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Abstract: An E0-semigroupα = {αt : t ≥ 0} acting onB(H) is calledpure if its tail
von Neumann algebra is trivial in the sense that

∩tαt(B(H)) = C1.

We determine all pureE0-semigroups which have aweakly continuousinvariant stateω
and which are minimal in an appropriate sense. In such cases the dynamics of the state
space must stabilize as follows: for every normal stateρ of B(H) there is convergence
to equilibrium in the trace norm

lim
t→∞ ‖ρ ◦ αt − ω‖ = 0.

A normal stateω with this property is called anabsorbingstate forα.
SuchE0-semigroups must be cocycle perturbations ofCAR/CCR flows, and we

develop systematic methods for constructing those perturbations which have absorbing
states with prescribed finite eigenvalue lists.

Introduction

An E0-semigroup is a semigroup of normal∗-endomorphismsα = {αt : t ≥ 0} of
the algebraB(H) of all bounded operators on a separable Hilbert space, which satisfies
αt(1) = 1 and the natural continuity property

lim
t→0

〈αt(x)ξ, η〉 = 〈xξ, η〉 , x ∈ B(H), ξ, η ∈ H.

There is a sequence ofE0-semigroupsαn, n = 1, 2, . . . , ∞ that can be constructed using
thenatural irreducible representations of either the canonical anticommutation relations
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or the canonical commutation relations. TheseE0-semigroups are calledCAR/CCR
flows. They occupy a position in the category ofE0-semigroups roughly analogous to
that of the unilateral shifts (of various multiplicities) in the category of isometries on
Hilbert space.

This paper addresses the perturbation theory ofCAR/CCR flows. A cocycle per-
turbation of an E0-semigroupα is anE0-semigroupβ which is related toα by way
of

βt(x) = Utαt(x)U∗
t , x ∈ B(H), t ≥ 0

where{Ut : t ≥ 0} is a strongly continuous family of unitary operators inB(H) which
satisfies the cocycle equation

Us+t = Usαs(Ut), s, t ≥ 0,

We are interested in cocycle perturbationsβ of theCAR/CCR flows whose dynamics
“stabilize" in that there should exist a normal stateω which is absorbing in the sense
that for every normal stateρ we have

lim
t→∞ ‖ρ ◦ βt − ω‖ = 0. (0.1)

It is obvious that when an absorbing state exists it is invariant under the action ofβ,
and is in fact the unique normalβ-invariant state. Physicists refer to the property (0.1)
asreturn to equilibrium, while in ergodic theory the corresponding property is called
mixing.

Every normal stateω of B(H) has a uniqueeigenvalue list, that is, a finite or infinite
sequence of positive numbersλ1, λ2, . . . which is decreasing (λk ≥ λk+1, k ≥ 1) and
which has the property that for some orthonormal setξ1, ξ2, . . . in H we have

ω(x) =
∑

k

λk 〈xξk, ξk〉 .

Clearlyλ1 + λ2 + · · · = 1, and of course there may be a finite number of repetitions of
a given element in the eigenvalue list. Theset{λk : k ≥ 1} ∪ {0} determined by the
eigenvalue list is the spectrum of the density operator ofω. The eigenvalue list is finite
iff ω is continuous in the weak operator topology ofB(H).

If β has an absorbing stateω then it is obvious from (0.1) that the eigenvalue list ofω
contains all of the information that could be obtained from the dynamics of expectation
values observed over the long term. Thus it is natural to ask what the possibilities are, and
how one finds absorbing states for cocycle perturbations of the simplestE0-semigroups.

In this paper we will be concerned withpureE0-semigroups, i.e.,E0-semigroupsβ
with the property that the tail von Neumann algebra is trivial,

∩t βt(B(H)) = C1. (0.2)

After discussing the relationship between purity and the existence of absorbing states in
general, we take up the analysis ofweakly continuousabsorbing states, and we obtain
more or less complete information about how to construct them. Those results are applied
in Sect. 5 to establish the following

Theorem A. Letαn be theCAR/CCR flow of indexn,1 ≤ n ≤ ∞ , and letλ1, . . . , λr

be a finite decreasing sequence of positive numbers summing to1.Then there is a cocycle
perturbationβ of αn which has an absorbing stateω with eigenvalue listλ1, . . . , λr.
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If n ≤ r2 − 1 (and in this eventr ≥ 2) then one can arrange thatβ is minimal over
the support projection ofω.

Conversely, ifr ≥ 2 andβ is anyE0-semigroup which has an absorbing stateω
with eigenvalue listλ1, . . . , λr, and which is minimal over the support projection ofω,
then β is conjugate to a cocycle perturbation ofαn for somen, 1 ≤ n ≤ r2 − 1.

Remarks.The assertions about minimality relate to dilation theory. Ifω is an invariant
normal state for anE0-semigroupβ then the support projectionp of ω is increasingin
the sense that

βt(p) ≥ p, t ≥ 0,

(see the discussion following Proposition 2.4). It follows that the family of completely
positive linear mapsP = {Pt : t ≥ 0} defined on the hereditary subalgebrapB(H)p ∼=
B(pH) by

Pt(x) = pβt(x)p, x ∈ pB(H)p, t ≥ 0

is in fact a semigroup of completely positive maps. The minimality assertions of the
second and third paragraphs mean thatβ is a minimal dilation ofP in the sense of [2].

If β is not a minimal dilation ofP then there is a projectionq ≥ p satisfyingβt(q) = q
for everyt ≥ 0 and such that the compression ofβ to the hereditary subalgebra defined by
q is a minimal dilation ofP (see [2]). Thus we may conclude thatE0-semigroups having
absorbing states withfiniteeigenvalue listsλ1, . . . , λr, r ≥ 2 are always associated with
perturbations ofCAR/CCR flows.

Remarks.In [12], Powers constructed a new class of examples ofE0-semigroups. Such
anE0-semigroupα has the property (0.2) and moreover, there is a unit vectorξ ∈ H
such that the pure stateω(x) = 〈xξ, ξ〉 is invariant under the action ofα; indeedω is an
absorbing state.

In [9], Bratteli, Jorgensen and Price took up the construction of pure invariant states
for single endomorphismsα of B(H) satisfying the discrete counterpart of (0.2),

∩nαn(B(H)) = C · 1,

and they obtain a (non-smooth) paramaterization of such states. While both of these
results clearly bear some relation to the problems taken up below, we are concerned
here with absorbing states that arenot pure. Indeed, Theorem A has little content for
eigenvalue lists of length 1, and the dilation theory associated with a pure invariant state
is trivial.

Finally, it is appropriate to comment briefly on terminology. A semigroup of isome-
triesU = {Ut : t ≥ 0} acting on a Hilbert spaceH is traditionally calledpure if

∩t>0UtH = {0}.

A familiar theorem in operator theory asserts that every pure semigroup of isometries is
unitarily equivalent to a direct sum of copies of theshift semigroupS = {St : t ≥ 0},
which acts on the Hilbert spaceL2[0, ∞) by way of

Stf (x) =

{
f (x − t), x > t
0, 0 ≤ x ≤ t.

In the theory ofE0-semigroups, the proper analogue of theshift of mulitipicity
n = 1, 2, . . . , ∞ is theCAR/CCR flow of indexn. There is no theorem inE0-semigroup
theory analogous to the one cited above for semigroups of isometries. Indeed, the work
of Powers [12, 13] implies that there areE0-semigroupsα having the property (0.2)
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which are not cocycle conjugate toCAR/CCR flows. Thus we have elected to use the
termpure for anE0-semigroup satisfying the condition (0.2), and we reserve the term
shift for theCAR/CCR flows.

1. Purity and Absorbing States

In this section we collect some basic observations about pureE0-semigroups acting on
von Neumann algebras. AnE0-semigroupα = {αt : t ≥ 0} acting on a von Neumann
algebraM is calledpure if the intersection∩tαt(M ) reduces to the scalar multiples of
the identity. The following result characterizes purity in terms of the action ofα on the
predual ofM .

