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ABSTRACT. A lecture presented at the von Neumann symposium on Quantization
and Nonlinear Wave Equations held at MIT in June, 1994. We describe the role of
semigroups of endomorphisms of von Neumann algebras in algebraic formulations of
quantum field theory, and present a summary of recent developments in the theory
of Ep-semigroups.

1. Relation to symmetry groups of algebras of local observables.

In the algebraic formulation of quantum field theory, one works with a C*-algebra
A that is acted upon by a group of automorphisms representing the symmetries of
spacetime (for example the Poincaré group), and which is also given a local struc-
ture (subalgebras of local observables). This local structure normally consists of
associating a (von Neumann) subalgebra of A to every bounded region of spacetime
in a coherent way, so that inclusions match up correctly, so that these subalgebras
transform covariantly under the group action, so that the topologies fit together
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consistently, and which may satisfy additional conditions arising from the underly-
ing physics. This C*-algebra is not necessarily presented in a representation on a
Hilbert space. However, given any state of A which restricts to a normal state on
the local subalgebras, one can perform the usual GNS construction and obtain a
representation of this algebra on a Hilbert space H.

Typically, the group of automorphisms (or large subgroups of it) leave the state
invariant, and therefore one can naturally construct a unitary representation of the
group on H which implements the action. Moreover, once one has a concrete repre-
sentation of .A, one can associate von Neumann algebras with every (not necessarily
bounded) open subset of spacetime by taking weak closures of appropriate unions.

For example, there is a von Neumann algebra M(C) C B(H) associated with
the forward light cone

C={(tz)eRxR: (22 +22+22)/2 <t}

If v is any vector of R x R3 which lies inside C' then the one parameter group
A € R — MXv defines a physical flow of time. This flow is represented by a one-
parameter unitary group {Uy : A € R } acting on H. Since C + Av C C for X > 0,
we may conclude from the covariance properties of the given structure that for
nonnegative A we have

(1.1) UsM(C)U; € M(C).

Thus (1.1) defines a semigroup of isometric unit-preserving *-endomorphisms which
acts on the von Neumann algebra M(C). In the simplest case where M(C) is a
factor of type I, we have a prototypical example of an Ey-semigroup {ay : A >0}

ax(A) = UAU;, AeM(C), r>0.

We will take up this situation in a more general setting. By an FEjy-semigroup
we mean a semigroup {a; : t > 0 } of self-adjoint normal endomorphisms of the
algebra B(H) of all bounded operators on a Hilbert space H which preserves the
identity (a;(1) = 1 for every ¢t > 0) and is such that

t—< a(A)E,n >

is continuous for every £, € H and every A € B(H). We emphasize that for the
results discussed in the sequel, it is essential that the Hilbert space H should be
separable. Naturally, one may speak of Ey-semigroups that act on type I factors M,
and in this less concrete situation we require that the predual of M be separable.
Two Ey-semigroups a (acting on M) and 3 (acting on N) are said to be conjugate
if there is a *-isomorphism 0 : M — N such that §oa; = (B; 06 for every t > 0. One
may also speak of Ey-semigroups that act on more general factors, but we shall not
do so here.



Ey-SEMIGROUPS IN QUANTUM FIELD THEORY 3

The preceding discussion shows that one may obtain Ey-semigroups by starting
with a strongly continuous one-parameter unitary group U = {U; : t € R } acting
on a Hilbert space H, finding somehow a type I subfactor M, C B(H) which is
invariant in the sense that

UMLUS € My
for-nonnegative ¢ and then defining an FEjy-semigroup a on M by setting
at(A) = UtAUt*, t 2 O, A€ M+.

Notice that in this case there is a “complementary” Ej-semigroup. Indeed, the
commutant M_ = M/ of M, is also a type I factor, and is invariant under
the automorphisms A — U, AU} for negative t. Thus we can define a second Ey-
semigroup 3 acting on M_ by way of

Bi(A) =U;AU,, t>0, AeM_.

These remarks show that the Ey-semigroups that arise in this way from auto-
morphism groups of a larger type I factor always occur in pairs. Several natural
questions occur at this point. For example, does every abstract Ey-semigroup o
which acts on a type I factor arise in this way from a one parameter group of
automorphisms of a larger type I factor? If it does, then what is the relation be-
tween the “positive” and “negative” semigroups o and 47 We will answer these
and other questions presently. Let us first recall some known results pertaining to
an analogous but much simpler situation.

Let U = {U; : t > 0 } be a strongly continuous one parameter semigroup of
isometries acting on a Hilbert space H. Then H can be decomposed into a direct
sum H; @ H» giving rise to a corresponding decomposition

(1.2) | U=VeWw

of U into a direct sum of two semigroups of isometries with the property that V is
pure in that

(N ViH1 =0

>0

and such that W; is unitary for every ¢ > 0. This decomposition is unique. More-
over, the pure summand V is unitarily equivalent to a direct sum of a count-
able number n of copies of the shift semigroup S, which acts on the Hilbert space
L?(0,00) by way of

flx—1t), forx >t
0, for0<x<t.

Sif(x) = {
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The number n is also uniquely determined. Taken together, these results are often
called the Wold decomposition. The summand H; is defined by

m:ﬂw&

t>0

amd of course H; is the orthocomplement of Hs.

"One of my first thoughts about Fy-semigroups was to speculate that there should
be an effective decomposition resembling the Wold decomposition, and that this
might lead to some kind of classification up to conjugacy. It quickly became clear
that this idea was too naive. Since a discussion of this issue serves to make a
significant point about Ey-semigroups, we offer the following comments.

Suppose that one is given an FEy-semigroup a = {a; : t > 0 } which acts on a
type I factor M. We indicate the extent to which a decomposition resembling the
Wold decomposition is valid for a. There are two natural von Neumann algebras
associated with the action of a:

My = ﬂ ar (M), and
M*={AeM:a(A)=A,t>0}.

M is the “tail” von Neumann algebra, and M? is the fixed algebra. We have
M C My € M, and the action of a; on M, defines an automorphism of M
for every ¢t > 0. Thus the restriction of a to My, defines a one-parameter group of
automorphisms of M. This W*-dynamical system plays the role of the summand
W in the Wold decomposition (1.2), and it is clearly a conjugacy invariant of the
original Ey-semigroup a.

Let N'= M/ denote the (relative) commutant of M. Notice that since M is
a factor of type I, we may treat relative commutants (in M) as if they were true
commutants. Since a;(M) = M for every t > 0, it follows in a straightforward
way that a;(N) C N, t > 0. Moreover, it is not hard to show that the restriction
of @ to N has trivial “tail” in the sense that

ﬂ a:(N') = center of N' = center of M.

t>0

In the important case where M, is a factor, then we have a decomposition resem-
bling (1.2) to some extent, in that

(1.3) M=NV My

is generated by a pair of mutually commuting factors which are commutants of
each other, that o determines an automorphism group on M., that o leaves N
invariant and in fact defines a “pure” semigroup on N in the sense that

(1.4) [ (V) =CL

t>0
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If M happens to be a factor of type I then (1.3) becomes a simple tensor product
(1.5) M=N Q@ M,

and if we define Fp-semigroups 3 on N and 4 on My, by restricting a in the
obvious way then we have a decomposition

(1:6) a=88".

