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1. INTRODUCTION

Let A be a unital C*-algebra. A complex-valued function ¢
defined on A is said to be of positive type (or simply positive when
there is no chance of confusion) if
(1.2) i,?:l Mhdat) > 0
for every n = 1,2, ., \, .., A € C a,,..,a € A. If ¢ happens to be
a linear functional then (1.1) simply asserts that ¢ is positive in the
traditional sense: ¢(a*a) 2 0, a € A.

¢ is said to be completely positive if, for every n 2 1 and every
positive n x n matrix (aij) € M (A), one has

(1.2) ¥ oanda.,) 20,
je1 1 H

for every X\, .., A\, € € Again, if ¢ is a linear functional then (1.2)
is equivalent to the assertion ¢(a*a) 2 0, a € A. For nonlinear
functions, however, we will find that the second property is much
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stronger than the first. For example, if A is the one-dimensional
C*-algebra C, then

#(z) = |2

is a positive function for every positive real number o while it is
completely positive only when « is an even integer.

The purpose of this paper is to characterize completely positive
functions defined on unital C*-algebras. These functions are the
appropriate nonlinear counterparts of states, and they occur
naturally in several rather diverse contexts. Since we do not take
up applications in this paper, we want to at least mention three of
the more important settings in which nonlinear states appear. We
will deal more completely with applications in a subsequent paper.

The most familiar example is the determinant function, which
we want to consider in a particular way. Let A = M (C) be the
C*-algebra of all n x n complex matrices, considered as the algebra
of all operators on an n-dimensional Hilbert space H. Let A"
denote the symmetric tensor product of n copies of A; i.e., A" is the
sub C*-algebra of the full tensor product A®n spanned by all
elementary tensors of the form

a =a®a®...0a, acA.

The mapping m A - A" defined by mn(a) = a®™ is a nonlinear
function which preserves multiplication, units, and the *-operation.
Moreover, the action of A on H gives rise to a natural action of
A" on the n*® exterior power AH of H. A™H is a one-dimensional
Hilbert space, and if we choose a unit vector £ € A"H then we
have a familiar and useful formula for the determinant of an
operator a in A:

det a = <n(a)&,t> .

We also remark that, in general, this map m A - A" is completely
positive in the sense that if (aij) is a positive k x k matrix over A
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then (n(aij)) is a positive k x k matrix over A", for every k = 1, 2,

More generally, let A, B be arbitrary C*-algebras and let m: A -
B be a function from A into B satisfying n(xy) = n(x)n(y) and n(x*)
= n(x)*, x,y € A. Then for every positive linear functional p on B
the function

$(x) = p(n(x))

is positive in the sense of (1.1). If m is in addition a completely
positive map in the above sense, then ¢ is a completely positive
function. As one might expect from this observation, there is an
intimate connection between completely positive operator maps
(such as m) and nonlinear states (such as ¢), which runs parallel to
the relation existing between cyclic representations of C*-algebras
and their associated vector states (cf. Section 2).

For reasons which will become clear presently, it is desirable,
if not necessary, to consider complex-valued functions ¢ (and
multiplicative *-preserving maps of C*-algebras) which are only
defined on the unit ball of A: indeed, in the later sections it will
be necessary to restrict the domain even further to the open unit
ball,

ball A = {a ¢ A: [lall < 1}.

The definitions of positivity and complete positivity for such
functions

¢: ball A - B

still make sense, and it will be this latter class of functions,
particularly in the case B = €, that will be the object of study in
this paper.

A second type of example has its origins in the mathematical
foundations of quantum field theory. Here, one begins with a
complex Hilbert space H and constructs from it two subspaces of
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the Fock space over H:

H = % voH (for Bosons)
=0

n
and

H=1X AH (for Fermions),
n=0

where VPH (resp. A"H ) denotes the symmetric (resp. antisymmetric)

tensor product of n copies of H. For each contractiona ¢ B(H),

I'(a) = EQ a(n)

n=0

is a bounded operator on Fock space which leaves both H_and H_
invariant. Thus we obtain two operators 1‘+(a) and T _(a) by
restricting I'(a) appropriately,

I.(a) = r(a)l H,

I (a) = l‘(a)| H_ .

Both of these "second quantization" mappings are nonlinear, they
preserve multiplication and the *-operation, and they carry the
identity operator on H to the respective identities on H+ and H .
Moreover, since I, and T_ are both completely positive, we may
compose either of them with, say, a vector state to obtain a
scalar-valued completely positive function defined on the closed
unit ball of the operator algebra B(H).

Both 1‘+ and T map unitary operators to unitary operators. We
want to point out, however, that it is important for the theory that
these maps are defined on operators throughout the unit ball. To
see why this is so, suppose U, is a one-parameter unitary group
acting on H with self-adjoint (unbounded) generator H:

U, =¢,  teR.

Then {1‘+(Ut): t € R} is a one-parameter unitary group acting on

H+, and so it has a self-adjoint generator d1‘+(H), defined via

Stone’s theorem by
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. ital | (H
r(c*f) =e + ), teR.

If H has positive spectrum then so does dl‘+(H); moreover, in this
case the two self-adjoint contraction semigroups e¢*H and e"dr+(H),

s 2 0, can be related directly to each other by the formula

-sdr+(H)

(1.3) I (e*f) =c s 0.

The useful formula (1.3) requires, of course, that I, should be
defined throughout the closed unit ball of B (#H). A similar
formula holds for the Fermion mapping T .

A third area in which completely positive functions occur
naturally is the problem of classifying nonlinear stochastic filters
in terms of (nonlinear) spectral invariants. This was the initial
source of my own interest in completely positive functions, and in
fact a significant portion of the results of this paper were obtained
in 1976-78 in connection with that work. Perhaps it would be too
much of a digression to describe the role of completely positive
functions in nonlinear filtering here; the interested reader can find
more detail in [1], [2], and [5].

The main results of this paper can be summarized as follows.
As above, A denotes a unital C*-algebra and ball A denotes the
open unit ball of A.

THEOREM A. Let ¢ ball A = € be a bounded function. The
following are equivalent:

(i) ¢ is completely positive.

(ii) ¢ is positive and real-analytic.

(iii) There is a positive linear functional p on the C*-algebra Aot
such that

#a) = p(T(a) ® T(@), llall < 1.

The terminology of part (iii) requires more explanation. In
this paper, C*-algebraic tensor products will always be taken with
respect to the largest C*-crossnorm. Thus, A ® B has the following
universal property (which, of course, can be used to make an
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appropriate definition of this norm on the algebraic tensor product
A © B):

If C is a third C*-algebra and m: A = C, oo B = C are two
morphisms satisfying

nm(a)o(b) = o(b)n(a), a e A, b e B,
then there is a unique morphism p. A ® B = C such that
p(a ® b) = n(a)n(b), a € A, b e B.

For each positive integer n, we may form the n-fold tensor
product of C*-algebras

AP _AQA® ... ®A.

A™ will denote the C*-subalgebra of A®n generated by all
elementary tensors of the form

a(“)=a®a®---®a, a e A.

Equivalently, A™ is the C*-subalgebra of A®n consisting of those
elements which are left fixed under the natural action of the
permutation group S_on A® Wwe define eA to be the direct sum
of C*-algebras
eA= T A",
n=0

where AC is defined as € e® never has a unit. There is a natural
mapping T of the open unit ball of A into the unit ball of e#
defined by

ra)=10a0a@e ..., |af <1.

I is certainly not linear, but it is multiplicative, continuous with

respect to the norm topologies, and carries adjoints to adjoints.
Finally, with every C*-algebra A there is associated a natural

conjugate C*-algebra A, which is defined as the same set of
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elements as A, having the same multiplication, addition, and norm,
but whose scalar multiplication is conjugated. Thus, if b ¢ A and
X ¢ €, then the scalar product of X with b in A means Kb, rather
than \b. The identity mapping, considered as a function from A to
K, is an antilinear isometry which preserves multiplication and the
*_.operation. The image in A of an element a ¢ A under this
mapping will be written a.

The C*-algebra A need not be isomorphic to A. However, the
"transpose" mapping t of A to K, defined by

at =a* a €A,

is clearly a linear anti-isomorphism. Thus A is, in general,
*.isomorphic to the C*-algebra A® opposite to A. In particular, any
assertion about A is equivalent to a corresponding assertion about
A% we have chosen to work with A rather than A° in this paper
because it appears to be a more natural object when one is dealing
with holomorphic and anti-holomorphic functions defined on A.

In any case, if a ¢ ball A, then a belongs to ball A and hence
I(a) is an element of ¢X  We will sometimes write T for this
natural map of ball A into e

Ta) = 1@, lall <1

The map T ® I: ball A - ¢A ® eI of part (iii) of Theorem A is
neither holomorphic nor anti-holomorphic, but it is easily seen to
be real-analytic (cf. Section 3).

A

Now ¢ ® & decomposes into a doubly infinite direct sum of

C*-algebras

— (-3 —
cAoer = T Amo A,
m,n=0
which gives rise to a corresponding decomposition of T © T
had —
ra)er@ = ¥ am ez

m,n=0

For the same reason, every positive linear functional p on e @ et



290 WILLIAM ARVESON

admits a unique decomposition

£

p= L pmn’

m,n=0

where p_ is a positive linear functional on A™ ® A", and of course
we have

©

loll = = ol

,n=0

Hence, Theorem A(iii) becomes the assertion that ¢ has a
decomposition

6@ = E o @™ ea), lal <1,

m,n=

where p_ is a positive linear functional on A™ ® Kn, such that the
summability condition

©

E Nl < =

m,n=

is satisfied.