Proposition 1.1. Let α = {αt : t ≥ 0} be anE0-semigroup acting on a von Neumann
algebraM . Then∩tαt(M ) = C1 iff for every pair of normal statesρ1, ρ2 of M we
have

lim
t→∞ ‖ρ1 ◦ αt − ρ2 ◦ αt‖ = 0. (1.1.1)

Proof. We writeM∞ for the von Neumann subalgebra∩tαt(M ). Assume first thatα
satisfies condition (1.1.1). To show thatM∞ ⊆ C1 it suffices to show that for every
normal linear functionalλ ∈ M∗ satisfyingλ(1) = 0, we haveλ(M∞) = {0}. Choose
such aλ and letλ = λ1 + iλ2 be its Cartesian decomposition, whereλk(z∗) = λ̄k(z),
k = 1, 2. Sinceλk(1) = 0, it suffices to prove the assertion for self-adjoint elementsλ in
the predual ofM .

Now by the Hahn decomposition, every self-adjoint element of the predual ofM
which annihilates the identity operator is a scalar multiple of the difference of two normal
states. Thus, after rescaling, we can assume that there are normal statesρ1, ρ2 of M such
that λ = ρ1 − ρ2, and have to show thatρ1(x) = ρ2(x) for every elementx ∈ M∞.
Since the restriction of eachαt to M∞ is obviously a∗-automorphism ofM∞, we can
find a family of operatorsxt ∈ M∞ such thatαt(xt) = x for everyt ≥ 0. We have
‖xt‖ = ‖αt(xt)‖ = ‖x‖ for everyt and hence

|ρ1(x) − ρ2(x)| = |(ρ1 ◦ αt − ρ2 ◦ αt)(xt)| ≤ ‖ρ1 ◦ αt − ρ2 ◦ αt‖ · ‖x‖
for every t. By hypothesis the right side tends to 0 witht, and we have the desired
conclusionλ(x) = ρ1(x) − ρ2(x) = 0.

For the converse, letρ be an arbitrary normal linear functional onM . We claim that

lim
t→∞ ‖ρ ◦ αt‖ = ‖ρ �M∞ ‖. (1.2)

For this, we note first that
‖ρ ◦ αt‖ = ‖ρ �αt(M ) ‖. (1.3)

Indeed, the inequality≤ follows from the fact that for everyx ∈ M ,

|ρ(αt(x))| ≤ ‖ρ �αt(M ) ‖ · ‖αt(x)‖.

While on the other hand, ifx ∈ αt(M ) is an element of norm 1 for which

|ρ(x)| = ‖ρ �αt(M ) ‖,

then we may findx0 ∈ M with x = αt(x0). Noting that‖x0‖ = ‖x‖ becauseαt is an
isometry, we have
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‖ρ �αt(M ) ‖ = |ρ(x)| = |ρ ◦ αt(x0)| ≤ ‖ρ ◦ αt‖.

Thus, (1.2) is equivalent to the assertion

lim
t→∞ ‖ρ �αt(M ) ‖ = ‖ρ �M∞ ‖. (1.4)

Since the range ofαt is a von Neumann subalgebra ofM , we may deduce (1.4) from
general principles. Indeed, ifMt, t ≥ 0 is a decreasing family of weak∗-closed lin-
ear subspaces of the dual of a Banach spaceE having intersectionM∞, andρ is a
weak∗-continuous linear functional onE′, then by a standard argument using weak∗-
compactness of the unit ball ofE′ we find that the norms‖ρ �Mt

‖ must decrease to
‖ρ �M∞ ‖.

Assuming now thatM∞ = C1, letρ1 andρ2 be normal states ofM and letλ = ρ1−ρ2.
Then the restriction ofλ to M∞ vanishes, so by (1.2) we have

lim
t→∞ ‖ρ1 ◦ αt − ρ2 ◦ αt‖ = lim

t→∞ ‖λ ◦ αt‖ = 0,

as required. �

Definition 1.5. Let α = {αt : t ≥ 0} be anE0-semigroup acting on a von Neumann
algebraM . An absorbing state forα is a normal stateω on M such that for every
normal stateρ,

lim
t→∞ ‖ρ ◦ αt − ω‖ = 0.

Remarks.An absorbing stateω is obviouslyinvariant in the sense thatω◦αt = ω, t ≥ 0,
and in fact is theuniquenormal invariant state. Pure absorbing states forE0-semigroups
acting onB(H) were introduced by Powers [13] in his work inE0-semigroups of type
II. Powers’ definition differs somewhat from Definition 1.5, in that he requires only
weak convergence toω

lim
t→∞ ρ(αt(x)) = ω(x), x ∈ B(H),

for every normal stateρ. But as the following observation shows, the two definitions are
in fact equivalent.

Proposition 1.6. Let{ρi : i ∈ I} be a net of normal states ofM = B(H) and letω be
a normal state such that

lim
i

ρi(x) = ω(x), (1.6.1)

for every compact operatorx. Thenlimi ‖ρi − ω‖ = 0.

Proof. Chooseε > 0. Sinceω is a normal state we can find a finite rank projectionp
such that

ω(p) ≥ 1 − ε. (1.7)

SincepMp ∼= B(pH) is a finite dimensional space of finite-rank operators, (1.6.1)
implies that we have norm convergence

lim
i

‖ρi �pMp −ω �pMp ‖ = 0,

and hence
sup

x∈M,‖x‖≤1
|ρi(pxp) − ω(pxp)| → 0, (1.8)
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asi → ∞. Now in general, we have

‖ρi − ω‖ ≤ sup
‖x‖≤1

|ρi(pxp) − ω(pxp)| + sup
‖x‖≤1

|ρi(x − pxp)| + sup
‖x‖≤1

|ω(x − pxp)|.

By (1.8), the first term on the right tends to 0 asi → ∞, and we can estimate the second
and third terms as follows. Writingx − pxp = (1 − p)x + px(1 − p), we find from the
Schwarz inequality that

|ρi((1 − p)x)|2 ≤ ρi(1 − p)ρi(x
∗x) ≤ (1 − ρi(p))‖x‖2,

and hence
|ρi((1 − p)x)| ≤ (1 − ρi(p))1/2‖x‖.

Similarly,

|ρi(px(1 − p))| ≤ (1 − ρi(p))1/2‖px‖ ≤ (1 − ρi(p))1/2‖x‖.

It follows that
sup

‖x‖≤1
|ρi(x − pxp)| ≤ 2(1− ρi(p))1/2.

Since 1− ρi(p) tends to 1− ω(p) ≤ ε asi → ∞, it follows that

lim sup
i→∞

sup
‖x‖≤1

|ρi(x − pxp)| ≤ 2ε1/2.

Similar estimates show that

sup
‖x‖≤1

|ω(x − pxp)| ≤ 2ε1/2.

Using (1.8), we conclude that

lim sup
i→∞

‖ρi − ω‖ ≤ 4ε1/2

and (1.6.1) follows becauseε is arbitrary �
Remarks.Suppose thatα = {αt : t ≥ 0} is a pureE0-semigroup acting on an arbitrary
von Neumann algebraM , and thatω is a normal state ofM which is invariant underα.
Then for every normal stateρ, Proposition 1.1 implies that

lim
t→∞ ‖ρ ◦ αt − ω‖ = lim

t→∞ ‖ρ ◦ αt − ω ◦ αt‖ = 0,

henceω is an absorbing state. Conversely, if anE0-semigroupα has an absorbing state,
then by Proposition 1.1α must be a pureE0-semigroup. Thus we have the following
description of the relationship between absorbing states and pureE0-semigroups:

Proposition 1.9. Let α = {αt : t ≥ 0} be anE0-semigroup acting on a von Neumann
algebraM which has a normal invariant stateω. Thenα is pure if and only ifω is an
absorbing state.

Remarks.Every abelian semigroup is amenable. Thus one can make use of a Banach limit
on the additive semigroup of nonnegative reals to average anyE0-semigroup in the point-
weak operator topology to show that there is a state ofB(H) which is invariant under
the action of theE0-semigroup. However, invariant states constructed by such devices
tend to be singular. Indeed, the results of [6] show that there are pureE0-semigroups
(acting onB(H)) which do not have normal invariant states.
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2. Pure CP Semigroups

Definition 2.1. A CP semigroup is a semigroupP = {Pt : t ≥ 0} of normal completely
positive maps ofB(H) which satisfies the natural continuity property

lim
t→0+

〈Pt(x)ξ, η〉 = 〈xξ, η〉 , x ∈ B(H), ξ, η ∈ H.