Formula (1.6) appears quite analogous to the Wold decomposition (1.2).

Unfortunately, M, need not be a type I von Neumann algebra. Moreover, even
if it were a type I factor, we do not know how to classify FEp-semigroups that satisfy
(1.4). And if M, is a factor not of type I, then almost nothing is known about
semigroups satisfying (1.4). Finally, it is known that there exist Fy-semigroups
whose fixed algebra M is a factor of type Il or of type III (we will have more
to say about this in sections 7 and 8).

These remarks lead one to the conclusion that FEjy-semigroups are much too
complex to hope for a useful classification up to conjugacy.

2. Cocycle perturbations.
Let a be an Ey-semigroup acting on B(H). A cocycle for a is a strongly contin-
uous family of unitary operators U = {U; : t > 0 } satisfying

(21) Us+t = Usas(Ut), S,t > 0.

Notice that (2.1) implies that Uy = 1. The condition also implies that the family
of endomorphisms 8 = {f; :> 0 } defined by

is another Fy-semigroup acting on B(H). [ is called a cocycle perturbation of a.
Two Eyp-semigroups are said to be cocycle conjugate if one of them is conjugate to
a cocycle perturbation of the other. This is an important relation for the theory of
Ey-semigroups, and we want to discuss the notion of cocycle perturbations in more
detail.

Suppose that o and 3 are two Ep-semigroups which act on the same B(H), and
that 0 is a cocycle perturbation of a as in (2.2):

B (A) = Uy (A)UY, AeB(H), t>0.

Notice that the unitary operators V; = U, t > 0 define a cocycle for 3 and of
course we have

at(4) = VB (A)Vy.

Thus, this notion of cocycle perturbation defines an equivalence relation on the set
of all Ey-semigroups that act on a fixed B(H).

Note too that this relation is analogous to Connes’ notion of exterior equivalence
for one-parameter automorphism groups of a von Neumann algebra M [13]. In
particular, Connes discovered that if one is given a pair of faithful normal weights of
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M, then the two associated modular automorphism groups are exterior equivalent,
and this led to the establishment of an elegant classification theory for type III
factors. Cocycle perturbations are of fundamental importance for the classification
of Ep-semigroups as well, but for reasons that involve new phenomena that are
unique to the theory of Fy-semigroups (see Theorem B below).

Remark 2.3. The cohomology of cocycle perturbations. Suppose first that a and
B~ are conjugate Ey-semigroups which act on the same B(H), say 8 o 8; = a; 0 6
where 6 is a *-automorphism of B(H). We may find a unitary operator W that
implements € in the sense that §(A) = W*AW, A € B(H). It follows that

B:(A) = U (A)U;, t>0 Ae€B(H),

where U is the a-cocycle defined by Uy = Way(W)*. An a-cocycle of this form
is called eract. Conversely, if 8 is a perturbation of a by an exact cocycle, then
a and 3 are conjugate. This remark explains why the problem of classifying Ejy-
semigroups to conjugacy is difficult: it is the same as the problem of computing a
very subtle noncommutative cohomology group.

Remark 2.4. Perturbations of the infinitesimal generator. We want to point out
a useful interpretation of cocycle conjugacy in terms of infinitesimal generators.
Suppose that a acts on B(H), and let § be the generator of a. For an operator A
in the domain of 8, 6(A) is defined as the limit in the strong operator topology

6(4) = lim t7 (as(4) - A).

The domain of § is a unital *-subalgebra D of B(H) and ¢ is a self-adjoint derivation
of D into B(H). Let B be any bounded self adjoint operator in B(H) and put

§'(A) = 6(A) +i(BA — AB).

&’ is another unbounded self-adjoint derivation having the same domain D, and it
can be shown that it is the generator of a second Ey-semigroup # which acts on
B(H). In fact, 8 is a cocycle perturbation of & and the cocycle U relating 3 to «
as in (2.2) can be defined as the global solution of the linear differential equation

d
c_lZU(t) = 1U(t)a(B), t>0,
with the initial condition U(0) = 1. It is easy to see from the properties of this
differential equation and the fact that B is bounded that the cocycle U is norm
continuous:

lim [|U(t) — U(to)ll =0,

t—tp

for every to > 0. Now in general, cocycles need not be norm continuous, and
the generators of cocycle perturbations of o cannot be obtained by perturbing the
generator of a by bounded derivations. Nevertheless, it is useful to think of the
cocycle perturbations of an FEy-semigroup as having been obtained by perturbing
its generator by an “unbounded” derivation. While this interpretation is merely a
heuristic conceptual device, it can sometimes be made precise. In any event, one
should consider the definition of cocycle perturbation as a precise formulation of
this idea.
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3. Numerical index.

The preceding discussion shows that one should look for cocycle conjugacy invari-
ants. We now describe a numerical index invariant which is appropriately thought
of as a quantized form of the Fredholm index of certain differential operators (or of
the operator semigroups that they generate). It is defined as follows.

Let « = {a: : t > 0 } be an FEy-semigroup acting on B(H). A unit for a is
a strongly continuous semigroup of bounded operators {U; : ¢ > 0} on H which
intertwines « in the sense that

at(A)Ut = UtA, t Z O, A € B(H),

and is not the zero semigroup U; = 0. U, will denote the set of all units of a. Notice
that if U and V belong to U, then for each ¢ > 0 V;*U; is a bounded operator which,
by 3.1, commutes with every bounded operator on H, and hence must be a scalar
multiple of the identity

ViU, = f(t)1, t>0.

f is a continuous complex-valued funciton satisfying f(0) = 1, and one easily verifies
that f(s +t) = f(s)f(t) for all nonnegative s,t. Hence there is a unique complex
number ¢(U, V) satisfying

f(t) — ec(U,V)t’

for every t > 0. The bivariate function
c: Uy, xU, - C

is called the covariance function of a. The covariance function is easily seen to be
conditionally positive definite. Thus one may use the pair (U,, c) in a natural way
to construct a Hilbert space H,. It can be shown that H, is separable. We define

d.(a) = dim H,.

Thus the possible values of d.(a) are 0,1,2,...,Ry. Significantly, there are Ep-
semigroups a for which U, = @ [18], and in this case it is convenient for the
arithmetic of the index to define d, () = 2%°. See [2] for more detail.

