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The Spectral C*-Algebra of an Ep-Semigroup

WILLIAM ARVESON

Introduction. An Ey-semigroup is a one-parameter semigroup {a;: t > 0}
of normal *-endomorphisms of the algebra % (H) of all bounded operators
on a separable Hilbert space H, satisfying o;(1) = 1 for ¢t > 0, and such
that (a;(A)¢&, n) is continuous in ¢ for fixed 4 € F(H) and &, n € H. E,-
semigroups were introduced by Powers [10], and their theory has been under-
going development by Powers [11], Powers and Robinson [13], Powers and
Price [12], Price [16], and the author [1, 2, 4, 5].

Ey-semigroups occur naturally in a number of ways. For example, if we
are given a one-parameter unitary group {U;: ¢t € R} acting on a separable
Hilbert space H, and a type-I subfactor M of % (H) which is invariant in
the sense that UM U;" is contained in M for every ¢ > 0, then we obtain two
semigroups «, B acting respectively on M and its commutant M’ by

a(A) = U AU;, AeM, t>0,
B:«(B) = UBU;, BeM, t>0.

If we realize the type-I factors M, M’ as #(K), #F(K'), respectively, then
of course o and B are seen to be Ejp-semigroups. More specifically, if one
is given a system of local observables which is acted upon by the inhomoge-
neous Lorentz group in such a way that the Haag-Kastler axioms are satisfied
([9, p. 99]), then it is a simple matter to write down nontrivial examples
of pairs {U;}, M satisfying the above conditions. Some more elementary
constructions of Ep-semigroups are described in [3] and [10].

It is correct to think of Ep-semigroups as quantized versions of semigroups
of isometries [3], but one must not push this analogy too far. For example,
by the Wold decomposition, every semigroup of isometries {U;: t > 0} acting
on a Hilbert space decomposes uniquely into a direct sum

U=V.eW,
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where W is a semigroup of unitary operators and V is the direct sum of a
number n of copies of the natural semigroup of shifts acting on L2(0, c0).
The pair (n, W) completely determines U to unitary equivalence in the sense
that if

U=VeW

is another semigroup of isometries decomposed in the above way, then U is
unitarily equivalent to U’ iff n = n’ and W is unitarily equivalent to W’.

This might lead one to suspect that the problem of classifying Ej-semi-
groups up to conjugacy should be similar in that (a) a given Ej-semigroup
should decompose into a tensor product of a “pure” Ep-semigroup with a
semigroup of *-automorphisms, and (b) the pure Ey-semigroups should have a
relatively simple classification to within conjugacy (an Ey-semigroup « is said
to be pure if the family of von Neumann algebras M; = o,(% (H)) decreases
to C1 as ¢ tends to infinity). It is interesting that these naive assertions are
both entirely wrong. It is known, for example, that there exist Ey-semigroups
a having the property that ({a,(%Z(H)): t > 0} is a factor of type II or III.
This implies that nothing like (a) can be true. More significantly, Powers has
shown that, in addition to the natural examples of pure Ey-semigroups, there
is an enormous variety of others which are not conjugate (or even cocycle-
conjugate) to these elementary ones [11].

These remarks show that, unlike the theory of one-parameter groups of
automorphisms of % (H), the theory of semigroups of endomorphisms of
Z(H) is rather subtle. In [3], we summarized the results of some recent
work on an index theory appropriate for Ej-semigroups. Those results re-
late to the problem of classifying Ej-semigroups up to cocycle-conjugacy.
The purpose of this paper is to summarize progress on spectral invariants of
Ey-semigroups, with emphasis on problems that remain open. Here, the ap-
propriate notion of spectrum is a noncommutative topological space, namely
a separable C*-algebra which has the “correct” representation theory.

