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1. INTRODUCTION

In 12], a general absorption principle is established which provides

a unification of theorems of Dan Voiculescu and Niels Toft Andersen

(to be described presently). Andersen's theorem was subsequently

generalized to a rather broad class of commutative subspace lattices.

Since a substantial amount of work is required to set up this generaliza-

tion, it is not made very clear in [2J that one can proceed in a simple

way from the absorption principle to Andersen's theorem. The purpose of

this note is to show how this can be done. We will discuss the absorption

principle (without proof) and we will indicate (with proof) how one goes

about deducing Andersen's theorem from it.

Throughout this paper, all Hilbert spaces will be separable, and

the generic symbol K will denote the C*-algebra of compact operators

on the appropriate Hilbert space.

Voiculescu's theorem [6] asserts that if AS £(X) is a

C*-algebra of operators which contains the identity and cr is a non-

degenerate representation of A which annihi lates A n K, then

id ff) cr "'- ida

where id denotes the identity representation of A. Here, a is

Voiculescu's notion of approximate equivalence: for two representations

'IT} ,'lTz of A on spaces Xl ,X
2

, 'IT - 'IT means that there is a sequence Wn} a 2

of unitary operators from Xl to X
2
such that for each AE A
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and

( i i ) o

Using this theorem, one can easily deduce

Corollary. Let Ai.s £(JC) be two eeparabl.e C*-algebroas of

operators which contain 1. Assume that

i ) Al and A2 are *-isomorphic, and

t i ) A; n K = {O}, ; =1,2.

Then Al + K and A2 + K are uni.tar-i.li; equivalent.

The corollary has a classical predecessor, due to Weyl and von

Neumann. Let AI,A 2 be self-adjoint operators such that

i i) neither A
l

nor A
2

has any isolated eigenvalue of

finite multiplicity.

Then A
l
is unitarily equivalent to a compact perturbation Az+ K of Az ;

moreover, K can be chosen so that its norm is arbitrarily small. Actually,

Kcan be chosen to be a small Hilbert-Schmidt operator, but that is not

relevant to our purpose here (the essential step can be found on p.525

of [5]).

We want to point out that the corollary fails if one drops the

separability hypothesis. Indeed, if A
l

is a nonatomic maximal abelian

von Neumann algebra in £( JC) and A
2

is the abel i an von Neumann algebra

on JC JC defi ned by



then Al and A
2

are *-isomorphic,
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A. n K = {OJ
1

for i = 1,2, but Al + K

and A
2
+ K are not unitarily equivalent. The argument can be found in

the introduction of [2].

Let us recall Andersen's theorem ([lJ, 3.5.5) about continuous nests.

By a continuous nest we mean here a projection-valued function
•

t E [0,1] I--? PtE £(j() sati s fying

iii) t I--? ( P ,n) is continuous foY' eveY'y .n in j(.

Andersen's theorem asserts that if {pt } and lOt} are two continuous nests,

then there is a sequence Wn of unitary operators such that

(1.1) ii) sup - 0t ll tends to zeY'o as n tends to 00.

O-.:;t-.:;l

iii) t f-7 WnPt - 0t is a nom-continuous operat.or-val.ued

function, foY' each n::: 1.

Notice that the assertions of (1.1) resemble the definitions of

approximate equivalence of representations to some extent, but there are

some essential differences. First, the commutative C*-algebras generated

by {Pt} and lOt} are invariably inseparable. the condition

(1.1)ii) asserts that, for large n, the infinite set of norms

are simultaneously small: the assertion of "approximate equivalence"

would require only a finite number of these norms to be small. Finally,

there is no counterpart whatsoever to the third property (1.1)iii) in the
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definition of approximate equivalence.

In the next section we will introduce a context appropriate for

obtaining conclusions of this nature, and in section 3 we will derive

Andersen's theorem from the main result of section 2.

2. THE ABSORPTION PRINCIPLE

By a *-semigroup we mean a second countable locally compact

Hansdorff space X, on which there is defined a jointly continuous

associative multiplication

(x,y) E Xx X x-Y E X

and a continuous involution x x*, i.e., a mapping of X satisfying

x** = x, (xy)* = y*x*. For convenience, we also assume X has a unit e:

e-x = x-e = x , x E X.

