C B’, we claim first that for every € A,

[vj,a] = vja —av; =0, ji=12,....
Indeed, sincd, a, a*, andaa™* all belong toA and L(A) = {0}, we have
L(aa™) — aL(a*) — L(a)a™ + aL(1)a* = 0.

Substituting the formula (4.3.1) fab in the above we find that the terms involvikg
drop out and we are left with the formula

> Tvj,allvj,a]* = = [vj,al[v},a*] = 0.
k J

It follows that [v;, a] = O for everyk. Replacing: with «* we see that must commute
with the self-adjoint set of operato{s1, vo, . .., v}, v5, ...}

Now sinceL(1) = 0, it follows from (4.3.1) thad _; v;v; + k + k* = 0, and hencé
has Cartesian decompositiér= —h + £, where

h=1/2% v
J
and/ is a skew-adjoint operator. Setting

Lo(x) = Z vjxv; — hx — xh,

J

we have
L(z) = Lo(x) + [¢, z],

andLo(A) = {0} by what was just proved. Thus, farc A,
[¢,a] = L(a) = O,

and hence: must commute witlf as well. The inclusiomd C B’ follows. O
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Theorem4.4.Let P = {P, : ¢ > 0} be a unital CP semigroup acting on a matrix
algebraM = My (C), N = 2,3, ..., which leaves invariant some faithful stateLet

L(z) = Z vjv; +kx + zk”
=1
be the generator aP. Then the following are equivalent:
(i) Pispure.
(i) Pisergodic.
(iii) The set of operatorgk, k*,v1,...,v,,v5,...,v}} isirreducible.
Proof. In view of Propositions 4.2 and 4.3, we need only prove the implicatiori{)

Assuming thatP is ergodic, we consider its generatbras an operator on the Hilbert
spacel?(M, w) with inner product

(x,y) =w(y*z),  x,yeM.

We havel(1) = 0 becausé is unital, and.*(1) = 0 follows from the fact thato L = 0O,
L* denoting the adjoint of. € B(L?(M,w)). It follows that{\1 : A € C} is a one-
dimensional reducing subspace foand we can consider the restrictidg of L to the
subspace
Ho={z e LA(M,w):z L1} ={z e M : w(z)=0}.
We will show that
Jim_| exptLo|| =0, (4.5)

|| - || denoting the operator norm I8 Hy).
Notice that (4.5) implies tha? is pure with absorbing state Indeed, forany € M
we setrg = x — w(z)1. Thenxzy € Hy and we may conclude from (4.5) that

tlim Py(xo) =0,
hence
tlim Py(x) = w(x)1,

and finally
lim |[poP.—w| =0
t—o0o

for every statey of M becauséV/ is finite dimensional.

In order to prove (4.5), we note first th@xpt Lo : ¢t > 0} is a contraction semigroup
acting onHy. Indeed, expL is a contraction ilB(L?(M, w)) for everyt by virtue of the
inequality

HPt(x)H%z(M_’w) = wW(Py(x)* Py(x)) < w(Pi(z*x)) = w(z™z) = ||‘r||2L2(M,w)7

and the restriction oP, to Hy is expt L.
In particular, the spectrum dfy is contained in the left half plane

o(Lo) C{z€C:z+2<0}.

We claim thatr(Lo) contains no points on the imaginary axig : y € R}. To see this,
notice first that O¢ o(Lo). Indeed, ifL(z) = Lo(z) = 0 forz € Hy thenz must be a
scalar multiple ofl by ergodicity, and since(x) = 0 we haver = 0.
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Suppose now that is a nonzero real number such thate o(Lg). Then there is
an element: # 0 in Hy for which L(z) = icx. Note first thate is a scalar multiple of a
unitary operator. Indeed, from the equatibfx) = i« it follows that

P(z) = e*'x  foreveryt >0,
hence
r*x = Py(x)" Py(r) < Pi(v"x)

by the Schwarz inequality. Sined P;(z*z) — x*x) = 0 andw is faithful we conclude
that P;(x*x) = z*z; so by ergodicityr*x must be a scalar multiple df Thusx must
be proportional to an isometry i/ .