1. Preliminaries. Our approach to the theory of Ej-semigroups is based
on the notion of continuous tensor product systems (product systems, for
short). A product system is a measurable family

p: E — (0,00)

of nonzero separable Hilbert spaces over the open interval (0, co0), on which
there is defined an associative multiplication which acts like tensoring. This
means that the operation is measurable and bilinear on fiber spaces, and such
that for each s, ¢ > 0, the fiber space E;,; = p?~!(s + t) is spanned by all
products {xy: x € E;,y € E;}, and we have

(xy,x'y") = (x, x")(y,¥'),

for all x, x’ in Es and all y, y’ in E,. We will write {E;: ¢t > 0}, or simply E,
for a product system p: E — (0, 00).
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Every Ey-semigroup is associated with a canonical product system. Indeed,
let a = {a; : t > 0} be an Ej-semigroup acting on % (H). For every t > 0, let
E, be the complex vector space of operators defined by

E,={Ae F(H): o,(T)A = AT, T € F(H)}.
We may define an inner product in E; by the formula
B*4 = (A,B)1, A,B € E,,

and this defines a family of Hilbert spaces. The total space of this family is
the set of ordered pairs E = {(¢,4): 4 € E;,t > 0}, and the projection

p: E — (0,00)

1s defined by p(¢, A) = t. If we use operator multiplication to define a binary
operation in E in the natural way by

(S’A)(ISB) = (S + t’ AB)’ A e ES’ B G Et’

then E becomes a product system (cf. [1] or [3] for more detail).
Notice that for this particular product system, we can define a natural
operator-valued mapping ¢: E — % (H), namely

¢((t,4)) =4, (1, 4) €E.

The map ¢ is an essential representation of E, as defined below in (2.1). Thus,
an Ej-semigroup acting on % (H) gives rise to a pair (E, ¢) consisting of a
product system E and an essential representation ¢: E — % (H). Conversely,
if one is given a product system E and an essential representation of E on a
separable Hilbert space, then it is not hard to write down an Ej-semigroup
which is associated to the pair (E, ¢) as above (see [1, Proposition 2.7]).

In this way, one can obtain information about the general problem of clas-
sifying Ey-semigroups by analyzing the structure of their associated product
systems, and by seeking to understand the representation theory of product
systems.

2. The spectral C*-algebra. Let E be a product system. By a representation
of E we mean a weakly measurable operator-valued function ¢: E — % (H)
having the following properties:

(2.1) (1) ¢(xy)=¢(x)p(y), forallx,yinE,
: (i) @(y)*é(x) = (x,y)1, forall x,y in E, and every t > 0.

Antirepresentations are defined similarly, except that the order of the factors
on the right of (2.1) part (i) is reversed. (2.1) part (ii) implies that the
restriction of ¢ to every fiber E;, ¢t > 0, is a linear isometry from the Hilbert
space E; to & (H) ([1, Section 1]). For every ¢t > 0, we have a subspace H;
of H defined by

(2.2) H; =[¢(x)S: x € E;, § € H].
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These subspaces are decreasing in #, and their union is dense in H ([1,
Corollary of Proposition 2.4]). ¢ is called singular or essential according
as (Y{H;:t > 0} = {0}, or H, = H for every ¢t > 0. This terminology differs
slightly from previous usage (in [1] and [3], essential representations were
called nonsingular), and is somewhat more convenient.

We now introduce a C*-algebra C*(E) [4], which plays the role of the
spectrum of the product system E in the sense that the (separable) repre-
sentations of E correspond precisely to the (separable) *-representations of
C*(E). Let L?(E) be the Hilbert space of all square-integrable sections of E.
The inner product in L2(E) is given by

o= T, g dt.

We have a direct integral decomposition of L2(E) over the measure space
((0,00) dt),

(2.3) L*(E) = / © E, dt,

which shows that L%(E) is a continuous analogue of the full Fock space over
an infinite dimensional one-particle space [1]. In particular, for every v in
E, we can define left and right creation operators /(v), r(v) on L%(E) by

1), ifx>t,
g0 = {57 L
E(x —tv, if x>t
r('")é(x)z{o if0<x<1

for & in L%(E). [ is a singular representation of E, and r is a singular an-
tirepresentation. The two sets of operators /(E) and r(E) mutually com-
mute (though of course neither /(E) nor r(E) is a commutative set of opera-
tors), but /(E)* does not commute with 7(E). Indeed, both /(E)|J/(E)* and
r(E)|Jr(E)* are irreducible sets of operators ([4, Theorem 5.2]). / (resp. r)
is called the regular representation (resp. regular antirepresentation) of E.