In the particular case A = C, this implies that every completely
positive function ¢ defined on the open unit disc {|z| < 1} has a
power series expansion

<o
#(z) = I 0anmz“"z‘“, lz| < 1,
m,n=

where the coefficients a  are all nonnegative and satisfy

We have recently learned that this latter representation of
completely positive functions on the disc is closely related to some
new results of T. Ando and M.-D. Choi which are as yet
unpublished.

The proof of Theorem A is long, but the individual steps are
not technically difficult. Because of the length of the argument, it
seemed appropriate to organize certain of its components into
separate sections. Section 2 deals with a generalization of the GNS
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construction appropriate for nonlinear states. Section 3 gives a
characterization of those functions on A which can be "linearized"
through the map I ® T to positive linear functionals on e®* ® eI. In
Sections 4 and 5 we establish the smoothness and regularity
properties of nonlinear states.

Because all of the applications we envisage involve unital
C*-algebras and because the presence of a wunit allows for
considerably more streamlined arguments, we only deal with the
unital case in this paper.

2. THE GNS CONSTRUCTION FOR NONLINEAR STATES

Throughout this section, A will denote a unital C*-algebra. By
a *-representation of ball A we mean an operator-valued mapping
m ball A - L(H) of the open unit ball of A into the algebra of all
bounded operators on a Hilbert space H satisfying

@) sup llnx)ll < =,
lixll<1
Q1) (i) axy) = n(x)n(y),
(iii)  n(x*) = n(x)*.

Notice that, in fact, we must have ||n(x)|| < 1 for all x in ball A.
Indeed, if M denotes the value of the supremum in (2.1)(i), then we
have

lInc)l

Inx)*nx) 12 = llax*x) 11172 = |ln((x*x)?)[|2/4

R S RS VUL i

for every n = 1,2, .., and the assertion follows after taking the
limit on n.

Notice also that if we choose a vector ¢ ¢ f and define a
function ¢: ball A - C by

#(x) = <n(x)t, &>, llxll < 1,
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then ¢ is a bounded function of positive type. The purpose of this

section is to prove the following converse, to establish its

counterpart for completely positive functions, and to draw out one

or two consequences for later use.

THEOREM 22. Let ¢:. ball A = C be a bounded function which is

positive in the sense of (1.1). Then there is a triple (m,k, H) consisting

of a *-representation m of ball A on a Hilbert space H and a vector ¢

in H satisfying

() [0y lxll <1y = #,

(1) &(x) = <n(x)&, >,
If (Ttl,il, Hl) and (Tl2,£2, H2) are two such triples, then there is a

unique unitary operator U: H1 - H2 satisfying

x||< 1.

Utl = (2:

Uuny(x) = 10U, [xll < 1.

The proof of Theorem 2.2 is nontrivial because ball A does not
contain the unit of A; the absence of a multiplicative unit presents
anomalies that require some care.

We begin by collecting a result from the lore of dilation
theory, essentially an improvement of a result in the appendix of
([7], also see [6], Thm. 1, p. 27). By a *-semigroup we mean a
semigroup L endowed with an involution x |—> x* (i.e., x*¥* = x)
satisfying (xy)* = y*x*, x,y ¢ L. A unit is an element ¢ of L
satisfying ex = xe = x for all x. Units are unique, when they exist,
and are self-adjoint. By a representation of a *-semigroup [ we
mean an operator-valued mapping m £ = L(H ) satisfying the three
conditions of (2.1). Notice that the argument given above in the
special case L = ball A actually implies that we have

Ilnoll <1, xer

for a general representation 7 of a general *-semigroup L.
LEMMA 23. Let L be a *-semigroup with unit and let ¢ be a
bounded complex-valued function on L satisfying
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n —
2 ) 30

for all N, .., \ € C x5 o X, €L,n21L
Then there is a triple (n,t, H) consisting of a representation m of L
on a Hilbert space H and a vector ¢ ¢ H satisfying

[n(L)t] = H, and
$(x) = <n(x)E,E>, x € L.

If (n,%,, H) and (m,%,, H2) are two such triples, then there is a
unique unitary operator U: H1 - H2 satisfying

U§1 = &, and
Un,(x) = n,(x)U, x € L

PROOF. For the readers’ convenience, we sketch the proof. The
complex Banach space 21E) becomes a unital Banach *-algebra
relative to the multiplication

fxg(x) = yzEx f(y)s(z)

and the involution f [—> f, where

u(x) =

serves as a unit. The given function ¢ belongs to 27(L), and
therefore gives rise to a bounded linear functional ® on 2(E) in the
usual way:

&(f) = I f(x)d(x).

It is a simple matter to check that the hypothesis on ¢ entails
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of )20

for all f ¢ 2(L), so that & is a positive linear functional. By the
traditional GNS construction (cf. [3], or [8]) there is a unital
*-representation m, of 2%(I) on a Hilbert space H and a cyclic
vector £ ¢ H such that

o(f) = <n1(f)§,§>, f e 2'(L).
If we define
n(x) = Ttl(sx), X € L,

where &_ is the delta function with mass at x, then the relations

8x= Sx*,
8,8, = By, »
5 =u

imply that 7 is a representation of I for which the triple (m,E, H)
has the asserted properties.

The proof of wuniqueness amounts to nothing more than
checking inner products, and we omit it. ]

We will also require the following elementary result, for which
we have been unable to find a reference.
PROPOSITION 24. Let ¢ be a bounded real-valued function on the
open unit interval 0 < t < 1 with the property that, for every 0 < s,t <
1, the 2 x 2 matrix

#(sh) (st
#(st) (1%
is positive semide finite. Then ¢ is monotone increasing and continuous.

REMARKS. Note first that the hypothesis on ¢ reduces to the
assertion that ¢ is a nonnegative bounded function satisfying
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d(vst) € vo(s)P(t) , 0 <s,it< 1.

The open unit interval can be viewed as a *-semigroup relative
to the usual multiplication and the trivial involution t* = t, t ¢
(0,1). Note that this *-semigroup has no unit. The hypothesis of
Proposition 2.4 is, of course, the case n = 2 of the positivity
condition

n -_—
(2.5) (1, et 2 0

appropriate for this *-semigroup. In particular, Proposition 2.4
implies that every bounded positive function on the *-semigroup (0,1)
is continuous and monotone increasing.

Finally, we want to point out that this latter conclusion can
fail for unbounded positive functions on (0,1). Indeed, for every
positive real number « the function '

d(t)=at +t1, 0<t<]1

satisfies the positivity condition (2.5), while if « > 1 the function ¢
is neither increasing nor decreasing.
PROOF OF PROPOSITION 2.4. We show first that ¢ is increasing.
Fix r, 0 < r < 1. It clearly suffices to show that ¢(rt) € ¢(t) for all
t € (0,1).

For that, define §: (0,1] = C by (t) = ¢(rt). Now for each t €
(0,11, the 2 x 2 matrix

P(1) Y(t)
¥(t) Y(t?)

is positive semidefinite because it has the form (¢(t;t))) for t, = rl/2,

t, = r1/2t. Thus ¢(t)2 ¢ @(1)¥(t?). Since ¢ (and therefore ) is
nonnegative, we have

W(1) € Y1)V 222,

Iterating this inequality n times gives
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Wt) <€ ¢(1)1/2+...+1/2" ¢(t2“)1/2"_
If M is an upper bound for ¢ on (0,1), then the latter implies
(26) d)(t) < 4)(1)1/2+...+1/2rl M1/2n,

and the required inequality, namely that ¥(t) < (1), follows by
taking the limit of (2.6) as n tends to infinity.
To prove continuity of ¢, we claim first that

$(t) — &(t-) € o(t+) — &(1),

for all 0 < t < 1. Of course, both left and right limits ¢(t—) and
¢(t+) exist because ¢ has already been shown to be monotonic. This
inequality is the same as

1
¢(t) < 5(¢(t+) + ¢(t),

and so by the inequality of the arithmetic and geometric means, it
suffices to show that

(2.7) B(t) € ($(t+)d(t-))Y/2
For that, fix 8 > 0 and put

t, = tY/%(1 + )

t, = tY/%(1 + )L,

Then for small &, both t; and t, belong to (0,1) and so the 2 x 2
matrix

o(t(1 + 8)%) ¢(t)

(¢(titj)) =
¢(t) #(t(1 + 8)%)

is positive. Thus we have

B(t)? < d(t(1 + 8)HP(t(1 + 8)2),
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and hence we obtain (2.7) by allowing & to decrease to zero.

Now to establish continuity of ¢, consider the function ¢,
(0,1) » € defined by ¢+(t) = ¢(t+). :;{)+ is clearly bounded and
continuous from the right. Moreover, since ¢ was already shown to
be increasing, ¢+ is also increasing and its jumps occur at the same
places as the jumps of ¢. Thus it suffices to show that ¢+ is
continuous.

Note that d>+ must satisfy the same hypothesis as ¢, because of
the fact that

oo f1+1])

Thus by the arguments already given, we have
6,(t) = 6,(t7) < 6, (t+) — 6,(1).

The right side of the preceding inequality is zero because ¢, is
right continuous, and hence d>+(t) N d>+(t—). But since d>+ is
increasing we have d>+(t—) < ¢+(t), and hence

¢+(t) = ¢+(t_).

This shows that ¢ _ is left continuous as well as right continuous,
completing the proof. ]

Turning now to the proof of Theorem 2.2, let ¢: ball A - C be
a bounded function of positive type. For each r, 0 < r < 1, define
¢, on the closed unit ball of A by

¢.(a) = o(ra), llall < 1.

