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A generalization of a theorem of Dan Voiculescu on perturbations of separable
C*-algebras is proved. This is applied to solve two problems relating to the pertur-
batio1 theory of unitary group representations, and of commutative subspace
latticzs. The latter generalizes a theorem of Niels Toft Andersen on compact pertur-
batio1s of nests.

Ccntents. 1. Introduction. 2. Approximate units. 3. Localization for *-semi-
grouss. 4.The absorption principle. 5. Perturbation of group representation.
6. Ccntinuous measures and compact lattices. 7. Perturbation theory for lattices.
Refe ences.

1. INTRODUCTION

Voiculescu’s theorem [18] has the following consequence. If .« and .«
are two (separable, separably acting, nondegenerate) isomorphic C*-algebras
of oper:tors which contain no nonzero compact operators, then the
perturbec C*-algebras o) +. %" and 4, + %" are unitarily equivalent; here
A stand; for the algebra of all compact operators on the appropriate Hilbert
space. The assertion is a direct consequence of Corollary 1(i) on p. 343 of
[7]- This conclusion may certainly fail if the separability assumption on the
two algebras is dropped. As a simple example, let ] be a nonatomic
maximal abelian von Neumann algebra and let ./, be an abelian von
Neumann algebra which is isomorphic to .» but has uniform multiplicity
n>2 (e.1., if # acts on # we may take .= to be all operators on an n-fold
direct sun of copies of -# having the form A @A @ :-- @4, 4 € #}). To
show that /] + %" and =/, + %" are not unitarily equivalent, we appeal to a
theorem of Johnson and Parrott which implies that the essential commutant
of an ab:lian von Neumann algebra .# (i.e., the set of all operators T such
that 7B — BT is compact for all B € .#) is #' + .7 [12, Theorem 2.1]. It
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follows that the essential commutants of /] and »/ are | +.% and
&5+ %, therefore the images of these essential commutants in the
respective Calkin algbras fail to be isomorphic (one is abelian and
isomorphic to /| =.«, the other is nonabelian and isomorphic to
=M, ® o). It follows that « + .7 and &, +. %" cannot be unitarily
equivalent.

Nevertheless, there are several good reasons for seeking something like
Voiculescu’s theorem for certain inseparable C*-algebras. For example,
given two unitary representations U, VV of a (second countable) locally
compact group G, then Voiculescu’s theorem provides criteria for comparing
the “smeared” operators

U= L f(x)U,dx and V= JG fx) V, dx,

for f€ L'(G), but one has no basis for comparing the unitary operators
U,,V, themselves, simply because the C*-algebras generated by these two
sets of operators are inspearable. For instance, if one is interested in relating
the behaviour of the two automorphisms groups

2 (4)=U AUy  and B (A)=V AV

“modulo compacts,” then the information one has about the smeared
operators Uy, V, is not directly applicable. Similar problems occur if one
seeks to compare two covariant representation of a C*-dynamical system.

A second class of problems arises in connection with nest algebras. A
theorerit of Andersen [3, Theorem 3.5.5] implies that if .%* and .Z are two
separably acting continuous nests (considered as families of self-adjoint
projection) and &: °— 2 is an order isomorphism, then there is a unitary
operator W such that

|WPW* — §(P): P € .7} (1.1)

is a norm compact set of compact operators. Using [11, Proposition 2.2], it
follows easily that the unitary equivalence

Ao WAW™

carries the quasitriangular algebra alg.7 +._# onto alg Z + %, and one
obtains Andersen’s result that all quasitriangular algebras based on
continuous nests are unitarily equivalent. That result has led to additional
progress. For example, using this result, Larson [14, 15] has recently solved
a central and long-standing problem of Ringrose (the latter has recently been
simplified by Andersen [4], using a perturbation theoretic result of Lance
[13]). Ringrose’s problem assumes that .# and .2 are two maximal linearly
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ordered families of subspaces of a separable Hilbert space which are similar
in the sense that there is an invertible operator 7" which transforms the
subspaces of .%° onto the subspaces of .2, and it asks if . and 2 are
unitarily equivalent in the obvious sense. The answer turns out to be no, and
this fact has significant consequences about the invariant subspaces structure
of single operators. These are discussed at length in [15]. It follows from the
above that nests transform quite differently under invertible operators than
they do under unitary operators, and that one must take care in making
analogies with the finite-dimensional situation. An appropriate classification
of arbitrary nests has been carried out by Kenneth Davidson [22].