The basic property of this index is that it behaves well under the formation of
tensor products [6]. If  and 3 are two Ey-semigroups acting, respectively, on B(H)
and B(K) then it is easy to see that there is a unique Ey-semigroup a ® 3, acting
on B(H ® K), which satisfies

(a®0):: A® B — a;(A) @ B:(B)

for every t > 0,A € B(H), B € B(K).

Theorem A.
di(a® B) = di(a) + d.(B).

Notice that d. () is invariant under cocycle conjugacy, or what is in substance
the same, that d, () is stable under cocycle perturbations of a.. That is easily seen
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as follows. Let W = {W} : t > 0 } be any cocycle for a and consider the associated
perturbation 3

Bi(A) = Wit (A)W,  t>0, A€ B(H).
One may check that if U = {U; : ¢t >0 } is a unit for @ and if we define
U, = W, Uy, t>0,

then U is a unit for B. Moreover, U +— Uisa bijection of U, onto Uz which carries
one covariance function into the other. Thus the Hilbert spaces H, and Hj are
isomorphic and it follows that d.(a) = d.(8).

This definition of numerical index is equivalent to the one given in [3], and
differs significantly from Powers’ earlier definition of numerical index [18]. In the
latter the index was defined as the multiplicity of a certain representation of a C*-
algebra associated with the infinitesimal generator of a. Since the representation
depended on making a particular choice of a unit, it was not clear that this index was
unambiguously defined. Later, Powers and Robinson [22] gave another definition
of index which was obviously well-defined, but which took values in an abstract set
of equivalence classes rather than in the nonnegative integers. Recently, Powers
and Price [23] have shown that d.(a) actually agrees with Powers’ “infinitesimal”
definition in all cases. In particular, it is now clear that Powers’ original definition
of the numerical index was unambiguous.

4. Continuous tensor product systems.

We now want to emphasize a fundamental relationship between Ej-semigroups
and continuous tensor products of Hilbert spaces. Indeed, one could argue that
up to cocycle conjugacy, the theory of Ey-semigroups is the theory of continuous
tensor products of Hilbert spaces.

Heuristically, a product system is a measurable family of Hilbert spaces F =
{E: : t > 0 } which behaves as if each E; were a continuous tensor product

E,= Q H, H,=H

0<s<t

of copies of a single separable Hilbert space H. While this heuristic picture is often
useful, one must be careful not to push it too far. Indeed, we will see that this
picture is basically correct for the simpler examples of product systems, but that
there are other examples with the remarkable property that the “germ” H fails to
exist. Rather than reiterate the details of the precise definition here, we illustrate
the essentials of the structure of product systems in the discrete case, where the
positive real line is replaced with the discrete set N = {1,2,... } of positive integers.
Then we will indicate briefly how to change the axoims to pass from N to R*. Full
details can be found in [2].

Let H be a separable Hilbert space. For every n =1,2... let E(n) be the full
tensor product of n copies of H:

En)=H®H® - ®H.

n times



Ey-SEMIGROUPS IN QUANTUM FIELD THEORY 9

We may organize these spaces into a family of Hilbert spaces p: E — N over N by
setting

E={t¢):teN¢EecE®)},

with projection p(t,€) = t. We introduce an associative multiplication on the
structure £ by making use of the tensor product

(5,8) - (t,m) = (s +t, € @),

£ € E(s), n € E(t). This multiplication is bilinear on fibers, and has the two
additional properties

(4.1) E(s +t) =span E(s)- E(t), s,teN
(4.2) <uz,vy >=<u,v><z,y> Vuve€kFE(s), xzy€E{).

Notice that the Hilbert space associated with the sections of p : E — N is the direct

sum .
S E(t)=>_ H®"
n=1

teN

essentially the full Fock space over the one-particle space H.
A unit is a section n € N — u,, € E(n) satisfying

Um4n = UmUn,
and which is not the zero section. The most general unit has the form

n times

n > 1, where z is a nonzero element of the one-particle space H.
Fixn=1,2... and let u be a vector in F,. u is called decomposable if for every
k=1,2,...,n—1 there are vectors vx € E(k), wx € E(n — k) such that

U = VpWg.

Notice that the most general decomposable vector in E(n) is an elementary tensor
of the form

U=T1QT2Q Q@ Tn,

where z, € H for k =1,2,...,n.

A product system is a similar structure, except that it is associated with the
space of positive reals rather than N. More precisely, a product system is a family
of separable Hilbert spaces over the semi-infinite interval (0, co)

p:E — (0,00)

which admits an associative multiplication that is bilinear on fiber spaces and has
properties analogous to properties corresponding to (4.1) and (4.2). Additionally,
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E is endowed with a standard Borel structure which is compatible in the natural
way with the other structures of E, and with the further property that there should
be a separable Hilbert space H such that

(4.3) E =~ (0,00) x H,

where 2 denotes an isomorphism of measurable families of Hilbert spaces. Condi-
tion (4.3) is nontrivial, and is the property in this category that corresponds to local
triviality of Hermitian vector bundles. There is a natural notion of isomorphism for
the category of product systems, which we will not write down explicitly here (see
[2]). We may also define units of E and decomposable vectors of the fiber spaces E;
in a way analogous to the above. For example, a unit is a measurable cross section

u:t € (0,00) — u(t) € E;

satisfying u(s +t) = u(s)u(t) for all s, > 0, and which is not the zero section.

One might expect that it should be possible to write down a comprehensive list
of (continuous) product systems as we have done above for their discrete analogues.
In that case there is, up to isomorphism, exactly one “discrete” product system for
every integerd = 1,2,...,Rq. d can be taken to be the dimension of the one-particle
space FE;. In the continuous case, however, nothing like that is true. While there is
a family of “natural” examples parameterized by the values d = 1,2,...,Rq, there
are many others as well. The problem of classifying general product systems is an
unsolved problem which, as we will see, is of central importance in the theory of
Ej-semigroups.

Every Ey-semigroup o = {a; : t > 0 } gives rise to a product system E, in
the following way. Suppose o acts on B(H). For every t > 0, let E,(t) be the
intertwining space

Eo(t) = {T € B(H): as(A)T =TA VA€ B(H)}.

E,(t) is obviously a complex vector space, and in fact it is a Hilbert space. Indeed,
if S,T € E,(t) then because of the intertwining property it follows that T*S com-
mutes with every operator A € B(H). Hence there is a unique complex number
< 8, T > such that

TS =< S5,T > 1.

<,> is an inner product on E,(t) which makes it into a Hilbert space. Thus we
have a family of Hilbert spaces p : E, — (0,00) defined by

Eo={(t,£):t>0, £€E,(t)}

where p(t,€) = t. If we use operator multiplication to define multiplication in FE,
by : '
(5,59)-(t, T) = (s +t,ST),

then it is not hard to establish the properties (4.1) and (4.2). E, inherits a natural
standard Borel structure as a subspace of (0,00) x B(H), where B(H) is endowed
with the Borel structure generated by its weak* topology. Finally, it is a nontrivial
fact that property (4.3) is valid as well [2]. Thus E, is a product system. The
importance of product systems in this context derives from the following result
from [2].
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Theorem B. a and 3 are cocycle conjugate iff E, and Eg are isomorphic product
systems.