Since the closed unit ball of A is a *-semigroup with unit, we see
from Lemma 2.3 that there is a representation 7m_of {”a" €1}ona
Hilbert space H_and a vector ¢, € H_such that

¢,(a) = <n(a); t>, all <1,

and the set of vectors {m(a)¢: ||a|| € 1} spans Hr.
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For a fixed r in (0,1), we claim that
Iim . (t1) = 1
t11 (th)

in the strong operator topology. Since the operators {n(t1): 0 <t <
1} are uniformly bounded, it suffices to show that

lim [ln(e1yn = nll = o,

for all n in the fundamental set of vectors of the form n = m(a)§,
llall < 1. But for such an n = n(a)§, we have

(2.8) In(tyn = nll? = lIngta)e, - n(a)e |2

<nr(t2a*a)§r,§r> - 2 Re<nm (ta*a)t ¢ >

+ <nr(a*a)§r,§r>

¢(rt?2a*a) — 2 Re ¢(rta*a) + ¢(ra*a).
Now the function §: (0,1) » C defined by
¥(s) = ¢(sa*a)

satisfies the hypothesis of Proposition 2.4 because ¢ is of positive
type, and hence is continuous. So as t increases to 1, the last term
in (2.8) tends to

¥(r) =2 Re ¥(r) + ¥(r) = 0.
and so we have the required conclusion

lim [ln(t1yn - nll = o.

tT1

We claim next that, for each t ¢ (0,1], the operator m(tl) has
trivial kernel. Indeed, if n € Hr is such that Tlr(tl)n = 0, then since
T, is a representation, we can write
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In (/20012 = <n (t/21)n,m (12 1)n>
= <n(t1)n,n> = 0.

It follows that nr(tl/zl)n = 0. Continuing in this way we obtain
nr(tl/z“l)n = 0 for every n = 1,2, .., and so by the preceding
paragraphs we conclude that

n = lim n(t'/2" 1)n = 0,

n—®

as asserted.

Still keeping r € (0,1) fixed, we now want to show that one can
represent the positive functions ¢)p, for r < p < 1, in terms of the
representation 7 and certain vectors in the space Hr.

LEMMA 29. For each p € (r,1), there is a unique vector gp e H
such that

r

(/)28 = 8,
Moreover, one has
$(pa) = <m(a)f,,8>, lall < 1.

REMARK. For a positive scalar )\, 0 < X < 1, we will denote the
operator m(X1) more briefly as m(}).
PROOF OF LEMMA 2.9. We first construct the vector ;p. Fix r, p

satisfying 0 < r € p < 1. Utilizing the triple (n Hp) constructed

p’(p’
from d>p via Lemma 2.3, we can write

d(pa) = <my@)iptp>,  lall <1

o)) - 4l5e)

r
=<N. |— al{,E >
P[p ]PP

Thus,

¢.(a)
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< o[ 5) oo [5) ot
con(2) Yol (5] o

This expression shows that the triple (np, np((r/p)l/z)ip, K), where
K is the following subspace of Hp

= [rgom[ (5] 1 el <1]

serves as well as the triple (m,§, Hr) to represent the positive
function ¢ {"a” <1y - C

We claim next that K = Hp. Indeed, since (r/p)/?1 commutes
with every element of A, the opcrator np((r/p)l/z) must commute

with the range of np. Hence

["p[[ r;]l/z]"p(a)ip: lall < 1]

ran ,((r/p)*/%)

[ ns[£]))

The argument preceding this lemma shows that np((r/p)l/z) has

(2.10) K

trivial kernel, and so (2.10) implies that K = Hp, as asserted.

By the uniqueness assertion of Lemma 2.3, the triples (7,8, Hr)
and (np, Tlp((r/p)l/z)ip, Hp) are unitarily equivalent in the sense
that there is a unitary operator U: Hr - Hp which carries §_ to

n((r/p)l/2)§p and satisfies

So if we now define the vector Lo € H_ by

_ -1
gp_ U §p’

then we have
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r1/2 r Y1/2
_ - -l -

n((5) Jee - oo (5 Jee

as required.

{. is clearly unique because, as we have already seen,
nr((r/p)1/2) has trivial kernel.

Finally, for each a € A, ||a|| < 1, we have

0p(a) = <My(a)k k> = <UM(a)UE 8 >

which completes the proof of Lemma 2.9. a
So for each p in the interval r < p < 1, we have a vector §p €
H _ as above. We claim next that the limit

¢ = }in; 19
exists (in the norm of Hr). To see that, choose p,, p, € (r,1). Then
of course
_ 2 _ 2 _ 2
@1 o=t I1F=llep P -2 Re <gp 0, >+ llg, I1%

Now let us suppose that p, < p,. Then we claim:

wm ()

2

Indeed, if we apply the operator nr((r/pl)l/z) to both sides of (2.12),
then on the left we obtain

r Y172
(5] )

while on the right we have

[[ r ]1/2 pl ]1/2 ] r 1/2
n — — =T — =§.
"Wo, [ Py g2 ‘[[ Py ] ];p2 r
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(2.12) follows because nr((r/pz)l/z) has trivial kernel.
Substituting the formula (2.12) into (2.11), we obtain

P 1/2
||§p2 - cplll2 = ¢(p,) — 2 Re<nr[[;l—] ]gpz’gpf + &py)

%y ~ 20[p, [il]m] + 8(p,)

8(p,) = 20((p,p)YD) + 8(p,).

Since ¢ is bounded and monotone increasing by Proposition 2.4, the
right side of the latter expression tends to

¢(1-) = 2¢(1-) + &(1-) =0,

as p, and p, tend to 1 from below. It follows that

proving the asserted existence of the strong limit

= lim .
g on. §p

To complete the proof of Theorem 2.2, it remains to show that
(for any fixed r € (0,1)) the triple (n,§, H ) has the properties

(2.13) o(a) = <n(a)t,t>, lall <1,
and
(2.14) (n(a)g: lall < 17= H

r

To this end, we claim first that

215)  weHr=1g,,

for every p € [r,1). Indeed, if o tends to 1 from below then we
know from arguments given above that
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1/2
nr[[ g] ] - nr(p1/2)

in the strong operator topology, while at the same time,

303

PN

in the norm of Hr. It follows that

1/2
n[[ g] ]co ~ (et

in norm. On the other hand, for o > p the left side has the
constant value gp. (2.15) follows.

To prove (2.13), choose a € A, ||a|| < 1, and choose p such that
||a|| < p < 1. Then by (2.15) we have

<m(a), 5>

<n(p~ta)m (p'/?)g,m (o /P>

<1 (pa){ .8 5>

bo(p12) = $(a).

Finally, the cyclicity condition (2.14) is straightforward, since
for each p € (r,1) the set of vectors

{n(a)¢: llall < 1}

contains the set

(n e bl < 1y = (no)g 5 Ioll < 1,

which is fundamental in H_ because of the unitary equivalence of
the triples (nr,gp, Hr) and (np,tp, Hp), together with the fact that

(ny@)ty llall < 1)
is fundamental in Hp.

The proof of the uniqueness assertion of Theorem 2.2 is a
routine matter of checking inner products, which we omit.

a
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We shall make use of the following consequence of Theorem 2.2
(and its counterpart for completely positive functions) at several
points in the sequel.

COROLLARY. Let ¢ ball A = C be a bounded positive function.
Then the function

Y(a) = &(a) — &0)

is also positive.
PROOF. Write

#(x) = <n(x)&,t>,  lxll <1,

where (mE, H) is a triple as in Theorem 2.2. Since 0 is a self-
adjoint idempotent in the *-semigroup ball A satisfying 0-a =a-0 =
0 for all a € ball A, it follows that P = n(0) is a projection in the
commutant of the range of 7 satisfying

Pn(a) = n(a)P = P,
for all |lall < 1. Define ¢: ball A = C by
W(x) = <n(x)(1 = P)g, (1 —P)&>.
Y is clearly of positive type, and we have
Y(x) + ¢(0) = <m(x)(1 = P)§, (1 — P)&> + <PE, >
= <n(x)(1 — P)&, &> + <n(x)PE,E>

= <M(x)§, &> = ¢(x),

as required. ]

Let A and B be two C*-algebras, and let m ball A = B be a
function. For every n 2 I, we can define a function 7: ball M _(A)
= M, (B) by applying 7 element by element to matrices over A:

n: (aij) —> (n(aij)).
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DEFINITION 2.16. 1 is called completely positive if, for every n 2
1, m_ carries positive elements of ball M _(A) into positive elements
of M, (B).

In the case where the scalar-valued function ¢: ball A = C is
completely positive, we can assert that its "GNS" representation 7 is
also completely positive. Indeed, we have
THEOREM 2.17. Let ¢. ball A = C be a bounded positive function,
and let (m,t, H) be a triple as in Theorem 2.2. Then ¢ is completely
positive iff M is a completely positive function from ball A to L( H).
PROOF. Suppose ¢ is completely positive, and let (aij) be a positive
n x n matrix in ball Mn(A), n 2 1. We have to show that if s o
§, are vectors in H, then

n
i,jZ=1 <n(aij)§j,§i> 2 0.

To see this, we may clearly assume that each tj belongs to the
dense set of H consisting of all linear combinations of vectors of
the form mn(a)g, "a” < 1. So assume that we have elements bjp in
ball A and xpje(ll,l €j<n,1 €p <N, such that

= B,

for j= 1,2, ..,n. Then

(2.18) E <M )tpt> = I Y <M(a;)n(b; )&,n(b, ) E>

ijpq P

N *
z xpj xqi<n(biqaijbjp) P

= T g ®00ga;05p)

Since the nN x nN matrix (caB)’ defined for pairs « = (i,q), B =
(i-p), by

b*a..b

Cr s 4 = b¥a b,
(1,0),(,p) iq1j"jp
is positive semidefinite (this can be easily seen by expressing the n

x n matrix (aij) as a product of n x n matrices D*D, i.e.,
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n
= *

and then checking the inequality E<coplipbe 2 0 for arbitrary
vectors L, € H), the complete positivity of ¢ implies that the last
term in (2.18) is nonnegative.