More generally, if ¢: E — % (H) is an arbitrary representation or antirep-
resentation of E, and f belongs to the Banach space L!(E) of all integrable
sections of E, then the weak integral

/0 " 8/ ()) dt

defines a bounded operator on H. This integral defines a linear mapping of
L!(E) into % (H) of norm of, at most, one, which we will denote by the same
letter ¢. One may verify that for f, g in L!(E), we have

o(f)p(g) = o(f * 8),

where f x g denotes the convolution of f and g,

(2.4) Fxglx) = /0 " fglx—1dt, x>0,
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The multiplication defined on L!(E) by (2.4) makes L!(E) into a Banach al-
gebra, and ¢: L!(E) — % (H) is a contractive homomorphism of L!(E) onto
a nonselfadjoint algebra of operators, whose norm-closure in % (H) is a sepa-
rable Banach algebra. If one starts with an antirepresentation ¢: £ — % (H),
then this integration process obviously produces a contractive antthomomor-
phism of Banach algebras ¢: L'(E) — % (H).

Applying this to the left and right regular representations, we see that for
fin LY(E), I(f), and r(f) are respectively left and right convolution by f-

1N = [ " F0Ex -y dt,
(R = [ CEx—nf(0)dt,

for every ¢ in L2(E). Moreover, using (2.1) part (ii), it is rather easy to show
that for every pair f, g of functions in L!(E), there are functions 4y, A, in
L!(E) such that

1(&)*1(f) = I(h) + [(h2)*;
indeed, a straightforward computation allows one to write down explicit for-

mulas for #; and A, in terms of f and g. It follows that the norm-closed
linear span

(2.5) C*(E) = span{l(f)l(g)*: f,& € L'(E)}

is a separable C*-algebra.
DEFINITION 2.6. The C*-algebra defined by (2.5) is called the spectral C*-
algebra of E.

The reader may note that Definition 2.6 is simpler and considerably more
concrete than the definition of C*(E) given in [4]. On the other hand, it is not
clear at all that the C*-algebra defined by 2.5 has the correct representation
theory. The fact that it does follows from the results of [4] and [5]. For
the reader’s convenience, we indicate how the proof of this basic universal
property can be dug out of those two references.

THEOREM 2.7. Let E be a product system. For every representation ¢ of E
on a separable Hilbert space H, there is a unique *-representation n of C*(E)
on H satisfying

(2.8) n(I(N)(g)*) = ¢(f)#(8)*,

forevery f, g in L\(E). = is necessarily nondegenerate, and ¢(E) and n(C*(E))
generate the same von Neumann algebra. Conversely, every nondegenerate rep-
resentation n of C*(E) on a separable Hilbert space has the form (2.8) for a
unique representation ¢ of E.

PrROOF. Let &/ denote the C*-algebra defined in ([4, Definition 2.12]);
and for every f, g in LI(E), let f ® g be the element of ./ defined in the
discussion preceding ([4, Proposition 2.13]). Theorem 2.16 of [4] asserts that
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for every separable representation ¢ of E, there is a unique *-representation
n of & which satisfies the analogue of (2.8):

(2.9) n(f®8)=d(f)$(8). f,ge€L\(E).

Conversely, every separable nondegenerate representation n of ./ is related
to a unique representation ¢ of E by the formula (2.9) ([4, Corollary 2 of
Theorem 3.4]). Thus, the desired universal property holds for 7.

Applying this universal property to the left regular representation /: E —
B (L'(E)), we obtain a *-representation A of &/ on L?(E) such that

Mfeg)=1NHlg)*, f.geLY(E)

By ([5, Corollary 3 of Theorem 3.1]), A is a faithful representation of .&/.
It follows that C*(E) inherits the required universal property of &/ through
A. O

Evans has shown that the Cuntz C*-algebra O, is isomorphic to the
C*-algebra generated by all left creation operators acting on the full Fock
space .# (H) over an infinite dimensional (separable) one-particle space H
[8]. Thus, the spectral C*-algebras C*(E) are properly thought of as continu-
ous analogues of O.. They are unitless, separable, nuclear C*-algebras which
are, in most cases, simple ([4, Theorem 4.1, and Corollary 2 of Theorem 8.2]).
Our proof of simplicity does not work for product systems which contain no
“units”; nevertheless, we conjecture that, in general, C*(E) is simple for every
nontrivial product system E.

