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Introduction. A familiar theorem, due essentially to Weyl and von Neumann,
asserts that every normal operator is a small compact perturbation of a diagonal
operator. In particular, a normal operator with continuous spectrum can be com-
pactly perturbed so as to have discrete spectrum.

In this paper we are concerned with operators which are highly nonnormal, but
which in some sense have “continuous” or “discrete” features. Specifically, we
show that no weighted translation operator is unitarily equivalent to a weighted
shift; but that every weighted translation operator is unitarily equivalent to a small
compact perturbation of a weighted shift. The second result requires Voiculescu’s
theorem characterizing approximately equivalent representations of C*-algebras
[16], [4]. Some of the results below were announced in [8].

All Hilbert spaces considered in this paper are separable. L(#), W(H), H(H)
(or, more briefly, ¥) will denote the bounded operators, the unitary operators,
and the compact operators on the Hilbert space #. The inner product on ¥ is
denoted (§,m). If S is a set of operators, C*(S) denotes the C*-algebra generated
by S and the identity. If R is a set of vectors, [R] denotes its norm closed linear
span. Finally, T represents the compact abelian group of all complex numbers of
modulus one and m is normalized Lebesgue measure on 7.

The authors want to thank the referee for pointing out the paper of Gellar [7]
which overlaps somewhat with the material in Section 1.

1. Circular operators and weighted shifts. An operator T € (%) is called
a weighted bilateral shift if there is an orthonormal basis {e,:n € Z} for ¥ and
a sequence w, of complex numbers such that Te, = w,e,.;. Note that some (or
even all) of the weights may be zero, and necessarily we have sup|w,| = | 7| <
+o0, "

We introduce an invariant for single operators that will allow us to identify
operators that are not weighted shifts. Fix T € £(¥); we denote by G(T) the set
of all complex numbers N such that AT is unitarily equivalent to 7.

Lemma 1.1. IfT # 0, then G(T) is a subgroup of T.

Proof. Let A € G(T), then \|||T|| = |\T| = |U\TUY'| = |T| and hence
|\| = 1. It is clear that G(T) is a group. O
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In general G(T') is not closed in T (examples to follow). We say that T is
circular if G(T) = T. This simply asserts that T is geometrically indistinguishable
from any rotation AT, [\| = 1, of itself.

The following is a variation on the lore of weighted shifts, and follows from
the argument of ([9], page 46).

Proposition 1.2. All weighted shifts are circular.

Let G be a second countable locally compact group. Recall that a projective
representation of G is a mapping g — U, of G into U(¥) such that

(i) U, = 1 where e is the identity of G,

(ii) U,U, = c(g,h)U,y, where c(g,h) €T,

(iii) g — (U&,m) is a Borel function for each §,m € XK.
The function ¢: G X G — T is called the multiplier of U. It is uniquely determined
by U and it is a Borel function on G X G.

Let f:G X G — T be any Borel function such that f(e) = 1, and put

c(g.h) =f(ghf(®) fW)™".

Then ¢ is a multiplier. Such multipliers are called exact. It is known that every
multiplier on T is exact ([15], Theorem 10.41, page 134).

The following result asserts that for an irreducible circular operator 7, one can
select a family U,,N € T, of unitary operators which implements the circularity
property U\TU ' = \T, and which is multiplicative and appropriately continuous.
The method of proof, while familiar in group representations, is not commonly
seen in operator theory. For completeness, we include the details.

Recall first that AU(F), in its strong operator topology, is a Polish group (i.e.,
it is metrizable, separable, and metrically complete). It follows that any strongly
closed subgroup of AU(#) is Polish in its relative topology.

Proposition 1.3. An irreducible operator T is circular if and only if there is
a strongly continuous unitary representation N — U, of T such that

U, TU;' = \T.

Proof. We prove only the nontrivial assertion. We claim first that there is a
Borel map A € T — U, € W(K) satisfying U,TU"' = \T for all \. For this,
consider the group of unitaries

G={UEWH):UTU ' = \T for some \ € T}.