P is called unital ifPt(1) = 1 for everyt ≥ 0.
A unital CP semigroupP is said to be pure if, for every pair of normal statesρ1, ρ2

of B(H) we have
lim

t→∞ ‖ρ1 ◦ Pt − ρ2 ◦ Pt‖ = 0.

Notice that pure CP semigroups are required to be unital. Unital CP semigroups are
often calledquantum dynamical semigroupsin the mathematical physics literature. The
purpose of this section is to briefly discuss the relationship between pure CP semigroups
and pureE0-semigroups. This relationship is not bijective, but it is close enough to being
so that results in one category usually have immediate implications for the other.

For example, suppose thatP is a pure CP semigroup acting onB(H). A recent
dilation theorem of B. V. R. Bhat [7, 8] implies that there is a Hilbert spaceK ⊇ H
and anE0-semigroupα = {αt : t ≥ 0} acting onB(K) which is adilation of P in
the following sense. Lettingp0 ∈ B(K) be the projection onto the subspaceH and
identifying B(H) with the hereditary subalgebraM0 = p0B(K)p0 of B(K), then we
have

αt(p0) ≥ p0, and (2.2.1)

Pt(x) = p0αt(x)p0, x ∈ M0 (2.2.2)

for everyt ≥ 0. Because of (2.2.1), the operator

p∞ = lim
t→∞ αt(p0)

exists as a strong limit of projections, and is therefore a projection fixed under the action
of α. By compressingα to the hereditary subalgebrap∞B(K)p∞ if necessary, we can
assume thatK = p∞K and hence that

αt(p0) ↑ 1K , ast → ∞. (2.3)

When (2.3) is satisfied we will say thatα is adilation of P .
Dilations in this sense are not unique. In order to obtain uniqueness (up to conjugacy),

one must in general compressα to a smaller hereditary subalgebra ofB(K). Once that
is doneα is called aminimaldilation ofP . The issue of minimality is a subtle one, and
we will not have to be very specific about its nature here (see [2] for more detail). For
our purposes, it is enough to know that every dilation can be compressed uniquely to
a minimal dilation, and that minimal dilations are unique up to conjugacy. Moreover,
nonminimal dilations of a given CP semigroup exist in profusion. For example, the trivial
CP semigroup acting onC has many dilations to nontrivial, nonconjugateE0-semigroups
[13]. The following result implies that all such dilations are pure.

Proposition 2.4. LetP = {Pt : t ≥ 0} be a pure CP semigroup acting onB(H). Then
every dilation ofP to anE0-semigroup is pure.
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Proof. Letα be a dilation ofP which acts onB(K), K being a Hilbert space containing
H. Lettingp0 ∈ B(K) be the projection onH, then by (2.3) we see that the subspaces

Kt = αt(p0)K

increase witht and their union is dense inK. If we let Nt denote the set of all normal
statesρ of B(K) which can be represented in the form

ρ(x) =
∑

k

〈xξk, ξk〉 ,

with vectorsξ1, ξ2, . . . ∈ Kt, then the setsNt increase witht and their union isnorm-
dense in the space of all normal states ofB(K).

Using this observation together with Proposition 1.1, it is enough to show that for
everyt > 0 and every pair of normal statesρ1, ρ2 ∈ Nt, we have

lim
s→∞ ‖ρ1 ◦ αs − ρ2 ◦ αs‖ = 0. (2.5)

To prove (2.5), fixt > 0 and chooses > t. We claim that fork = 1, 2 andx ∈ B(K)
we have

ρk(αs(x)) = ρk(αt(Ps−t(p0xp0))). (2.6)

Indeed, sincep0 ≤ αs−t(p0) we have

Ps−t(p0xp0) = p0αs−t(p0xp0) = p0αs−t(p0)αs−t(x)αs−t(p0)p0 = p0αs−t(x)p0,

so that
αt(Ps−t(p0xp0))) = αt(p0αs−t(x)p0) = αt(p0)αs(x)αt(p0).

Hence the right side of (2.6) can be written

ρk(αt(p0)αs(x)αt(p0)).

Sinceρk belongs toNt we must haveρk(αt(p0)zαt(p0)) = ρk(z) for everyz ∈ B(K),
and (2.6) follows.

Letting σk be the restriction ofρk ◦ αt to M0 = p0B(K)p0 we find that for every
x ∈ B(K),

|ρ1(αs(x)) − ρ2(αs(x))| = |σ1(Ps−t(p0xp0) − σ2(Ps−t(p0xp0)|.
Thus

‖ρ1 ◦ αs − ρ2 ◦ αs‖ = ‖σ1 ◦ Ps−t − σ2 ◦ Ps−t‖
must tend to 0 ass tends to∞, and (2.5) follows. �

Suppose now that we start with a pureE0-semigroup acting onB(H). It is not always
possible to locate a CP semigroup as a compression ofα because we know of no general
method for locating a projectionp0 ∈ B(H) satisfyingαt(p0) ≥ p0 for everyt. However,
if α has an invariant normal stateω, then the support projection ofω provides such a
projectionp0. To see that, simply notice thatω ◦ αt(1 − p0) = ω(1 − p0) = 0, hence
αt(1 − p0) ≤ 1 − p0, henceαt(p0) ≥ p0.

Given such a projectionp0, we can compressα to obtain a family of normal com-
pletely positive mapsP = {Pt : t ≥ 0} of B(p0H) ∼= p0B(H)p0 by way of

Pt(x) = p0αt(x)p0, t ≥ 0, x ∈ p0B(H)p0. (2.7)

The fact thatαt(p0) ≥ p0 insures thatP is in fact a CP semigroup. The following
summarizes these remarks.
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Proposition 2.8. Suppose thatα is a pureE0-semigroup acting onB(H) and ω is a
normalα-invariant state with support projectionp0. Then the CP semigroup P defined
by (2.7) is pure, and the restrictionω0 of ω to p0B(H)p0

∼= B(p0H) is a faithful normal
P -invariant state which is absorbing in the sense that for every normal stateρ ofB(p0H),

lim
t→∞ ‖ρ ◦ Pt − ω0‖ = 0.

If ω is weakly continuous and not a pure state ofB(H), thenP may be considered
a CP semigroup acting on a matrix algebraMn(C), n = 2, 3, . . ..

The preceding discussion shows the extent to which the theory of pureE0-semigroups
having an absorbing state can be reduced to the theory of CP semigroups having afaithful
absorbing state. While the latter problem is an attractive one in general, we still lack
tools that are appropriate for arbitrary invariant normal states. The following sections
address the case of weakly continuous invariant states.

3. Perturbations and Invariant States

In order to describe the pure CP semigroups acting on matrix algebras we must first
obtain information about invariant states. More precisely, given afaithful stateω on a
matrix algebraM = MN (C),N = 2, 3, . . ., we want to identify the unital CP semigroups
P = {Pt : t ≥ 0} that leaveω invariant in the sense that

ω ◦ Pt = ω, t ≥ 0.

It is not obvious that such semigroups exist whenω is not a tracial state. In this section
we characterize the generators of such semigroups up to perturbations (Theorem 3.8)
and we give explicit examples in Corollary 3.16. In general, the generatorL of a CP
semigroup has a decomposition of the form

L(x) = P (x) + kx + xk∗, x ∈ M, (3.1)

whereP is a completely positive map onM andk ∈ M [10]. The associated semigroup
{exptL : t ≥ 0} is unital iff

L(1) = 0 (3.2)

and it leavesω invariant iff
ω ◦ L = 0. (3.3)

It is easy to satisfy (3.2), but less easy to satisfy both (3.2) and (3.3). Indeed, setting
x = 1 in (3.1) we find that (3.2) holds iffk has a Cartesian decomposition

k = −1/2P (1) + `,

where` is an element ofM satisfying`∗ = −`. In this case (3.1) becomes

L(x) = P (x) − 1/2(P (1)x + xP (1)) + [`, x]. (3.4)

There is a natural decomposition of this operator corresponding to the Cartesian
decomposition ofk:

L(x) = L0(x) + [`, x],

whereL0 is the “unperturbed" part ofL,
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L0(x) = P (x) − 1/2(P (1)x + xP (1)). (3.5)

Notice that bothL0 andL generate unital CP semigroups, and because of (3.3) the
semigroup generated byL leavesω invariant. If ω is not a trace then the unperturbed
CP semigroup exptL0 need not leaveω invariant (see Proposition 3.18). Thus we are
led to seekperturbationsof L0 which solve both Eqs. (3.2) and (3.3).