In order to illustrate what lies behind Theorem B, let us consider the case in
which a and 8 both act on B(H) and S is a cocycle perturbation of a:

Bi(A) = Uy (A)UY, t>0, Ae€B(H),

whére U = {U; : t > 0 } is an a-cocycle. In this case it is quite easy to exhibit an
isomorphism of product systems 6 : E, — Eg. Indeed, if we fix t > 0 and choose
T € E,(t), then one may verify directly that U;T belongs to Eg(t). Thus we can
define a unitary operator 6; : E4(t) — Eg(t) by 6.(T) = U,T; 6 is defined as the
total map. 6 is a (measurable) bijection which is unitary on fibers, hence it is an
isomorphism of families of Hilbert spaces. The cocycle property implies that for
s,t >0and S € E,(s),T € E,(t) we have

05(5)0,(T) = U,SU,T = U, (Uy) ST
- s+tST = OS_H(ST).

Thus € preserves multiplication, and hence it is an isomorphism of product systems.

To prove the converse direction (still assuming that a and 8 act on the same
B(H)), one basically has to start with an isomorphism 6 : E, — Ej3 and show
that 6 is associated with a unitary a-cocycle U as above. This is technically more
difficult, but the basic idea is similar (see [2], Theorem 3.18).

Theorem B implies that the problem of classifying Fy-semigroups up to cocycle
conjugacy is equivalent to that of classifying certain product systems...namely, those
product systems that can be associated with an Fy-semigroup as above. It is a basic
result in our approach to Ey-semigroups that every product system arises in this
way.

Theorem C. For every product system E there is an Ey-semigroup o such that E
is isomorphic to E,.

The proof of Theorem C is very indirect [5], and makes essential use of the
spectral C*-algebras discussed in sections 7 and 8.

We want to point out that there is a general notion of dimension of an abstract
product system that generalizes the numerical index of Ey-semigroups. This di-
mension function takes values in the set {0,1,2,...,Ro,2%°}, and corresponding to
Theorem A it obeys

dim(E ® F) = dim E + dim F’

where ® denotes the natural tensor product in the category of product systems.
The relation of d, to dim is given by the expected formula

d.(a) = dim(E,).

It follows that, in order to classify Fy-semigroups up to cocycle conjugacy, one
should seek to determine the structure of product systems. In particular, we may
consider the set ¥ of all isomorphism classes of product systems. The class of a
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product system E will be denoted [E]. There is a natural “addition” in ¥, defined
by the natural tensor product operation

[E]+ [F] = [E® F],

which makes ¥ into an abelian semigroup. There is a neutral element, which
arises from the trivial product system Z. Z is defined as the trivial family of
one-dimensional Hilbert spaces

Z={(t,z):t>0,z€C}

where the inner product in C is the usual one < z,w >= 2w. The multiplication
in Z is given by
(S, Z) ) (taw) = (5 +t, Z’lU)

It can be seen that if a is an Ep-semigroup which is trivial in the sense that each
o; is an automorphism, then E, is isomorphic to Z. Moreover, it is also a fact
that there are no nontrivial line bundles in ¥: every product system E with one-
dimensional fiber spaces E;,t > 0, is isomorphic to Z [6]. One can verify directly
that for every [E] € ¥ one has '

[E®Z]|=[Z® E] = [E].

Therefore [Z] functions as an additive zero for X.

There is also a natural involution in X, defined by [E] — [E°], where E° is
the product system opposite to E. The structure of E° is identical to that of F
except that multiplication is reversed. With this involution, ¥ becomes an abelian
involutive semigroup with a zero element. The problem of classifying Eo-semigroups
up to cocycle conjugacy becomes the probem of determining the structure of the
tnvolutive semigroup X.

At this point, we are not even certain of the cardinality of X! It is expected that
Y is uncountable, but this has not been proved. Notice for example that by the
more general version of Theorem A alluded to above, the dimension function defines
a homomorphism of ¥ into the additive semigroup of extended nonnegative integers
{0,1,2,...,Ro,2%}. Little is known about the quotient structure in ¥ defined by
this homomorphism. For example, by recent work of Powers in which a new family
of Eg-semigroups is constructed [21], we now know that for each k¥ = 1,2,..., 8
there are infinitely many elements x of ¥ that satisfy

dim(z) = k.

But it is still not known if there are distinct elements z,y € ¥ satisfying dim(z) =
dim(y) = 0. Equivalently, is there a nontrivial Fy-semigroup a with the property
that there is a nonzero unit U = {U; : t > 0 } and such that every other unit V is
related to U by a relation of the form

V, =eMU,, t>0

where A is a complex number?
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Finally, let us return to some questions raised in section 1 concerning the problem
of extending Fy-semigroups to automorphism groups acting on a larger type I factor.
Suppose that we are given a pair of Ey-semigroup s «, § acting respectively on B(H)
and B(K). We are interested in obtaining conditions on the pair a, 3 which imply
that there is a one-parameter group of unitaries W = {W; :€ R} acting on the
tensor product H ® K whose associated automorphism group v (C) = W,CW;
satisfies

1 A®1)=a;(A)®1, fort>0
%(1®B) =1Q (_4(B), fort<O0.

In case such a group exists, then o and [ are said to be paired. This relation
was introduced by Powers and Robinson in [22] as an intermediate step in their
definition of another index. The Powers-Robinson index is an equivalence relation
defined in the class of all Ey-semigroups; o and 3 are said to have the same index
if there is a third Ey-semigroup o with the property that o can be paired with o
and o can be paired with .

Using the theory of product systems one can determine the precise nature of
this pairing, and thus give a more concrete form to the Powers-Robinson index.
The details are as follows. It is not hard to show that a and 3 are paired iff their
product systems E, and Eg are ant: isomorphic. Moreover, with any particular
anti isomorphism 6 : £, — Eg one can write down a specific one parameter unitary
group W acting on H ® K which simultaneously extends o and 3 in the above sense
(the details can be found in [2, pp 27-28]).

Carrying this one step further, we can answer a question posed in section 1
which asks how to describe the possible ways of extending an FEjy-semigroup to
a larger type I factor. More precisely, starting with a particular Fy-semigroup
a we seek to describe all possible ways of finding a one-parameter unitary group
W = {W,; : t € R} acting on some other Hilbert space K and a type I subfactor
M C B(K) with the property that

W,MW; CM,  fort>0

and such that o is conjugate to the restriction of adW;, ¢t > 0 to M. The
preceding remarks show that one should begin by considering the product system
E? opposite to E,. Notice that by Theorem C, there exist Ey-semigroups whose
product systems are isomorphic to E2. Moreover, the set of all possible extensions
of o is described by the set of all anti isomorphisms of £, to E2. In turn, these
are obtained by composing the natural anti isomorphism of E, to EZ with an
arbitrary automorphism of F, itself. Thus the set of all possible extensions of « is
parameterized by the group of all automorphisms of the product system E,. This
group is computed explicitly for the “standard” examples in ther last section of [2];
its structure in the case of general product systems remains mysterious.