The converse assertion of (2.17) amounts to nothing more than
the observation that the composition of an (operator-valued)
completely positive function with a (scalar-valued) completely
positive function is completely positive. a
COROLLARY. If ¢: ball A = C is a bounded completely positive
function, then the function

W(x) = ¢(x) — ¢0), xll <1

is completely positive.

PROOF. The argument is a small variation on the proof of the
corollary of Theorem 2.2, and is left for the reader. ]
REMARK. Let r be a positive real number and let

¢: ball A = C
be a bounded completely positive function. Then
P(x) = o(x) — ¢(0)

is a completely positive function on ball A. This follows from the
preceding corollary by a simple change of scale. More explicitly, if

¢ ball A ~ C
is defined on the open unit ball of A by
¢ (a) = ¢(ra),

then one observes that ¢ is completely positive iff o, is completely
positive.
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3. STATES OF ¢A @ ¢A

Let A be a unital C*-algebra. The purpose of this section is to
establish the following correspondence between real-analytic
functions of positive type defined on the open unit ball of A and
positive linear functionals on the C*-algebra eA o ek
THEOREM 3.1. Let p be a positive linear functional on e ® cx, and
define a complex-valued function ¢ on ball A by

$(a) = p(T(a) ® I(2)).

Then ¢ is bounded, real-analytic, and completely positive.
Conversely, if ¢. ball A = C is a bounded real-analytic function of
positive type, then there is a unique positive linear functional p on et e

e? such that

#(a) = p(T(a) ® I(@)), llall < 1.

REMARKS. Here, T is the map of ball A (resp. ball K) into eA
(resp. cA) defined in Section 1,

r@) = 122, Jall < 1.

We_also remark that there is another description of states of
e® ® e in terms of bounded completely positive functions defined
on ball A, which makes no reference to analyticity properties (cf.
Theorem 5.1).

We begin by recalling a few basic results and terminology
relating to analytic and holomorphic functions on infinite
dimensional spaces. Let E be a complex Banach space and let B be
a nonvoid open subset of E; for the purposes of this paper one may
think of B as the open ball of radius r > 0 in a C*-algebra E. Let

f:B-C

be a complex-valued function and let n be a positive integer. f is
called a (complex) homogeneous polynomial of degree n if there is
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a bounded complex multilinear form F, defined on the n-fold
Cartesian product E x --- x E of copies of E, such that

f(x) = F(x, .., X), Xx € B.

If f does not vanish identically, then n is uniquely determined by
f. By replacing F with its symmetrization F, if necessary,

- 1
F(xl’ ey xn) = En%s F(xn(1)9 coey xn(n))9

we can clearly assume that F is a symmetric function in all of its
variables. If f # 0, then in this case F is uniquely determined by f
on all of E x --. x E by a known polarization formula (e.g., see
Proposition 3.2 below).

There is a similar definition of (real) homogeneous polynomials
defined on real Banach spaces, which we will not reiterate here. In
particular, if we think of the given complex Banach space E and
the scalar field € as real Banach spaces, then we have a notion of
(real) homogeneous polynomials f: B = €. Of course, it is important
to keep the distinction in mind, and we will indicate this by
systematically using the terminology real or complex when referring
to complex-valued homogeneous polynomials.

For example, if f: B = € is a nonzero complex homogeneous
polynomial of degree n, then its complex conjugate f: B - C,

defined by f: x [—> f(x), is not. However, both f and f are real
homogeneous polynomials of degree n. In either case, a constant
function is called a homogeneous polynomial of degree zero.

A function f: B = C is called real-analytic (resp. holomorphic) if
for every x, ¢ B there is a 8 > 0 so that the ball of radius & about

X, is in B, and there is a sequence f,f,, ... of real (resp. complex)

0
homogeneous polynomials such that f has degree n and

f(xy + x) = HEO f (x), x|l < 5,

the series on the right converging absolutely for x|l < 6. In the
case where B is the open unit ball of radius r > 0 in E and Xg = 0,
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one actually has absolute convergence of the series representation
@
f(x) = L f (x),
n=0

for all |Ix|| < r.

More generally, if E is another complex Banach space and f: B
- E is a given function, one says that f is real-analytic (resp.
holomorphic) if for every bounded (complex-) linear functional p
on E, the scalar valued function pof has the corresponding property
defined above. In this case, it is well-known that f can be locally
represented as a norm-convergent vector power series

f(xy + x) = noéo f(x)

as above, in terms of vector-valued homogeneous polynomials f: E
- f; fortunately, we do not require the latter results in this paper.

Let F(E) be the complex vector space of all complex-valued
functions defined on E. For each h ¢ E, let A, be the difference
operator on F(E) defined by

A f(x) = f(x + h) —f(x), x € E.

For every n 2 1 and every f € F(E), we define a function A"f of
n+l variables as follows:

A™M(x;hy, . h ) = (AhlAh2- . -Ahnf)(x).

A% is defined as f itself. The quantity A"f plays a role analogous to
the n*? order differential of a smooth function f, defined by
an

atl..

d™f(x;h;, .., h ) = " f(x + tth) + .-+ + thhn)|t_0’

-8
n

In any case, it is clear that Af(x;h,, ..., h ) is a symmetric function in
the n variables h,, ..., h , simply because the difference operators AL h
€ E, all commute with each other. The first few are given by:

A% (x) = f(x)

Alf(x;h) = f(x + h) — £(x)
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A (x;hy,h,) = f(x+h +hy) = f(x+h)) = f(x+h,) + f(x).

Finally, a real (resp. complex) polynomial is a finite linear
combination of real (resp. complex) homogeneous polynomials. If

ro = £ .00,

where f_ is a homogeneous polynomial of degree n and fx # 0, then
as usual N is called the degree of f. We come now to the basic
polarization formula for homogeneous polynomials and a
characterization of polynomials in terms of the higher order
difference operators A", n = 01,2, ... .

PROPOSITION 3.2. Let n = 1,2, .. and let F(x,, .., X)) be a
symmetric real multilinear function of n variables on E and let f: E -
C be the associated homogeneous polynomial

f(x) = F(x, .., x), x ¢ E.
Then

A“f(x;hl, w» h ) = nlF(h,, .., h ),

for all x, hy, .., h_in E.

A proof of Proposition 3.2 can be found in ([4], cf. formula (8),
p. 322).

Notice that Proposition 3.2 implies that the same formula is
valid for recovering a complex multilinear form from its associated
complex homogeneus polynomial.

Note too that the right side of the above polarization formula
is independent of x, and so AMIf = 0 for every homogeneous
polynomial f of degree n. It follows that if f is any real
polynomial and n is an integer which exceeds the degree of f, then
A" = 0. The following result asserts the converse, and will be
required in the sequel. We have been unable to find a reference to
this result in the literature, and so we have included a proof for
the convenience of the reader.

PROPOSITION 3.3. Let n be a positive integer and let f: E » C be a
continuous function such that A"TIf = 0.
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(i) There is a symmetric bounded real multilinear function F(x,, ..,
xn) of n variables on E such that

APf(x;hy, oy h ) = E(hy, oy b))

for all x, hy, .., h € E.
(i1) f is a (real) polynomial of degree at most n.
PROOF. The topology on E is that induced by the norm.
However, the reader will note that the proof applies equally if f is
merely weakly continuous, and in fact the conclusions remain valid
under substantially weaker hypotheses.

In any case, suppose first that (i) is known to be valid for all
n. Then (ii) follows by a straightforward inductive argument. For
if f and F satisfy (i), and f: B = C is defined to be the

homogeneous polynomial
1
f (x) = —F(x,x, ..., x).
n!
then the polarization formula of Proposition 3.2 implies that
AMf —f ) =0.

Thus by the induction hypothesis we see that f —f is a polynomial
of degree at most n — 1.

To prove (i), we again use induction on n. For n = 1, the
hypothesis is A% f = 0, or

f(x+h,+h,) — f(x+h)) — f(x+h,) + f(x) = 0,
for all x, h;, h, € E. Setting x = 0 in this equation yields
g(h]_ + hg) = g(hl) + g(h2),

where g is the function g(y) = f(y) — f(0). Thus g is a continuous
homomorphism of the additive group of E into that of € Such a
function is necessarily real-linear, and hence

f(x) = £(0) + g(x)
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is a polynomial of degree at most 1.
Assume that n 2 2 and that (i) is valid for n —1. We are assuming
that AM!f = 0 so that if, for a fixed element h in E, we let

gn(x) = A, f(x) = f(x + h) — f(x),
then A"g, = 0 because

A"g, (x;hy, ..., h ) = (&

n

by By 80()

= A™f(x;hy, .., h h) = 0.

By the induction hypothesis, there is a bounded symmetric real-
multilinear function F, of n — 1 variables such that

-1 . _
A" gp(xshy, vy b ) = Fy(hy, o, b))

for all x, hy, .., h_, in E. Now the left side of this equation is

n-1

(B o8y B0(K) = A (G, oy by h),

a symmetric function of all n variables h,, .., h _,h. Thus F,(h,,

s hp ;) too is symmetric in h,, .., h__;h; and sincc it is real-linear

in each variable hy,, .., h it must also be real-linear in h. The

n-1°
same argument shows that it is (separately) continuous in h, as well
and therefore it is a bounded

h.

as the other variables h,, .., h, &

symmetric real multilinear function in all n variables h,, .., h
That completes the proof. a

With these preliminaries in hand, we now take up the proof of
Theorem 3.1. Let p be a positive linear functional on e® @ ¢ and

define ¢: ball A = C by

#a) = p(T(a) ® T(@), llall < 1.