Note first that G is closed in AU(H). Indeed, if U, € G converges strongly to
U € (%), then we have U,TU,"' = \,T for appropriate A\, € T. By passing
to a suitable subsequence, we may assume that N\, — \. Since U, and U,"
converge weakly (and therefore strongly) to U and U ™' respectively, we conclude
that

AT = lim\,T = limU,TU ;' = UTU !,

as asserted.
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The map U € G — Ay € T, defined by
UTU ™' = \yT

is a continuous homomorphism of the Polish group G onto the circle group; and
in particular, the inverse image of a point in T under this mapping is a closed set
in G.

Now we claim that U — Ay maps open sets in G to Borel sets in T. Since T
is irreducible, the kernel K of this map is the compact group of all scalars -1,
i € T. The given map admits a unique factorization 8o as follows

G
v N\
G/IK — T
0

G/K is Polish because K is compact, and the natural projection 7 is an open
mapping of Polish spaces. Since 8 is a continuous bijection of Polish spaces, it
is a Borel isomorphism ([3], 3.2.3). Thus the composition 61 maps open sets
to Borel sets.

By the Cross-section Theorem ([3], 3.4.1) we may find the required map \ €
T — U, satisfying U\TU;"' = \T.

One computes that

U, TUy = UU,TU,'UYY,

and moreover U, 'U; 'U,, is a unitary operator which commutes with 7. By ir-
reducibility of T, this operator is a scalar c¢(\,p)1, and hence

Un = ¢\ ,p)ULU,.

In particular, ¢ is a multiplier. Since multipliers on T are exact, there is a Borel
function g:T — T such that

e, =g\ ,wgMN) g

Putting V) = g(\)7'U,, it follows that V,, = V,\V, for all \,u; and clearly
V\TVy' = \T. Since a Borel measurable unitary representation of T is strongly
continuous ([15], page 55), the proof is complete. O

Let (X,n) be a finite nonatomic measure space, let 7:X — X be an invertible
transformation that leaves p quasi-invariant and assume T is ergodic, that is, if
E contained in X is a Borel set with TE = E, then w(E) = 0 or p(X\E) = 0. We
also assume that the underlying Borel structure on X is standard ([3], page 69).

Let H = L*(X,p) and let [l be the algebra of multiplications by L”-functions.
Then M is a maximal abelian von Neumann subalgebra of £(#) and since (X,p)
is nonatomic, J/{ has no minimal projections.

Let f:X — C be any measurable function such that the operator defined on
LA(X ,p) by
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(1.4) A§(x) = f(DETx)
is bounded. We may write A in the form A = MU where

o

d
Ut(x) = ( ‘;u

T 1/2
(x)&(Tx)

is a unitary operator on H and where M is multiplication by

dwoT -1/2
(1.5) gx) =fx) (T) (03
W

notice that A is bounded iff g is in L™(X,p.).

Definition 1.6. Any operator of the form (1.4) is called a weighted translation
operator.

Notice that this definition is somewhat broader than the usual definition of
weighted translation operators which requires that the measure should be invariant
under the transformation T (Parrott, [12], in which these operators were first stud-
ied).

A Bishop operator is a weighted translation operator, acting on L?[0,1], of the
particular form

(*) AH(X) = xtx + @),  x€[0,1],

where « is a fixed irrational number and x + a denotes addition modulo one.
It is not hard to calculate G(A) for these operators; in fact one has G(4) =
{\G:n € Z}, where N\, = exp(2mia). To see this, let z denote the function

z(x) = exp(2mix),

and let W be the operator multiplication by z. We have AW = \;WA, and hence
\p belongs to G(A) for every n € Z. Conversely, let A € G(A). Then there is a
unitary operator V such that VAV* = \A. It follows that V commutes with AA*,
and the polynomials in AA* are weakly dense in the multiplication algebra, a
maximal abelian von Neumann algebra. Hence V is multiplication by some func-
tion, say VE(x) = f(x)&(x), where |f(x)| = 1 a.e. Using the polar decomposition
on the relation VAV* = AA we obtain VT, V* = \T,, where T, is the translation
operator

T.E(x) = Ex + ).
It follows that T,V*T.' = AV*, and so

fot o) =N

a.e. This condition implies that f is a scalar multiple of z" for some n € Z (a fact
easily verified by considering the Fourier expansion of f), from which we con-
clude that \j = X, as required.