In order to discuss this issue in more concrete terms, let� be the density matrix of
the stateω,

ω(x) = trace(�x), x ∈ M.

Sinceω is faithful, � is a positive invertible operator. More generally, we identify the
dualM ′ of M with M itself in the usual way, the isomorphisma ∈ M 7→ ωa ∈ M ′
being defined by

ωa(x) = trace(ax), x ∈ M.

For every linear mapL : M → M the dual mapL∗, defined onM ′ by L∗(ρ) = ρ ◦ L,
becomes

trace(L∗(y)x) = trace(yL(x)), x, y ∈ M.

Now a linear mapL : M → M satisfiesω ◦ L = 0 iff its dual satisfiesL∗(�) = 0. If
we choose a completely positive mapP : M → M and defineL0 as in (3.5), then we
seek a skew-adjoint operator` ∈ M satisfying the operator equation

L0∗(�) = `� − �`. (3.6)

It is not always possible to solve (3.6). But if a solution`0 exists then there are infinitely
many, the most general one having the form` = `0 + k, k being a skew-adjoint operator
commuting with�.

We will show that (3.6) is solvable iffP satisfies a certain symmetry requirement.
The symmetry involves an involution # and is described as follows. For every linear map
L : M → M , let L# : M → M be the linear map

L#(x) = �−1/2L∗(�1/2x�1/2)�−1/2. (3.7)

For our purposes, the important properties of the operationL 7→ L# are summarized as
follows.

Proposition. L 7→ L# is a linear isomorphism satisfyingL## = L, and ifL is completely
positive then so isL#.

Sketch of proof.The argument is completely straightforward. A direct computation shows
that

(L#)∗(x) = �1/2L(�−1/2x�−1/2)�1/2,

from whichL## = L is immediate. The fact that # preserves complete positivity follows
from the fact that ifP is a completely positive map then so isP∗. �
Theorem 3.8. Let ω be a faithful state on a matrix algebraM , let Q : M → M
be a completely positive linear map, and defineQ# by (3.7). Then the following are
equivalent.

(i) There is a unital CP semigroupP = {Pt : t ≥ 0} which leavesω invariant and
whose generator has the form

L(x) = Q(x) + kx + xk∗

for somek ∈ M .
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(ii) For every minimal spectral projectione of � we haveeQ(1)e = eQ#(1)e.

Our proof of Theorem 3.8 is based on the following general result. LetA be the
centralizer algebra ofω,

A = {a ∈ M : ω(ax) = ω(xa), x ∈ M}.

If we consider the spectral decomposition of�,

� =
r∑

k=1

λkek,

wheree1, . . . , er are the minimal spectral projections of� and 0< λ1 < . . . < λr are
the distinct eigenvalues, thenA is the commutant of{�} and hence

A = {a ∈ M : aek = eka, 1 ≤ k ≤ r}.

A is a direct sum of full matrix algebras, and the restriction ofω to A is a faithful tracial
state. The natural conditional expectationEA : M → A is given by

EA(x) =
∑

k

ekxek, x ∈ M.

The following result implies that the solvability of Eq. (3.6) depends only on the com-
pression ofL to the centralizer algebraA.

Lemma 3.9. Let ω be a faithful state ofM and letL : M → M be a linear map
satisfyingL(x)∗ = L(x∗), x ∈ M . The following are equivalent:

(i) There is a skew-adjoint operator` ∈ M such that the perturbationL′(x) = L(x) +
[`, x] satisfiesω ◦ L′ = 0.

(ii) The restriction ofω ◦ L to A vanishes.

More generally, settingL0 = EALEA, there is a perturbationL′(x) = L(x) + [`, x] of
the form (i) such thatω ◦ L′ = ω ◦ L0.

Proof. (i)=⇒(ii) Suppose that̀ is an operator inM for whichω ◦ L′ = 0,L′ being the
operator of part (i). Sinceω(`a − a`) = 0 for all a in the centralizer algebra we have

ω(L(a)) = ω(L(a) + [`, a]) = ω ◦ L′(a) = 0,

hence (ii).
We now prove the general assertion of the last sentence. Noting thatω ◦ EA = ω,

we have
ω(L0(x)) = ω(L(EA(x))), x ∈ M,

and hence we must exhibit an operator` ∈ M satisfying`∗ = −` and

ω(L(x) + [`, x] − L(EA(x))) = 0, x ∈ M.

After dualizing, the previous equation becomes

L∗(�) − [`, �] − EA(L∗(�)) = 0,

or
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L∗(�) − EA(L∗(�)) = `� − �`. (3.10)

Let T be the left side of (3.10).T is a self-adjoint operator satisfyingEA(T ) = 0. Thus
if

� =
r∑

k=1

λkek

is the spectral decomposition of� then we haveekTek = 0 for all k. Set

` =
∑
i6=j

1
λj − λi

eiTej .

It is obvious that̀ ∗ = −`, and since�ek = ek� = λkek for all k we have

�` =
∑
i6=j

λi

λj − λi
eiTej ,

`� =
∑
i6=j

λj

λj − λi
eiTej .

Hence
`� − �` =

∑
i6=j

eiTej = T,

as required.
The implication (ii)=⇒(i) follows immediately, for ifω ◦ L(a) = 0 for all a ∈ A,

then becauseω ◦ EA = ω we haveω ◦ L0 = 0. Thus the preceding argument gives a
perturbationL′ of the form (i) satisfyingω ◦ L′ = ω ◦ L0 = 0 �

Proof of Theorem 3.8.Let Q be a completely positive map and defineL : M → M by

L(x) = Q(x) − 1/2(Q(1)x + xQ(1)).

The assertion (i) of Theorem 3.8 is equivalent to the existence of a skew-adjoint operator
` ∈ M such that

ω(L(x) + [`, x]) = 0, x ∈ M. (3.11)

By Lemma 3.9, the latter is equivalent to

ω(L(a)) = 0, a ∈ A. (3.12)

Thus we have to show that (3.12) is equivalent to the operator equation

EA(Q(1)) = EA(Q#(1)). (3.13)

Looking first at (3.12), we have

ω(L(a)) = ω(Q(a)) − 1/2ω(Q(1)a + aQ(1)).

Now since every elementa ∈ A commutes with� we have

1/2ω(Q(1)a + aQ(1)) = 1/2trace(�Q(1)a + �aQ(1))

= trace(�Q(1)a) = ω(Q(1)a).

Hence (3.12) asserts that
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ω(Q(a)) − ω(Q(1)a) = 0, a ∈ A. (3.14)

Writing

ω(Q(a)) = trace(�Q(a)) = trace(Q∗(�)a)

= trace(� · �−1/2Q∗(�1/2 · �1/2)�−1/2a) = ω(Q#(1)a),

we rewrite (3.14) as

ω((Q#(1) − Q(1))a) = 0, a ∈ A.

Sinceω ◦ EA = ω andEA(xa) = EA(x)a for a ∈ A the preceding formula becomes

ω(EA(Q#(1) − Q(1))a) = 0, a ∈ A.

Sinceω �A is a faithful trace onA, the latter is equivalent to Eq. (3.13). �

Remark 3.15.In the important case whereω is the tracial state onM the density matrix
of ω is a scalar, the map # reduces to the dual mappingL# = L∗, andEA is the identity
map. In this case the criterion (ii) of Theorem 3.8 degenerates toQ(1) = Q∗(1). For
example, ifQ has the form

Q(x) =
r∑

k=1

vkxv∗
k,

wherev1, v2, . . . , vr ∈ M , then condition (ii) becomes

r∑
k=1

vkv∗
k =

r∑
k=1

v∗
kvk.