The direct sum decomposition

—_— o P

m,n=0
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gives rise to a corresponding decomposition of p into positive linear
: . AM @ AN
functionals p_ : A™ @ A" = (,

and we have

loll = llp_1I.
Thus we have a decomposition of ¢
G4 @)= E b

the sum on the right converging absolutely, where each ¢__  is
defined by

6.n(2) = pmn(a(m) ® 5(")), lall < 1.

Since ¢__ is clearly a real homogeneous polynomial of degree m+n,
(3.4) shows that ¢ is real-analytic.

¢ is bounded on ball A because for each a ¢ A, lall < 1, we
have

lat o 7@ ¢ 1
for all m,n 2 0 and thus
)l ¢ = oIl = ol
m,n

To show that ¢ is completely positive, it suffices to show that
each ¢ is completely positive. We may extend Pmn 1O @ positive
linear functional g on the full tensor product

A®m g A®n

without increasing its norm, and then we have a natural
decomposition of ¢>mn as

¢mn = 5mn ° I-mn ’
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where T : ball A = A®m @ A®n g the map T (a) = 2®m @ 7Om Pemn
is a completely positive linear map of A®™ ® A®" into € and thus
it suffices to show that T is completely positive. This follows
from the following result, generalizing the fact that the Hadamard
product of positive matrices is a positive matrix.

LEMMA 35. Let A,B,, .., B, be C*-algebras and let
n; ball A = B,

be a completely positive mapping of *-semigroups, i = 1,2, ..n. Then
the tensor product of maps

n,®-.-®mn:ball A-B, ®-.- ®B

n,

defined by m; ® ... ® m (a) = m(a) ® --- ® m(a), is a completely
positive function.

REMARK. Noting that both the inclusion map of ball A to A, and
the map a |—> a of ball A to A are completely positive
homomorphisms of *-semigroups, we conclude from Lemma 3.5 that
each map I'_  is completely positive.

PROOF OF LEMMA 3.5. By an obvious induction argument, it
suffices to prove the lemma for the case n = 2. Fix k 2 1 and let
(aij) be a positive element of M, (A). Define

C; = nl(aij), dij = nz(aij).

Then (cij) (resp. (dij)) is a positive element of M, (B,) (resp. M;(B,)),
and we have to show that the "Hadamard product”

(c;; ® d;) € M(B, ®B,)

is positive. For that, it suffices to show that if o; B, » L(H ), i=
1,2, is any pair of representations on the same Hilbert space H
such that ol(Bl) commutes with oz(Bz), then the k x k operator
matrix (01(bij)°2(°ij)) is positive, considered as an operator on (N
H

For that, choose §,, ..., §, € H , and consider the quantity
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k
(3.6) ) z 1 <ol(bij)02(cij)§j’§i>’

L=

To see that this is nonnegative, we find a k x k operator matrix
(uij) in M, (0,(B,)) such that

k
) = *u . <1, € k.
°1(bu) pEI usu s 1 €i,j €k

This is possible because (ol(bij)) is a positive k x k matrix over
0,(B,). Similarly, we find (vij) € M, (0,(B,)) such that

L VEiive o 1 €1, € k.

£ oo
0y(cy;) = 1 v
Using the commutativity of o,(B,) and o,(B,), we can write

Y u*u_ .viv .
pq PPiaia

*
qu (upivqi) (upjvqj) ’
il

°1(bij)°2(°ij)

and hence (3.6) becomes the expression

= 2
o {E <upjvqj§j’upivqi§i>}' L "Elupjvqjﬁj” ’

which is plainly nonnegative. ]
Turning now to the proof of the converse assertion of Theorem
3.1, let

¢: ball A~ C
be a bounded real-analytic function of positive type. Let
3.7) ¢a) = I (), llall <1
n=

be the power series expansion of ¢, where ¢ is a (real)
homogeneous polynomial of degree n. We will first show that each
coefficient function ¢ defines a bounded function of positive type
on ball A. For that, we require

LEMMA 3.8. Let f: [0,1] = C be a bounded function of positive type
on the *-semigroup 0 <t € 1, which is real analytic:
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f()y= L at", 0<ts<l
n=0
Then
0<a ¢ Osslzgllf(t)l,

for every n = 0,1, ...
PROOF. It suffices to show that a, 2 0 for every n, for then we
clearly have

nEO a, = f(1) < 06 IO,

which implies the asserted upper bound on each a.
Clearly a, = f(0) must be nonnegative. It suffices to show that
the function g: [0,1] = € defined by

f(t)-f(0)/t, t>0
g(t) =
£1(0), t=0

satisfies the same hypotheses as f. For the power series of g is

g(t) = E a

n=0

n
n+lt °
which implies in these circumstances that a, = g(0) > 0; we can
repeat the same argument to obtain a, 2 0, and so on.

g is clearly bounded and real analytic on [0,1]. To show that g
is of positive type, it suffices by continuity to show that

X >
i,j&:l Mgt 2 0
for all t, .., t € (0,1], M, .., 3, € &, n > 1. Replacing ) with ;1\,

we see that the latter is equivalent to showing that the function

tg(t) = £(t) — £(0)

is of positive type on 0 <t € 1.
For that, consider the function t € [0,1] |—> f(t) — £(0). Since
[0,1] is a *-semigroup with unit, Lemma 2.3 shows that there is a
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triple (m,&, H) with properties stated there, for which
f(t) = <n(t)t,t>, 0 <t € 1.

The proof of the corollary of Theorem 2.2 applies verbatim here
(replacing ball A with [0,1]) to show that the function

t |—> f(t) — £(0)

is of positive type on [0,1], and so we have the desired conclusion.
]

Let us now show that the homogeneous polynomials ¢: A - C
defined by (3.7) are of positive type and bounded on ball A. For
that, fix N 2 1, X\, .., \y € €, and a,, .., ay € ball A. We will show
that each of the numbers

= i,jg=1 )‘i)‘j(pn(a;ai)
is nonnegative, and is bounded by
¢l = sup I18(a) < =
[lall<1

For the first conclusion, consider the power series in the real
varible t given by

oo
u(t) = L o th.
n=0

This series converges uniformly on 0 €t €1 to the function

L ave(tat

iz ()

Notice that u satisfies the hypotheses of Lemma 3.8. Indeed, if t,,
w» ty € [0,1] and py, ..., uy, € € then we have

TRty = T a1 k)

i,j,P,q,n aty
= I p MK O((ta)*t a),
iLjpq P T e

and the latter term is clearly nonnegative because ¢ is of positive
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type. By Lemma 3.8, we conclude that

for every n, so that each ¢, is of positive type.
Moreover, taking N = 1 and A\; = 1, we see that for each n,

(3.9) 0 € ¢ (a*a) ¢ sup (ta*a) < [l
0€t€1

for all a € ball A. To deduce from this that ¢, is bounded by
"d)”oo, choose b € ball A and r so that "b" < r < 1. Then since the
2 x 2 matrix

has the form (c¥c), with ¢, = rl, ¢, = r'la, it follows that the 2 x 2
scalar matrix

6,(r*1)  ¢,(a)
¢ (a*) ¢ (r%a*a)
is positive semidefinite. Therefore ¢)n(a*) = Eni a) and, moreover,
16,212 = ¢, (a*)$,(a) < & (r21)¢ (r~%a*a).

By (3.9), the right side of this inequality is dominated by [l¢]|2, and
thus we obtain the desired estimate on the bound of each ¢

sup |6, (a)l < lloll., .
[lall<1

The next step in the proof of Theorem 3.1 is to show that, for
each n 2 1, there is a positive complex-linear functional f on the
C*-algebra (A @ A)™ such that

(3.10) b =f(aeD e . @),
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for all a ¢ A. For the proof of (3.10), we require
LEMMA 3.11. Let E be a complex vector space and let f: E » € be a
real-linear functional. Then there is a wunique complex-linear
functional g: E & E - C such that f(x) = g(x ® X), x € E.

If E is a Banach space and f is continuous, then so is g.
PROOF (Uniqueness). Let x |—> X denote the natural antilinear

isomorphism of E onto 1_3, and let d: E » E & E be the real-linear
map defined by

d(x) =x &Xx.
It suffices to show that
d(E) + id(E)=E ® E.
The inclusion C is obvious. For D, choose x ¢ E. Writing

x$0=l—[x$)?+x$(—i)]

N

=§<xm—i5(ix)e(—ia

1 (i
= d[— x] —1d[—x] s
2 2
we see that x & 0 belongs to d(E) + id(E). Similarly,

0@ex=-[x®Xx—x & (X)]

!
2

%(xei')+i5(ix®(—ii))

SRS

belongs to d(E) + id(E), proving the assertion.
(Existence). Define a function g: E & E-C by

1 .
8x © %) = (00 + £(¥) + %(f(iy) ~ £(ix)).



320 WILLIAM ARVESON

g is clearly real-linear, and god = f. The reader may easily check
that g(iz) = ig(z), by the definition of g in terms of f. Thus g is
complex-linear.

If E is a Banach space and f is continuous, the definition of g
exhibits it as a sum of continuous functions, hence g is continuous.
]

LEMMA 3.12. Let E be a complex vector space and let f: E = C be a

(real) homogeneous polynomial of degree n 2 1. Then there is a

unique symmetric complex-multilinear form g(z,, .., z,) on (E & E) x
-x(E® I_-Z) such that

f(x) =g(x®X,.,x®Xx), xc¢€E

If E is a Banach space and f is continuous, then g is bounded.
PROOF (Existence). Utilizing the polarization formula of
Proposition 3.2, we see that the function

1
F(x;, o, X)) = E-(Axl. . .Axnf)(o)
is a symmetric (real) multilinear form on E x --. x E such that
f(x) = F(x, .., x), x ¢ E.

Arguing in each variable separately, we may apply Lemma 3.11 to
obtain a complex multilinear symmetric form g(z,, .., z,) on (E @ E)
X .. x(EeI_-Z) such that

F(x}, v X)) = 8(X; @ Xjy oy X @ X)),

l’

for all x,, .., x_ € E.

