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1. Introduction 

In this paper, the last of our series [1], [4], [5], we present a new procedure for 

constructing examples of E0-semigroups, and we show how these methods can be 

applied to settle a number of problems left open in [1], [4] and [5]. The central objects 

of study are semigroups a =  {at: t~>0} of normal *-endomorphisms of the algebra ~(H)  

of all operators on a (separable) Hilbert space H, which are continuous in the sense that 

(at(A) ~, ~i) should be a continuous function of t for fixed A in ~(H)  and fixed ~, r/in H. 

a is called an Eo-semigroup [11] if it is unital in the sense that at(1)=l, for every 

t>~0. At the opposite extreme, a is called singular if the projections Pt=at(1) decrease 

to zero as t---~oo. While it is E0-semigroups that are of primary interest, much of our 

analysis will concern singular semigroups. In particular, we will show that the gener- 

ator of a singular semigroup is injective, and that its inverse is an unbounded complete- 

ly positive linear map which can be represented in very explicit terms. Perhaps 

surprisingly, the results of this analysis of singular semigroups can be applied directly 

to E0-semigroups. This is accomplished by making appropriate use of the spectral C*- 
algebra C*(E) associated with a product system E ([4], [6]). 

Recall that a product system is a measurable family of Hilbert spaces E= {Et: t>0} 

over the open interval (0, +oo), on which there is defined a (measurable) associative 
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multiplication (x, y) E ExE- . xy  E E which acts like tensoring. This means that for every 

s, t >  O, the multiplication is a bilinear mapping of EsxEt into Es+t which satisfies 

(xy, x'y') = (x ,x ' ) (y ,y ' ) ,  

for x, x' EEl, y,y' EEt, and that E~+, it spanned by E, Et. 
Every continuous semigroup a =  {at: t~>0} of *-endomorphisms of ~(H)  gives rise 

to a pair (E a, ~) consisting a product system E a and a canonical representation 

~: Ea--*~(H) [1]. This means that, in addition to the product system E ~, we also have a 

canonical operator valued mapping r such that r which is linear on 

fiber spaces, and which satisfies the "communication relations" 

(1.I) dp(y)*q)(x) = (x,y)l ,  x, yEEt, t > 0 .  

The construction of the pair (E a, ~) from a is analogous to the procedure whereby, 

starting with a normal operator N, one constructs its spectrum o(N) together with a 

canonical representation r of the commutative C*-algebra C(a(N)). 
Conversely, if one is given an abstract product system E and a representation ~ of 

E on a (separable) Hilbert space H, then there is a semigroup of *-endomorphisms of 

~(H) which is associated with E as above. In this way, one can approach difficult 

problems about semigroups of endomorphisms of ~(H)  by analyzing their product 

systems and various structures associated with them, and that is the basis of our 

approach. 

For example, a representation q~: E---~ ~(H)  is called essential if qb(Et)H spans H for 

every t>0, and singular if the intersection of the subspaces [~(Et)H], t~> 0, is trivial. It 

is quite easy to see that the semigroup associated to a given representation ~ of E is an 

E0-semigroup (resp., a singular semigroup) iff ~ is essential (resp., singular) [1]. 

E0-semigroups were introduced by Powers ([11], also see [12], [13], [14], [15]), and 

are the primary objects of interest. Thus one is led to ask if every product system is 

associated with E0-semigroups or, what is the same, does every product system have 

essential representations.'? More generally, one would like to have a procedure where- 

by, starting with an arbitrary product system E one can construct not only one E0- 

semigroup, but all possible ones whose canonical product systems are isomorphic to E. 

The difficulty with this program has been that a product system comes with only one 

"obvious" representation: the regular representation. There is also a regular antirepre- 

sentation. Unfortunately, both of these give rise to singular semigroups. 

Our results below on constructing essential representations of product systems can 



CONTINUOUS ANALOGUES OF FOCK SPACE IV" ESSENTIAL STATES 267 

be summarized as follows. Starting with an arbitrary product system E, we form the 

Hilbert space of all square integrable sections L2(E). An element of L2(E) is an 

(equivalence class) of measurable sections 

~: t ~ (o, oo)__> ~(t) ~ E,, 

and the inner product is the natural one 

(~, r]) = (~(t), rl(t) ) dt. 

L2(E) is a continuous analogue of Fock space [1]. Every integrable section fEL~(E) 
gives rise to a left convolution operator l(f), which acts on L2(E) by 

l(f)~(x)= f(t)~(x-t)dt, x>O,  ~ L 2 ( E ) .  

The spectral C*-algebra of E is defined to be the norm-closed linear span 

(1.2) C*(E) = span{/(f) l(g)*: f, g ~ Ll(E)}. 

C*(E) is a separable nuclear antiliminal C*-algebra without unit, which is in most (and 

perhaps all) cases simple ([4], or [6]). It is appropriate to think of the family of C*- 

algebras C*(E) as continuous analogues of the Cuntz C*-algebra O| [7]. 

C*(E) has an important universal property, in that there is a bijective correspond- 

ence between the nondegenerate *-representations of C*(E) on separable Hilbert 

spaces and separable representations of E as defined above. It is not necessary to 

describe the precise nature of this correspondence here (see [6], section 2, for more 

detail). But the fact of its existence makes it meaningful to say that a represen- 

tation ~r: C*(E)---~(H) is essential or singular if the corresponding representation 

~b: E---~(H) is essential or singular. 

Accordingly, a bounded linear functional Q E C*(E)* is called essential or singular 
if the representation of C*(E) obtained from lel by the GNS construction has the 

corresponding property. The set ~ (resp., 5e) of all essential (resp., singular) elements 

of C*(E)* is a norm-closed linear subspace of C*(E), each is an order ideal, and we 

have a direct sum decomposition ([5], section 2) 

(1.3) C*(E)* = ~O)Se. 

In this way, the problem of constructing singular or essential representations of E is 
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reduced to the problem of determining the structure of the summands S~ and ~. For 

example, to prove that there is an E0-semigroup a for which E a is isomorphic to E one 

has to show that ~4:{0}. Our objective in [5] was to give an explicit description of the 

Banach space Se. We now describe a new method for constructing positive linear 

functionals on C*(E) which works as well for ~ as it does for 5e. For every t~0, let Pt 

denote the projection of L2(E) onto the subspace L2((0, t]; E) consisting of all sections 

satisfying ~(s)=0 for almost every s>t. The family of projections {Pt: t>~O} is strongly 

continuous, and increases from 0 to 1 as t increases from 0 to +oo. We will say that an 

operator B has bounded support if there is a positive t such that B=PtBP,. Let 

~ =  U Pt ~(L2(E))Pt 
t>0 

be the set of all such operators. ~ is a weakly dense *-subalgebra of ~(Le(E)). A 

(perhaps unbounded) linear functional to on ~ is called a locally normal weight if for 

every t~>O, the restriction of to to Pt ~(Le(E))Pt is a positive normal linear functional. 

We will make essential use of the semigroup f =  {flit: t~>0} *-endomorphisms of 

~(L2(E)) associated with the right regular antirepresentation of E on L2(E) (cf. section 

2 below), f is a singular semigroup of *-endomorphisms of ~(L2(E)), and we have 

~D_ft(~) for every t~>0. We will say that a locally normal weight to is decreasing if 

(1.4) to(ft(B*B)) <<- to(B'B), for every B E ~, t >I 0, 

and inoariant if equality holds in (1.4). Let ~ denote the set of all decreasing locally 

normal weights to which satisfy the growth condition 

tofP,) 
sup < + oo. 
t>0 t 

~d:/~ is a partially ordered cone of linear functionals on ~ ,  and it can be described in 

rather concrete terms. 

Our main results (summarized in Theorem 1.5 below) assert that there is an 

isomorphism of o/r onto the positive cone of C*(E)* which carries the invariant 

weights in 7::~ onto the essential states C*(E). This isomorphism involves differenti- 

ation, and is defined as follows. Let c$ be the generator of the semigroup fl: 

A-fit(A) 
~(A) = strong limit 

t--,0 t 

is a well-defined derivation on an appropriate domain (cf. section 2). 
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THEOREM 1.5. Let M be the set o f  all operators A in the domain o f  6 such that 6(A) 

is a compact operator o f  bounded support. Then ~ is a self adjoint algebra whose 

norm closure is C*(E). 

Moreover, for every to E ~ the linear functional dto defined on M by 

dto(A) = to(6(A)), A E J 

extends to a positive linear functional on C*(E) o f  norm 

to(P,) 
Ildtoll = s u p  

t>0 t 

The map d: ~--~C*(E)* induces an affine order isomorphism o f  ~ and the partially 

ordered cone o f  positive linear functionals on C*(E). This map carries the invariant 

elements o f  ~/'~ onto the cone o f  essential positive linear functionals. 