Moreover, when this condition is satisfied andω is the tracial state no perturbation is
necessary. One simply shows by a direct calculation that the mapping

L(x) = Q(x) − 1/2(Q(1)x + xQ(1))

satisfies trace◦ L = 0 iff Q(1) = Q∗(1).

Corollary 3.16. Letω be a faithful state onM with density matrix�and letv1, . . . , vr ∈
M satisfy

r∑
k=1

vkv∗
k =

r∑
k=1

v∗
kvk.

Then there is a unitalω-preserving CP semigroup whose generator has the form

L(x) = �−1/2(
r∑

k=1

vkxv∗
k)�−1/2 + kx + xk∗

for some operatork ∈ M .
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Proof. Let Q be the completely positive map

Q(x) = �−1/2(
r∑

k=1

vkxv∗
k)�−1/2.

By Theorem 3.8 it suffices to show thatQ#(1) = Q(1). A direct computation shows that
the dual ofQ is given by

Q∗(x) =
r∑

k−1

v∗
k�−1/2x�−1/2vk

Hence

Q#(1) = �−1/2Q∗(�)�−1/2 = �−1/2(
r∑

k=1

v∗
kvk)�−1/2.

The right side isQ(1) because of the hyposthesis onv1, . . . , vr. �

Remark 3.17. The necessity of perturbations.In view of Remark 3.15 it is natural to ask
if nontrivial perturbations are really necessary, and we conclude this section with some
remarks concerning that issue. Suppose thatP is a normal completely positive map of
M andL is the unperturbed generator

L(x) = P (x) − 1/2(P (1)x + xP (1)). (3.18)

Proposition 3.19. Letω be a faithful state onM = MN (C) which is not a trace. Then
there is an operatorL of the form (3.18) and a skew-adjoint operator` ∈ M such that
if L′(x) = L(x) + [`, x] thenω ◦ L 6= 0 whileω ◦ L′ = 0.

Proof. Consider the spectral decomposition of the density matrix ofω,

� =
r∑

k=1

λkek.

We must haver ≥ 2 becauseω is not a trace. Choose a nonzero partial isometryv
satisfyingv∗v ≤ e1 andvv∗ ≤ e2. Since� is an invertible positive operator there is an
ε > 0 such that

�′ = � + ε(v + v∗)

is positive. Since the trace of�′ is 1 we may consider the stateω′ having density matrix
�′. Let P be a normal completely positive map satisfyingP (1) = 1 andω ◦ P = ω′
(there are many such maps, the simplest one beingP (x) = ω′(x)1), and define

L(x) = P (x) − x.

Thenω ◦ L = ω′ − ω 6= 0.
On the other hand, sinceP∗(�) = �′ we have

P #(1) = �−1/2P∗(�)�−1/2 = �−1/2�′�−1/2.

Thus, letting

EA(x) =
r∑

k=1

ekxek
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be the conditional expectation onto the centralizer algebra ofω and usingEA(v) =
EA(v∗) = 0, we haveEA(�′) = EA(�). Hence

EA(P #(1)) = �−1/2EA(�′)�−1/2 = 1.

From Theorem 3.8 we may conclude that there is a skew-adjoint operator` such that
the perturbation

L′(x) = L(x) + [`, x]

satisfiesω ◦ L′ = 0 �

4. Ergodicity and Purity

The purpose of this section is to give a concrete characterization of the generators of pure
CP semigroups acting on matrix algebras, given that the CP semigroup has a faithful
invariant state (Theorem 4.4).

Definition 4.1. A unital CP semigroupP = {Pt : t ≥ 0} acting onB(H) is called
ergodic if the only operatorsx satisfyingPt(x) = x for everyt ≥ 0 are scalars.

The setA = {x ∈ B(H) : Pt(x) = x, t ≥ 0} is obviously a weak∗-closed self-
adjoint linear subspace ofB(H) containing the identity. In general it need not be a von
Neumann algebra, but as we will see presently, it is a von Neumann algebra in the cases
of primary interest for our purposes here.

Proposition 4.2. Every pure CP semigroup is ergodic.

Proof. SupposeP = {Pt : t ≥ 0} is pure andx is an operator satisfying‖x‖ ≤ 1 and
Pt(x) = x for everyt. To show thatx must be a scalar multiple of1 it suffices to show
that for every normal linear functionalρ onB(H) satisfyingρ(1) = 0 we haveρ(x) = 0.
Since any normal linear functionalρ satisfyingρ(1) = 0 can be decomposed into a sum
of the form

ρ = b(ρ1 − ρ2) + ic(ρ3 − ρ4),

whereb andc are real numbers and theρk are normal states, we conclude from the purity
of P that

lim
t→∞ ‖ρ ◦ Pt‖ = 0.

Sincex is fixed under the action ofP we have

|ρ(x)| = |ρ(Pt(x))| ≤ ‖ρ ◦ Pt‖
for everyt ≥ 0, from whichρ(x) = 0 follows. �
Proposition 4.3. LetP = {Pt : t ≥ 0} be a unital CP semigroup which leaves invariant
some faithful normal state ofB(H). Then

A = {a ∈ B(H) : Pt(a) = a, t ≥ 0}
is a von Neumann algebra. Assuming further thatP has a bounded generatorL repre-
sented in the form

L(x) =
∑

j

vjxv∗
j + kx + xk∗ (4.3.1)

for operatorsk, v1, v2, . . . ∈ B(H), thenA is the commutant of the von Neumann algebra
generated by{k, v1, v2, . . .}.



34 W. Arveson

Proof. In view of the preceding remarks, the first paragraph will follow if we show that
A is closed under operator multiplication. By polarization, it is enough to show that
a ∈ A =⇒ a∗a ∈ A. For eacha ∈ A we have by the Schwarz inequality

a∗a = Pt(a)∗Pt(a) ≤ Pt(a
∗a)

for everyt ≥ 0. Lettingω be a faithful state invariant underP we haveω(Pt(a∗a)−a∗a) =
0, and hencePt(a∗a) = a∗a. Thusa∗a ∈ A.

Suppose now thatP has a bounded generator of the form (4.3.1), and letB be the
∗-algebra generated by{k, v1, v2, . . .}. Noting thatA = {x ∈ M : L(x) = 0}, we show
thatA = B′. If x ∈ B′ then (4.3.1) becomes

L(x) = x(
∑

j

vjv
∗
j + k + k∗) = xL(1) = 0.

It follows that exptL(x) = x for everyt, hencex ∈ A.
For the inclusionA ⊆ B′, we claim first that for everya ∈ A,

[vj , a] = vja − avj = 0, j = 1, 2, . . . .

Indeed, since1, a, a∗, andaa∗ all belong toA andL(A) = {0}, we have

L(aa∗) − aL(a∗) − L(a)a∗ + aL(1)a∗ = 0.

Substituting the formula (4.3.1) forL in the above we find that the terms involvingk
drop out and we are left with the formula∑

k

[vj , a][vj , a]∗ = −
∑

j

[vj , a][v∗
j , a∗] = 0.

It follows that [vj , a] = 0 for everyk. Replacinga with a∗ we see thata must commute
with the self-adjoint set of operators{v1, v2, . . . , v

∗
1 , v∗

2 , . . .}.
Now sinceL(1) = 0, it follows from (4.3.1) that

∑
j vjv

∗
j + k + k∗ = 0, and hencek

has Cartesian decompositionk = −h + `, where

h = 1/2
∑

j

vjv
∗
j

and` is a skew-adjoint operator. Setting

L0(x) =
∑

j

vjxv∗
j − hx − xh,

we have
L(x) = L0(x) + [`, x],

andL0(A) = {0} by what was just proved. Thus, fora ∈ A,

[`, a] = L(a) = 0,

and hencea must commute with̀ as well. The inclusionA ⊆ B′ follows. �
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Theorem 4.4. Let P = {Pt : t ≥ 0} be a unital CP semigroup acting on a matrix
algebraM = MN (C), N = 2, 3, . . ., which leaves invariant some faithful stateω. Let

L(x) =
r∑

j=1

vjxv∗
j + kx + xk∗

be the generator ofP . Then the following are equivalent:

(i) P is pure.

(ii) P is ergodic.