We have located a unitary operatore M such thatlo(u) = icu. Now we assert
thatu must commute with the self-adjoint set of operators, . .., v, v, ..., v} }. To
see that we make use of the formula

L(zx™) — xL(2)* — L(x)x™ +zL(Dx™ = zr:[vj, z)[v;, 2]* (4.6)
j=1

(see the proof of Proposition 4.3). Setting- v we find that the left side of (4.6) is
—uL(u)* — Lu)u* =ial —ial =0,
and hence ,
Z[vj,u][vj,u]* =0,
j=1

from which we deduce thavf,«] = O for everyk. Sinceu is unitary the assertion
follows.
Set

h=1/2) v},
=1

SinceL(1) = 0 it follows thatk has Cartesian decomposition of the fokns —h + ¢,
wherel* = —¢, hencel decomposes into a sum of the form

L(z) = Lo(z) + [£, 2],
where .
Lo(x) = Z vjzv; — hx — zh.
i1

By what we have just proved,o(u) = uLo(1) = 0. It follows that the equatioth(u) =
iau reduces to
[4,u] = iau. 4.7)

Now since/ is skew-adjointy, = e*¢ defines a one-parameter group of unitary operators
in M and (4.7) implies that for every € R we have

vsuv; = e'*u.

Sincez — vszv] is ax-automorphism of\/ for everys € R it follows that the spectrum
of v must be invariant under all rotations of the unit circle of the foxm— 5},



Pure Ep-Semigroups and Absorbing States 37

contradicting the fact that the spectrum of&in< NV unitary matrix is a finite subset of
{A\ € C: || = 1}. This contradiction shows tha{Lo) cannot meet the imaginary axis.
We conclude that
o(Lo) C{z€C:z+2<0},

and hence there is a positive numbauch that
o(Lo) C{z€C:z+z< —2¢}. (4.8)

Consider the operatad = expLo € B(Hp). By the spectral mapping theorem the
spectral radius ofl satisfies

sup{|e®| : z € o(Lo)} < €™,
and hence there is a constant 0 such that

n=012....

)

A" ]| < ce™ "
Letting [t] denote the greatest integer not exceedingO we find that for every > 0,
| exptLo| < || exp [t]Lol| = ||AY| < ce e,

and hence
lim || exptLo| =0,
t—o0

as asserted. O

5. Applications

In [4], a numerical indexi.(P) was introduced for arbitrary CP semigroups= { P, :
t > 0} acting onB(H). It was shown that for unital CP semigroups d.(P) is a
nonnegative integer ax = Rg, or 2%, and in factd, (P) agrees with the index of the
minimal dilation of P to an Fp-semigroup. In [5]¢d. (P) is calculated in all cases where
the generator of is bounded, and in particular for CP semigroups acting on matrix
algebras.

We will make use of this numerical index in the following result, from which we
will deduce Theorem A.

Theorem 5.1. Letw be a faithful state of\/,.(C), » > 2, and letn be a positive integer
satisfyingn < r? — 1. Then there is a pure CP semigroiib= {P; : t > 0} acting on
M,.(C) satisfying

(i) wo P, =w foreveryt > 0, and

(i) d.(P)=n.

We have based the proof of Theorem 5.1 on the following resuilt.

Proposition 5.2. Suppose thaf” is a non-scalar matrix inM,.(C), » > 2, and let
X = e2™/" Then there is a pait, v of unitary operators inV/,.(C) with the properties
521u"=v" =1,

5.2.2 vu = \uw,

523{T,u} =C-1.
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Proof of Proposition 5.2The assertion 5.2.3 is that the only operators commuting with
bothu andT are scalars. Lell be anr-dimensional Hilbert space and identify,.(C)
with B(H).

We claim first that there is an orthonormal ba&ists, . . ., ._1 for H such that

(T¢0,&k) 70, 1<k<r-1 (5.3)

Indeed, sincel’ is not a scalar there must be a unit vecggre H which is not an
eigenvector off. Thus there is a complex numbeand a nonzero vectagrorthogonal
to &y such that

T'€o = ago +C.

Letes, e, ..., c._1 be any sequence of nonzero complex numbers satisfying
jea? + Jea? + -+ [er—a? = I

Since¢ # 0 we can find an orthonormal basjs, &, ..., &1 for [&]* such that
(&) = ¢ fork =12,...,r — 1. For such a choice, the sfo, &1, ...,&—1} isan
orthonormal basis with the asserted property (5.3).