Theorem 1.5 implies that every product system has essential representations. In 

order to see this, one has only to show that there exist nonzero invariant locally normal 

weights on ~,  and that is easily accomplished by elementary methods (see Theorem 5.9 

and Corollary 5.17). 

2. The generator and its inverse 

Let a =  {at: t>~O) be a semigroup of *-endomorphisms of ~(H).  While the purpose of 

this paper is to construct examples of E0-semigroups, the analysis in sections 2 through 

4 will focus on singular semigroups and certain C*-algebras associated with them. 

Applications of these results to E0-semigroups will be given in section 5. 

In this section we discuss the generator of a singular semigroup. We show that 

such a generator is an injective linear mapping, and that its inverse is an unbounded 

completely positive linear map having a very explicit integral representation. Let a be a 

singular semigroup of *-endomorphisms of ~(H),  which will be fixed throughout this 

section. We will write 6 for the generator of a, and it is defined as follows, dom(6) is the 

set of all operators AE~(H) for which the limit 

(2.1) 6(A) = lim t-l(A-a,(A)) 
t-~0 

exists in the strong operator topology. It is known that dom(6) is a strongly dense *- 

subalgebra of ~ (H)  and that 6: dom(6)--->~(H) is an unbounded self-adjoint derivation 
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[11]. Notice that this definition of 6 differs in sign from the definition of the generator of 

an E0-semigroup given in [11]. 

For every t~>0, we will write Pt for the self-adjoint projection 1-at( l ) .  The family 

{Pt: t~>0} increases from 0 to 1 as t increases from 0 to + oo, and varies continuously in 

the strong operator topology. Some terminology will be convenient. We will say that a 

bounded operator B (resp., a vector ~ in H)  is supported in the interval [a, b] if 

B=(Pb-Pa) B(Pb-P a) (resp., ~=(Pb-Pa) ~). Let 

= U Pt ~(H)  Pt' 
t>0 

H0= U PtH 
t>0 

be the set of all operators on H (resp., vectors in H)  having bounded support. ~3 is a 

weakly dense *-subalgebra of ~(H),  and H0 is a dense linear subspace of H. The 

following result implies that every operator of bounded support is in the range of t~. 

THEOREM 2.2. For every B E ~, there is a unique operator 2(B) E ~(H)  satisfying 

(2.3) (2(B) ~, r/) = (as(B)~,e) ds 

for every ~, ~1E Ho. 2 is a linear mapping of ~ into the domain of 6 whose restriction to 

each local yon Neumann algebra ~t=Pt ~ ( n )  e t, t>0, is a normal completely positive 

map of norm t. 
2(~) consists of  all operators A(~dom(6)for  which 6(A) ~, and we have 

6(A(B)) =B for every B E ~3. 

Remarks. Notice that if ~, r/EH0, then for any bounded operator B we have 

(as(B) ~, r/)=0 for sufficiently large s~>0, so that there is no problem with the existence 

of the integral appearing in (2.3). In the course of proving Theorem 2.2 we will show 

that 6 is injective; therefore 2 is simply the inverse of 6 restricted to a convenient 

domain. 

Proof of Theorem 2.2. Fix T>0,  and let B be any operator supported in an interval 

of the form [a,b] with b-a~T .  Then anT(B) is supported in [na, nb] for every 

n=0, 1,2, . . . .  Since the intervals [ma, mb] and [na, nb] are disjoint for m4=n, the 

operators {anz(B): n=0, 1 .... } must have mutually orthogonal initial spaces and final 

spaces. Thus the series 
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(2.4) /~ = ~ ant(B) 
n=0 

converges strongly to an operator in ~(H)  satisfying [[BII=IIBII. Note too that for every 

t>~O, at(B) is supported in an interval [a+t, b+t] having similar properties, and so we 

have 

oo 

(2.5) a,(~) = ~ a.T(a,(a)). 
n=O 

We claim now that 

(2.6) fo' fo (~,(~)~,,7) d, = (a:8)~,,7> d~ 

for every ~, r/E H0. Indeed, the integral on the right can be decomposed as follows 

n~=OJn T <a,(B)~,r/)dS=~n=O (as+nr(B)~'rl)ds= (a,(B)~,rl>ds, 

noting that all sums that appear are actually finite sums becaue ~, r/E H0. 

Now that for T fixed, the map B E ~r-->B is a normal *-homomorphism of the yon 

Neumann algebra ~ r  into ~(H),  and so we can define a normal completely positive 

linear map ;tr of ~ r  into ~(H)  by 

(2.7) ~ T 

~r(B) = as(B)ds. 

Obviously, ][2rll~<T. Moreover, (2.6) implies that for every ~, r/EH0, 

(2.8) (2r(B)~,r/)= (a,fB)~,rl)ds, B E ~  r. 

Since the right side of (2.8) does not depend on T, we conclude that the family 

{~.r: T>0} is coherent, and defines a single linear map )~: ~ - ~ ( H )  with the property 

that for every T>0, the restriction of 2 to ~T is a normal completely positive linear map 

of norm at most T, and which satisfies the required equation (2.3). 
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In order to see that II AI~TII =T, we claim that IIA(er)II=T, Indeed, since 

(e~)- = ~ anr (er) = l, 
n=O 

we see from (2.7) that 

2(Pr) = as(1)ds.  

Since a t ( l )  is a nonzero projection, we can find a unit vector ~EH satisfying ar(1)~=~. 

Noting that as(1)~=~ for every O<.s<.T, we see that 

2(P r) ~ = as(l) ~ds = T~, 

and thus IIZ(er)ll--T. 
We claim now that 

(2.9) at(2(B)) = 2(a,(B)) 

for every B E ~  and every t~>0. Indeed, if B E ~ r  then (2.5) asserts that a,(B)=at(B)- ,  

hence 

( f : ) fo '  Y: at(]t(B)) = a t as(B) ds = as+,(B) ds = as(at(B)-) ds = 2(at(B)). 

We show next that ;L(~) is contained in dom(6), and 5(2(B))=B for every B E ~. In 

order to prove this, we claim first that for every B in ~ and for every t>0, 

~.(B)-at(2(B)) is given by the weak integral 

(2.1o) 2(B)-a,(2(B)) = a~(B) ds. 

Indeed, using (2.9) we have for every ~, r/E H0, 

f: (at(2,(B)) ~, rl) = (]~(at(B)) ~, rl) = (as+,(B) ~, rl) as = (as(B) ~, rl) as, 

and hence 

((~(B)-a,(~(B))) ~,,1) = ( a s ( B )  ~, ~) ds .  
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(2. I0) follows because both sides of (2.10) are bounded operators and H0 is dense in H. 

From (2.10) it is clear that t-l(2(B)-at(A(B))) convrges strongly to B as t-->0+. Hence 

2(B) belongs to dom(6) and 6(2(B))=B. 

In particular, this shows that 2(~) is contained in 

{A E dom(O): b(A) E ~}. 

To see that this inclusion is actually equality, we claim first that ~ is injective in the 

sense that ifA E dom(8) and ~(A)=0, then A=O. For that, choose any A E dom(8). Then 

for every pair of vectors ~, ri in H, the function f ( t )= (at(A) ~, ~/) is differentiable on 

[0, + oo) and f ' ( t )  = -  (at(t~(A)) ~, r/). Hence 

fo fo ( (A-at(A))~,  rl) =f (O)- f ( t )  = - f ' ( s )  ds = (as(6(A)) ~, rl) ds. 

It follows that A - a t ( A )  is given by the weak integral 

(2.11) A -  at(A) = as(d(A)) ds. 

(2.11) implies that if we also assume that 6(A)=0, then A=at(A) for every t~>0. 

Since the projections at(I) tend strongly to zero as t---~, at(A)=at(1)at(A) tends 

strongly to zero as t--->~, and we have the desired conclusion 

A = lim at(A) = O. 
t---~ | 

Now choose any A in dom(6) such that 6(A) E ~.  In order to show that A E2(~) ,  it 

suffices to observe that A=A(t~(A)). But we know that 2(6(A)) belongs to dom(6) and 

that 6(,~(6(A)))=6(A). Hence A-M6(A) )  belongs to the kernel of 6, and we conclude 

from the preceding discussion that A=M~(A)). [] 

We collect the following observations for use in section 3. 

PROPOSITION 2.12. (i) Let A and B be operators in the domain o f  6 such that 6(A) 

and 6(B) are supported in [0, a] and [0, b] respectively. Then 6(AB) is supported in 

[0,a+b]. 