(iii) The set of operators{k, k∗, v1, . . . , vr, v
∗
1 , . . . , v∗

r} is irreducible.

Proof. In view of Propositions 4.2 and 4.3, we need only prove the implication (ii)=⇒(i).
Assuming thatP is ergodic, we consider its generatorL as an operator on the Hilbert
spaceL2(M, ω) with inner product

〈x, y〉 = ω(y∗x), x, y ∈ M.

We haveL(1) = 0 becauseP is unital, andL∗(1) = 0 follows from the fact thatω◦L = 0,
L∗ denoting the adjoint ofL ∈ B(L2(M, ω)). It follows that{λ1 : λ ∈ C} is a one-
dimensional reducing subspace forL and we can consider the restrictionL0 of L to the
subspace

H0 = {x ∈ L2(M, ω) : x ⊥ 1} = {x ∈ M : ω(x) = 0}.

We will show that
lim

t→∞ ‖ exptL0‖ = 0, (4.5)

‖ · ‖ denoting the operator norm inB(H0).
Notice that (4.5) implies thatP is pure with absorbing stateω. Indeed, for anyx ∈ M

we setx0 = x − ω(x)1. Thenx0 ∈ H0 and we may conclude from (4.5) that

lim
t→∞ Pt(x0) = 0,

hence
lim

t→∞ Pt(x) = ω(x)1,

and finally
lim

t→∞ ‖ρ ◦ Pt − ω‖ = 0

for every stateρ of M becauseM is finite dimensional.
In order to prove (4.5), we note first that{exptL0 : t ≥ 0} is a contraction semigroup

acting onH0. Indeed, exptL is a contraction inB(L2(M, ω)) for everyt by virtue of the
inequality

‖Pt(x)‖2
L2(M,ω) = ω(Pt(x)∗Pt(x)) ≤ ω(Pt(x

∗x)) = ω(x∗x) = ‖x‖2
L2(M,ω),

and the restriction ofPt to H0 is exptL0.
In particular, the spectrum ofL0 is contained in the left half plane

σ(L0) ⊆ {z ∈ C : z + z̄ ≤ 0}.

We claim thatσ(L0) contains no points on the imaginary axis{iy : y ∈ R}. To see this,
notice first that 0/∈ σ(L0). Indeed, ifL(x) = L0(x) = 0 for x ∈ H0 thenx must be a
scalar multiple of1 by ergodicity, and sinceω(x) = 0 we havex = 0.
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Suppose now thatα is a nonzero real number such thatiα ∈ σ(L0). Then there is
an elementx 6= 0 in H0 for whichL(x) = iαx. Note first thatx is a scalar multiple of a
unitary operator. Indeed, from the equationL(x) = iαx it follows that

Pt(x) = eiαtx for everyt ≥ 0,

hence
x∗x = Pt(x)∗Pt(x) ≤ Pt(x

∗x)

by the Schwarz inequality. Sinceω(Pt(x∗x) − x∗x) = 0 andω is faithful we conclude
thatPt(x∗x) = x∗x; so by ergodicityx∗x must be a scalar multiple of1. Thusx must
be proportional to an isometry inM .

We have located a unitary operatoru ∈ M such thatL0(u) = iαu. Now we assert
thatu must commute with the self-adjoint set of operators{v1, . . . , vr, v

∗
1 , . . . , v∗

r}. To
see that we make use of the formula

L(xx∗) − xL(x)∗ − L(x)x∗ + xL(1)x∗ =
r∑

j=1

[vj , x][vj , x]∗ (4.6)

(see the proof of Proposition 4.3). Settingx = u we find that the left side of (4.6) is

−uL(u)∗ − L(u)u∗ = iα1 − iα1 = 0,

and hence
r∑

j=1

[vj , u][vj , u]∗ = 0,

from which we deduce that [vj , u] = 0 for everyk. Sinceu is unitary the assertion
follows.

Set

h = 1/2
r∑

j=1

vjv
∗
j .

SinceL(1) = 0 it follows thatk has Cartesian decomposition of the formk = −h + `,
where`∗ = −`, henceL decomposes into a sum of the form

L(x) = L0(x) + [`, x],

where

L0(x) =
r∑

j=1

vjxv∗
j − hx − xh.

By what we have just proved,L0(u) = uL0(1) = 0. It follows that the equationL(u) =
iαu reduces to

[`, u] = iαu. (4.7)

Now sincè is skew-adjoint,vs = es` defines a one-parameter group of unitary operators
in M and (4.7) implies that for everys ∈ R we have

vsuv∗
s = eiαsu.

Sincex 7→ vsxv∗
s is a∗-automorphism ofM for everys ∈ R it follows that the spectrum

of u must be invariant under all rotations of the unit circle of the formλ 7→ eiαsλ,
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contradicting the fact that the spectrum of anN × N unitary matrix is a finite subset of
{λ ∈ C : |λ| = 1}. This contradiction shows thatσ(L0) cannot meet the imaginary axis.

We conclude that
σ(L0) ⊆ {z ∈ C : z + z̄ < 0},

and hence there is a positive numberε such that

σ(L0) ⊆ {z ∈ C : z + z̄ < −2ε}. (4.8)

Consider the operatorA = expL0 ∈ B(H0). By the spectral mapping theorem the
spectral radius ofA satisfies

sup{|ez| : z ∈ σ(L0)} < e−ε,

and hence there is a constantc > 0 such that

‖An‖ ≤ ce−nε, n = 0, 1, 2, . . . .

Letting [t] denote the greatest integer not exceedingt ≥ 0 we find that for everyt > 0,

‖ exptL0‖ ≤ ‖ exp [t]L0‖ = ‖A[t]‖ ≤ ce−[t]ε,

and hence
lim

t→∞ ‖ exptL0‖ = 0,

as asserted. �

5. Applications

In [4], a numerical indexd∗(P ) was introduced for arbitrary CP semigroupsP = {Pt :
t ≥ 0} acting onB(H). It was shown that for unital CP semigroupsP , d∗(P ) is a
nonnegative integer or∞ = ℵ0, or 2ℵ0, and in factd∗(P ) agrees with the index of the
minimal dilation ofP to anE0-semigroup. In [5],d∗(P ) is calculated in all cases where
the generator ofP is bounded, and in particular for CP semigroups acting on matrix
algebras.

We will make use of this numerical index in the following result, from which we
will deduce Theorem A.

Theorem 5.1. Letω be a faithful state ofMr(C), r ≥ 2, and letn be a positive integer
satisfyingn ≤ r2 − 1. Then there is a pure CP semigroupP = {Pt : t ≥ 0} acting on
Mr(C) satisfying

(i) ω ◦ Pt = ω for everyt ≥ 0, and

(ii) d∗(P ) = n.

We have based the proof of Theorem 5.1 on the following result.

Proposition 5.2. Suppose thatT is a non-scalar matrix inMr(C), r ≥ 2, and let
λ = e2πi/r. Then there is a pairu, v of unitary operators inMr(C) with the properties

5.2.1 ur = vr = 1,

5.2.2 vu = λuv,

5.2.3 {T, u}′ = C · 1.
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Proof of Proposition 5.2.The assertion 5.2.3 is that the only operators commuting with
bothu andT are scalars. LetH be anr-dimensional Hilbert space and identifyMr(C)
with B(H).

We claim first that there is an orthonormal basisξ0, ξ1, . . . , ξr−1 for H such that

〈Tξ0, ξk〉 6= 0, 1 ≤ k ≤ r − 1. (5.3)

Indeed, sinceT is not a scalar there must be a unit vectorξ0 ∈ H which is not an
eigenvector ofT . Thus there is a complex numbera and a nonzero vectorζ orthogonal
to ξ0 such that

Tξ0 = aξ0 + ζ.

Let c1, c2, . . . , cr−1 be any sequence of nonzero complex numbers satisfying

|c1|2 + |c2|2 + · · · + |cr−1|2 = ‖ζ‖2.

Sinceζ 6= 0 we can find an orthonormal basisξ1, ξ2, . . . , ξr−1 for [ξ0]⊥ such that
〈ζ, ξk〉 = ck for k = 1, 2, . . . , r − 1. For such a choice, the set{ξ0, ξ1, . . . , ξr−1} is an
orthonormal basis with the asserted property (5.3).