If E is a Banach space and f is continuous, then the definition
of F shows it to be (jointly) continuous. The explicit formula for g
in terms of F which is implied by the construction in the proof of
Lemma 3.11 (and which can in fact be written down explicitly)
shows that g is continuous, and therefore bounded.

(Uniqueness). Let g(zl, .., 2;) be another symmetric multilinear

form on (E & f) x ... x(E® ]_3) satisfying
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E(x&i, . X ®X) =f(x), xe€E.

Letting F(x,, .., x_) be the form on E x ... x E defined as above,
we infer that

w

(Axlegl' : ~Axn@;ng)(0) = (Axl- : 'Axnf)(o)

= F(xq, wo Xp)s

for all x x, € E. The left side of this expression is simply

10

g(xl ® X, .., X, ® X ). Thus, if g denotes the multilinear form

constructed above, then we have
(g —8)x, ®X, ., X, ®X ) = 0,

for all x,, .., x_ € E. Using the uniqueness assertion of Lemma 3.11
and the fact that g — E is complex-linear, we may argue one
variable at a time in the preceding equation to conclude that g —E
= 0. |

Returning now to the discussion preceding Lemma 3.11, we
may find, for each n 2 1, a bounded symmetric complex multilinear

functional of n variables

g (A®A) x --- x(A®A) ~C
such that

¢(a)=g(a®a,.,ada), acA.

Letting B, denote the completion of the n-fold symmetric tensor
product of copies of A @ A in the projective Cross norm, we See
from general principles that there is a unique bounded (complex)
linear functional f on B, such that

8z v z) =f (2, VZ, V.- Vaz),

n

forz,, .,z € A® A. Here, we are using the notation z;, V ... V
z,, to denote the projection of the elementary tensor



322 WILLIAM ARVESON

2,®--- 0z ¢ (A®A™

to the symmetric tensor product B, under the natural

symmetrization operator:

1

V...Vz =— Y z

® ... ® .
3 nTnl mes n(1) Z71(n)

Now A & A is a unital C*-algebra, and therefore B is a unital
Banach *-algebra relative to the operations defined by

(z,V---Vz)*=2}V ... Vz*
(3.13)

(z,V---Vz)w, V.- Vw)=zw V...Vzw

1 n 'n°

Therefore, we may speak of positive linear functionals on the
Banach *-algebra B , and we have

LEMMA 3.14. f s a positive linear functional on B_.

PROOF. We claim first that the set of elements of B of the form

xex)V ... V(xex),

where x € A, spans B_. To see this, let 2 be a bounded linear
functional on B_ such that

((x®x)V .- V(xeXx)) =0,
for all x € A. Clearly
(Zgp o 2)) > 2z, V - - V 2)

defines a bounded symmetric complex multilinear functional on
(A o K) x --- x(A® /_\) which vanishes identically on "diagonal”
elements of the form (x ® X, x ® X, .., X ® X). The uniqueness
assertion of Lemma 3.12 implies that this multilinear form is zero,
and hence 2 = 0 because B, is spanned by elements of the form
z, V...Vz,zeA® /_\, proving the claim.

Now fn is a bounded linear functional on the *-algebra B, so
to show that f_ is positive, it suffices to show that fn(;*g) 20 for
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all { belonging to the dense set of all elements of the form
{ = jgl )\j(xj ® xj) V...V (xj ® xj),

where N, .., \y € €, x;, .., x, € A, N > 1. Fix such a {. Then

L*g = J‘kiz MR © TEER) V-V (xE @ RK,).

1
Thus, using linearity of f_ and the relation existing between f and

¢, we have
LG = N,

The latter is nonnegative because ¢_ is of positive type. ]

Now of course, Bn is not a C*-algebra. But it has an
enveloping C*-algebra C*(B)) ([3], [8]). Letting o : B, = C*(B)) be
the natural *-homomorphism, Lemma 3.14 implies that there is a
unique positive linear functional p on C*(Bn) such that

(3.15) pL o, = f

n°

We now want to show that C*(Bn) is naturally identified with the
C*-algebra (A & A)", in such a way that Lemma 3.14 becomes the
relation

(3.16)  p (bM)=f (BVDHV..-VDb), beAoA.

In view of the rclation existing between f and ¢, (3.16) will then
imply

3.17) ¢, (a) = p ((a ® 2)®),  a e A,

This will follow from
LEMMA 3.18. Let B be a unital C*-algebra and let B, be the
completion of the symmetric tensor product of n copies of B in the
projective cross norm. Make B, into a Banach *-algebra by defining
the involution and multiplication as in (3.13).

Let B™ be the C*-algebraic symmetric tensor product of n copies
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of B. Then the unique bounded linear map B: B, - B", defined on
generators of B_ by

B(z(")) =zM™ 7 ¢ B,

is a *-homomorphism of Banach *-algebras. It extends uniquely to a
*-isomorphism of C*(B,) onto B".

REMARK. Let « B - C*B,) be the natural *-homomorphism,
there is a unique morphism of C*-algebras ﬁ; C*(B,) - B" such that
the diagram

319  «
C*(B,) — —— —>B"
B

commutes. The essential content of Lemma 3.18 is that B is an
isomorphism.

PROOF OF LEMMA 3.18. The proof is quite straightforward, and
we merely sketch the details for the case n = 2. Since the bilinear
map of B x B into B? defined by

(zp,zy) > 2, V 2,

is bounded and symmetric, it follows from general properties of
projective tensor products that there is a bounded linear map B: B,
- B2 such that

B(z,Vz)=2,Vz,,

z; € B. B is uniquely determined by its action on elements of the
form z3 = z V z because these span B,. The definitions of
multiplication and involution in B, lead directly to the fact that B
is a *-homomorphism.

Let B: C*(Bn): B" be the *-homomorphism which completes the
diagram (3.19). B clearly has dense range, and we only need to
show that E is injective.
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To do that, it suffices to show that for every positive linear
functional p on C*(B,), there is a positive linear functional o on B2
such that

o=poB.
To prove that, fix p. Then
(z1,29) |—> p(z, V 2,)

is a bounded bilinear form on B x B and so there is a bounded
linear functional p on the completion B ® B of the full algebraic
tensor product, in the projective cross norm, such that

p(z, ® z,) = p(z, V z,), z €B.

We can make B @ B into a Banach *.algebra in a natural way, by

putting (z, ® z,)* = z] ® zJ and (z; ® z,)(W, ® W,) = z, W, ® Z,W

1 272

and then we have
o(L*C) >0 forall t e B®B.

By the usual GNS construction, we find a representation 7 of B
® B on a Hilbert space H and a vector ¢ ¢ H such that

p(Y) = <n(Y)t,t>, L e B & B.
Define m: B » H by

n,(b) = n(b ® 1)

myb) = n(1 ® b), b € B.

Then m,(B) and m,(B) are mutually commuting C*-algebras of
operators on H. So by the universal properties of the largest
C*-algebraic cross norm, there is a unique representation -Be®B -
L (#H) such that

(b, ® b,) = M,(b)T,(D,).
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Thus, we can define a positive linear functional o on B? by
o(w) = <ﬁ(w)§,§>, w ¢ B2
The formula 0= p o E is immediate, for we have for each z ¢ B,

p 0 Bz®) = <n(z ® 2)t,¢>

<M, (2),(2) €, &>

= <;l‘(z ® z)E,E>

0(2(2)).

That finishes the proof. a

To summarize, we have shown that if ¢ ball A - C is a
bounded real-analytic function of positive type, and if

6@ = I o, lall<1,

is the power serics expansion of ¢ into (real) homogenecous

polynomials ¢ of degree n, then there are positive linear
functionals

p i (A®AN-C
such that
(3200 ¢, =p@eD™), fal <1

It only remains to get proper estimates on the norms ”pnu In
fact, we will show that

(3.21) z eIl < lloll .
n=0

Assuming (3.21) for the moment, notice that the representation
required by Theorem 3.1 follows. Indeed, the direct sum
decomposition of C*-algebras
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(A®A"= T AP®AY
p+q=n

induces a corresponding decomposition
3.22 = I
(3.22) Pn= L Prq
where Poq is a positive linear functional on AP @ /_\q, in which
= X .
ol = 5 lo,,|
So by (3.21), we will have
< © -
E oyl < lol

Therefore, we may define a positive linear functional p on ¢4 ® eA
by

<]

= X ,
© pa=o’Pa

and formulas (3.20) and (3.22) combine to give thc required
representation of ¢:

- ¥ ) @ 7@
$(a) oE Ppq( )
= p(f@) @ 1@), lall < 1.
The proof of (3.21) is quite simple. For each r € [0,1), we have
lollo > 61y = £ 0,61) = L pfe,,),
where €_ is the positive element of (A & 7\)“ given by
€en = (rl ® r—l)(").

For fixed n, the net of operators e, increases as r increases to 1,
and converges in norm to (1 ® 1)("), the identity of (A @ A)". Since
p, is a positive linear functional, the net

r e [0,1) |—> p (e, )
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increases to ||pn|| as r increases to 1. So by the monotone
convergence theorem, we have

li 1 r ol
rITF{1 d)(r ) n=0 rlTr{l pn(cr’n)

£ e,

from which (3.21) follows. ]

The only part of Theorem 3.1 that has not yet been proved is
the uniqueness assertion; that will follow from:
LEMMA 3.23. e ® ¢? is the closed linear span of {I'(a) ® I'(a): ||a|| <
1}.

PROOF. Let p be a bounded linear functional on e® ® ¢® such that

p(f(a) ® T@) =0, llall < 1.