In particular, G(A) # T for every Bishop operator A. The calculation of G(A)
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for general weighted translation operators is more difficult, particularly in those
cases where the transformation T preserves no o-finite measure equivalent to .
Nevertheless, we have

Theorem 1.7. Let A be a weighted translation operator on L*(X , ) such that
the function g, defined almost everywhere by (1.5), satisfies

(i) g > 0a.e., and

(ii) {g°T":n € Z} separates points of X.
Then A is an irreducible operator which is not circular.

Remark. Hypothesis (ii) means that some version of g satisfies the stated con-
dition. Note 1.7 implies that A is not unitarily equivalent to a weighted shift.
There are other routes to that conclusion, but they do not involve circularity.

Proof of Theorem 1.7. We first show that A is irreducible. Indeed, because
g > 0 and U is unitary, A = MU is the polar decomposition of A and so any
projection E that commutes with A must commute with both factors M and U.
Thus E commutes with U"MU ™" for all n, so we see that E commutes with all
multiplications by functions g°T", n € Z. By condition 1.7(ii) and by ([3], Theo-
rem 3.3.5, page 72), it follows that E commutes with the multiplication algebra
M; hence E € M. Since UEU ™' = E we conclude from ergodicity that E = 0 or
E=1.

Next we show that A is not circular. If it were, 1.3 implies that we would have
a strongly continuous representation A — U, of T such that U,AUy' = \A. It
follows that if M,.;» denotes the operator of multiplication by go7", then

(1) UMypnUx' = My for all n, and

(2) GUUL' = \U.
By (1) and an argument similar to that of the preceding paragraph, we see that
each U, belongs to . Note also that o(U,) is contained in {\":n € Z},
since A — U, is a representation. Fix an irrational A € T. If U, = 2: \N'E,

is the spectral decomposition of U, ([13], page 381), then of course 2:0 E,=1.
Moreover, since each E, belongs to the von Neumann algebra generated by

{Uy:\ € T}, we have E, € M.
Now (2) implies
UEnU_l = Lyt
Therefore the E,’s induce a partition of X into disjoint measurable sets X, :
X=NX,

n€Z

and we may assume 7X, = X,,, for each n. We claim that X, is an atom in
the measure algebra of (X,w). Forif X, = A U B; A N B = J; w(A) > 0; and
w(B) > 0, then |J T"A and |J T"B give a decomposition of X into T-invariant

sets of positive measure, contradicting the ergodicity of 7. Thus p has an atom,
contrary to hypothesis. O
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2. Perturbation theory. The purpose of this section is to show that irreduc-
ible weighted translation operators are small compact perturbations of weighted
shifts. For such an operator A, it is convenient to work with a (separable) C*-
algebra somewhat larger than C*(A). The general setting is as follows.

Let A be a nonatomic abelian von Neumann algebra acting on 3 and let U be
a unitary operator satisfying

(i) UMU™' = M.

2.0 (ii) (ergodicity) for A € M, UAU "' = A implies A is a scalar operator.

We require some information about the C*-algebra o = C*(M,U). Observe
that the set s, of all “polynomials” in U

P=) DU DyEMn=0,
k=-n
is a norm dense *-subalgebra of s, and the operator P uniquely determines the
coefficients D, ([1], page 96).
Although we do not require it, one can show [11] that s is *-isomorphic to
the crossed product Z X, A, where the action of Z on the C*-algebra [ is given
by

(A) = UAU %, keZ.

There is always a natural action a of the dual group T = Z on any crossed product
of the form Z X, M ([11], 7.8.3). The following result essentially asserts the
existence and certain properties of a in this concrete setting.

Proposition 2.2. There is a unique action of the unit circle T, A = a, €
aut(d), satisfying

(i) o] = identity, and

(ii) a\(U) = AU,
for all N € T. w is strongly continuous. Moreover, M is the fixed point algebra
of this action and the map ® defined by

) = f o (A)dm(N)
T

is a faithful positive linear projection of s onto M.