Now defineu, v ∈ B(H) by

uξk = λ−kξk and

vξk = ξk+̇1

for 0 ≤ k ≤ r − 1, where+̇ denotes addition modulor. It is obvious thatu andv are
unitary operators, and a straightforward computation shows that they satisfy formulas
5.2.1 and 5.2.2.

We claim now that ifB ∈ B(H) satisfiesBT = TB andBu = uB thenB must be
a scalar multiple of the identity. Indeed, fromBu = uB and the fact thatu is a unitary
operator with distinct eigenvalues, we find that eachξk must be an eigenvector of both
B andB∗. Choosingdk ∈ C such thatBξk = dkξk, thenB∗ξk = d̄kξk and for each
k = 1, 2, . . . , r − 1 we have

d0 〈Tξ0, ξk〉 = 〈TBξ0, ξk〉 = 〈BTξ0, ξk〉 = 〈Tξ0, B
∗ξk〉 = dk 〈Tξ0, ξk〉 .

It follows that (dk − d0) 〈Tξ0, ξk〉 = 0 for 1 ≤ k ≤ r − 1. Because none of the inner
products〈Tξ0, ξk〉 can be zero we conclude thatd0 = d1 = · · · = dr−1. ThusB = d0 · 1,
establishing Proposition 5.2. �
RemarksLet λ be a primitiverth root of unity and letu, v be two unitaries satisfying
condition 5.2.1 and 5.2.2. Consider the family ofr2 unitary operators{wi,j : 0 ≤ i, j ≤
r − 1} defined by

wi,j = uivj .

We may consider that the indicesi, j range over the abelian groupZ/rZ, and with that
convention thewi,j are seen to satisfy the commutation relations for this group

wi,jwp,q = λjpwi+p,j+q, (5.4)

w∗
i,j = λijw−i,−j , (5.5)

where the operationsi + p, j + q, −i, −j are performed modulor. Of course, we have
w0,0 = 1. It follows from (5.4) and (5.5) that the set of operators{wi,j} satisfies

wi,jwp,qw
∗
i,j = λjp−qiwp,q.
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This formula, together with the fact thatλ is a primitiverth root of unity, implies that

trace(wp,q) = 0, for 0 ≤ p, q ≤ r − 1, p + q > 0. (5.6)

In particular, from (5.4)–(5.6) we see that relative to the inner product onMr(C) defined
by the normalized trace, the set of operators{wi,j : 0 ≤ i, j ≤ r −1} is an orthonormal
basis. Thus the{wi,j : 0 ≤ i, j ≤ r − 1} are linearly independent.

Proof of Theorem 5.1.Assume first thatω is not the tracial state, and let� be its density
matrix. Then� is not a scalar multiple of the identity and Proposition 5.2 provides a
pair of unitary operatorsu, v satisfying (5.2.1), (5.2.2) and (5.2.3) forT = �. Define
wi,j = uivj , 0 ≤ i, j ≤ r − 1. By the preceding remarks the set ofr2 − 1 unitary
operatorsS = {wi,j : 0 ≤ i, j ≤ r − 1, i + j > 0} is linearly independent and consists
of trace zero operators.

Choosen satisfying 1≤ n ≤ r2 − 1 and letv1, v2, . . . , vn be any set ofn distinct
elements ofS such thatv1 = w1,0 = u. By (5.2.3) we have

{�, v1}′ = C1,

and hence
{�, v1, v2, . . . , vn}′ = C1. (5.7)

Consider the completely positive map ofMr(C) defined by

Q(x) = �−1/2(
n∑

k=1

vkxv∗
k)�−1/2.

Since thevk are unitary operators we have

r∑
k=1

vkv∗
k =

r∑
k=1

v∗
kvk,

hence Corollary 3.16 implies that there is an operatork ∈ Mr(C) such that

L(x) = Q(x) + kx + xk∗

generates a unital CP semigroupP = {Pt : t ≥ 0} satisfyingω◦Pt = ω for everyt ≥ 0.
Because of (5.7), Theorem 4.4 implies thatP is a pure semigroup.

It remains to show thatd∗(P ) = n, and for that we appeal to the results of [5].
Consider the linear span

E = span{�−1/2v1, �
−1/2v2, . . . , �

−1/2vn}.

We claim first thatE ∩ C1 = {0}. Indeed, if this intersection were not trivial then we
would have

1 = c1�
−1/2v1 + · · · + cn�−1/2vn

for some scalarsc1, . . . , cn. Hence

�1/2 = c1v1 + · · · + cnvn.

This is impossible because the left side has positive trace, while by (5.6) the right side
has trace zero.
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We can makeE into a metric operator space [4, Definition 1.9] by declaring the
linear basis�−1/2v1, . . . , �

−1/2vn to be an orthonormal basis, and once this is done we
find thatE is the metric operator space associated with the completely positive mapQ.
From [5, Theorem 2.3] we haved∗(P ) = dimE = n, as required.

It remains to deal with the case whereω is the normalized trace onMr(C). That
requires a small variation of the preceding argument. Choose an arbitrary operatorT ∈
Mr(C) so thatT is not a scalar and satisfiesT ∗ = −T . Let λ be a primitiverth root of
unity and letu, v be two unitary operators satisfying the three conditions of Proposition
5.2. Now we form the operatorswi,j exactly as before, and obtainn unitary operators
{v1, v2, . . . , vn} by enumerating the elements of{wi,j : 0 ≤ i, j ≤ r − 1, i + j > 0} in
such a way thatv1 = u. Define an operatorL onMr(C) by

L(x) =
n∑

k=1

vkxv∗
k − nx + [T, x].

Notice thatL(1) = 0 and, since we obviously have
∑

k vkv∗
k =

∑
k v∗

kvk, it follows that
trace(L(x)) = 0 for all x ∈ Mr(C). HenceL is the generator of a unital CP semigroup
P = {Pt : t ≥ 0} which preserves the tracial stateω.

Notice thatP is pure. Indeed, by (5.2.3) we have{v1, T}′ = C1, and hence the
∗-algebra generated by the set{v1, . . . , vn, T} is irreducible. Theorem 4.4 implies that
P is a pure CP semigroup.

Finally, d∗(P ) = n follows exactly as in the non-tracial case already established.
�

We are now in position to prove Theorem A, as stated in the introduction. Letr andn
be positive numbers withr ≥ 2, and letλ1, λ2, . . . , λr be a sequence of positive numbers
summing to 1. We have to show that there is a cocycle perturbation of theCAR/CCR
flow of indexn which has an absorbing state with eigenvalue listλ1, λ2, . . . , λr.

We first consider the case in whichn ≤ r2−1. LetH0 be a Hilbert space of dimension
r, and identifyMr(C) with B(H0). Choose an orthonormal basisξ1, ξ2, . . . , ξr for H0
and letω0 be the state ofB(H0) defined by

ω0(x) =
r∑

k=1

λk 〈xξk, ξk〉 .

Thenω0 is a faithful state onB(H0) having eigenvalue listλ1, λ2, . . . , λr. By Theorem
5.1, there is a pure CP semigroupP = {Pt : t ≥ 0}acting onB(H0) such thatω0◦Pt = ω0
for everyt ≥ 0. Using Bhat’s dilation theorem [7, 8], there is a Hilbert spaceH ⊇ H0
and anE0-semigroupα = {αt : t ≥ 0} acting onB(H) such that if we identifyB(H0)
with the cornerp0B(H)p0 (p0 denoting the projection ofH onto H0), then we have
αt(p0) ≥ p0 for everyt ≥ 0 and for everyx ∈ B(H0),

Pt(x) = p0αt(x)p0, t ≥ 0.