We have to show that p = 0.
If we realize e ® ¢ as the direct sum of C*-algebras

— (o) —
ehocrt = L (AeA)"
n=0
then we have a corresponding decomposition of pand I ® T:

p= X p,

n=0
M@)o I@ = I @ed®, lall<1.
Thus
I op(@en™ =p@=0, lall<1
Fixing a in ball A and -1 €t € 1, the above implies
I (@ @ D®) = p(ta) = 0.

the left side being an absolutely convergent power series in t. Thus
we must have
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pul@ @™ =0, lall <1,

for every n = 0,1,2, ... .
From the uniqueness assertion of Lemma 3.12 we conclude that
p, = 0 for all n, and finally

= Lz =0,
P = Pn

as required. a
4. CONTINUITY OF COMPLETELY POSITIVE FUNCTIONS

The purpose of this section is to show that completely positive
functions are continuous. As it turns out, we neced only consider
functions which are defined on all of the given C*-algebra;
however, the reader should note that the conclusion is true in the
more general case of bounded completely positive functions defined
on the open unit ball (cf. Theorem 5.1).

THEOREM 4.1. Let A be a unital C*-algebra and let ¢: A - C be a
completely positive function. Then ¢ is continuous.

We have organized the proof into a series of simple lemmas.
We continue to use the somewhat abbreviated notation ¢()) for the
value of ¢ at a scalar multiple X1, X € €, of the identity of A.
LEMMA 42. For everyr 20,

sup |¢(a)] = &(r).
il
PROOF. The nontrivial inequality € follows from the observation

that if an element a € A satisfies ||a" < r, then the 2 x 2 operator
matrix

is positive and therefore
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¢(r)  ¥a)
¢(a*)  &r)

is a positive element of M,(€). Therefore ¢(a*) = 3(_;)—, ¢(r) 2 0 and
o(r)? > d(a)p(a*) = |$(a)?, from which Lemma 4.2 follows. a
LEMMA 4.3. For every positive element h € A, the function b, ¢ A =
C defined by

& 6(a) = ¢(a + h) — ¢(a)

is completely positive.
PROOF. Letn 2 1, let (aij) be a positive element of M _(A), and let

As - A, € & We have to show that

$ aN(#a. + h) — ¢a,) > 0.
. 1 1 1j 1

i,j=

Consider the function u: A = € defined by

u(b) = a,?=1 AN day; + b).
Then the desired inequality is simply u(h) 2 u(0). By the corollary
of Theorem 2.17 and the subsequent remark, it suffices to show
that u is completely positive and bounded on some open ball of
radius r > ||h"

To see that, fix r > ||h , and let (bij) be a positive element of
M, (A), m > 1, satisfying ||(bij)|| < r. We have, for each g, .., i €
C,

Tupgub )= T pNEda.+b ),
P, P q Pq i,j,p,a 1"p ) q 1 Pq

which is nonnecgative by the completely positivity of ¢, because it
has the form

T VeIB9(C o)

where o and B rangc over all ordered pairs
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{G,p): 1 €1 €n,1 £p €m),

where Viip) = AHos and where (c,g) is the positive mn x mn matrix
whose entries are given by

CGp) () = 2ij t bpq -

This shows that u is completely positive on ball A for every r >
0. Lemma 4.2 now implies the necessary boundedness condition,
and so we have the desired conclusion. |
LEMMA 44. Let a, h belong to A, with h positive and a # 0. Then

16(a + h) — (@)l < o(llall + Inlly = ocllall).

PROOF. In the notation of Lemma 4.3, the function x [—> 4, ¢(x)
is completely positive. So by Lemma 4.2 we have

a,0) € a,¢(llall) = ollall + n) = o(llall).

The same argument, applied to the function x |—> ¢(||a|| + x) —
o(llall), shows that the right side of the precceding inequality is
dominated by

o(llall + lInlly = ecllalh,

as required. |

We also require the following result, essentially a corollary of
Proposition 2.4.
LEMMA 4.5. Let u: (0,°) = R* be a function satisfying

(i) sup u(t) <, for all T > 0, and
0StST

u(s?)  u(st)
(i1) 2 0, for every s, t > 0.
u(st)  u(t?)

Then u is monotone increasing and continuous.
PROOF. For each T > 0, definc a function up on the open unit



332 WILLIAM ARVESON

interval (0,1) by up(s) = u(Ts). The reader may easily check that
Up satisfies the hypotheses of Proposition 2.4, and hence up is
increasing and continuous on (0,1). Since T is arbitrary, this
implies the conclusion of Lemma 4.5. a

LEMMA 46. Leta,be A,a #0. Then

16(b) — oa)l < 2((llall + 2llb = all)y = ocllall)).

PROOF. Assume first that the difference b — a is self-adjoint.
Then we can write

b—a=h-k,

where h and k are positive elements of A satisfying ||h|| N ||b—a
||k|| N ||b—a|| We have

b

I6(b) — &a)l = |§(a~k+h) — &(a)|
¢ |¢(a—k+h) — ¢(a-K)| + |#(a) — d(a—k)|.

It suffices to show that each of the terms on the right is dominated
by the quantity

o(llall + 216 = ally = ocllall).
Indeed, Lemma 4.4 implies that
6a~k+h) ~ ¢(a~k)| < ¢(lla=kll + [Inll) - eclla—kll).
If we now consider the function u: (0,*) = R defined by
u(t) = ¢t + [Inl) - o),
we see that u can be written in the form
u() = By 60,

and so by Lemma 4.3, u is the restriction to {X\l: X > 0} of a
completely positive function on A. In particular, u satisfies the
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hypotheses of Lemma 4.5, and so is monotone increasing on (0,®).
Thus

o(lla=k |l + llnlly = oclla—klly = u(lla—=k |l

N

u(llall + llilly

N

u(llall + llo-all)

o(llall+lla=bll+[Inlly = ¢(lla ll+llb—=all)
< ¢(llall+2llo=ally = o¢llall+llb—all)
< ¢(llall+2llb=ally = ocllall).

A similar argument shows that the second

term can be
estimated as follows:

[$(a) — $(a—k)| = |[¢(a—k+k) — ¢(a—k)|
< o(lla—k |l + lllly = olla—kll

< ¢(llall + lo=all + k) = o(llall + llb—a

),

where the last inequality uses monotonicity of A"k”qb and the fact
that ||a—k|| < ||a|| + ||b—a|| The last term is dominated by

¢(llall+2llo-ally ~ ¢cllall+llb-ally < scllall+2llb—alh~g(lla ),

as required.

For the general case where b — a is not necessarily self-adjont,
consider the elements x,y € M,(A) defined by

0 a 0 b
X = , Yy = .
a* 0 b* 0

Fix a vector ¢ ¢ @ and consider the completely positive function
¥ My(A) = C deflined by

Wz) = <b,(2)E,t>
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where ¢,: M,(A) = M,(Q) is the natural map obtained by applying ¢
clement-by-element to 2 x 2 matries over A.

Because both x and y are self-adjoint, the preceding argument
implies

(4.7) (y) — (x| < 20(lx Il + 2lly=x1l) = w(llx[ly).

Since for a scalar multiple tl of the identity in M,(A) we have (t)
= d>(t)||§||2, the right side of the preceding inequality is

2 llell® caclixll + 2lly=xlly = #llxIh
= 2llelPcollall + 2lb—=alh = ocllalh).

Taking the supremum over all unit vectors & € C? in the inequality
(4.7) therefore yields

0 ¢(b) 0 ¢(a)
“ o(b*) 0 a*) 0 “

< 2¢(llall + 2llb=ally = ocllally).

The left side of this latter inequality is just |§(b) — ¢(a)l, and so the
proof is complete. O

To prove Theorem 4.1, choose an element x € A, and let x| be
a sequence of elements of A which converges in norm to x, such
that x_ # x for every n.

If x # 0, we may apply the estimate of Lemma 4.6 directly
(taking b

X, a= X) to obtain

6(x) — o0 < 20(llx [l + 2llx —x Iy = ocllx [l

By Lemma 4.5, the right side tends to zero as n = «, and hence

o(x,) ~ O(x).

If x =0, we take a = x_ and b =x=0in Lemma 4.6 to obtain
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160) = o(x )l < 2(oCllx Il + 21lx_ll) = ocllx[ly)
= 20633 Ix,. I = o llx, I).

By Lemma 4.5, the function t € (0,%) |—> ¢(t) is monotone
increasing and, of course, bounded on intervals of the form 0 <t ¢

T. Soasn =« xn" tends to zero and we have

o3llx, I = ocllx, [y » ¢0+) — ¢0+) = 0.

This implies ¢(x ) = ¢(0), as required. a
5. STRUCTURE OF COMPLETELY POSITIVE FUNCTIONS

In this section we will prove the following
THEOREM 5.1. Let A be a unital C*-algebra and let

¢: ball A - C

be a bounded completely positive function. Then there is a positive
linear functional p on e® ® e® such that '

#(a) = p(T(a) ® 1(@)), llall < 1.

REMARKS. p is, of course, unique by the results of Section 3.
This result, together with Theorem 3.1 imply Theorem A of the
introduction.

We also want to point out that it is essential for the conclusion
of Theorem 5.1 that the domain of ¢ be the open unit ball of A
rather than its closure, since it is easy to give examples of bounded
completely positive functions

¢ (lall < 1y~ €

which are not even continuous. For example, take A = C and put

o(2) {Z, if |z} =1
Z) =
0, if |z| < 1.
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¢ is clearly bounded on (lz] € 1}, and it is completely positive
because it is the pointwise limit over {|z| € 1} of the sequence
¢1,d>2,... , where

¢ (z) = 2"z,

Note that each ¢ is completely positive by Theorem 3.1.

The proof of Theorem 5.1 proceeds in two steps. We first
reduce the problem to the case of certain extremal completely
positive functions. We then show that such an extremal completely
positive function must be a (continuous) real homogeneous
polynomial. The result will then follow from the analysis of
Section 3.