To recover the context of Voiculescu's theorem, one chooses X to

be a countable norm-dense subgroup of the unitary group of a separable

C*-algebra A, endowed with its discrete topology. The multiplication

and involution in X are the obvious operations inherited from A.

To recover the context of Andersen's theorem, take X to be the closed

unit interval with its natural topology, and the operations

x·y min(x,y)

x* x

x,y E[O,I]. Other applications are described in [2].
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A representation of a *-semigroup X is a mapping XI-> U(x)

from X to the operators on some Hilbert space JC, which is

i} strongly continuous

(2.1) ii) a homomorphism of unital *-semigroups

iii) bounded: sup IIU(x)11 < co.

XE X

It is easy to see that, in fact, we must have

II U( x) II :s 1

for all XE X. He will also write JCu for the Hilbert space on which

a given representation U acts.

Definition 2.2 (Norm equivalence). If U,V are representations

of X, we will write U-V if for every compact subset K of X and E: >0,

there is a unitary operator W from JCu to JCv such that

sup IIWU(x)w* - V(x)11 $ E:

XE K

This is clearly an equivalence relation in the collection of all

representations of X. This relation has a simple definition and is

easy to work with. But what we are really interested in is the following

much stronger relation.

Definition 2.3 (Approximate equivalence). For two representations

U,V of X, Ua V means that for every compact subset K of X and E: > 0,

there is a unitary operator vJ from JCu to JCv satisfying
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i) SUp IIWU(x)W* - V(x)1I c , and
XE K

i i) x WU(x)W* - V(x) is a norm-continuous function from X

to the compact operatore .

Let U,V be two representations of X. We require some criteria for

determining when V is "absorbed" by U in the following sense,

U @ V U

These criteria should involve the action of U and V on their respective

spaces, and should involve properties that can be checked in specific

examples. We will see that such criteria exist, but that they involve

not only U and V but a sequence of representations associated with

U and V.

This sequence is defined as follows. Let X be a *-semigroup.

For each positive integer n, let Gn be a finite subgroup of the unitary

group of the C*-algebra Mn of all n x n matrices, such that

For ins tance, one may take Gn to be the group of all n x n matri ces

having exactly one nonzero entry, consisting of ±1, in each row and each

column. Gn is considered to be fixed throughout the remainder of the

discussion.

Gn is a *-semigroup in its discrete topology. So for each n> 1

we may form the Cartesian product of *-semigroups GnxX. Finally, if U

is a representation of X on J( then we can form a sequence of represen-

tations Un: GnxX £(Cn @J() by
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u @U(x)

U E Gn, XE X. The process whereby one cons i ders the sequence of

representations Ul'U;:, ... along with U is somewhat analogous to the

process of considering, along with a completely positive linear map of

C*-algebras

<1>: A ->- £(x)

its associated sequence of completely positive maps

n=1,2, ....

Finally, we will say that a representation V is subordinate to a

representation U if, for every normal state p of £(XV) , there is a

sequence of un it vectors in Xu such tha t

i ) E;;n -+ 0 weakly in Xu' and

(2.4)

i i) p(V( x)) = 1im (U( x) E;;n) uniformZy on compact subsets
n-+o:>

of x.

Roughly speaking, (2.4) says that normal states of V can be approximated

by vector states of U, where the approximating vectors are "near infinity".

We can now state the main result.
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Theorem 2.5. Let U,V be representations of X. The following

are equivalent:

i ) U®V U.

ii)

iii)

U® V - Ua .

Vn is subordinate to Un' for every n = 1,2,. .. .

3. CONTINUOUS NESTS

We now prove the following theorem from ([lJ, 3.5.5).

Theorem 3.1. Let {pt: OStSl}, {Qt: Ostsl} be continuous nests.

Then there is a unitary operator W such that the properties 1.1 are

satisfied.

We require the following variation of the continuity theorem of

probability theory.