(ii) For every BE ~ and t~O, we have Pt2(B)=Pt2(PtB). 

Proof. (i) Let K=6(A), L=6(B). Then A=A(K), B=;t(L), and we have 

6(AB) = 6(A ) B + A ~(B) = KA(L) +2(K) L. 

18-908289 Acta Mathematica 164. Imprim6 le 27 avril 1990 
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Because of the formula (2.3), Pa2(L) is given by the weak integral 

P,~ 2(L) = P,, as(L) ds, 

and hence 

f0 ~ f0 ~ K2(L) = KP a 2(L) = KP,, a,(L) ds = Kas(L) ds. 

Since L is supported in [0, b], as(L) is supported in [0, s+b], and therefore in [0, a+b] 

for every O<~s<~a. It follows that K2(L) is supported in [0, a+b]. A similar argument 

shows that ;t(K)L is supported in [0, a+b]. 

(ii) Fix BE ~ ,  t~>0. We have to show that Pt2((1-Pt)B)=O, i.e., Pt2(a,(l)B)=O. 

But for every ~, r/in H0 we can write 

(Pt2(a,(1)B) ~, rl) = (as(at(1)B) ~, Ptrl) ds 

-- ( a s + , ( 1 ) a s ( B ) ~ , e , ~ > d s  

which vanishes because Ptas+t(1)=Pt(1-Ps+t)=O for every s~>0. [] 

3. The algebra M 

As in section 2, a={at:  t>~0} denotes a singular semigroup of *-endomorphisms of 

~(H) with generator fl, fixed throughout this section. We now introduce a *-subalgebra 

of the domain of 6 and we will construct a particular kind of approximate identity for it. 

We will see later, in section 5, that the C*-algebra associated with any product system 

can be realized as the norm closure of one of these algebras. 

Let M denote the set of operators ),(~n ~) .  By Theorem 2.2, an operator A 

belongs to M iff A 6 dom(6) and 6(A) is a compact operator of bounded support. 

PROPOSITION 3.1. M is a self adjoint subalgebra of  ~(H) and ~ is a derivation of  M 

onto the algebra of  all compact operators having bounded support. 

Proof. If A and B belong to M, then 6(AB)=t)(A)B+A6(B) is clearly a compact 

operator, and Proposition 2.12(i) implies that 6(AB) has bounded support. Hence M is 
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an algebra of  operators. It is self adjoint because 6(A*)=6(A)* for every A in the 

domain of 6, and 6(M)=YFN ~ follows from Theorem 2.2. [] 

The next results exhibits a family of approximate units for M with rather conve- 

nient properties. 

TnEOREM 3.3. Let  tl,t2 . . . .  be a sequence o f  positive real numbers which con- 

verges to zero. There is a sequence o f  finite rank projections FI, 172 . . . .  in ~ (H)  such 

that F,  is supported in the interval [0, tn], and the sequence 

E,  = t~l)~(F,) 

is a strong approximate unit for  M in the sense that 

(3.4) lim (IIE.A-AII+IIO(E.A-A)II) = O, A E M. 
n---~ oa 

Remark. Notice that for any choice of {t,} and {F,} as above, Theorem 2.2 implies 

that each E,  is a positive operator in M of norm at most 1. 

Proof  o f  Theorem 3.3. Fix {tn}. We show first that there is a sequence of finite rank 

projections F~ such that Fn is supported in [0, t,] and 

E,  = t~X2(F,) 

tends strongly to the identity in ~(H) .  To see this, let Q be a faithful normal state of 

~(H)  and fix n~>l. Since 2: ~ - - -~ (H)  is a locally normal mapping, Qo2 is a positive 

normal linear function o n  etn ~J(H) Pt." Thus we can find a finite rank projection Fn<~-Pt. 
such that 

~9(2(F,)) ~> Q(2(P,.))-n-lt , .  

Now for every t>0  we have 

f0 f0 f0 p(,~(Pt)) = p(Cts(Pt)) ds = p(a,(1)-a~+,(1)) ds = o(a~(1)) ds, 

since s~Q(a~(1)) is a bounded nonnegative function which decreases to zero as s--*~. 

Putting En=t~2(F,),  we see that En is a positive operator of norm at most 1, and 

p(E,) I> p(a,(1)) ds - 1 
n 
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for every n~>l. Since Q(as(1)) is continuous in s and takes the value 1 at s=O, we see that 

lim o(E,) = 1. 

Because of the inequality 

we concluded that 

e((l - E . )  2) = 1 + e(E2.)- 2 Re 0(E.) ~< 2 Re Q(1 -E . ) ,  

(3.5) lira ~((1 - E~) 2) = 0. 
/1---~ oo 

Since 0 is a faithful normal state of ~(H)  and { 1-E,}  is a bounded sequence of self 

adjoint operators, (3.5) implies that E~ tends strongly to 1. 

Now choose Fn as above and let 

E. = t~12(F.). 

Then E. tends strongly to 1 as n--.oo, and it remains to prove (3.4). For that, fix A fi ~t. 

ff 6(A) is supported in [0, T] then by Proposition 2.12(i), 6(E.A)  is supported in 

[0, T+t.], and so 6(E.A) is supported in [0, T+I] for n sufficiently large. Hence 

l i E . a - A l l  = II~(O(E.A-A))II ~ (T+ 1)II6(E.A-A)II 

for sufficiently large n. Therefore (3.4) will follow if we prove that 

(3.6) lira H6(E.A--A )[[ = O. 
~,---i, oo 

Using the fact that ~ is a derivation on ~/we have 

O(A-E.  A) = (I - E . )  6(A)-O(E.) A, 

and hence 

116(A-EnA)II <~ II(1-E.) ~(A)II+[I6(E~)AII. 

The first term on the right tends to zero because 6(A) is compact and 1-En tends to 

zero in the strong operator topology. In order to estimate the second term, we claim 

first that for every t>O and every finite rank projection F supported in [0, t], we have 

(3.7) ]IFA][ ~< tllPt 6(A)[[. 
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Indeed, since FA=FPtA,  we see from Proposition 2.12(ii) that 

P,A  = Pt~(d(A)) = Pt ~(P, d(A)) = P, as(P , d(A)) ds, 

and thus we obtain (3.7) 

IIFAII-< liP, All-< t l l e ,~ (A) l l .  

Now since b(En)=t~IF~, we see from (3.7) that II~(E~)AII is bounded above by 

liP, n ~(m)ll. Again, because 6(A) is compact and since Pt = l -a , (1)  tends strongly to zero 

as t-*0+, we have the desired conclusion 

lim II~(E~)AII-< lim lIP, ~(A)II--- 0. [] 
n-.-~ ~o /I---.> oo 

4. States and decreasing weights 

Let a= {at: t~>0} be a singular semigroup of endomorphisms acting on ~(H) and let 

Pt = 1-at(l)  for every t~>0. We will consider certain unbounded positive linear function- 

als defined on the the *-subalgebra 

(4.1) ~ = I.J P, ~(H)  P, 
t>0  

of ~(H) consisting of all operators having bounded support (relative to a). Note that 

the union in (4.1) is unaffected if we restrict it to integral values of t. A linear functional 

to on ~ is called a locally normal weight if for every n~>l, the restriction of o9 to 

P~ ~(H)P~ is a normal positive linear functional. With every such to we can associate a 

sequence Q~ of "density operators" as follows. For each n~>l, there is a unique 

positive trace-class operator Q~ with the properties 

(i) n~--e~n~en, 

(ii) o9(B) = trace(Qn B), B E Pn ~(H) P~, 

and this sequence is coherent in that 

(iii) P n Q n + l P n  = ~n, n >~ 1. 
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Conversely, if we start with a sequence {g2.:n~>l} of positive trace-class operators 

satisfying (i) and (iii), then we can define a locally normal weight to on ~ as follows 

to(B) = lim trace(~.B), BE ~. 
n - - ~  or 

Locally normal weights are a slight generalization of normal weights, and we 

digress momentarily in order to discuss this significant point. Let to be a normal weight 

of ~(H) [10]. This means that to is a function defined on the positive operators in ~(H), 

which takes values in the extended interval [0, +oo], which is linear insofar as that 

property makes sense, and preserves the limits of bounded monotone increasing nets of 

positive operators. If we assume further that to(P,) is finite for every n>_-l, then to can be 

restricted to the positive part of ~ ,  and this restriction extends uniquely by linearity to 

a locally normal weight of ~.  

On the other hand, we want to point out that not every locally normal weight on 

is obtained in this way from a normal weight to of ~(H) satisfying to(p,)<oo for every n. 