Very little is known about the classification of these spectral C*-algebras.
In more detail, let : E — F be an isomorphism of product systems. This
means that 6 is a measurable bijection which preserves multiplication and
restricts to a unitary operator on each fiber space E;, t > 0. The set aut(E)
of all automorphisms of a given product system E is obviously a group. It
is possible to compute aut(E) very explicitly for the simplest product sys-
tems E, and in those cases there is a natural topology on aut(E), making it
into a Polish group which is often locally compact ([1, Theorem 8.8]). This
group involves the canonical commutation relations in an essential way. The
structure of aut(E) for general product systems E is unknown.

Due to the functorial nature of the construction of C*(E), every isomor-
phism 6: E — F of product systems induces an isomorphism of C*-algebras
§: C*(E) — C*(F). More explicitly, 6 induces a unitary operator Uy from
L%(E) to L*(F) by way of

Upl(t) = 0(E(1)), €€ L*E), t>0.
6 is the corresponding spatial isomorphism of & (L%(E)) to & (L2(F)),
0(A) = UgAU;, A e B(LYE)).

Notice that carries a generator /(f1)/(f2)* of C*(E) to the generator of
C*(F) given by I(f1)I(f2)* where, for f in L'(E), f is the element of L!(F)
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given by
(2.10) ft)=0(f), t>0.

Isomorphisms of C*(E) onto C*(F) having this form § for some isomor-
phism of product systems 6: E — F are called quasifree isomorphisms.

As we have said, little is known about the classification theory of these C*-
algebras. For example, there is a particularly simple sequence of “standard”
product systems E;, E,,..., E, (cf. [1]), which are obtained by quantizing
semigroups of unilateral shifts of various multiplicities. These are the prod-
uct systems associated with CAR flows [10] and CCR flows [3]. We conjecture
that C*(E,,) is not isomorphic to C*(E,) when m # n. All we know about
this problem is that, because of the dimension invariant of product systems
[1, 3], E,;, cannot be isomorphic to E, unless m = n. This tells us that there
cannot exist a quasifree isomorphism from C*(E,,) to C*(E,) when m # n,
but, of course, one does not know how to relate arbitrary isomorphisms to
quasifree isomorphisms. More generally, it is conceivable that for arbitrary
product systems E, C*(E) is a complete isomorphism invariant of E.

For a fixed product system E, the map 8 — Up is a unitary representation
of the group aut(E) on L%(E), and therefore aut(E) acts naturally on C*(E) as
a group of spatially implemented automorphisms. There is a distinguished
one-parameter subgroup of the center of aut(E), which will be called the
gauge group. A real number A acts on each fiber space E;, t > 0, as follows,

Av)=e"*v, veeE,.

The gauge group defines a one-parameter unitary group {U;: 4 € R}, which
acts on L2(E) via

U,E(t) = e"™E(1), Ee L*(E), t>0.

Notice that, in contrast to the gauge group associated with Cuntz algebras,
this one-parameter unitary group is aperiodic. Its generator N, defined via
Stone’s theorem by

U, = e*N, JeR

is called the number operator. The direct integral decomposition (2.3) diag-
onalizes N, and shows that N has continuous (Lebesgue) spectrum on the
interval [0, co) and uniformly infinite multiplicity whenever E is nontrivial.

The action of the gauge group on C*(E) gives rise to a C*-dynamical
system. It is known that this C*-dynamical system is R-simple for arbitrary
nontrivial product systems E; i.e., there are no nontrivial closed ideals in
C*(E) which are invariant under the action of the gauge group ([4, Theorem
7.1 et seq]). This result suggests that, if one wants to prove that spectral C*-
algebras are always simple, one might begin by getting a better understanding
of this C*-dynamical system.
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3. The left and right C*-algebras. Let £ be a product system. We have
defined C*(E) as a separable C*-algebra associated with the left regular rep-
resentation of E. There is a corresponding C*-algebra associated with the
right regular antirepresentation of E. For this section, let us denote these
two C*-algebras by & and &

o =span{l(f)l(g)*: f,g € L'(E)},

# = span{r(f)r(g)*: f,g € L'(E)}.

If G is a nontrivial locally compact group, then the C*-algebras associated
with the left regular representation and right regular antirepresentation mu-
tually commute, and hence are never irreducible. Here, the facts are rather
different. In general, both ./ and % are irreducible C*-algebras, and neither
contains any nonzero compact operators ([4, Theorem 6.1]). On the other
hand, &/ and % do not commute; rather, they commute modulo compacts
([4, cf. concluding remarks in Section 6]).