Using [2], we may assume thatα is minimalover the projectionp0.
Now by Proposition 2.4,α is a pureE0-semigroup. Moreover, if we define a normal

stateω of B(H) by
ω(x) = ω0(p0xp0),

thenω must be invariant underα. Indeed, sinceαt(p0) ≥ p0 we have for everyx ∈ B(H)

p0αt(x)p0 = p0αt(p0xp0)p0 = Pt(p0xp0),
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hence
ω(αt(x)) = ω0(Pt(p0xp0) = ω0(p0xp0) = ω(x),

as asserted. By the general discussion of Sect. 1 it follows thatω is an absorbing state, and
of course the eigenvalue list ofω is the same as that forω0, namelyλ1, λ2, . . . , λr. Thus
it only remains to show thatα is conjugate to a cocycle perturbation of theCAR/CCR
flow of indexn. But by Corollary 4.21 of [5],α is cocycle conjugate to aCAR/CCR
flow of indexd∗(P ) = n, and the proof of this case is complete.

Suppose now thatn > r2 − 1. In this case, pick any positive integerk ≤ r2 − 1. By
what was just proved, we can find a cocycle perturbationα of theCAR/CCR flow of
indexk which has an absorbing stateω having eigenvalue listλ1, λ2, . . . , λr. Moreover,
lettingp0 be the support projection ofω thenp0 has rankr and ifP is the CP semigroup
obtained by compressingα to p0B(H)p0, thenP is a pure CP semigroup andα can be
assumed to be the minimal dilation ofP .

We will show how to useα to construct anonminimaldilation β of P which is
pure, conjugate to a cocycle perturbation of theCAR/CCR flow of indexn, and has
an absorbing state with the same eigenvalue list. For that, letm = n − k and letαm be
theCAR/CCR flow of indexm, acting onB(K). It is known that everyCAR/CCR
flow has a pure absorbing stateρ (the vacuum state) [13]. Thus lettingζ ∈ K be the
vacuum vector then we have

ρ(x) = 〈xζ, ζ〉 .

If we write [ζ] for the rank-one projection defined byζ thenαm
t ([ζ]) ≥ [ζ] for every

t ≥ 0 and in fact
lim

t→∞ αm
t ([ζ]) = 1K . (5.8)

Let β be theE0-semigroup defined onB(H ⊗ K) by β = α ⊗ αm, i.e.,

βt(x ⊗ y) = αt(x) ⊗ αm
t (y), x ∈ B(H), y ∈ B(K), t ≥ 0.

β is obviously a cocycle perturbation of theCAR/CCR flow of indexn = k + m. We
will show thatβ is a pureE0-semigroup having an invariant state with eigenvalue list
λ1, λ2, . . . , λr.

To that end, consider the normal stateω′ defined onB(H ⊗ K) by

ω′ = ω ⊗ ρ.

Sinceρ is a vector state,ω′ has the same eigenvalue list asω, namelyλ1, λ2, . . . , λr.
Moreover,ω′ is invariant underβ becauseω (resp.ρ) is invariant underα (resp.αm).
Thus it remains to show thatβ is a pureE0-semigroup.

For that, we appeal to Proposition 2.4 as follows. Letq0 = p0 ⊗ [v] be the support
projection ofω′. Then we have

βt(q0) = αt(p0) ⊗ αm
t ([v]).

Since the projectionsαt(p0) (resp.αm
t ([v])) increase witht to 1H (resp.1K), it follows

thatβt(q0) ≥ q0 and
lim

t→∞ βt(q0) = 1H⊗K .

Thus if we letQ = {Qt : t ≥ 0} be the CP semigroup obtained by compressingβ to the
cornerq0B(H ⊗ K)q0, it follows thatβ is a (nonminimal) dilation ofQ. Finally, since
[v] is one-dimensional,Q is conjugate to the original CP semigroupP , and is therefore
pure. By Proposition 2.4, we conclude thatβ is a pureE0-semigroup.
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We have established all but the third paragraph of Theorem A, to which we now turn
our attention. Letr ≥ 2 be an integer and letβ be anE0-semigroup acting onB(H), H
being a separable infinite dimensional Hilbert space, which has an absorbing state with
eigenvalue listλ1, λ2, . . . , λr. Assuming thatβ is minimal over the support projection
p0 of ω, we have to show thatβ is cocycle conjugate to aCAR/CCR flow of indexn,
wheren is a positive integer not exceedingr2 − 1.

Let H0 = p0H and letP = {Pt : t ≥ 0} be the CP semigroup obtained by
compressingβ to the cornerp0B(H)p0

∼= B(H0). LetLbe the generator of the semigroup
P . By [4, 5] there is an operatork ∈ B(H0) and a metric operator spaceE ⊆ B(H0)
(possibly{0}) satisfyingE ∩ C1 = {0} and which give rise toL as follows:

L(x) =
n∑

k=1

vkxv∗
k + kx + xk∗, x ∈ B(H0), (5.9)

v1, v2, . . . , vn denoting any orthonormal basis forE . SinceE is a proper subspace of
the r2-dimensional vector spaceB(H0), the integern = dimE has possible values
0, 1, . . . , r2 − 1.

Note first thatn cannot be 0. For in that case (5.9) reduces toL(x) = kx + xk∗.
Using the fact thatL(1) = 0, we find thatk must be a skew-adjoint operator for which
L(x) = [k, x], hence

Pt(x) = exptL(x) = etkxe−tk

is a semigroup of∗-automorphisms ofB(H0). Sinceβ is a minimal dilation ofP we
must haveH = H0 andβt = Pt for every t ≥ 0, contradicting the fact thatβ is an
E0-semigroup acting on an infinite dimensional typeI factor.

Thus 1≤ n ≤ r2 − 1. Theorem 2.3 of [5] implies that the index ofP is given by
d∗(P ) = dimE = n, and by [4] Theorem 4.9 we haved∗(β) = d∗(P ) = n. β must be
completely spatial by [5] Theorem 4.8, and finally by the classification results of [1]
(Corollary of Proposition 7.2) every completely spatialE0-semigroup is conjugate to a
cocycle perturbation of aCAR/CCR flow. That completes the proof of Theorem A.

References

1. Arveson, W.: Continuous analogues of Fock space. Memoirs Amer. Math. Soc.80, no. 3, 1–66 (1989)
2. Arveson, W.: MinimalE0-semigroups. In: Operator Algebras and their Applications (Fillmore, P. and

Mingo, J., ed.), Fields Institute Communications, AMS, 1997, pp. 1-12
3. Arveson, W.: Dynamical Invariants for noncommutative Flows. To appear in the Proceedings of the Rome

conference on Operator Algebras and Quantum Field Theory, 1996
4. Arveson, W.: The index of a quantum dynamical semigroup. J. Funct. Anal. (to appear)
5. Arveson, W.: On the index and dilations of completely positive semigroups. Int. J. Math. (to appear)
6. Arveson, W.: PureE0-semigroups without normal invariant states. In preparation
7. Bhat, B.V.R.: Minimal dilations of quantum dynamical semigroups to semigroups of endomorphisms of

C∗-algebras. Trans. A.M.S. (to appear)
8. Bhat, B.V.R.: On minimality of Evans-Hudson flows. Preprint
9. Bratteli, O., Jorgensen, P., Price, G.L.: Endomorphisms ofB(H). Proceedings of Symposia in Pure

Mathematics, vol.59, Providence, RI: Amer. Math. Soc., 1996, pp. 93–138
10. Christensen, E., Evans, D.: Cohomology of operator algebras and quantum dynamical semigroups. J.

Lond. Math. Soc.20, 358–368 (1979)
11. Evans, D., Lewis, J.T.: Dilations of irreversible evolutions in algebraic quantum theory. Comm. Dubl.

Inst. Adv. Studies, Ser A24 (1977)
12. Powers, R.T.: A non-spatial continuous semigroup os∗-endomorphisms ofB(H). Publ. RIMS (Kyoto

University)23, 1053–1069 (1987)



PureE0-Semigroups and Absorbing States 43

13. Powers, R.T.: New examples of continuous spatial semigroups of endomorphisms ofB(H). J. Funct.
Anal (to appear)

14. Powers, R.T.: Possible classification of continuous spatial semigroups of∗-endomorphisms ofB(H).
Proceedings of Symposia in Pure Mathematics, vol.59, Providence, RI: Amer. Math. Soc., 1996, pp.
161–173

15. Powers, R.T.: Induction of Semigroups of Endomorphisms ofB(H) from Completely Positive Semigroups
of n × n Matrix algebras. Int. J. Math. (to appear)

Communicated by H. Araki