Appendix A contains some simple examples of locally normal weights of ~ which 

cannot be extended to normal weights of ~(H). 

We may conclude that in this sense, locally normal weights are more general than 

normal weights. On the other hand, locally normal weights are susceptible to the same 

kind of GNS construction as are normal weights, and this construction gives rise to a 

normal representation of ~(H). Indeed, if to is a locally normal weight of ~,  then we 

may complete ~ relative to the positive semidefinite inner product (A, B)=to(B'A), 

A, BE ~,  to obtain a (separable) Hilbert space H~, and a linear mapping g2: ~--*Ho, 

satisfying 

(4.2i) <f~(A), f2(B)) = to(B'A), and 

(4.2ii) t2(~)~ = H,o. 

There is a unique *-representation ~r: ~---~(H~) defined by ~r(B)f2(C)=f~(BC) for all 

B, C in ~.  It is rather easy to show that ar is nondegenerate, and extends uniquely to a 

normal *-representation o f  ~(H) on Ho,. In particular, eoery representation o f  

obtained in this way from a locally normal weight is unitarily equioalent to a multiple 

of  the identity representation o f  ffL We omit the proof since this result is an elementary 

one that is peripheral to the main discussion. But we may conclude from these remarks 

that, while locally normal weights of ~ are more general than normal weights, they are 
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always quasi-equivalent to normal weights in the sense that their associated representa- 

tions are quasi-equivalent to the representations associated with normal weights. 

Every endomorphism at, t>~O, leaves the *-algebra N invariant, and thus we can 

compose a locally normal weight to with at to obtain another locally normal weight. 

Definition 4.3. A locally normal weight o) is called decreasing if for all B E N, and 

t~>0 we have 

o)(at(B*B)) <~ O)(B*B). 

We will refer to an co satisfying Definition 4.3 simply as a decreasing weight. The 

set of all decreasing weights is a cone of linear functionals on ~, which is partially 

ordered by the relation o)~o)2 iff o)2-o)~ is a decreasing weight. 

Let ~/be the *-algebra c~-l(~f0 N) introduced in section 3, and let o) be a locally 

normal weight. Since d maps ~/into the domain of o), we can define a linear functional 

do) on M as follows: 

(4.4) do(A) = o)(d(A)), A E sg. 

do) can be interpreted as the derivative of o) in the direction of the flow of the 

semigroup a. Typically, both to and do are unbounded. In this section we will 

characterize the set of all locally normal weights o) for which de> extends (necessarily 

uniquely) to a positive bounded linear functional on the C*-algebra obtained by closing 

in the norm topology. Indeed, we will obtain in this way a rather explicit description 

of the set of all states of this C*-algebra (Theorem 4.15). 

As it happens, the key issue is to determine when do) is positive in the sense that 

do)(A*A)>10, A E ~ ,  and the following result gives the relevant criterion. 

THEOREM 4.5. Let o) be a locally normal weight on N(H) and let do) be the linear 

functional on ~ defined by (4.4). The following are equivalent. 

(i) do)(A *A)>,-O, for every A E s41. 

(ii) o) is decreasing. 

Proof. (ii)=*(i). Let to be a decreasing weight. Letting ;t=d -1 be the inverse map of 

d defined in Theorem 2.2 and setting K=d(A), the desired inequality Theorem 4.5(i) 

becomes 

(4.6) O)(K*2(K)+)L(K)*K) = 2Re O)(K*2(K)) >~ 0, 

Re z denoting the real part of the complex number z, and we must prove (4.6) for every 
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compact operator K in ~ .  Let H,o be the Hilbert space obtained by completing 

relative to the positive semidefinite inner product (K, L)--->~o(L*K). Then we have a 

natural linear mapping f~: ~--->H~ with the property that f l (~ )  is dense in Ha and 

(~ (K) ,~(L) )=o) (L*K) ,  K, L E ~ .  

Now for each t~>O and every K in ~ ,  we have 

Ilf2(a,(g))ll 2 = ~o(at(K)*at(K)) = w(at(K*K)) 

<~ oJ(K*K) = IIt~(g)JI 2, 

and hence we can define a contraction operator A(t) on Ho, by 

A(t): s ~(a,(K)), K E ~.  

It is obvious that {A(t): t~>0} is a contraction semigroup for which A(0)= 1, and it is 

strongly continuous because for each KE ~ we have 

HA(t) Q ( K ) -  f2(K)[I 2) = o~((at(K)-K)*(a,(K)-K)) 

= w(at(K*K)) + oJ(K*K)- 2 Re ~o(K *at(K)) 

<~ 2 Re{o~(K*K)-o~(K*at(K))}, 

and the fight side tends to zero as t - . 0 + .  

Let U= { Ut: t E R} be a unitary dilation of the contraction semigroup {A(t): t~>0}. 

This is to say that U is a strongly continuous one parameter unitary group which acts on 

a Hilbert space containing H~, in such a way that 

(4.7) (A(t) ~(K),  f2(L) ) = ( Ut f~(K), f~(L) ), K, L E ~,  t >~ O. 

In order to prove the inequality (4.6), choose KE ~ and suppose that K is supported in 

the interval [0, T] in the sense that K=PrKPr.  Define a complex valued function q~ on 

the real line R by 

~w(K*a,(K)), if t ~ 0 
( 4 . 8 )  ~0(t) 

t d ( - t ) ,  if t < 0 .  

r is continuous, and vanishes outside the interval [ -T ,+T] .  Moreover, by formula (2.3) 

and the fact that K*as(K)=K*Pras(K)=O for s>T, we have 

o)(K*2(K)) -- ~o(K*at(K)) dt -- (t) dt, 
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and hence 

2 Re w(K*2(K)) = f:| q~(t) dt 

is the value of the Fourier transform of ~ at 0. Thus it suffices to show that the Fourier 

transform of q~ is nonnegative. The desired inequality (4.6) follows. 

But by (4.7), we have a representation of 

$(t) = (Ut~(K) ,  ff](K) ) 

as a coordinate function of a unitary representation of the additive group R. Hence ~ is 

a positive definite function of compact support, which implies that the Fourier trans- 

form of q~ is nonnegative. The desired inequality (4.6) follows. 

In order to prove the implication (i)=~(ii), we require a bit of lore associated with 

dilation theory. Since we lack an appropriate reference, we have included a sketch of 

the proof of Lemma 4.9 in Appendix B. 

LEMMA 4.9. Let A: R--->~(H) be an operator function such that for  every vector 

in a dense subset o f  H, the scalar function (A(t) ~, ~) is positive definite in t, and which 

satisfies A(0)= 1. Then liA(t)ll~<l for all t. 

Proof o f  Theorem 4.5, (i)=~(ii). In order to reverse the above argument, we intro- 

duce the one parameter unitary group associated with the resolution of the identity 

defined by Pt = 1-at( l ) ,  and we observe that these unitiaries are "eigenvalues" of the 

semigroup a (see (4.10) below). More precisely, let P be the unique spectral measure on 

[0, + oo) defined by the requirement 

P([0, t))= 1-at( l ) ,  t~>0, 

and let U= { U~: z E R} be the one parameter unitary group 

U~ = ei~P(dt). 

Since P([a, b))=aa(1)-ab(1)'for 0~<a<~b<+oo, we have at(P[a, b))=P[a+t, b+t) for all 

t~>0. It follows that 

a,(U~) = ei'~p(t+ds) = e -in eis~P(ds) = e-irma,(1) U~. 

18t-908289 Acta Mathematica 164. Imprim~ le 27 avril 1990 
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Thus for any operator B we have 

(4.10) (U~B)*a~(U~B) = e-~'B*a,(B). 

Assume now that to is a locally normal weight satisfying Theorem 4.5(i): 

dto(A*A)>>-O, AE~t. 

As in the preceding argument, this is equivalent to the assertion 

to(K*2(K)+ 2(K)*K) >t 0 

for every compact operator K in ~.  As before, we fix such a K and consider the 

function ~(t) defined in (4.8). Again, ~ is a continuous function having compact 

support, which satisfies 

(4.1 I) I | ~(t) dt = to(K*2(K)+ 2(K)*K) >>- O. 

Notice now that the Fourier transform of $ is nonnegative. For if we replace K 

with U~K for some rE R, then we see from (4.10) that the function $, associated with 

U~K is given by 

$~(t) = co((U~K)*at(U,K)) = e-i~tto(K*at(K))=e-i't$(t). 

Replacing K with U,K in (4.11) gives 

fff| fff| ~O~(t)dt= co((U~K)*~.(U~K)+;~(U~K)*(U,K))~O 

for all r, as asserted. 