Let £ be the C*-algebra generated by all products AB, and 4 € & and
B € #. By the preceding remarks, & must contain the C*-algebra % of
all compact operators on L2(E). Moreover, recalling that .7 is nuclear, the
quotient & /% is a homomorphic image of the spatial tensor product & . %.
It is known that this homomorphism is an isomorphism whenever the product
system E has a “unit” ([4, Theorem 8.9]). Therefore, in most cases, at least,
we have an exact sequence of C*-algebras:

(3.2) 0-F & ->AQF — 0.

Little is known about this extension or its significance in the theory of Ej-
semigroups. It is surely not split, though at the moment we do not have a
proof of even that.

If one carries out these constructions in the case of the trivial product
system E = Z, one obtains the Wiener-Hopf extension. Indeed, in this case
the operators on L2(0, oo) given by left and right convolution by an integrable
function are identical, and thus &%/ = .% = &. The extension corresponding
to (3.2) reduces to

(3.1)

0% - & — Cy(R) — 0.

This suggests, perhaps, that one should view (3.2) as a counterpart of the
Wiener-Hopf extension appropriate for the theory of Ej-semigroups.

4. Singular states. The purpose of this section and the next is to show
how the spectral C*-algebras introduced in Section 2 can be used to obtain
information about Ej-semigroups and the product systems associated with
them. To motivate the discussion, we recall some familiar results about
semigroups of isometries acting on Hilbert spaces.

Let U = {U;: t > 0} be a strongly continuous semigroup of isometries
acting on a Hilbert space H. The Wold decomposition asserts that U decom-
poses uniquely into a direct sum

(4.1) U=V,eW, >0,
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where W is a semigroup of unitary operators and V is a semigroup of isome-
tries which is pure in the sense that

({V:H:t >0} ={0}.

Moreover, this pure summand V is unitarily equivalent to the direct sum of
a number n of copies of the semigroup of shifts S = {S;: t > 0}, which acts
on L?(0,00) by way of

5.£15) = {

The cardinal » is an invariant of U up to unitary equivalence. Moreover, the
decomposition (4.1) is central in that the two projections associated with the
decomposition belong to the center of the von Neumann algebra generated
by {Ui}.

Semigroups of isometries correspond to representations of the trivial prod-
uct system Z (cf. Introduction of [5]). More generally, it is rather easy
to show that there is a corresponding decomposition for representations of
arbitrary product systems E. Indeed, every representation ¢: E — F(H)
decomposes uniquely into a direct sum

(4~2) ¢ = ¢s © ¢€‘9

where ¢, is a singular representation of E, and ¢, is an essential represen-
tation ([1, Proposition 1.14]). The decomposition (4.2) is central in that the
two projections associated with it belong to the center of the von Neumann
algebra generated by ¢(E).

The essential summand ¢, is analogous to the unitary summand W in
(4.1). In general, it is the essential representations of product systems that
correspond to Ep-semigroups; for while every representation of a product
system E on a Hilbert space H will give rise to a continuous semigroup of
*-endomorphisms a = {a,: t > 0} acting on % (H), one has o,(1) = 1 for all
t > 0 iff the representation of E is essential ([1, Section 2]).

Similarly, the singular summand ¢; of (4.2) is analogous to the pure sum-
mand V of (4.1). Since every pure semigroup of isometries is a direct sum
of copies of the semigroup of shifts, one might be led to ask, Is every singular
representation of a product system E unitarily equivalent to a direct sum of
copies of the left regular representation of E? Perhaps it is not surprising that
the answer 1s no, but more interestingly, it is almost yes. We will discuss sin-
gular representations and the corresponding states of the spectral C*-algebra
in this section. Essential representations will be taken up in Section 5.