In particular, it follows from these remarks that two Ejy-semigroups have the
same index in the sense of Powers-Robinson iff their product systems determine
the same element of the semigroup ¥. Thus, this discussion also gives a somewhat
more concrete description of the Powers-Robinson index: it is now identified with
this X-valued index map

a— [E,] € X.
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5. CCR flows.

We have already remarked that there is a sequence of standard Ey-semigroups,
and corresponding to them a sequence of standard product systems. These have
been described in detail in [2] and [7]. The purpose of this section is to give a
brief description of these standard examples and to describe recent results on the
problem of characterizing Fo-semigroups that are cocycle conjugate to a standard
one.

It is useful to think of this construction as a functor related to second quantiza-
tion; that interpretation makes explicit the precise sense in which the index d.(c)
of an Ey-semigroup is a quantized form of the Fredholm index of certain differential
operators. A fuller discussion of these issues can be found in [7].

Consider the category S whose objects are semigroups of isometries U = {U; :
t > 0} each of which acts on a separable Hilbert space Hy. hom(U, V) consists of
unitary operators W : Hy — Hy which intertwine U and V:

WU, =V,W, t>0.

This category admits a natural direct sum operation &, in which U & V is the
semigroup of isometries on Hy @ Hy defined by

UesV),=UeV, t>0.
Every semigroup of isometries U decomposes uniquely into a direct sum
(5.1) U=VoeW
where W. is a semigroup of unitary operators and where V is pure in the sense that

nV;HV = 0.

t>0

Moreover, every pure semigroup of isometries is isomorphic to a direct sum of a
countable number d of copies of the simple shift semigroup S which acts on L?(0, o)
by way of

flx—t), forx >t

0, for0<x5t.

Sif(x) = {

The number d of copies of S is uniquely determined by V, and is called the indez
of V. We remark that there are other ways to define the index of V, involving the
deficiency spaces of the infinitesimal generator of V. But the definition we have
given is the quickest. All of this information about the decomposition (5.1) is often
referred to as the Wold decomposition.

The index obeys the expected law of addition

ind(U;, @ Us) = ind(Uy) + ind(Us),

and it can take on any of the values 0,1,2,...,8y. Notice that there is also a
tensor product operation defined on S, but it has terrible arithmetic properties
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with respect to the index. For example, if U; and Us have index 1 then U; ® U,
has index Ny. Thus we must consider S as a category with a single operation &.
Let £ be the category whose objects are Ep-semigroups and whose maps are
conjugacies. Thus, if o and ( are Ej-semigroups acting respectively on B(H,) and
B(Hp), then hom(a, ) consists of *-isomorphisms 0 : B(H,) — B(Hp) satisfying

0(c(A)) = B:(6(A))

for every t > 0, A € B(H,). The natural operation in £ is the tensor product of
Ey-semigroups that has already been defined in section 3.

One might well ask if there is a direct sum operation in £. Assuming that there
were such an operation, one would expect a @ (3 to be an Ey-semigroup acting on
B(H, & Hp). By replacing 3 with a conjugate copy of itself if necessary, we may
assume that H, = Hz = H. Then B(H @ H) consists of 2 x 2 matrices over B(H).
One would expect at least that a @ 3 should restrict to a and 3 on the appropriate
summands, that is a @ 8 should also have the property

oo e (4 0)=(" ,5),

for all t > 0 and all A,B € B(H). However, if there were an Ey-semigroup on
B(H @ H) which satisfied (5.2), then one could show that o and § must in fact
be cocycle perturbations of each other. This argument is a variation of Connes’
elegant observation about exterior equivalence of modular automorphism groups
(the idea can be found in Lemma 8.11.2 of [17]). In particular, if & and g are not
cocycle conjugate then it is impossible to make a reasonable definition of a & 8.
One might summarize this state of affairs as follows: the only appropriate operation
in the category S is the direct sum and the only possible operation in the category
& is the tensor product. :

Finally, the index is defined on the objects of £ and because of Theorem A we
have

d.(a ® f) = d.(a) + du (D).

We now describe a construction which can be considered a functor from S to £.
This is (Boson) quantization, and it is also a form of exponentiation in that direct
sums carry over to tensor products. The details are as follows.

Let H be a Hilbert space. We will write H™ for the symmetric tensor product
of n copies of H if n > 1; H? is defined as C. Let

oo
eH — § :H’n
n=0

be the symmetric Fock space over H. The natural exponential map exp : H — e

is defined by
= 1
exp(§) = Z 77—1—"§®n-

n=0
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eH is spanned by the vectors of the form exp(£), £ € H, and we have

< exp(£), exp(n) >= <",

For every £ € H there is a unique unitary operator W (&) on e which satisfies

W (€) exp(n) = e~ 21EI°=<1¢>eqp(n + ).

W is strongly continuous, obeys Weyl’s form of the canonical commutation relations
W (W (n) = ™S W (€ + 1),

and W (H) is an irreducible set of operators on ef.

Now let U € S. We define an Ej-semigroup oV on B(ef) as follows. Fix ¢t > 0.
Because of the irreducibility of W, it is not hard to verify that there is a unique
normal endomorphism o of B(ef) satisfying

af (W() = W(Ui€), €€ Hy.

aV = {al :t >0} is an Ey-semigroup. Because of the natural identification

6H1®H2 — eH1 ® eHz

we have a natura)l identificaiton
(5.3) a’® =V ® ¥

for every U,V € §. With these observations in hand, one can establish the functo-
riality of the map U — oV (see [7] for more detail).

Let U € S. Applying (5.3) and the Wold decomposition (5.1), we find that oV
decomposes into a tensor product

o’ =87y

where + is a trivial Ep-semigroup (i.e., each 7 is an automorphism) and where 3
is conjugate to an Ey-semigroup of the form a® where d - S is a direct sum of d
copies of the simple shift semigroup S acting on L2(0,00). An Ey-semigroup such
as (3 is called a CCR flow of index d. This terminology is justified by the following
index theorem [2],[7].

Theorem D.
d. (oY) = index(U).

The proof of Theorem D involves some work: one must find all the units of oV
and compute the associated covariance function in order to calculate the dimension
of its associated Hilbert space. It follows immediately from Theorem B that if « is
any Ey-semigroup and v is a trivial Ep-semigroup, then a®-y is cocycle conjugate to
o (actually, it is not hard to prove the latter directly) . If we collect this observation
together with Theorem D then we are led to the conclusion that for any U,V € S,
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aV is cocycle conjugate to ¥ iff a¥ and oY have the same index. Thus the
numerical index is a complete cocycle conjugacy invariant for these examples.