Lemma. Let be a sequence of positive finite measures on [O,lJ

which converges to a nonatomic measure u in the weak * topo logy of

e[o ,1]. Then

tends to zero as n tends to 00

Proof of Lemma. We may clearly assume that ]In([O,lJ) = ]l([O,lJ) 1

for every n. Let
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F(t) = ]J([O,t])

By ([4], theorem 1, p.249), the sequence Fn converges pointwise to F.

We have to show that this convergence is actually uniform.

For that, fi x E; > O. Since ]J is nonatomic , F is continuous and

therefore uniformly continuous. So we may find points

in [0,1] such that IF(t j ) - F(t j _I ) I 5 E for all 1-,:: j -,:: N. Choose n

large enough so that

for all k:::n. Then for every such k and every s E [0,1], say

t j _I 5 s t j • we can write

F( t . 1) + 2E F(s ) + 2E
J-

Hence, Fk(S) 5 F(s) + 2E:. Similarly, Fk(s) ::: F(s) - 2E:. and so

IIFk - Fll
oo

5 E:. 0

To prove theorem 3.1, we consider the *-semigroup structure

x = [0,1]

x-y = mi n(x.y )

x* = x

(usual topology)
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For t E X = [O,ll, put

U(t) V(t) = Qt .

U and V are representations of X, and we have to show that Ua V.

It is enough to prove UEBV a U and VEBU a V.

We will prove that UEBV a U; the rest will follow by symmetry.

By theorem 2.5, we need only prove that Vn is subordinate to Un for

every n=1,2, ....

For that, fix 1 and let p be a normal state of .e(tn Q9 Xv),

We have to find a sequence of unit vectors Sl'SZ"" in a;n Q9Xu such

that sp"" 0 weakly, as p+00, and

as p .... oo, for every u in Gn. He will actually prove (3.2) for every

u in Mn and, for that, it is enough to prove it for u O.

So fi xu> 0 in Mn, and consi der the representations n,cr of

C[G,I) defined by

1
n(f) J f( t) dP t

0

1
o( f) = J f{t ) dQt

0

Now the range of 1T contains no nonzero compact operators because the

spectra1 measure defi ned by {Pt: 0 s t I} is nonatomi c. It foll ows

that the C*-algebra of operators
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being essentially the nxn operator matrices over 'If(C[O,lJ), contains

no compact operators either.

Note, too, that 'If and C1 are both faithful representations of

C[O,l], because of the conditions s < t Ps < Pt and Qs < Qt.

It follows that

II i dn e C1 (z ) II

for every z in Mn ® C[O,1].

It follows that the linear functional A: A + [ defined by

=

is a well-defined state of A. Since AnK = {a}, we may extend A to

a state '- of the perturbed algebra A+Kin the obvious way,

= A(A) , AEA, KEK

and we now have a state of A+K which annihilates all compact operators.

Now Glimm's lerrma ([3], 11.2.1) implies that is a weak* limit

on A+K of vector states. Since A+K is separable, we obtain a sequence

of unit vectors E En @Xu such that

(3.3) A(A) = = lim
p+CXl

for every AE A, KE K. Take A=O to obtain < -.- a for every

compact K, and hence

(3.4) + a is the weak topology of [n @ Xu
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Taking K=O and A = u@w(f) for fE C[O,l], we obtain from (3.3):

(3.5) p{u ® cr(f)) lim <u e w(f)
p ..... 00

Now we can define measures ... on rO,l] by

1
f f(t) dul t )
o
1
f f(t) dllp(t)
o

p{u®cr(f)

for all f E C[O,l], by the Riesz-Markov theorem. All of these are

finite positive measures, and IIp -+ J.l is the weak* topology of C[O,l]

because of (3.5). Finally, since ].1 is a nonatomic measure (because the

spectral measure defined by {Qt} is nonatomic), we may conclude from the

lemma that

(3.6 ) sup Ill([O,tJ) - IIp([O,tJ)!

tends to ze ro as p -+ 00 Since we clearly have

].l( [0, tJ)

by definition of J.l and ].1p' we have established (3.2). o
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