Notice that there is a decomposition like (4.2) for representations of the
spectral C*-algebra of a product system E. Indeed, if n: C*(E) — % (H)
is any (separable nondegenerate) representation, and ¢: E — Z(H) is the
representation of E associated with n by Theorem 2.7,

(4.3) n([(NI(g)") = ¢(f)d(8)*,  f.geLY(E),

fix—=1t) ifx>t,
0, if0<x<t.
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we will say that = is singular or essential according as ¢ has the corresponding
property. In general, the decomposition (4.2) gives rise to a decomposition
of an arbitrary representation = of C*(E) into a central direct sum

(4.4) =15 @,

where 7 is singular and 7, is essential. The decomposition (4.4) is induced
by a central projection in the enveloping von Neumann algebra C*(E)** of
C*(E).

Similarly, a bounded linear functional p on C*(E) is called singular or
essential according as the cyclic representation m,, associated with the posi-
tive part | p| of the polar decomposition of p by way of the GNS construction,
is singular or essential. The set . (resp. &) of all singular (resp. essential)
elements of C*(E)* is a Banach space as well as an order ideal in the dual
of C*(E). Corresponding to (4.4), every p in C*(E)* decomposes uniquely
into a sum p; + p., where p; € %, p. € &, and we have

ol = llosh + 1l pell-
Thus, C*(E)*=F o &.

There are two descriptions of the space .. The first gives rather precise
information about the structure of ¥ as a Banach space and is basically
the main result of ([5, Corollary 1 of Theorem 3.1]). Here, we discuss only
the second, which shows how the elements of . are related to the regular
representation of C*(E) (Theorem 4.6 below).

Let E be a nontrivial product system, and consider the Hilbert space
L*(E). We will consider a certain operator algebra acting on L2(E), which
has the structure of a C*-algebraic inductive limit of type-I factors. Asso-
ciated with the right regular representation r: E — % (L?*(E)), we have a
continuous semigroup S = {f;: t > 0} of *-endomorphisms defined as fol-
lows: For ¢t > 0, choose an orthonormal basis {e;(z),e>(¢),...} for E;, and
define

(4.5) i r(en(t))Ar(en(t))*.

For t = 0, B, is defined as the 1dent1ty map of B(L2(E)). The fact that 8 has
the asserted properties follows from ([1, Proposition 2.5]). Of course, B is
not an Ejp-semigroup, because the projections P, = B;(1) decrease to zero as
!l — o0.

For every t > 0, let M, denote the von Neumann algebra f;(M;), where
M, is taken as & (L*(E)). We have M; D M, if s < t, and of course the unit
of M, is B:(1). Let # be the norm-closure of the union J{M;: t > 0}. .# is
the C*-algebraic inductive limit of a sequence of type-I factors .4, = M|,
n=1,2,..., where the embedding of .#, in M, is normal but is not unit
preserving. .# itself has no unit, and is weakly dense in % (L%(E)).

Let f be a bounded linear functional on .#. f is called locally normal if,
for every ¢t > 0, the restriction of f to the von Neumann algebra A, is normal;
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f is called normal if there is a (necessarily unique) trace-class operator 7" on
L?(E) such that
f(A4) = trace(T A4), Aed.

Every normal element of .# * is obviously locally normal, and it is rather easy
to show that the set of locally normal (resp. normal) linear functionals on .#
is a norm-closed linear subspace of .#* which is an order ideal in the sense
that if f is a positive locally normal (resp. normal) functional and g satisfies
0 < g < f, then g is locally normal (resp. normal).

THEOREM 4.6. # contains C*(E). Moreover, the restriction map

fel™ — flc-k)
defines an isometric order isomorphism of the space of locally normal elements
of #* onto the space . of singular elements of C*(E)*.

This is a consequence of ([5, see Section 5]). Now let p be a positive linear
functional on C*(E), let © be the cyclic representation of C*(E) associated
with p via the GNS construction, and let ¢ be the representation of E asso-
ciated with z as in (4.3). Theorem 4.6, together with the preceding remarks,
implies that n is a singular representation iff p extends to a locally normal
state of .#. Similarly, one can see easily that ¢ is a direct sum of copies of
the regular representation / iff p extends to a normal state of .#Z. Thus, the
question we have asked above is equivalent to asking if every locally normal
state of .#Z is normal. Now, once one has an appropriate description of the
Banach space of locally normal elements of .#*, it is not hard to construct
examples of nonnormal locally normal states of .# ([S, Proposition 4.3]).
Thus, we may conclude that every nontrivial product system has singular rep-
resentations which are not multiples of the regular representation.