Now defineu, v € B(H) by

uly = )\_kfk and
V€ = Epil

for 0 < k < r — 1, where+ denotes addition modula It is obvious that, andv are
unitary operators, and a straightforward computation shows that they satisfy formulas
5.2.1and 5.2.2.

We claim now that ifB € B(H) satisfiesBT = T'B and Bu = uB then B must be
a scalar multiple of the identity. Indeed, fraBw = «.B and the fact that is a unitary
operator with distinct eigenvalues, we find that eg¢cimust be an eigenvector of both
B and B*. Choosingd;, € C such thatB¢;, = di&, thenB*&, = di&, and for each
k=12,...,r—1we have

do (T€o,&k) = (T'B&o, k) = (BTEo, k) = (Téo, B*Ex) = di (T60, &) -

It follows that (. — do) (T'€0,&x) = 0 for 1 < k < r — 1. Because none of the inner
products(T'¢o, &) can be zero we conclude thdt=dy = -+ =d,_1. ThusB =dp - 1,
establishing Proposition 5.2. O

Remarkd.et \ be a primitiver™ root of unity and let:, v be two unitaries satisfying
condition 5.2.1 and 5.2.2. Consider the family-étnitary operator§w;, ; : 0 <i,j <
r — 1} defined by

Wi, 5 = uivj.
We may consider that the indicési range over the abelian gro#yrZ, and with that
convention they; ; are seen to satisfy the commutation relations for this group

W4, jWp,q = )‘jpwi‘fp,ﬁqv (5.4)
(5.5)

= LTI
wi ;= Aw_i—j,

where the operationst p, j + ¢, —i, —j are performed module. Of course, we have
wo,o = 1. It follows from (5.4) and (5.5) that the set of operatfts; ; } satisfies

- * = \JP—qi
Wi, jWp,qW; j A Wp,q

)
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This formula, together with the fact thatis a primitiver™ root of unity, implies that
trace,,q) = 0, forO<p,g<r—-1, p+qg>0. (5.6)

In particular, from (5.4)—(5.6) we see that relative to the inner produdt/o(t) defined
by the normalized trace, the set of operatrs ; : 0 < 4,5 < r — 1} is an orthonormal
basis. Thus théw; ; : 0 <4, j < r — 1} are linearly independent.

Proof of Theorem 5.1Assume first that is not the tracial state, and I2tbe its density
matrix. ThenQ is not a scalar multiple of the identity and Proposition 5.2 provides a
pair of unitary operators, v satisfying (5.2.1), (5.2.2) and (5.2.3) fér = Q. Define
w; ; = u'v?, 0 < 4,5 < r— 1. By the preceding remarks the set:6f— 1 unitary
operatorsS = {w; ; : 0 <,j <r — 1,9+ > 0} is linearly independent and consists
of trace zero operators.

Choosen satisfying 1< n < r2 — 1 and letvy, v, . . ., v, be any set of: distinct
elements ofS such that; = w1 o = u. By (5.2.3) we have

{Qa vl}, = (Clv

and hence
{Q,v1,v2,...,v,} =CL (5.7)

Consider the completely positive map &f.(C) defined by
Q) = VY vpav)e V2.
k=1

Since thev;, are unitary operators we have

A T
§ * E *
Ukvk - Ukvk,
k=1 k=1

hence Corollary 3.16 implies that there is an operater M,.(C) such that
L(z) = Q(z) + kx + zk*

generates a unital CP semigrobip= { P, : t > 0} satisfyingwo P, = w for everyt > 0.
Because of (5.7), Theorem 4.4 implies tliats a pure semigroup.

It remains to show thad.(P) = n, and for that we appeal to the results of [5].
Consider the linear span

E= spar{Q‘l/zvl, Q Y2y, ., Q_l/zvn}.

We claim first thatt N C1 = {0}. Indeed, if this intersection were not trivial then we
would have
1= 019*1/21)1 +..-+ cnﬂfl/zvn

for some scalars,, ..., c,. Hence
QY2 = ciup + -+ cpun.