We also point out that there is a corresponding construction of “standard” ex-
amples of product systems which parallels what we have done for Ey-semigroups,
and we refer the reader to [2] for the details.

Finally, one may use the Fermionic Fock space to construct standard examples of
Ey-semigroups having index 1,2..., Ry in a way that is roughly parallel to what we
have done above (though we point out that the construction of the corresponding
product systems is not so explicit in the Fermionic setting). The FEjy-semigroups
obtained from either the Bosonic or the Fermionic construction turn out to be
conjugate, provided that their numerical index is the same.

6. Classification results.

In this section we will describe two characterizations of product sytems which
are isomorphic to one of the standard product systems. These results provide a
classification of Fy-semigroups which have sufficiently many units, or which have
enough decomposable operators.

Let @« = {a: : t > 0 } be an Ep-semigroup acting on B(H), and fix t > 0.
Consider the set S; of all operators which can be decomposed into a finite product
of the form

(6,1) T= Ul(tl)UQ(tQ)...Un(tn),

where the Uy, Us, ..., U, are units for o, where %;,ts,...,t, are positive real num-
bers summing to ¢, and where n is an arbitrary positive integer. Because ¢ + t2 +
-+ +t, =t it is clear that S; C E, (t) for every t > 0. We say that « is completely
spatial if there is a ¢ > 0 such that

(6.2) H =span{T¢:T € S, € H }.

It is easy to see that if (6.2) is true for some particular positive ¢, then it is true for
every positive {. _

It was proved in ([2] section 7) that every completely spatial Ey-semigroup is
cocycle conjugate to a CCR flow. It follows that completely spatial Ey-semigroups
are classified by their numerical index. This is proved at the level of product
systems, using Theorem B.

That result has recently been extended significantly [9]. The extended version
does not assume the existence of units, and is formulated as follows. Fix ¢t > 0. An
operator T € E,(t) is called decomposable if, for every 0 < s < t there are operators
A, € Ey(s), Bs € E,(t — s) such that

T = AsB;.

We write D; for the set of all decomposable operators in E,(t). Any operator of
the form (6.1) is decomposable because of the semigroups property of each Uy, and
therefore D; contains S;. In fact, it is not hard to see that the following conditions
are equivalent

(6.3.1) E,(t) = span D,
(6.3.2) H =span{T¢: T € Dy, & € HY,
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and that if the conditions (6.3) are satisfied for some particular ¢t then they are
satisfied for every positive . We remark that one uses the Hilbert space topology
on E,(t) in (6.3.1); hence it is apparent that the conditions (6.3) depend only on
the structure of the product system E, associated with @. The main result of [9]
is

Theorem E. Every Fy-semigroup satisfying the conditions (6.3) is cocycle conju-
gete to a CCR flow.

Utilizing an ingenious construction in [19], Powers showed that there are Ej-
semigroups which possess no units whatsoever. In a recent paper [21] he also
proved that there are Ej-semigroups which have units but which are not cocycle
conjugate to a CCR flow. It follows that there are product systems which a) have
no units, and others which b) have units but not enough units to generate the
product system.

We believe that it should be possible to give a more direct consturction of product
systems with these properties. Unfortunately, we do not yet know how to do this.
There are examples of product systems that arise naturally in probability theory
(see [2], pp 14-16). Some of these examples do not appear to contain enough
units. However, in all such cases we have studied we eventually found many units
that were not initially obvious. What ¢s immediately obvious in these probabilistic
examples is that the product systems are generated by their decomposable vectors.
Theorem E tells us that such product systems must be standard ones. In particular,
any attempt to construct nonstandard product systems from “decomposable” sets
must fail.

7. Spectral invariant.

Theorem C above asserts that every abstract product system is associated with
an FEyp-semigroup. This result is analogous to the fact that every locally compact
group G has a faithful unitary representation on a Hilbert space. The proof of
the latter assertion about groups follows from an analysis of the properties of the
group C*-algebra C*(G), together with the Gelfand-Neumark theorem. In that
result, C*(G) functions as the “spectrum” of the group G.

In this section we show how, starting with a product system E, one can construct
a spectral C*-algebra C*(E). Results like Theorem C are obtained by exploiting the
properties of C*(FE). More generally, C*(E) provides a “topological” invariant that
is important for understanding the nature of product systems and their associated
Ey-semigroups.

Let p: E — (0,00) be a product system, and let us write E(t) = p~!(t) for the
Hilbert space over ¢t > 0. We form the Hilbert space of L? sections

L*(E) = /f E(t) dt .

0,00)

The inner product in L?(E) is the natural one

<& >=/0 <&(t),n(t) > dt .



Eyp-SEMIGROUPS IN QUANTUM FIELD THEORY 19

Let f € L*(E) be an integrable section. Using the multiplication in E we see that
for every £ € L?(E) and every 0 < t < z,

f@)é(z —t) € E(),

and hence we can define a measurable section f * £ by
fré@ = [ fO6@-1)dt.
0

For fixed f € L!(E), left convolution by f, £ — f x £, defines a bounded linear
operator on L%(E) of norm at most ||f||;. This operator is denoted If. A straight-
forward computation shows that for any two functions f,g € L!(E), there are
functions hj, hy € L'(E) such that

U3l = ln, + 1.

It follows that the linear span of all products of the form Ifl} is a self-adjoint
subalgebra of B(L?(E)). C*(E) is defined as the norm-closure of this algebra

(7.1) C*(E) =span{isl} : f,g € L'(E) }.

The funcamental property of C*(E) is that its representations correspond to all
possible Ey-semigroups « for which F, is isomorphic to E. This is a key result in the
theory and we want to state it precisely. It is convenient to slightly generalize the
notion of Ey-semigroup. By an eg-semigroup we mean a semigroup a = {a; : t > 0}
of normal *-endomorphisms of B(H) that satisfies all of the conditions of an Ep-
semigroup except that a;(1) is not required to be 1. Thus, for an ep-semigroup
a’

P t = at(l)

defines a strongly continuous family of projections which decreases as ¢ — co. The
limit
Py = lim o4(1)
t—oo

is an a-invariant projection which induces a decomposition of the underlying Hilbert
space
H = H,, & H,,

where H,, and Hj are, respectively, the ranges of the projections P,, and 1 — P,..
The restriction of a to B(Hw) is an Ey-semigroup, and the restriction a® of a to
B(Hy) is an eg-semigroup whose limiting projection is zero:

(7.2) Jim ad(1) = 0.

To this extent the study of ep-semigroups reduces to the study of Ey-semigroups
and the extreme case of eg-semigroups satisfying (7.2).