We conclude from the preceding paragraph that ~ is a function of  positive type. 

Therefore I~(t)l~<O(0) for every real t, and hence 

(4.12) Ito(K*at(K ))1 <~ to(K *K) 

for every t~>0 and every compact operator K in ~ .  Because the restriction of to to every 

von Neumann subalgebra of ~ of the form Pr~(H)Pr is normal, the inequality (4.12) 

persists for all K~ ~.  

Now by a familiar polarization argument ([9], Theorem 2, p. 33), the inequality 

(4.12) implies that 
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(4.13) Ito(L*a,(K))l <~ 2V to(K'K) to(L'L), 

for all K, L in ~.  

We show next that the constant 2 in (4.13) can be replaced with 1. To see this, let 

Ho, be the Hilbert space associated with to as in the first part of the proof and let 

fl: ~---~(H~,) be the natural map. For each t>~0, (4.13) implies that 

II~(a,(K))ll ~211~(K)II, KE ~ ,  

and hence there is a unique operator A(t) on H~o satisfying. 

A(t): ~(K)---~ ~(at(K)), K E ~. 

Obviously, IIA(t)ll~<2. As in the previous arguments, {A(t): t>~0} is a strongly continu- 

ous semigroup. For t<0, put A(t)=A(-t)*. 

Fixing K in ~ and letting ~ be the positive definite function associated to K as in 

(4.8), then we have r for all real t. Since f l (~)  is dense in H~, 

the family of operators {A(t): t E R) satisfies the hypothesis of Lemma 4.9, and hence 

I[A(t)ll~<l for every t. 

It follows that to is a decreasing weight, for if KE ~ and t~>0, 

to(at(K'K)) = to(at(K)*at(K)) = i~4(t) ~(K)II 2 

<~ IIQ(K)II = = to(K'K), 

and the proof of Theorem 4.5 is complete. [] 

Remark. If one is willing to assume that dto is a bounded linear functional on ~t, 

then it is possible to give a shorter proof of the implication (i)=~(ii). This is based on the 

observation that for t~>0 and for every positive operator K in ~,  

2(K-a,(K)) = ~.(K)-at(2(K)) = as(K) ds 

is a positive operator in the multiplier algebra of the norm closure of s~, and hence 

to(K-at(K)) = dto[g~(K-a,(K))] >t O. 

In order to determine which decreasing weights to give rise to bounded linear 

functionals dto on ~r we require the following elementary result about positive linear 

functionals on normed *-algebras. By a normed *-algebra we mean a complex normed 

algebra gt which is endowed with an isometric involution a--~a*. 
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LEMMA 4.14. Let ~t be a normed *-algebra and let 0 be a linear functional on A 

satisfying p(a*a)~O for every a E s~t. Assume further that 

(i) lim Io(:)l"~<llxlJ, for every x =  x* E ~ ,  

and that there is a sequence {e~: n~>l} of  self  adjoint elements o f  ~ satisfying 

o(e2~)<~M< +oo and such that for  every xE ~ we have 

(ii) O(x)= lim o(en x). 

Then IIQII2~M. 

Remark. Perhaps it is worth pointing out that some very elementary examples 

show that the essential conclusion of Lemma 4.14 (i.e., that 0 is bounded) fails if one 

deletes either of the hypotheses (i) or (ii). 

Proof o f  Lemma 4.14. By the Schwarz inequality, we have for each n 

Io(enx)l z <<. 0(e2n) O(x*x) <<- Mo(x*x), 

and therefore 

]0(x)[ = lira Io(enx)l <~ M~rZO(x*x)~/2. 
tl--~ou 

Iterating the latter inequality n times, we obtain 

lofx) l~ M 1:2+ I/4+...+ 1:2nQ( (X*X)2 n-l) I/2" 
<~ MO((x,x)2 n- l)1/2~. 

Taking the limit on the right side and using Lemma 4.14(i), we obtain 

Io(x)l ~ Mqlx*xll 1/2 ~ Mlixll, 

as required. [] 

We are now in position to describe the cone of positive linear functionals on the 

C*-algebra M-  obtained by closing M in the operator norm. 
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THEOREM 4.15. Let ~d/'a be the cone of  all decreasing weights to satisfying the 

condition 

o9(1 -a t ( l ) )  
(4.16) sup < + ~ .  

t>0 t 

For every o9 in ~ ,  the linear functional do9 defined in (4.4) is bounded, and extends 

uniquely to a positive linear functional on M-.  The map og---~do9 is an affine order 

isomorphism of  ~W~ onto the positive part o f  the dual of  M-, for which 

- o9(1-at(1)) 
Ildo911 = s u p  

t>o t 

Proof. Fix to in ~r and let M denote the left side of (4.16). In order to show that do9 

is bounded, we will apply Lemma 4.14. Let  tn be a sequence of positive reals decreasing 

to zero and let E~ be an approximate unit for M of the type constructed in Theorem 3.3. 

We claim first that do9(E2n)<~M for every n ~ l .  Inded, since E~ has the form 

(4.17) E=t~12(F~) 

where F~ is a finite rank projection supported in the interval [0, t~], we see that 

dog( E~) = o9( 6( E~) ) = t ~ l o9( F ~) <~ M. 

Moreover, for every A in .ff we have II6(EnA)-6(A)II---,O as n~oo ,  and since the 

restriction of to to PT ~(H)PT defines a bounded linear functional for every T >0,  we 

may conclude that 

lim do9(E~A) = lim Og(6(E~A)) = o9(6(A)). 

Hence Lemma 4 . 1 4 ( i i )  is satisifed. 

Now we claim that do9 satisfies Lemma 4.140) for every A in M, i.e., 

(4.18) iim Iog(~(An))ll/~ ~ IIAII. 

To see this, fix A and suppose that 6(A)=Pr6(A)Pr for some T>0.  By Proposition 

2.12(i) we have 6(An)=P,r6(A n) PnT for every n= 1,2 . . . . .  Since the norm of the restric- 

tion of to to Ps ~ (H)  Ps is o9(P~) for every s>0,  we have 

19-908289 Acta Mathematica 164. Imprim~ le 27 avril 1990 
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Ico(~(a~))l ~ co(Pnr)ll~(A~)ll ~ M(nT) nllAIr~ll~(a)ll, 

and the estimate (4.18) follows after taking nth roots and passing to the limit. 

By Theorem 4.5 we know that dco(A*A)~O for every A EM, and thus we may 

conclude from Lemma 4.14 that do) is bounded with Ildcoll~M. To see that the latter 

inequality is actually equality, fix t>0,  let {F~, F2 . . . .  } be a sequence of finite rank 

projections which increases to et, and put 

Ep= t-lA(Fp), p >~ l. 

Each Ep is a positive operator in M of norm at most 1, hence 

Ildcoll ~> sup dco(E v) = sup t-l co(Fv) = t-l co(Pt). 
P P 

Since t is arbitrary it follows that IldcoH-->M. 

We now show that every positive linear functional Q on M-  has the form p=dco for 

co as above. Fixing Q, define a linear functional coo on YgN ~ by too(K)=Q(2(K)), 
K E Ygn ~.  Notice that coo extends naturally to a locally normal weight co of ~ .  Indeed, 

for every t>0 the restriction of 2 to Pt ff(Pt is a (bounded) positive linear mapping, and 

consequently the restriction of coo to e t  YgPt is a positive linear functional. Hence there 

is a unique normal positive linear functional tot on Pt ~(H)et  such that cot(K)=coo(K) for 

every KEPt ff{Pt. The family of  linear functionals {cot: t~>0} is obviously coherent, and 

therefore there is a locally normal weight to on ~ such that 

r176 t = cot 

for every t~>0. Note that p=dco. Indeed, i fA E M and we set K=6(A), then K belongs to 

YgN ~ and we have 

~)(A) = ~)(A(K)) = co(K) = co(c~(A)) = dco(A). 

Finally, since Q is a positive linear functional, Theorem 4.5 implies that co is a 

decreasing weight. 

It remains to show that for decreasing weights o91 and co2, we have col---<co2 ~ 

dcol<-..dco 2. Assuming first that co~--<co2, then co2-co! is a decreasing weight and hence 

dco2-dcol=d(coz-cot) is a positive linear functional by what we have already proved. 

Using Theorem 4.5, this argument is reversible. [] 
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5. Applications 

We conclude by showing how the C*-algebra C*(E) associated with an arbitrary 

product system E fits into the context of the preceding discussion, and we deduce the 

main results of this paper. Let E be a product system. Following the discussion of 

section 1 (or see [6], section 2), we realize C*(E) as a concrete C*-algebra acting on the 

Hilbert space LE(E) of all square integrable sections of E, 

C*(E) = span{/(f)/(g)*: f, g ELI(E)}. 