This is impossible because the left side has positive trace, while by (5.6) the right side
has trace zero.
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We can make into a metric operator space [4, Definition 1.9] by declaring the
linear basi2~*?v,, ..., 2?4, to be an orthonormal basis, and once this is done we
find that€ is the metric operator space associated with the completely positivé)map
From [5, Theorem 2.3] we hav& (P) = dim& = n, as required.

It remains to deal with the case wheveis the normalized trace of/,.(C). That
requires a small variation of the preceding argument. Choose an arbitrary ofiérator
M,.(C) so thatT is not a scalar and satisfig& = —T'. Let \ be a primitiver" root of
unity and letu, v be two unitary operators satisfying the three conditions of Proposition
5.2. Now we form the operators; ; exactly as before, and obtainunitary operators
{v1,v2,...,v,} by enumerating the elementsff, ; : 0 <i,j <r—1i+5 > 0}in
such a way that;, = u. Define an operatak on M,.(C) by

L(z) = Z vgavy, —nx + [T, x].
k=1

Notice thatZ(1) = 0 and, since we obviously haY€, viv; = >, vivy, it follows that
trace(.(z)) = O for allz € M,(C). HenceL is the generator of a unital CP semigroup
P ={P, : t > 0} which preserves the tracial state

Notice thatP is pure. Indeed, by (5.2.3) we haye;, T}’ = C1, and hence the
x-algebra generated by the det, ..., v,, T} is irreducible. Theorem 4.4 implies that
P is a pure CP semigroup.

Finally, d.(P) = n follows exactly as in the non-tracial case already established.

We are now in position to prove Theorem A, as stated in the introduction.dredn
be positive numbers with > 2, and let\1, A2, . . ., A, be a sequence of positive numbers
summing to 1. We have to show that there is a cocycle perturbation 6t tie/CCR
flow of indexn which has an absorbing state with eigenvaluelist\o, . . ., A,..

We first consider the case in whigh< r?—1. LetH, be a Hilbert space of dimension
r, and identify M,.(C) with B(Hy). Choose an orthonormal basis &, . . ., & for Hy
and letwg be the state oB(Hy) defined by

wol@) =Y Ak (wbk, &) -

k=1

Thenwyg is a faithful state oB(Hy) having eigenvalue lisky, Ay, ..., \,.. By Theorem
5.1,thereisapure CP semigroBp= { P; : t > 0} acting on3(Hy) such thatvgo P; = wp
for everyt > 0. Using Bhat'’s dilation theorem [7, 8], there is a Hilbert spat® H,
and anFEp-semigroupy = {o; : t > 0} acting onB(H) such that if we identify3(Ho)
with the cornerpoB(H)po (po denoting the projection off onto Hyp), then we have
a(po) > po for everyt > 0 and for everyr € B(Hy),

Py (x) = poov(x)po, t>0.

Using [2], we may assume thatis minimalover the projectiomy.
Now by Proposition 2.4y is a pureEy-semigroup. Moreover, if we define a normal
statew of B(H) by
w(r) = wo(porpo),

thenw must be invariant under. Indeed, since.(po) > po we have for every: € B(H)

poce(x)po = poct (Poxpo)po = P (poxpo),
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hence
w(ai()) = wo(Py(porpo) = wo(porpo) = w(x),

as asserted. By the general discussion of Sect. 1 it follows/tisatn absorbing state, and
of course the eigenvalue list ofis the same as that fap, namelyA, Ay, ..., A.. Thus

it only remains to show that is conjugate to a cocycle perturbation of i R/CCR
flow of indexn. But by Corollary 4.21 of [5]¢« is cocycle conjugate to@AR/CCR
flow of indexd..(P) = n, and the proof of this case is complete.