Ande sen’s proof of (1.1) is difficult and does not generalize. We were
intrigued by the fact that (1.1) resembles the conclusion of Voiculescu’s
theorem to some extent, but there are two critical differences. First, the C*-
algebra generated by a continuous nest is invariably inseparable, and second,
the applicaton to Ringrose’s problem requires that the norms

| WPW* — 6(P)|

be smal for all P€ .7 simultaneously: the conclusion of “Voiculescu’s
theorem” here would make only a finite number of these quantities small.

This paper is the result of our attempt to find a generalization of
Voiculeicu’s result which is applicable to such problems and, especially,
would l:ad to a “general principles” proof of (1.1) which could be applied to
other commutative subspace lattices. Section 4 concerns a general absorption
principl: for representations of topological *-semigroups. This applies to
certain inseparable C*-algebras and does in fact generalize Voiculescu’s
theoren . Indeed, the development in Sections 2—4 follows the broad pattern
of our paper [7], but there are essential differences at several points. In
Section 5 we apply this to unitary group representations and obtain a new
result (Theorem 4). Sections 6 and 7 contain the generalization of Andersen’s
theoren. to certain commutative subspace lattices, together with some new
general results which are required for the application of the results of
Section 4. In Sections 2 and 3 we make repeated reference to our paper [7].
Most o "these remarks simply compare the methods and results here to those
of [7], and are not essential to the development of this paper. We do make
use of one lemma from [7] in the proof of Theorem 2 below, and the reader
unfamiliar with quasicentral approximate units is referred back to 7] for a
discuss on of concrete examples.

We want to point out that Donald Hadwin has found an interesting refor-
mulaticn of Voiculescu’s theorem and has shown that this reformation can
be extended to inseparable C*-algebras [21]. Unfortunately, we do not see
how Hadwin’s results can be brought to bear on the problems considered in
Sections 5-7, and in the reformulation presented below it has been necessary
for us "0 restructure the arguments of [7] from the beginning.
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2. APPROXIMATE UNITS

Let J be an ideal in a C*-algebra A. Recall that a quasicentral approx-
imate unit for J is an increasing directed set A in the positive part of the unit
ball of J such that

lim |lke—k| =0, k€U,

and

lim |lae — ea|| =0, a€A.
ecA

The approximate unit A is called convex if A is a convex set, and countable
if A has the order structure of the positive integers 1, 2,.... The existence of
quasicentral approximate units was established in |[7] and independently in
{1].

Let A = {e,, e,,...} be a countable quasicentral approximate unit. It is very
easy to see that if K is any norm-compact subset of 4, then

sup ||ae, —e,al = 0 2.1)
aek

as n— 0. The purpose of this section is to show that under certain
circumstances, one can arrange to have uniform convergence to zero in (2.1)
over sets K which are not norm-compact, but which are compact in a weaker
topology. When A4 is a C*-algebra of operators and J is the compact
operators, this weaker topology turns out to be the *-strong operator
topology. We note that, while the development of this section and the next
runs parallel to Section 1 of [7], there are significant differences which
require some care.

Let J< A4 be as above. There is a natural *-homomorphism of A into the
multiplier algebra M(J) of the closure J of J; this map associates to a € 4
the multiplier (L,, R,), where

L(k)=ak, Ry k)=ka, k€J.

Recall that the strict topology on M(J) is the topology for which
convergence of a net (L,,R,) of multipliers to zero means that L, — 0 and
R, — 0 in the strong operator topology of #(J):

lim || L, (k)] = lim | R, ()] = O,

for all kEf_[Z, 8]. Finally, a subset K <A will be called J-compact if its
image in M(J) is strictly compact.
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LEMMA. Let A be a convex approximate unit for J and let K be a J-
compact set. For every € > Q there is an e € A such that

sup | ae — eal| < €.
acek

Proof. Let X be the image of K in M(J). X is a compact Hausdorff space
in its relative strict topology. Let B be the space of all continuous functions
from X to M(J), where M(J) is topologized with its strict topology. B is
clearly ¢ complex vector space. Moreover, we have

£ = sup | FGe)| < a0 @2

for eact F € B because F(X) is a strictly compact (and therefore bounded)
subset cf M(J). B is closed under the adjoint operation

F*(x) = F(x)*, x€X,

and it s closed under pointwise multiplication because multiplication in
M(J) is jointly strictly continuous on norm-bounded sets. Finally, B is
complet: in the norm defined by (2.2) simply because a uniformly
converg:nt sequence of continuous functions into the space M(J) has a
continuous limit function,

Therefore B is a C*-algebra. It contains the tensor product

C(X) ® M(J)

in a natiral way (the latter is identified with all functions F: X - M(J) which
are con inuous relative to the norm-topology on M(J)), but of course it is
much lerger than the tensor product.