The properties of this C*-algebra together with appropriate references are described in 

[6]. 

Here, we want to show how C*(E) can be defined in terms of the generator of 

the singular semigroup fl={flt: t~>0) associated with the regular antirepresentation 

r:E~3(LZ(E)). In more detail, fl is defined as follows. For eah t>0, choose an 

orthonormal basis {el(t), e2(t) .... ) for the Hilbert fiber space E(t) over t, and define a 

sequence of isometrics Vl(t), V2(t) .... on L2(E) by 

(5.1) V,(t) ~(x) = ~ ~(x-t) e,(t), if x>t ,  
LO, if O<x<~t. 

fit is defined to be the following endomorphism of ~3(L2(E)): 

e~ 

(5.2) fit(A) = Z V,(t)AV,(t)*, A E ~(LZ(E)). 
n = 0  

This definition does not depend on the choice of basis {en(t)}, and if we define/3o to be 

the identity mapping, then {fit: t~0) becomes a singular semigroup of *-endomorphisms 

of ~3(LZ(E)) (see [5]) with the property that fl~(1) is the projection of LZ(E) onto the 

subspace consisting of all sections ~ E LE(E) which are supported in the interval [t, + oo) 

(almost everywhere). We may therefore consider the generator 6 of fl as defined in 

section 2, the algebra ~3 of all operators with bounded support relative to fl, and the 

self-adjoint algebra sg=6-1(Y(N 5~)=2(Y(n 5~) introduced in section 3. 

PROPOSITION 5.3. C*(E) is the norm-closure of the algebra of operators 

8r = {A E dora(6): 6(A) E 5(N ff~}. 

Proof. Let H0 denote the dense subspace of L2(E) consisting of all sections 

E LE(E) which are supported in some bounded subinterval of (0, oo) (notice that these 
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are precisely the vectors having bounded support relative to the sernigroup fl). We may 

consider H0 to be a dense subspace of the Banach space Ll(E). Since every integrable 

section f E  LI(E) can be approximated in the L~-norm with a section 3~ E H0, and since 

the left convolution mapping l: LI(E)--~(L2(E)) is a contraction, we have 

(5.4) C*(E) = span{/(f) l(g)*: f, g EH0}. 

Now Proposition 6.4 of [4] asserts that for f, gEHo we have 

l(f) l(g)* = 2(f@~) 

f |  denoting the rank-one operator in ~(L2(E)) defined by ~--~ (~, g)f .  Therefore, 5.4 

implies that C*(E) is the norm-closure of the set of operators 2 (~)  where ~ denotes 

the set of all finite rank operators having bounded support relative to ft. The required 

conclusion that C*(E) is the norm closure of 2(Y(N ~ )  now follows from the fact that 2 

is a locally bounded operator mapping of  Y(N ~ into ~(L2(E)). [] 

For any toe ~ we see from Theorem 4.15 that do  defines a bounded linear 

functional on the dense subalgebra M of Proposition 5.3; we will use the same symbol 

do  to denote the unique extension of do  to C*(E). Moreover, Theorem 4.15 implies 

that the map d: ~ defines an affine order isomorphism of the cone ~ onto 

the cone of all positive linear functionals on C*(E). We must now determine which 

elements of 3V~ map to essential positive linear functionals on C*(E). 
In [5] we introduced a semigroup fl*= {/3*,: t1>0} which acts on the dual of C*(E), 

and is closely related to the semigroup fl of *-endomorphisms of ~(L2(E)) encountered 

above. For t>0, fl*t is defined as follows. Choose an orthonormal basis {el(t),  e2(t) . . . .  } 

for E(t) and let {Vl(t), V2(t) .... } be the sequence of isometries defined in (5.1). Letting 

H0 denote the subspace of L2(E) consisting of all sections having bounded support, we 

see that each Vn(t) leaves H0 invariant and in particular, Vn(t)fELI(E) for everyfEH0. 

For every 0 E C*(E)*, fl*,(O) is defined on generators of C*(E) of the form l(f)l(g)*, 
where l a n d  g are elements of  H0, by the absolutely convergent series 

fl*,(O) (l(f) l(g)*) = ~ e(l(V~(t) f )  l(V~(t) g)*). 
n=l 

fl*0 is defined as the identity map of C*(E)*. 

fl*t does not depend on the particular choice of basis {en(0}, and in fact this 

defines a contraction semigroup on C*(E)* which has the crucial property that a linear 
functional 0 in C*(E)* is essential iff 0 is fixed under the action of r* (see [5], 
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Proposition 1.3 and Proposition 1.8). We emphasize that, while fl* does possess an 

appropriate continuity property ([5], Proposition 1.3), the individual mappings fl*t are 

not continuous in the weak* topology of C*(E)*. In particular, fl* is not the semigroup 

adjoint any semigroup of endomorphisms acting on C*(E). 

In order to apply these facts about fl* in the current setting, we will show in 

Theorem 5.7 that for every positive t we have a commutative diagram 

~ ,  d ~ C*(E)* 

~ , -  ~ C*(E)* 

in the sense that for every decreasing weight to E ~/'a one has 

(5.6) fl*t(dto)(A) =d(tooflt)(A), for every A Es~. 

Notice that the commutative diagram (5.5) provides a sense in which the action offl* is 

adjoint to the action of the semigroup fl on ~,  but in a noncanonical way oia the 

differentiation mapping d. 

THEOREM 5.7. The diagram (5.5) is commutatioe. Moreover, to--->dto defines an 

affine order isomorphism of  the subcone o f  inoariant weights in ~r onto the cone o f  

essential positive linear functional in C*(E)*. 

Proof. Granting the formula (5.6) for a moment, we can readily deduce the rest of 

Theorem 5.7 from Theorem 4.15 and the characterization of the essential part of 

C*(E)* cited above. Indeed, if to is an invariant weight in ~/4r~ then (5.6) implies that dto 

is invariant under the semigroup fl* and hence dto is essential. Conversely, if 0 is an 

essential positive linear functional on C*(E), then by Theorem 4.15 there is a decreas- 

ing weight to such that Q(A)=dto(A)=to(6(A)) for every A E ~t. Since 0 is invariant under 

fl*, formula (5.6) implies that for every AE~I  and every t~>0, we have d(tooflt)(A)= 
dto(A ), i.e., 

to ( f , (6 (A) ) )  = to(6(A)) .  

Since Proposition 3.1 implies that 6 (M)=5(n~,  the preceding formula asserts that 

to(flt(K))=to(K) for every compact operator K of bounded support. By local normality 

of the two linear functionals tooflt and to it follows that to oflt=to on ~ ,  so that to is an 

invariant weight. 
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In order to prove (5.6), fix to E ~a. We have to show that for every a>0 and every 

compact operator K satisfying K=P~ KP~ we have 

(5.8) fl*t(dw) (2(K)) = dto(A(K)). 

Notice that the right side of (5.8) is simply to(6(2(K)))=to(K). Now since the restriction 

of 2 to P~ ~rP a is bounded and since P ~Pa is spanned by its rank-one operators, it 

suffices to prove (5.8) for K of the form f |  with f, g functions in LE(E) which are 

supported in the interval (0, a]. But in this case l(V~(t)f)I(V~(t)g)* =2(V~(t)f| 

([4], Proposition 6.4); and using local normality of to, we can write the left side of (5.8) 

as follows 

• dto(l(Vn(t) f )  l(Vn(t) g)*) = ~ to(6(g(V,(t) f |  Vn(t) ~))) 
n = l  n = l  

= ~ to(V~(t) (f| V~(t)*) 
n = l  

The last term is simply to(flt(f| which agrees with the right side of equation (5.8). [] 

We can now show that C*(E) has essential states (by a state of a non-unital C*- 

algebra we simply mean a positive linear function of norm 1). In view of Theorem 5.7, it 

suffices to show that there are nonzero invariant locally normal weights on ~. The 

following result asserts a bit more. 

THEOREM 5.9. Let a=(at: t~>0} be a semigroup of*-endomorphisms o f  ~(H) such 

that at(1)=~l for every t>0. Then there is a normal weight o f  ~(H) which is inoariant 

under the action o f  a and satisifes 

(5.10) to(I-at(l)) = t, for every t >t0. 