Proof. Recalling that s, is norm dense in o, define ®:sd, — A by
cb(E DkU"> = D,.

It follows from ([1], Lemma 1.1) that ® is well defined on {, and it is clear that
® is a positive linear projection of s, onto M. From ([1], Proposition 1.4) ® is
bounded on A, so it extends by continuity to a bounded linear map of o onto J/;
by ([1], Theorem 1.5) the extended map, call it ®, is faithful on .
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Since ¥ is separable, there is a faithful normal state p, of /L. Thus
p=poe®

is a faithful state of A.
Now fix N € T. We can define a *-automorphism o, of , by

a)\<2 DkU"> = DNU~.

Clearly, peca, = p on &y, so ([5], Theorem 2.5) «, extends uniquely to a
*-automorphism of sf, which we again denote by «,.

It is clear that ayo, = a,; that o, = id; that oy« = id M; and that o,(U) =
AU. Also, we clearly have

lim [lay(4) — A =0
A—1

for all A in the dense subalgebra s, and hence this persists for all A in . Finally,
by checking on “polynomials” it is easy to see that the formula

P = f a(A)dm(N)
T

holds on #, and so this too persists for all elements of . [
Corollary 2.3. A N K = {0}.

Proof. By the spectral theorem for self-adjoint compact operators, it suffices
to show that the only finite dimensional projection £ € & is E = 0.

Fix a finite dimensional projection £ € . For each A\ € T, o, (E) is a projection
in &, and the function A — «a,(E) moves continuously in the operator norm. Thus
there is an € > 0 such that

lan(E) — o (E)] < 1

whenever [\ — u| < &. Since two projections P,Q satisfying [P — Q| < 1 must
have the same dimension, it follows that dim a,(E) is locally constant, hence
constant in . In particular A — o, (E) is a norm-continuous function from T into
the positive compact operators and so

OE) = J' an(E)dm(N)
T
is a positive compact operator in . Since Al is nonatomic we have ®(E) = 0

and since @ is faithful, E = 0. |

We are primarily concerned with separable C *-subalgebras of s of the follow-
ing type. Let @ be a norm-separable unital C*-subalgebra of A which is weakly
dense in A and which is invariant under the action of U:

Uvau™' =9.
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Let B = C*(@,U). The above action of T on # restricts to an action o, of T on
9% and thus we have a C*-dynamical system (T,o,%). The subalgebra @ may or
may not contain projections, but we can say

Lemma 2.4. 9% contains no nonzero minimal projections.

Proof. Let E be a minimal projection in %. Then EQE = C-E. The set
{T € L(¥K):ETE € C-E} is weakly closed, it contains 9, and therefore it contains
M. Hence EME = C-E, which implies E is a minimal projection in /l and this
is a contradiction unless £ = 0. O

Proposition 2.5. Let (t,W) be a covariant representation of the C*-dynam-
ical system (T,a,B) such that |y is faithful. Then w is fatthful and ©w(B) contains
no nonzero compact operators.

Proof. m is a representation of % on a Hilbert space #' and W is a strongly
continuous unitary representation of T on #' satisfying

W)W = m(e X))

forall A € T and for all X € R.
To prove m is faithful, choose a positive operator X € B with w(X) = 0. Then

m(PX)) = f

T

w(on(X))dm(\) = f Wym(X)Wy'dm(\) = 0.

T

Since P(X) € D and |y is faithful we have ®(X) = 0, therefore X = 0 because
® is faithful.
Let K be a nonzero positive compact operator in w(%). Then

K, = f WAKW 'dm(\)
T

is a positive compact operator in w(®) which commutes with W. If § is any vector
in ' for which (K§,£) > 0, then

(Kok,8) = f (KWY'E,WL'E) dm(\) > 0
T

since the integrand is a nonnegative continuous function which is strictly positive
at \ = 0. Thus K, # 0.

By spectral theory we can find a finite dimensional nonzero spectral projection
E for K,. Since E is a continuous function of K, we have E € (%) and E com-
mutes with W. We claim that E € w(9). To see this let X € B be such that
w(X) =E:thenforall\ €T,

m(X) = E = W,EW;' = W,an(XO)W; " = m(ay(X)).