Let I be the C*-algebra of all norm-continuous functions

G: X - M(J)

whose “ange lies in J (or, more properly, in the natural image of J in its
multiplier algebra). L is a C*-subalgebra of B which, by the preceding
remark:, is isomorphic to C(X)®.f.

Notice that L is an ideal in B. This is equivalent to the fact that if
G: X - T is a norm continuous function and

F:x€X+— (L., R)EM(J)
is a str.ctly continuous function, then

lErEO | L(G(x)) — L, (G(x,)) = 0,
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and

lim [R,(G(x) = Rey(GExo)) = 0

i.e., if a net vectors x, in a Banach space converges in norm to a vector x,
and if a uniformly bounded net T, of operators converges strongly to an
operator T, then || T,(x,) — Ty(x,)| = O.

Finally, for each e € A we can define an element ¢& in the positive part of
the unit ball of L by

éx)=e forall xeX.

Let A= (é:e€ A}. A is a convex set which is directed increasing. We claim
that A is an approximate unit for L. To see this, fix G € L. Considering G as
a norm-continuous function form X to J, we may cover the norm compact
set G(X) with a finite number of &-balls

n

G(X) < v Bs(yk)a

-

where y,,..,y, €J. Because A is an approximate unit for J we can find
¢, € A for which

”eyk_ykllga’ 1<k<n9

for every é € A satisfying é > é, we have e > e, (because e~ ¢ is an order
isomorphism), and for every x € X we can find y, so that ||G(x)—y,| €&
Hence

l|é(x) G(x) — G(x)|| = [l eG(x) — G(x)l
<2 +ley — il < 3e.

Thus ||éG — G || < 3¢, and the assertion follows.
Now define F, € B by

Fo(x)=x;

i.e., F, carries each multiplier in X to itself. Since A is a convex approximate
unit for L < B, we may apply the lemma on pp. 330-331 of [7] to infer the
existence of an e € A for which

| Fo€—éFy|l <,

i.e., | Fo(x)e — eFy(x)|| € € for every x in X. Finally, for each a € K we can
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choose .: € X to be the multiplier (L,, R,) and use the preceding inequality
to obtain the desired conclusion

lae—eal|<e, a€K. 1

THEOREM 1. Let J be an ideal in a C*-algebra A. Assume that J has a
countabie approximate unit, and let K, CK,<--- be a sequence of J-
compact sets in A. Then J has an approximate unit e,,e,,... such that for
each n,

sup e, a — ae,||
aek,

tends to zero as k— 0.
If A .s generated by J and ), K, then e, is a quasicentral approximate
unit.

Proof Let u; <u,< -+ be the given approximate unit for J. To prove
the prircipal assertion, it is enough to construct an increasing sequence

-

e, < e, (- satisfying
() w<ep el <1
(i) sup,ex, llexa—aeyl < 1/K for all k > n.

Note that property (i) implies that {e,} is an approximate unit for J.

Let 2 be the convex hull of {u,,u,,...}. 4 is a convex approximate unit for
J (see 7, p. 330]) which contains each u,. A, = {e € A: e > u,} is a confinal
convex subset of A and thus it too is a convex approximate unit for J. By the
lemma, 4, contains an element e, such that

sup |le,a—ae,|| < 1.
aek,
Assumiig that e, < e, < --- < e, have been found in A so that properties (i)
and (ii) are satisfied, we repeat the above argument on
An+l: {eEA:e>un’e>en}
toobtane,,  €A4,,, satisfying

1
su e a—ae L —.
aeK,,pH” n+1 n+l“\n+l

That completes the induction.
For the last assertion of the theorem, we simply note that if e, is the
constructed approximate unit for J, then the set of elements a € 4 satisfying

lim |e,a —ae,||=0
n— oo
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is a C*-subalgebra of 4 which contains J and {J, K,, hence ‘it contains

A. |

Remarks. In order to compare Theorem 1 with its counterpart from [7],
consider the following example: Let U be a strongly continuous unitary
representation of a locally compact group G on a separable Hilbert space .#,
and let .=/ be the C*-algebra generated by {U,:x € G} and the compact
operators .7". .« is inseparable in the typical cases. By the result of [7], one
can assert that .« has a quasicentral approximate unit £, consisting of
positive finite rank operators, but because of the inseparability of .« the F s
constructed in [7] will not be countable.