We need to relate the representations of C*(E) more directly to E. By a rep-
resentation of E we mean a measurable mapping ¢ : E — B(H) which restricts
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to a linear map on each fiber E(t),t > 0, which preserves multiplication in that
é(u)p(v) = ¢(uv) for all u,v € E, and which obeys the following partial “commu-
tation relation” on each fiber:

(7.3) () p(u) =< u,v > 1, u,v € E(t).

If : E — B(H) is an arbitrary representation then we can define an eg-semigroup
o = {a; : t > 0} which acts on B(H) as follows. For each positive ¢, choose an
orthonormal basis {e; (t), e2(t), ... } for E(t) and put

(7.4) @ (A) =) dlen(t)) Ad(en(t))",

A € B(H). We define ap(A) = A. The left side is independent of the particular
choice of basis {e,(¢)}, and it is true (though nontrivial) that « is an ep-semigroup
whose canonical product system is isomorphic to E. Indeed,

Ea(t) = {9(v) : v € B(t)}

and ¢ itself implements the stated isomorphism of E and Ea. These things are
proved in [3].

More significantly, any representation ¢ : E — B(H) determines a unique repre-
sentation 7 : C*(E) — B(H) by way of

(7.5) n(ls1) = 6(f)(9)*s  f.9 € L'(E)

where for f € L}(E), ¢(f) denotes the operator integral

o(f) = /0 " 6(f(@)) de.

The key property of C*(FE) is that this association ¢ — = is in fact a bijection [3]:

Theorem F. The nondegenerate separable representations of C*(E) correspond
bijectively with all eg-semigroups o for which E, is isomorphic to E.

Because of Theorem F, we are let to examine the structure of C*(E), and attempt
to describe its state space in terms that are as explicit as possible. The remainder
of this paper is devoted to a discussion of progress on these issues.

The principal result of [3] is that C*(FE) is a simple C*-algebra in most (and
perhaps all) cases. More precisely,

Theorem G. For every product system E, C*(E) is a unitless nuclear C*-algebra.
If E possesses a nonzero unit, then C*(E) has no closed nontrivial ideals.

In particular, the C*-algebras C*(E,),n =1,2,..., R associated with the stan-
dard examples E, (i.e., the product systems of the CCR flows) are all simple.
These C*-algebras are most like continuous versions of the Cuntz algebras O,,
n=2,3,...,00 (see [3], [10]).
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We still do not know if C*(F) is simple in the cases where U = . However, we
do have the following information in general. Consider the one-parameter unitary
group W defined on L%(E) by

Wt (z) = e"7¢(x).

The generator N of W, _
Wt — eltN

replaces the number operator on ordinary Fock space. N has Lebesgue spectrum
distributed throughout [0, 00) with infinite multiplicity. The associated one param-
eter group of automorphisms leaves C*(F) invariant,

W,C*(E)W; = C*(E), teR

and thus induces a natural one parameter group of automorphisms y = {7, : t € R}
of C*(E). ~ is called the gauge group. The best general result in this direction is
the following, from which Theorem G is easily deduced (see [3]).

Theorem G1. There are no closed proper ideals J in C*(E) which are gauge
invariant in the sense that v;(J) = J, for every t € R.

Theorem F tells us that in order to specify an eg-semigroup whose product system
is isomorphic to E, it is enough to specify a state of C*(E). However, there remains
a significant question: how does one know when a representation gives rise to an Ey-
semigroup rather than, say, merely an ep-semigroup? In order to discuss this, let us
say that a representation 7w of C*(E) is essential if it gives rise to an Fy-semigroup,
and singular if it gives rise to an eg-semigroup satisfying 7.2. Similarly, a state of
C*(E) (i.e., a nonzero positive linear functional on C*(E) with no condition on its
norm) is called essential or singular according as the representation it defines via
the GNS construction has the corresponding property.

The state space P of C*(E) is a norm-closed cone, and it is known that this cone
decomposes into a direct of order ideals

P=EBS

where £ (resp. S) denotes the set of essential (resp. singular) states [4]. A detailed
description of this decomposition and the singular summand § is given in [4]. Here,
we want to concentrate on the description of the essential summand. In view of
the precdding discussion, the assertion that every product system F is associated
with an Egp-semigroup becomes the assertion that C*(E) has (nonzero) essential
states...i.e., that £ # 0. Our main result along these lines is the following result
from [5] which will be discussed further in the following section.

Theorem H. For every product system E, there is an essential state of C*(E)
whose Egy-semigroup o is ergodic in the sense that

{AcB(H,) : o (A)=A, Vt>0}=CL

Because of Theorem F we have E, = E. This result is analogous to the fact
that a locally compact group has irreducible unitary representations. Indeed, the
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relation that exists between a representation 7 : C*(E) — B(H) and its associated
ep-semigroup a = {a; : t > 0 } acting on B(H) is expressed in (7.4) and (7.5).
From the nature of this relation it follows that the fixed algebra of «,

{AeB(H): u(A)=A Vt>0}

is precisely the commutant of w(C*(E). Thus, the proof of Theorem G amounts to
showing that C*(E) has nonzero essential pure states. Such states will be discussed
in the following section.

There are other consequences one can obtain along similar lines. For example,
one knows that the C*-algebraC*(E) is not GCR, and hence it has representations
which generate factors of type II,, or III. There are even essential states with
these properties, and hence we may conclude that every FEy-semigroup is cocycle
conjugate to an Fy-semigroup whose fixed agebra is a factor of type II or III.

8. States in the regular representation.

C*(E) is defined as a C*-algebra of operators on the Hilbert space L?(E), and
this gives rise to a representation \ : E — B(L%(E)). For v € E(t), A(v) is defined
as
v-€(xz—t), ifr>t

0, ifo<t<uz.

AE() = {

Notice that for f € L!(E) we have

= | TMf(@)) de.

A is called the (left) regular representation. The associated eg-semigroup « is
singular, since a;(1) is the projection onto to the subspace {¢{ € L%(E) : £(z) =
0,for 0 < z < t } and these subspaces decrease to 0 as t — oo. Actually, we
will be more concerned with the ep-semigroup generated by the right regular anti
representation p : E — B(L?(E)), where for v € E(t), p(v) is defined as the operator

Elx—t) v, x>t
v)€(x) =
Pt = { 5 S
Notice that p reverses multiplication in the sense that p(uv) = p(v)p(u), for v,v €
E. Nevertheless, we can use p to define a second eg-semigroup 8= {3; :t >0 } by

way of
o0

Bi(A) =Y plen(t))Apl(en(t))”, A€ B(L*(E))

n=1

for t > 0, {e1(t),e2(t), ...} being any orthonormal basis for E(t), and where (o
is defined as the identity endomorphism. It is true (and nontrivial) that § is an
ep-semigroup [3],[5].