Since r is faithful, X = a,(X) for all A\ € T, so X is in the fixed point algebra
9P.
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This shows that (D) contains a finite dimensional projection. Hence m(%) must
contain a minimal projection and so 9 must have the same property. This con-
tradicts 2.4. O

We will also make use of the following familiar result ([14], problem 7, page
47).

Proposition 2.6. If p is an o-invariant state of B and w is the GNS repre-
sentation obtained from p with unit cyclic vector m (that is, p(X) = (w(X)m,n)
for all X € B), then there exists a unique strongly continuous unitary represen-
tation W of T such that

(i) Wim =

(ii) WamX)WY' = m(on(X))
forall X € B and for all \ € T.

Since % is a unital abelian C*-algebra the Gelfand theory provides a compact
metric space Y such that @ = C(Y). Since U-U™"' gives an automorphism of %,
there is an induced automorphism of C(Y); let &:Y — Y be the corresponding
homeomorphism of Y. Then we have the following.

Lemma 2.7. There exists p € Y whose orbit {&"p:n € Z} is dense in Y.

Proof. We claim that if G and V are open sets in Y, then ¢"(G) NV = J
for all n implies either G = J or V = . To see this assume G # J and V #
. Choose f # 0 and g # 0 in C(Y) with 0 < f,g = 1 such that f lives in G and
g lives in V. Then

(fod")g=0
for all n. Hence there exist operators A, B € 9" with A # 0 and B # 0 such that
UAU™T"B =0

for all n. Since P is a subset of L, by the spectral theorem we can find nonzero
projections E, F € A and &€ > 0 such that

eE=A and eF = B.
The above implies that
U'EUT"F =0
for all n. The last implies that
FL\/UEU™

n€Z
which contradicts the ergodicity of the operator U. Hence either G = & or
V=a.
Since C(Y) is separable, there is a countable base for the topology on Y, say
{G,:n € Z}. Let V, = |J ¢%G,). From our claim V, = Y for all n and hence,

kEZ
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by the Baire category theorem, (1) V,, is dense in Y. Any point p € (") V,, is such

n€zZ n

that its orbit meets G, for all n. O

Now let p be any point whose orbit is dense and let p, be the corresponding
pure state of &. Put p = pyo ®. Since Poa, = P, it follows that p is an a-invariant
state on RB. Let 7 be the GNS representation of % obtained from p and let m be
a unit vector such that

pX) = (wX)m,m)
for all X € &B. Let ¥, be the Hilbert space of the representation .
Lemma 2.8. The restriction of p to D is faithful.

Proof. Let D € & be such that w(D) = 0 and let g be the Gelfand trans-
form of D. Since g is continuous and p has dense orbit, it suffices to show that
g(d"p) = 0 for all n. We have

w(U"DU™") = w(U)'n(D)w(U)™" =
for all n. Therefore
0 =(m(U"DU ")m,m) = p(U"DU™) = p(®U"DU™))

= po(U"DU™") = g(d"p)

for each n. Thus g is identically zero. Since the Gelfand transform is faithful,
D =0. a

It follows from 2.6 that there is a unique strongly continuous unitary represen-
tation W of T on ¥, such that W\n = n and W,n(X)Wy '= m(a,(X)) for all
XeRBandforall N\ ET. Forall\ €T, let W, = 2:0 \N'E, be the spectral
decomposition of W,. Then E, = [y \"W,dm()\), and

Lemma 2.9. We have

(@) m € EgX,

(b) m(U)'Ee¥, = EX,,n € Z

(c) m(D)Ey¥, is contained in Es¥,, D € 9.

Proof. The subspaces E, ¥, of ¥, are characterized by the condition
E ¥, ={£€E¥,:W\E=N\E N = 1}.
By the definition of W, W,n = 1), hence (a).
For (b), since W,m(U)W;' = AMw(U) we have W,¢ = & if W,n(U)*€ = N'w(U)"¢.
(b) follows.