Remarks. Assuming that a is a singular semigroup, (5.10) implies that the restric- 

tion of to to the positive cone of the algebra ~ of all operators having bounded support 

relative of ct defines (after an obvious extension by linearity) a nontrivial invariant 

localty normal weight on ~. 
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We also remark that if 09o is any normal weight on ~(H)  + which is invariant under 

(at: t>~0} and which satisifes the condition 

0 < to0(1-ar(1)) < +co 

for some positive T, then too can always be rescaled so as to achieve the normalization 

(5.10). Indeed, if we let P be the spectral measure on [0, +oo) defined by the property 

(5.11) P([a, b)) = ab(1)--aa(1) 

for every O<.a<.b< + ~ ,  then we can define a positive measure/~ on the Borel subsets of 

[0, ~) by ~(S)=too(P(S)). The definition (5.11) together with the semigroup property for 

a imply that 

a,(e(s))  = P(S + t) 

for every t~>0 and every such Borel set S; and from the invariance of too under a we 

conclude that the measure/~ is invariant under translations to the right in [0, ~).  The 

hypothesis on too implies that 

0 </t([0, T) )<  + ~  

which, together with translation invariance, implies that ~ is a nonzero measure which 

is positive and finite on every interval of  the form [a, b) with 0<~a<b< + oo. It follows 

that /~ is a nonzero multiple of Lebesgue measure, i.e., for some c>0 we have 

/~([0, t))=ct, t>~O. Thus we obtain (5.10) for the invariant weight to=c-lto0. 

Proof  o f  Theorem 5.9. In view of the preceding remarks, it suffices to construct a 

normal a-invariant weight to on ~(H)  § with the property 0< to(1 - al (1)) < + oo. Let  fl be 

the single endomorphism f l=at.  Since 1-fl(1) is a nonzero projection, we may find a 

normal state v0 on ~(H)  such that v0(1-fl(1))= 1. Let  V be any isometry satisfying 

(5.12) fl(T) V =  VT, TE ~ (H) ,  

and define a sequence of normal states vl, 1-'2 . . . .  on ~(H)  by 

v~(T) = vo(V*~TW), TE ~ (H) ,  n >~ I. 

Since v0 annihilates the projection fl(1) we have v0ofl=0; and since for n~>l the 

commutation relation (5.12) implies 

V'nil(T) W = v * n V T V  n- I  = v * n - I T V  n - l ,  
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we have vnofl=Vn_l. Hence 

oo 

(5.13) v = E vn 
n~O 

defines a normal weight of ~ (H)  which is invariant under the action of 15. 

Obviously 1,0(1-/~(1))= 1. More generally, we claim that for each n, vn is supported 

in the projection/~n(l)--/~n+l(1). TO see that, choose n~ l .  Using (5.12) again we can 

write 

v~(/3n(1)-/~n+l(1)) = vo(V*n~n(D V ~- V*n#n+~(1) W)) 

= v o ( 1 - / ~ ( 1 ) )  = I ,  

and the claim follows. 

We can define a weight co on ~(H)  § by 

(5.14) f0 
1 

CO(T)= v(at(T))dt, TE~(H) +. 

To see that co is a normal weight, define a sequence of normal states {con: n~ l}  by 

con(T)= vn(a,(T))dt, TE~(H), 

and notice that by the monotone convergence theorem, we have 

(5.15) co(T) = ~ con(T) 
n~0 

for every positive operator T. (5.15) implies that co is a normal weight on ~(H).  Note 

too that for every positive operator T E ~(H),  the function 52 [0, + oo)--.[0, + oo] defined 

byf(t)=v(at(T)) is periodic with period 1, and therefore the normal weight o~ defined by 

(5.14) is invariant under the full semigroup {at: tWO}. 

It remains to show that co(I-a1(1)) is positive and finite. Now since v, is supported 

in an(1)-an+l(1) for every n ~ l ,  it follows from its definition as an integral that co, is 

supported in the projection an_l(1)-an+a(1). Thus if we apply co to the operator 

T0=l-a~(1), the infinite series in (5.15) reduces to just two terms 

(5.16) f0 i co(To) = coo(/ 'o)+co,(To)-- [Vo(a,(To))+v~(a,(To))] dt. 
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Since Vk(at(To) ) is continuous in t, nonnegative, and positive at t=0, we see that 

to0-Ctl(1)) is a positive number which is at most 2. That completes the proof. [] 

In view of the correspondence between essential states of C*(E), essential repre- 

sentations of E, and E0-semigroups, we obtain 

COROLLARY 5.17. For every product system E, there is an Eo-semigroup whose 

canonical product system is isomorphic to E. 

Proof. Theorems 5.5 and 5.9 imply that C*(E) has an essential state, and therefore 

an essential representation on a separable Hilbert space H. Because of  the universal 

property of C*(E) ([6], Theorem 2.7), there is an essential representation ~: E---~(H). 

This means that r is a representation of E with the property that ~(Et)H spans H for 

every t>0. Let a={at: tWO} be the semigroup of endomorphisms of ~(H)  associated 

with ~ ([1], Proposition 2.7). Since at(l) is the projection onto the subspace of H 

spanned by ~(Et)H, we see that at(l)= 1 for every t>0 and hence a is an E0-semigroup. 

By ([1], Proposition 2.7), the product system associated to a is isomorphic to E. [] 

Using standard reduction theory, it is possible to obtain a stronger form of 

Corollary 5.17. More precisely, suppose that we are given an E0-semigroup a =  {at: t>~O) 
acting on ~(H).  We will say that a is ergodic if the only operators A E ~(H)  satisfying 

ctt(A)=A for every t~>0 are scalars. Let E be the product system associated with a and 

let q~: E---~(H) be the associated (essential) representation of E. It is not hard to show 

that a is ergodic iff the yon Neumann algebra generated by $(E) is irreducible. See [1]. 

In turn, because of the universal property of C*(E) it follows that a is ergodic iff the 

associated (essential) representation zr: C*(E)---~(H) is an irreducible representation. 

We conclude from these remarks that if one starts with an abstract product system 

E, then the problem of constructing all ergodic E0-semigroups a whose canonical 

product systems are isomorphic to E is equivalent to the problem of constructing all 

essential pure states of C*(E). In particular, there exists an ergodic Eo-semigroup a 

whose product system is isomorphic to E iff C*(E) has an essential pure state. While it 

is possible to exhibit such states quite explicitly in certain cases (see Appendix C), our 

proof of the following result which establishes this fact in general is highly nonconstruc- 

tive. 

COROLLARY 5.18. For every product system E, there is an ergodic Eo-semigroup a 

such Ea is isomorphic to E. 
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Proof. Fix t>0, and let el, e2 . . . .  be an orthonormal basis for El. We will show that 

there is a representation q~ of E on a separable Hilbert space with the property that 

q~(E) U r is an irreducible set of operators and 

~ ~0(e,) ~0(e,)* = 1. 
n = l  

The associated semigroup a of endomorphisms must then satisfy at(l)= 1, and therefore 

as(l)= 1 for every s~>0, by the semigroup property. Hence a will be an E0-semigroup 

with the asserted properties. 

In order to accomplish this, we use Corollary 5.17 to find an essential state ~ of 

C*(E). Let :r: C*(E)-->~(H) be the representation associated to 0 by the GNS con- 

struction. 

H must be a separable Hilbert space because C*(E) is separable and z~ is cyclic, 

and thus we may apply von Neumann's reduction theory in an uncomplicated way. We 

find a standard finite measure space (X,p), a decomposition 

H = f / H  I dl~(X) 

of H into a measurable field of separable Hilbert spaces over X, and a decomposition 

of 

C (5.19) ~ = ~x dlt(x) 

into a measurable field of irreducible representations Qrx: x E X}. 

Fix xEX.  Because of the universal property of C*(E), there is a representation 

dpx: E ~ ( H x )  associated to ~ in a particular way (see [6], section 2), and ~b~(E) U ~x(E)* 
generates zcx(C*(E))"=~(Hx) as a v o n  Neumann algebra. The family { ~ : x E X }  is a 

measurable field of representations of E, and corresponding to (5.19) we have 

S/ (5.20) dp = ~x dlu(x), 

where r E--,~(H) is the representation of E associated to ~. 

For each x EX, let Pn(x) be the projection 

r 

P.(x) = E ~x(ek) q~ x(ek)*. 
k=l 
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For fixed n, P,(. ) is a measurable field of projections; and for fixed x fiX, the sequence 

{Pl(X), P2(x) .... } increases to the projection P(x) of Hx onto the subspace of Hx spanned 

by Ox(Et) Hx. 