The generator of 3 is defined as the limit in the strong operator topology

6(4) = lim %(A — B¢(A)),
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A ranging over the set D(§) of all operators for which the indicated limit exists. It
is convenient here to use a different sign in the definition of  than that of section
2. D(8) is a unital *-subalgebra of B(L?(E)) and § is an unbounded self adjoint
derivation from D(6) into B(L?(E)). We will first give an alternate description of
C*(FE) in terms of 8. This description of C*(E) is of key importance.

For every t > 0, let P; denote the projection onto the subspace

{€eL*(E):&((x)=0 ae,for0<z<t}.

Notice that a;(1) = £:(1) = P;, and that {P; : ¢ > 0 } is a strongly continuous
family of projections that increases from 0 to 1 as ¢ moves from 0 to co. An
operator A € B(L?(E)) is said to have bounded support if there is a t > 0 such that
A = P,AP;, and we write '

(8.1) By = | J P.B(L*(E)) P.

t>0

for the x-algebra of all operators of bounded support.
Significantly, every operator in By belongs to the range of §. Indeed, if A =
P, AP;, then the integral defined by the strong limit

I(4) = lim /0 B,(A) ds

T—o0

exists and obeys

II(A] <t
S(I(A)) = A

(see [5], Theorem 2.2). Indeed, the restriction of I(-) to P.B(L?(E))P; is a normal
completely positive linear map for every ¢t > 0.
We will also write
Hy = | | P.L*(E)

t>0

for the linear space of all vectors £ € L2(E) which have bounded support, and
Ko=ByNK

for the x-algebra of all compact operators of bounded support.
The following result characterizes C*(E) in terms of the derivation é.

Theorem I. The set A of all operators A in the domain of § satisfying 6(A) € Ko
is a x-algebra whose norm closure is C*(E).

Recall that C*(FE) is spanned by operators of the form I(f)l(g)* where f and
g are arbitrary integrable sections of E. Notice that if £, are elements of L?(E)
which have bounded support, then we may consider £ and 1 as elements of L!(E),
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and operators of the form [(£§)I(n)* also span C*(E). Such an operator belongs to
A and the following formula implies that 6(I(£)!(n)* is a rank-one operator in Ky,

(8.3) 6(UEU)™) =€, &,n € Ho,
¢ ® 77 denoting the operator
(€ L*(BE) »< (> ¢

The proof of (8.3) can be found in ([5], p. 288).

Theorem I and formula (8.3) open the way to a very explicit description of the
state space of C*(FE), which we now describe. Let w be a linear functional defined
on the algebra By of all operators having bounded support. w is called a locally
normal weight if, for every ¢ > 0, the restriction of w to P,B(L?(E))P; is a normal
positive linear functional. Locally normal weights are generalizations of normal
weights (more precisely, of noncommutative Radon measures). Indeed, if

w: B(L*(E))tT — [0, +o0)

is a normal weight satisfying w(P;) < +oo for every t > 0, then the restriction of
w to By is a locally normal weight. We emphasize, however, that not every locally
normal weight can be extended to a normal weight of B(L?(E)) (see [5], appendix
A for an example). Thus, locally normal weights are more general than normal
weights.

Notice that 5;(By) C By for every t > 0. Thus we can make the following

Definition 8.4. A locally normal weight w is called decreasing if for every t > 0
we have

w(B:(A*A)) <w(A*A), A € By.
w 1s called invariant if equality holds for every t > 0 and every A € By.
We will call such an w simply a decreasing weight. Let W denote the cone of all

decreasing weights satisfying the growth condition

1
sup —w(P;) < oo.
t>0 ¢

Noting that P, =1 — (1), it is clear that an invariant weight w satisfies
w(Bs(1) — Bs+¢(1)) = w(1 — Be(1))
for all s,t > 0, and from this it follows that there is a constant ¢ > 0 such that
w(P) =c-t.

In particular, every invariant weight belongs to W.
We can now describe the state space of C*(E) (see [5], Theorems 4.15 and 5.7).
Every locally normal weight w defines a linear functional dw on A by way of

dw(A) = w(6(A)).

Notice that dw is the “derivative” of w in the direction of the flow of the ep-
semigroup 3. We need to know when dw is a positive linear functional which has
finite norm. The characterization is as follows.



Ey-SEMIGROUPS IN QUANTUM FIELD THEORY 25

Theorem J. For every decreasing weight w € W, dw is a positive linear functional
on A having norm

1
|ldw|| = sup ~w(F;).
t>0 t

w — dw is an affine order isomorphism of the cone W onto the state space of C*(E),
which maps the subcone of invariant weights onto the cone of essential states.

With Theorem J in hand, it is easy to show that C*(E) must have essential states.
A straightforward construction allows one to write down an invariant weight w on
By which is normalized so that

w(P;) =t, vVt >0

(see Theorem 5.9 of [5]). It follows from Theorem J that dw is an essential state of
C*(E) satisfying ||dw|| = 1. )

Corollary. For every abstract product system E, there is an Ey-semigroup o for
which E, is isomorphic to E.

As we have pointed out previously, with a little care, one can arrange that « is
ergodic in the sense that

ai(A)=A, Vt>0 = A =scalar.

The details can be found in [5].

There are numerous interesting unsolved problems concerning the spectral C*-
algebras C*(E). For example, if E, is the standard product system of dimension
n,n=1,2,...,Rp, then C*(F) is known t be a “continuous time” analogue of the
Cuntz algebra O, ;1 (see [10]). However, we do not yet know if these C*-algebras
C*(E,) are mutually non-isomorphic for different values of n. Cerainly this is the
case for the O,,. In fact, Cuntz showed that O,, is not isomorphic to O,, essentially
by calculating the K-theory of these C*-algebras [15],[16]. But while the K-theory
of the C*-algebras C*(FE,) has not been computed, there is some evidence that
K-theory may not be capable of distinguishing between them.

Finally, we want to point out the remarkable fact that, like O, every spectral
C*-algebra C*(E) has an unbounded trace 7. This is easily seen using the descrip-
tion of C*(E) given in Theorem I. Let .A; denote the set of all operators A in the
domain of § such that §(A) is a trace class operator of bounded support. A; is a
self-adjoint ideal in A which is clearly norm-dense in C*(E). We can define a linear
functional 7 on A; by way of

7(A) = trace(6(A)).
Notice that 7(AB) = 7(BA), since
trace(6(AB)) = trace(A6(B)) + (6(A)B) = trace(6(B)A) + trace(B6(A))
= trace(6(BA)).
It is possible to show that 7 is not a positive trace in that there exist operators
A € A, satisfying 7(A*A) < 0. Such traces are uncommon in operator theory,
but notice that the Wodzicki residue provides another example of an unbounded

non-positive trace on an algebra of pseudo-differential operators [14]. As yet, the
role of this trace in the theory of Ep-semigroups remains mysterious.
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