Part (c) follows by a similar argument using the fact that W,m(D)W;' = w(D),
D e 9. O

Proposition 2.10. There exists an orthonormal base {e,:n € Z} for ¥, such
that for all D € 9 and all n € Z:
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(i) m(U)e, = €,
(ii) w(D)e, = p(U "DU")e,.
Proof. We claim first that E ¥, is spanned by m. Note that, since the state
po(D) = (m(D)n,m)
is multiplicative on %, m must be an eigenvector for w(D):

(D) = po(D)m.

Indeed, we have for D € 9
DM — poD)m* = [[wD)|f — 2Re(w(DIM,M) poD) + |poD)
= po(D*D) — |po(D)| = 0.

Now choose & € Eydt, with § L v. We will show that § L [w(%)n] and hence
& = 0. Since the polynomials Etn D, U*are dense in %, it suffices to show that

(m(DU"m,§) = 0

for all n € Z and for all D € 9.
If n = 0, then by the preceding paragraph

(m(D)IM,§) = po(D) (m,&) = 0.

If n # 0, then by 2.9, w(DU")n belongs to E, ¥, hence & L w(DU")n.

By 2.9(b), E, ¥, is spanned by m(U)"q. Since 2 E, = 1, we conclude that
the e, = w(U)"n form an orthonormal base for ¥,.

Assertion (i) is evident from the definition of e,. For (ii) let D € 9. Then

w(D)e, = w(D)w(U)™n = w(U")w(U "DU")m
=p(U™"DU")ym(U)"'n = p(U"DU")e,,
since 7 is an eigenvector for w(2). |

It follows that each operator on ¥, of the form A = w(DU), D € 9, is a
weighted bilateral shift.

In order to state the main result of this section, we require Voiculescu’s notion
of approximate equivalence [16], [4], suitably adapted for single operators. Two
operators A € L(#,), B € L(¥,) are approximately equivalent if, for every ¢ >
0, there is a unitary operator W = W,: 3, — 3, and a compact operator C =
C. € $(#,) such that

(i) WAW™'=B + C

() [C] = e.

In the proof of the following result, we make use of Voiculescu’s theorem, as
formulated in [4].

Theorem 2.11. Every operator in B of the form DU, D € 9, is approximately
equivalent to a weighted bilateral shift.



594 W. ARVESON ET AL.

Proof. From 2.3 we have 973. N ¥ = {0} and from 2.5 we have w(B) N K =
{0}, thus ker 7 = ker id (here 7 is the composition of 1 with the canonical embed-
ding of £(¥,) into the Calkin algebra £(%,)/H(¥,) and id denotes the ident-
ity representation of ). Also, since m is faithful, ker m = ker id. Thus by
([4], Theorem 5), = is approximately equivalent to id and hence DU is approxi-
mately equivalent to w(DU). From the preceding, w(DU) is a weighted bi-
lateral shift. O

We now state the main conclusion of this section.

Corollary. Every irreducible weighted translation operator is approximately
equivalent to a bilateral weighted shift.

Proof. Let A, acting on L*(X,p.), be an irreducible weighted translation op-
erator as in 1.4. Consider the polar decomposition A = MU, where M belongs to
the multiplication algebra M and U is a unitary operator satisfying UMU ™" = M.

Note that the action of U on Jl is ergodic. Indeed, if E € M is a projection
such that UEU ~! = E, then E commutes with both M and U, hence E commutes
with A = MU, and hence E = 0 or 1 by irreducibility.

Now take & to be any norm-separable U - U ~'-invariant C *-subalgebra of .l
which is weakly dense in M, which contains M and 1, and apply 2.11 O

The operators S and T are algebraically equivalent if there is a *-isomorphism
of C*(S) onto C*(T) which carries S to T. The corollary implies that every ir-
reducible weighted translation operator is algebraically equivalent to a weighted
shift. This means that O’Donovan’s classification of weighted shifts [10] can be
applied to these operators as well, and thus one has available a rather concrete
set of algebraic invariants for essentially all of these operators.

Added in Proof. It has been pointed out to us by Donal O’Donovan that
Theorem 2.11 and its corollary can also be obtained by applying Voiculescu’s
theorem in an appropriate way to some of the results in O’Donovan [10].
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