Because of the preceding remarks, it suffices to show that there is a point a EX for 

which P(a)= 1. But by the monotone convergence theorem we have strong convergence 

of the integrals 

P(x) d~(x) = lim P~(x) d~(x); 

and in view of (5.20) the right side is 

n 2 lim Z q~(ek) q~(ek)* = ~(ek) ~O(ek)*" 
n k=l n=l 

The latter is the identity because ~ is an essential representation of E. Hence 

fx ~ P(x) dl.t(x) = 1. 

It follows that P(x)= I almost everywhere (d/~), and in particular there must be at least 

one point a E X for which P(a) = 1. [] 

Finally, as we have described in ([6], Theorem 5.8), there is an important applica- 

tion of Corollary 5.17 which completes the proof of a result asserted by Powers and 

Robinson [14] about the existence of extensions of E0-semigroups to one parameter 

automorphism groups. 

COROLLARY 5.21. Let  a=(at: t~>0} be an Eo-semigroup acting on a type Lo factor 

M haoing a separable predual. Then there is a faithful normal nondegenerate represen- 

tation ~r o f  M on a separable Hiibert space H, and a strongly continuous one parameter 

unitary group U=(Ut: t~R} acting on H such that 

~r(at(A)) -- U t ~r(A) Ut*, A E M, t >I O. 

The argument required to deduce this from Corollary 5.17 can be found in ([6], 

Theorem 5.8). 

Added in proof. In a personal communication, Akitaka Kishimoto has recently 

given a more direct proof of Corollary 5.21 which does not make use of Corollary 5.17. 
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Appendix A 

Let E be a product system, and let ~ be the *-algebra of all operators on L2(E) having 

bounded support (see action 1). We will describe a class of examples of locally normal 

weights defined on ~ which cannot be extended to normal weights of ~(LZ(E)) +. 

For every t>0, let Pt be the projection of L2(E) onto the subspace of all L 2 sections 

which are supported in the interval (0, t]. Choose any measurable section t E (0, o0)---> 

e(t) EEt of E satisfying Ile(t)l[= 1 for every t, and define a family of vectors {et: t>0} in 

L2(E) as follows 

el(x) = ~ e(x), if 0 < x <~ t, 
[0, if x > t .  

PaovosirloN A.1. The linear funct ional  (De defined on ~ by 

(A.2) we(B) = lim (Be t, et) 
t - - - ,  o~ 

is a locally normal weight satisfying We(Pt)=t for  every t>0. (De cannot be extended to a 

normal weight on ~(L2(E)) +. 

Proof. It is clear that the family of vectors {e,: t>0} is coherent in the sense that 

P~et=e~ for every O<s<~t. This implies that for every BE ~ the function t-->(Bet, et) 

stabilizes for large t, and hence (A.2) defines a linear functional on ~. Clearly 

f0 'll (x)ll (De(Pt) = e 2dx = t, 

and the restriction of we to Pt ~P ,  is given by 

(A.3) (De(B) = (Be t, et), B E P t ~ P  c 

In order to show that toe cannot be extended to a normal weight of ~(L2(E)), we 

will show that there is no nonzero vector ~ E L2(E) such that 

(A.4) IIg ll 2 ~< we(B'B),  B E ~3. 

Granting that for a moment, it follows that (D e cannot be so extended. Indeed, if there 

were a normal weight to' on ~(L2(E)) which extends (De, then by a rather special case of 

Haagerup's theorem for normal weights on von Neumann algebras ([10], 5.1.8) to' 

would have a representation 
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to'(T) = ~ (T~n, ~n), rE ~(L2(E)) +, 
n=I 

for some sequence ~ in L2(E). Thus for each n we have 

IlB~nll 2 ~< toe(B'B), B E ~. 

The assertion implies that each ~, is zero, hence to' =0, and we have the contradiction 

t=to ,(P,)=to' iP,)=O. 

In order to prove the assertion of the previous paragraph, choose a vector ~ E L2(E) 

which satisfies (A.4) and fix t>0. We claim first that there is a complex number 2(t) 

such that 

(A.5) 

Indeed, the inequality 

implies that there is 

Pt ~ = ~.(t) et. 

I LBP,  112 ~ B'Bet) = I In ,ll 2 

a unique contraction operator L on PtL2(E) which satisfies 

L(Bet)=BPt~, for every bounded operator B on PtL2(E). Since L commutes with every 

operator on p, L2(E), it must be a scalar multiple 2(01 of the identity. (A.5) follows. 

Notice next that 2(t) does not depend on t. For if O<s<.t, then we can write 

P~(g~(t)et)=2(t)Pset=;~(t)es. Using (A.5), the left side of the preceding equation is 

PsPt~=Ps ~=2(s) es, and hence ~(s) e~=2(t) e r Thus ~(s)=A(t). 

This proves that there is a complex number 2 such that Pt ~=~,et for every t>0. In 

particular, for every t>0 we have 

IAlt = II e,II = IIe, ll I1 11, 

which implies that 2=0. Hence Pt~=O for every t>0, and we have the desired 

conclusion 

= limP,~ = O. [] 
t.....} oo  

Appendix B 

Proof o f  Lemma 4.9. Let H0 be the given dense subset of H, and fix tER.  For every 

nEZ, put B(n)=A(nt). We have to show that IIB(1)[I~<I. 
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For every ~EH0, the sequence of complex numbers {cn:nEZ} defined by 

cn=(B(n)~,~) is positive definite and satisfies c0=ll ll 2. Hence there is a positive 

measure #e on the unit circle T such that 

(B. I) fx z"dlz~(z) = (B(n) ~, ~), n E Z. 

Notice that (B. I) implies that/z~(T)= 1. We may define a linear mapping q~ on the space 

of trigonometric polynomials on T into 90(H) by 

d2(~anzn) =xanB(n)"  

Clearly ~(1)=1, and (B.1) implies that for every ~EH0 and every f E  ~, 

( dp( f )  e, e> = fTf(z) dlu~(z). (B.2) 

(B.2) implies that ~ is a positive linear map in the sense that for every f E  ~ we 

have 

(B.3) f(z) >I 0 for every z E T =~ ep(f) >! O. 

Indeed, if f~>0 then (B.2) implies that ($(f)~,~)>~0 for every ~EH0, and hence 

q~(f)~>0 because H0 is dense in H. 

From (B.3) it follows that $ is bounded, and that $ extends uniquely to a unital 

positive (in fact, completely positive) linear map of the commutative C*-algebra C(T) 

into ~(H).  A standard dilation-theoretic argument now shows that $ is a contraction 

(indeed, a complete contraction). In particular, 

IIB(1)II = II '(z)ll IlzlL = 1. [] 

Appendix C 

Let E be a product system which has a unit e={e(t): t>0}. This means that e is a 

measurable section of p: E---,(0, oo) which satisfies e(s+t)--e(s)e(t) and is not the trivial 

section e -0 .  We will show how one can write down an essential pure state of C*(E) in 

terms of e. 

By rescaling e if necessary, we may assume that e is normalized in the sense that 

and Ile(t)]l=l for every t (see [1]). We will exhibit a locally normal weight to which is 
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invariant under the action of  the semigroup fl= {fit: t~>0} discussed in section 5, which 

satisfies to(Pt)=t for every t~>0, and which defines an extreme ray in the partially 

ordered cone  oW e in the sense that the only elements p E ~V'~ satisfying 0--<p--<to are of  the 

form p=cto  for some c E [0, 1]. Granting that for a moment ,  Theorem 4.15 implies that 

dto is an essential pure state of  C*(E). 

to is defined as follows. For  every t>0,  define et E LE(E) by et(x)= e(x) if 0 < x < t ,  and 

et(x)=O if X>~t. Clearly Iletllz=t, and the family of  vectors {et: t>0} is coherent  in the 

sense that we have Pset=es for every O<s<.t. Hence  there is a unique locally normal 

weight to on ~ satisfying 

to(B) = (BEt, 8t), n E et ~(L2(E)) et, 

for every t>0.  One has to(Pt)=t for every t>0.  Moreover,  because e satisfies e(s+t)= 

e(s) e(t), a straightforward computat ion (which we omit) shows that to otis=to for every 

s~>0. Hence to is an invariant weight in ~V~. 

The restriction of  t-lto to the von Neumann algebra et ~(L2(E))Pt is a pure normal 

state, and the required extremal proper ty  of  to follows. 

Remark. Not  every essential pure state of  C*(E) is obtained from the above 

construction. Indeed,  it follows from the work of  Powers [12] that there exist E0- 

semigroups a with the proper ty  that their corresponding product  systems E a have no 

units whatsoever. In such a situation, every essential pure state of C*(E ~) (whose 

existence is guaranteed by Corollary 5.18) is an example of an essential pure state 

which is not associated with a unit of  E ~. 
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