Another significant consequence of these results is that every singular rep-
resentation of a nontrivial product system E can be approximated in a par-
ticular way by multiples of the regular representation of E ([5, Corollaries
2 and 4 of Theorem 3.1]). This provides a key element in the proof of the
universal property of C*(E) (cf. Theorem 2.7).

5. Essential states. We have seen that every Ey-semigroup acting on % (H)
gives rise to a product system E together with an essential representation
¢: E — F(H). It is natural to ask if every product system arises in this
way from an E,-semigroup; equivalently, does every product system have an
essential representation? It was shown in the appendix of [1] that this is true
for product systems which possess units, but not all product systems have
that property [11]. Indeed, the problem of constructing essential representa-
tions of arbitrary product systems has been recalcitrant. In general, one can
construct the regular representation of any product system, but that represen-
tation is always singular and is therefore not associated with an Ejp-semigroup.

The purpose of this section is to indicate how one can make use of the
spectral C*-algebra of a product system to construct essential representations.
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We will sketch the ideas and state the central result (Theorem 5.6); the details
will appear in [6].

Let E be a nontrivial product system, which will be fixed throughout this
section. We will show how the cone &+ of essential positive linear functionals
on the spectral C*-algebra

C*(E) = span{l(f)I(g)*: f,g € L'(E)}

can be identified with a cone of “invariant weights” on the von Neumann
algebra M = Z(L*(E)). Since it is rather easy to show that such invariant
weights always exist (see 5.2 below), we arrive at the desired conclusion that
&+ # {0}.

There are several equivalent definitions of normal weights on von Neu-
mann algebras. For our purposes, a weight on M is a function defined on
positive operators w: Mt — [0, +o00], which has a representation of the form

w(d) =) (A&, &),

1

{&:} being a fixed family of vectors in the underlying Hilbert space. Let
B = {B::t > 0} be the semigroup associated with the right regular antirep-
resentation of E on L2(E) as in (4.5), and let P, = 1 — B,(1), t > 0. We are
interested in the pariially ordered cone Z; of all such weights w which are
invariant and semifinite in the sense that

(5.1) (i) o(f(4)=w(4), AeM*, and
. (ii) w(P) < oo, foreveryt>O0.

The following result implies that 7} is always nontrivial.

THEOREM 5.2. Let a be a semigroup of endomorphisms of % (H) such
that o,(1) # 1 for every t > 0. Then there is an invariant weight w for a such
that

w(l —a,(l))=t, foreveryt>D0.

ProOOF. We will sketch the proof; the reader should have no difficulty sup-
plying the details.

Fix T > 0. The projection 1 — ar(1) is nonzero, and thus we may select
a normal state yo of Z(L?*(E)) such that uy(1 — ar(1)) = 1. Since ar is
unitarily equivalent to a direct sum of copies of the identity representation
of & (L*(E)), we may also find an isometry V such that

(5.3) VA=ar(A)V, AeB(L*E)).
For each n > 1, define a normal state u, by
Un(A) = po(V*"4V"), A€ B(L*(E)).

By its definition, uy annihilates the range of a7, and, because of the com-
mutation relation 5.3, we have u,(ar(4)) = u,—1(A) for every A and every
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n > 0. Hence, u, lives on the projection a,7(1) — apn41)r(1), and
oo

(5.4) U= Z Un
n=0

defines a normal weight on % (L?(E)) which is invariant under ar and has
the value 1 on the projection 1 — a7(1). Therefore, the integral

T
i(4) = /0 wlog(A)dt, A€ BLAE))*

defines a normal weight which is invariant under the entire semigroup a =
{a;: t > 0}, and which is nonzero and finite on 1 — a7(1).