For r > 0, we will consider the set CP(A) of all completely
positive functions ¢: ball A - C satisfying

sup |$(a)l €r.
[lall<1

CP (A) is clearly a convex sct of complex valued functions in the
Cartesian product

{|Z| < r}ball A

which is closed in the topology of pointwise convergence. By the
Tychonov theorem, CP(A) is a compact convex set (in a locally
convex topological vector space).

LEMMA 5.2. It suffices to prove Theorem 5.1 for functions ¢ which
are extreme points of CP (A).

PROOF. By scaling in an obvious way, Theorem 5.1 is immediately
reduced to the case where the given completely positive function ¢
belongs to CP,(A).

_ Let P be the space of all positive linear functionals p on eh o
e such that ”p" ¢ 1. P is convex and compact in its relative
weak* topology. Moreover, since the map p ¢ P |—> p ¢ CP,(A)
defined by

B(a) = p(T(a) ® T(@), llall <1
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is clearly a weak*-continuous homomorphism of the respective
affine structures, its range is a compact convex subset of CP,(A).
Since CP,(A) is the closed convex hull of its extreme points (Krein-
Milman theorem), we may conclude that p |—> p is surjective
provided we can show that every extreme point of CP,(A) has the
form p for some p ¢ P. O

Throughout the remainder of this section, ¢ will denote an
extreme point of CPy(A). We emphasize that ¢ is necessarily
continuous, by Theorem 4.1.
LEMMA 53. If ¢ is not a constant, then there is a positive real
number « such that

d(ta) = t%(a)

for all a € ball A,0 <t € 1.
PROOF. Let (nm,t, H) be a triple obtained from ¢ via the "GNS"
construction of Theorem 2.2, so that

8(a) = <n(@)§,>,  lall < 1.
We claim first that the self-adjoint family of operators
S = (n(a): lall < 1}

has trivial commutant. By a familiar argument involving the
spectral theorem, it suffices to show that the only projections in
S are 0 and 1.

So assume E = E* is a projection in S', 0 # E # 1. Note that
Et #0. For if Et = 0, then

En(a)t = n(a)EE = 0,

for all [la]l < 1, and hence E = 0 on H = [n(a)t: lall < 1], a
contradiction. In a similar way, we have (1 — E)¢ # 0.
Putting
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o = [E¢|?
¢,(a) = lletll-*<n(a)E¢,Et>
¢,(2) = l(1-E)¢ 2<n(a)1-E)8,(1-E) &>

we see that 0 < 6 < 1, both ¢, and ¢, belong to CP,(A) (because m
ball A = L(H) is completely positive by Theorem 2.17), and

¢ = e¢l + (1 - e)¢2~
By extremality, we must have ¢, = ¢, and hence
(5.4) <n(a)EL,Et> = [[Eg[*<n(a)e, e>,

for all a ¢ ball A. Since m is a *-homomorphism of *-semigroups
and since {n(a)t: lall < 1} spans H, (5.4) implies that

<En,t> = [|EE[I2<n,g>
for all n,{ ¢ H, and hence
E = |[EE]l?1 = 61.

Since 0 < 8 < 1, this contradicts the fact that E is a projection.

Now fix t, 0 < t < 1. Since n(t)n(a) = n(ta) = n(a)n(t) for all
||a|| < 1, we see from the preceding that there must be a scalar c(t)
€ C such that

n(t) = c(t)l, O0<t<l.

n(t) is a positive operator because m(t}/?) is self-adjoint and we
have n(t) = n(t}/2)?, and so c(t) is nonnegative.
Notice that we have

(5.5) #(ta) = c(t)¢(a),
for ||a|| < 1,0 <t < 1. Indeed, the left side is

<n(ta)t,t> = <n(t)n(a)E, &> = c(t)<n(a)t, > = c(t)P(a).
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Note next that the function ¢ is continuous. Indeed, since ¢ is
not identically zero we can find a ¢ ball A such that ¢(a) # 0, and
thus

c(t) = ¢(ta)d(a)?

is continuous by Theorem 4.1.

Notice that the formula (5.5) also implies c(st) = c(s)c(t) for 0 <
s,t < 1. The only continuous functions satisfying this functional
equation on (0,1) are the zero function (which is impossible in this
case because ¢ £ 0), and functions of the form

c(t) = t¢

for some « 2 0 (this is easily seen after making the change of
variables t = ¢, x > 0).

We note, finally, that the case « = 0 cannot occur here; for that
would imply that ¢(a) = ¢(ta) for all a € ball A and all t ¢ (0,1)
which, by continuity of ¢ at 0, implies that ¢(a) = ¢(0) for all a. O

This homogeneity property allows us to extend ¢ to a
completely positive function defined on all of A. While it is not
necessary to make use of this extension of ¢, the subsequent
arguments in this section become substantially simpler with it.
LEMMA 5.6. There is a completely positive function 3: A - C such
that
(i) ta) = t%(a), t>0, aeA
(i) é@) = ¢(a), llall < 1.

PROOF. If a € A is nonzero, define

#a) = llalhgc2llallyta).

3(0) is defined as ¢(0). We leave it for the reader to supply the
routine (though tedious) verification that 3 has the asserted
properties (i) and (ii) and is completely positive. a

Thus, the proof of Theorem 5.1 has been reduced to proving
the following assertion:



340 WILLIAM ARVESON

ASSERTION 5.7. Let ¢: A » € be a nonconstant completely positive
function which satisfies

¢(ta) = t%(a)

for all a € A, t > 0, and some « > 0. Then there is a positive linear
functional p on e® ® e such that

#a) = p(T(a) ® I@), llall < 1.

Actually, we will prove that « is an integer and ¢ is a (real)
homogeneous polynomial of degree o the conclusion will then
follow from the results of Section 3.

First, we require an appropriate notion of complete positivity
for multivariate functions. Let A, .., A be C*-algebras and let

¢:A1x ---XAn-'QI

be a function of n operator variables. ¢ is said to be completely
positive if the associated function ¢, defined on the direct sum A @
- &AL by

$(a1 ®---®a)=9¢@a,.,a),

is completely positive.

Recalling the "A" notation of Section 3, we have
LEMMA 58. Let ¢: A = C be a completely positive function. Then
for each n 2 1, the function

A"O(xhy, v hy) = By By e By O(X)

is a completely positive function of the n + 1 variables x, h,, ..., h
PROOF. For each k 2 1, let

n

& M(A) = M (@)

be the function obtained by applying ¢ element by element to
matrices over A. Since ¢ is completely positive and bounded on
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ball A for every r > 0, the same is true of ¢, for every k > 1.
For each h ¢ M, (A), we define 4, ¢,: M (A) = M (D) by

Ah¢k(X) = ¢k(x +h) - ¢k(x)'

We have to show that if x,h,, .., h_ are positive clements in M, (A),
then

A A - A X
h,"h, hn¢k( )
is a positive element in M(Q); i.e.,
<¢h : 'Ah ¢(x)§9§> 2 0’
1 n
for every vector § ¢ T To see that, fix § and define X M(A) = C
My) = <o (¥)§,8>.
By the corollary of Theorem 2.17, the function
y e Mk(A) [—> Ahn)‘(Y)

is a completely positive function on M, (A). Repeating the
argument, we see that

e M(A) |—> A, A )
Y € M(A) > &, 8, X()
is completely positive. After more repctitions we obtain that
y € M(A) =>4, 8, - -8, NY)
1 72 n
is completely positive. Taking y = x, we see in particular that
<Ah1- . -Ahn¢k(x)§,§> = Ahl- . -Ahnx(x) 20,

as required. |

We are now in a position to prove Assertion 5.7. We claim first
that « is an integer. For that, consider the function u: (0,*) = [0,*)
defined by
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u(t) = ¢(tl).
Because of the homogeneity condition on ¢, we have that
(5.9) u(t) = t%¢(1),

for all t > 0. Note that ¢(1) cannot be zero, for this would imply
that ¢(tl) = 0 for all positive t, and hence ¢ = 0 by Lemma 4.2,
contradicting the fact that ¢ is not a constant.

For h € (0,»), define the function Apu by

A u(t) = u(t + h) — u(t).

Lemma 5.8 implies that if h, ., h 2 0, then all higher order
differences

are nonnegative functions. u is clearly a smooth function (by (5.9))
and so all of its derivatives must be nonnegative. Thus, the
numbers

oap(1), ol = (1), ofx = 1) = 2)§(1), ...

are all nonnegative. Since ¢(1) > 0, this can only happen if « is a
positive integer, and the claim is proved.

We now claim that ¢ is a (real) homogeneous polynomial of
degree o« To see that, consider the function ¥, defined on the
direct sum of « + 2 copies of A, by

Ux @h @ - @hy,) =2y by Ox).

Now since the restriction of ¢ to the positive scalars of A is a
homogeneous polynomial of degree « it follows that ¢ vanishes on
all elements x ® h, & --- ® h for which x, h, .., th_l are all
positive scalars. In particular, ¥ vanishes on every positive scalar
multiple of the identity of its domain A & --- & A (o+2 times).
Since ¢ is completely positive by Lemma 5.8, we conclude from
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Lemma 4.2 that ¢ vanishes identically.
In other words, A%=1¢ = 0. By Proposition 3.3, ¢ must be a
(real) polynomial of degree at most o

¢=¢0+¢1+ "'+¢a9

where ¢ A - C is a (real) homogeneous polynomial of degree k.
The condition ¢(ta) = t%¢(a) clearly implies that the ¢,’s must
vanish for k = 0,1, .., a1, and hence ¢ is a homogeneous (real)
polynomial of degree o

The assertion 5.7 is now an immediate consequence of these
facts, together with Theorem 3.1.
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