Suppose now that > r2 — 1. In this case, pick any positive integer r2 — 1. By
what was just proved, we can find a cocycle perturbatiai the CAR/CCR flow of
indexk which has an absorbing statéehaving eigenvalue listy, Ao, . .., A,.. Moreover,
letting po be the support projection afthenpg has rank- and if P is the CP semigroup
obtained by compressingto po3(H)po, thenP is a pure CP semigroup amdcan be
assumed to be the minimal dilation Bf

We will show how to usex to construct anonminimaldilation G of P which is
pure, conjugate to a cocycle perturbation of d R/CCR flow of indexn, and has
an absorbing state with the same eigenvalue list. For that; letn — k and leta™ be
the CAR/CCR flow of indexm, acting on3(K). It is known that every’ AR/CCR
flow has a pure absorbing staigthe vacuum state) [13]. Thus lettifge K be the
vacuum vector then we have

p(z) = (x¢,C) -
If we write [¢] for the rank-one projection defined lgythen«}*([¢]) > [(] for every
t > 0 and in fact
Jim_ a3 ([]) = 1k (5.8)

Let 5 be theEy-semigroup defined oB(H ® K) by 8 =a ® o™, i.e.,
Bz ®@y) = aul@) ® ;" (y), = € B(H),y € B(K),t > 0.

0 is obviously a cocycle perturbation of tieAR/CCR flow of indexn = k +m. We
will show thatg is a pureFEy-semigroup having an invariant state with eigenvalue list
AL, A2y ey A

To that end, consider the normal statedefined on3(H @ K) by

w/=w®p.

Sincep is a vector statey’ has the same eigenvalue list@asnamelyAg, Az, ..., A,
Moreover,w’ is invariant under? becausev (resp.p) is invariant undee (resp.a™).
Thus it remains to show thatis a pureFy-semigroup.

For that, we appeal to Proposition 2.4 as follows. &gt po ® [v] be the support
projection ofw’. Then we have

Be(q0) = at(po) @ oy ([v]).

Since the projectiona;(po) (resp.a;*([v])) increase witht to 1 (resp.lx), it follows
that 3;(q0) > go and
f“_)rgo Bi(q0) = LK.

Thus if we letQ = {Q; : t > 0} be the CP semigroup obtained by compresging the

cornergoB(H ® K)qo, it follows thatg is a (nonminimal) dilation o). Finally, since
[v] is one-dimensionaly is conjugate to the original CP semigroffpand is therefore
pure. By Proposition 2.4, we conclude tlthis a pureFy-semigroup.
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We have established all but the third paragraph of Theorem A, to which we now turn
our attention. Let > 2 be an integer and Igt be anFEy-semigroup acting o8(H), H
being a separable infinite dimensional Hilbert space, which has an absorbing state with
eigenvalue list\1, X2, ..., \.. Assuming thaf3 is minimal over the support projection
po of w, we have to show that is cocycle conjugate to@AR/CCR flow of indexn,
wheren is a positive integer not exceeding — 1.

Let Hy = poH and letP = {P;, : t > 0} be the CP semigroup obtained by
compressing tothe cornepoB(H)po = B(Hp). Let L be the generator of the semigroup
P. By [4, 5] there is an operatdr € B(Hp) and a metric operator spaéeC B(Hp)
(possibly{0}) satisfying€ N C1 = {0} and which give rise td. as follows:

L(z) = Z vgxvy + kx + k™, x € B(Hy), (5.9)
k=1

vy, vz, ..., U, denoting any orthonormal basis f6t Since€ is a proper subspace of
the 7'2—dimzensi0nal vector spacB(Hy), the integern = dim& has possible values
0,1,...,7—1.

Note first thatn cannot be 0. For in that case (5.9) reduced.(o) = kx + zk*.
Using the fact thaf.(1) = 0, we find thatt must be a skew-adjoint operator for which
L(x) = [k, z], hence

Py(x) = exptL(z) = ezt

is a semigroup ok-automorphisms oB(Hy). Sinces is a minimal dilation ofP we
must haveH = Hy and 3, = P, for everyt > 0, contradicting the fact that is an
Ey-semigroup acting on an infinite dimensional typactor.

Thus 1< n < 72 — 1. Theorem 2.3 of [5] implies that the index Bfis given by
d.(P) = dim& = n, and by [4] Theorem 4.9 we havg (5) = d.(P) = n. 8 must be
completely spatial by [5] Theorem 4.8, and finally by the classification results of [1]
(Corollary of Proposition 7.2) every completely spati@atsemigroup is conjugate to a
cocycle perturbation of & AR/CCR flow. That completes the proof of Theorem A.
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