The function u: [0,00) — [0, 00] defined by u(?) = (1 — a,(1)) is lower
semicontinuous, not identically zero, and satisfies u(s+t) = u(s)+u(t) because
of the invariance of ji under the semigroup a. Hence, there is a positive
constant ¢ such that u(¢) = ct. The required weight is w = ¢~ !ji. O

We will now show how every weight w € 7} gives rise to a positive linear
functional dw on C*(E). In order to define this map, we require a new
description of C*(E) in terms of the generator of the semigroup 8. Let § be
the generator of B, defined by

o(4) = }ggt"(A — Bi(4)).
(The limit is taken in the strong operator topology, and the domain of ¢ is
the set of all operators A for which the above strong limit exists [10].) Let &/
denote the set of all operators 4 in the domain of J with the property that
0(A) is a compact operator having bounded support in the sense that

Bi(1)0(A) =(A)Bi(1) =0

for sufficiently large ¢ = t(4) > 0. It is not hard to show that &7 is a selfadjoint
algebra of operators whose norm-closure is precisely C*(E).

Fix w in Zp and choose ¢ > 0. Since w(1 — B;(1)) is finite, we may extend
w naturally to a linear functional on the algebra of all bounded operators B
which are supported in 1 — §;(1), in the sense that

B = (1-B,(1))B(1 = Bi(1)).

This extension is a positive linear functional of norm w(1— g;(1)). In partic-
ular, for every 4 in &/, the operator d(A) is supported in such a projection,
and thus we can make sense out of w(d(A4)). This defines a linear functional
dwon &,

(5.5) dw(d) = w(6(4)), Ae.

Significantly, dw is bounded, and in fact we have the following rather explicit
description of &+.
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THEOREM 5.6. The map w — dw is an affine order isomorphism of #j
onto the cone &+ of all essential positive linear functionals on C*(E).

The norm of the linear functional dw € C*(E)* can be expressed in terms
of w as follows: For a given element w of 7}, the last part of the proof of
Theorem 5.2 shows that there is a nonnegative constant ¢ such that

w(l — (1)) =ct, t>0.
Then we have ||[dw|| = c.

CoRrROLLARY 5.7. For every product system E, there is an Ey-semigroup
whose canonical product system is isomorphic to E.

I cannot resist describing an application of these results about essential
representations which completes the proof of a result asserted by Powers and
Robinson [13] about the existence of extensions of Ej-semigroups to one-
parameter automorphism groups.

THEOREM 5.8. Let a = {a;: t > 0} be an Ey-semigroup acting on a type-1
factor M having a separable predual. Then there is a faithful normal nonde-
generate representation m of M on a separable Hilbert space H, and a strongly
continuous one-parameter unitary group U = {U,: t € R} acting on H such
that

(o (A)) = Un(A) U/, Ae M, t>0.

PrOOF. We may assume that M = % (K), where K is a separable (infinite
dimensional) Hilbert space. We will show that there is a strongly continuous
one-parameter unitary group U = {U;: t € R} acting on H = K® K such that

U (A 1)U =a4(4)® 1

for every t > 0, 4 € #(K). Theorem 5.8 will then follow by taking n(A4) =
A® 1.

Let E be the product system of a and let ¢: E — % (K) be the canonical
representation of E associated with a. Let F be the product system opposite
to E. This means that F = E as a measurable family of Hilbert spaces, but
that in F, multiplication is reversed: Thus, for x,y in F, xy is defined as yx.
It is apparent that F is a product system, and we may consider the identity
map of E to be an anti-isomorphism w: E — F.

By Corollary 5.7, F has an essential representation ¢: F — % (K) on
a separable infinite dimensional Hilbert space, which we may take as K.
Therefore,

y(x)=¢(w(x)), x€E
defines an essential antirepresentation of E on K. We can now simply write

down the required one-parameter unitary group. For every ¢ > 0, choose an
orthonormal basis {e;(?), e2(¢),...} for E;, and put

U = Z¢(en(t)) by V/(en(t))*-
n=1



For ¢
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<0,let Uy, and put Up = 1. It is not hard to verify that for each ¢t > 0,

U, does not depend on the particular choice of basis {e,(¢): n=1,2,...}, and

that 1

n fact {U;} is a strongly continuous one-parameter unitary group having

the asserted properties. The details can be found in the proof of Theorem
340f[1]. O

1.
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13.
14.

15.
16.
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