However, if G is o-compact, then {U,:x € G} is a countable union of
subsets of .« which are compact in the *-strong topology of Z(#°).
Considering ¥ (-#") as the multiplier algebra of .# and noting that the *-
strong topology on &(-#) coincides with the strict topology of .# (%), we
may conclude from Theorem 1 that there is an increasing sequence E,,,
0< E, < 1, of finite rank operators which is a quasicentral approximate unit
for .«/. Moreover, if we express G as a countable union of compact subsets
K,< K, then we can arrange that

Al

sup ||E,U,—U.E
xek,

tends to zero as p — oo, for each n> L.

It seems unlikely that countable quasicentral approximate units should
exist “in general.” In more concrete terms, it appears that there is no
sequential approximate unit E, for .# which satisfies

lim |E,T—-TE,|=0
H—00
for every operator 7€ ¥(-#), but we have not checked this carefully.

3. LOCALIZATION FOR *-SEMIGROUPS

The results of this paper concern perturbation theory for two classes of
objects: group representations (i.e., strongly continuous unitary represen-
tations of separable locally compact groups) and commutative subspace
lattices (i.e., strongly closed lattices of mutually commuting projections
containing 0 and 1). In order to include both applications, we formulate the
general results of this section and the next in terms of representations of *-
semigroups.
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By a *-semigroup we mean a second countable locally compact Hausdorff
space X, endowed with a jointly continuous associative multiplication

(e, EXXX—xyeEX

and a continuous self-mapping x +— x* satisfying

x** =x, (xp)* = yp*x*.

We als) require that X should contain a multiplicative unit e, which is
necessarily self-adjoint in the sense that e* = e. For our purposes here, there
are thres examples

(a) a locally compact group X in which x* =x~',

(b° a commutative subspace lattice in which multiplication is operator
multiplization, the involution is trivial (P* = P for all P), and the topology is
the relaive strong operator topology,

(¢ a countable dense self-adjoint subset of a unital separable C*-
algebra which is closed under multiplication, contains 1, and is topologized
discrete.y.

Regard ng example (b), it is significant that the subspace lattices of interest
to us are actually compact (see Theorem 5 and Proposition 7.1).

By ¢ representation of a *-semigroup X we mean a *-homomorphism
x — Ulx) of X into the *-semigroup of all bounded operators on a separable
Hilbert space -# such that

sup || Ux)| < o0
x - (U(x)¢, n)

is continuous for all & 5 € #, and which is nondegenerate in the sense that
the only vector annihilated by all operators U(x), x € X, is £=0. This is
equival:nt to the condition U(e) = 1.

It is =asy to see that a representation U of X is *-strongly continuous (i.e.,
if x,- x, then U(x,) - U(x) and U(x,)* - U(x)* in the strong operator
topology), and that we have || U(x)|| < 1 for all x. The latter follows from the
fact thet if ¢ is a bounded complex-valued function on X satisfying

Y A 8(xfx) >0 (3.1)

iJj=1

forall n2> 1, x,, x, €X, 1,,..., 4, € C, then |¢(x)| < #(e). This is seen as
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follows. For each x € X, the above condition for n=2 implies that the
2 X 2 matrix
gle) o(x*)
#(x)  d(x*x)

is positive self-adjoint, hence its determinant is nonnegative and so
|9(x)] < p(x*x) "2 g(e)'
< ¢((x*x)2)l/4 ¢(e)l/2+ 1/4
¢((x*x)2"*1)l/2" ¢(e)l/2+ et 1/2"'
Since {¢(¥)| < M < oo for all y € X, the above implies

|¢(x)l < M1/2"¢(e)1/2+ e 1720

for every n>1, and we may take the limit on »n to conclude that
[9(x)] < d(e).

Let .« be a C*-algebra of operators on a separable Hilbert space #.
Recall |7] that a localizing map for «/ is a completely positive linear map
A:.o7 - Z(#) of the form

[48

E AE,,

n n
1

A4) =

X
I

where E |, E,...., is a sequence of positive finite rank operators satisfying

oC
N EI=1,

=1

3

and which has the further property that 4 —A(4) is compact for every
AE 7.

THEOREM 2. Let U be a representation of the *-semigroup X and let ./
be the C*-algebra generated by {U(x): x € X}.

Then there is a sequence A, A,,..., of localizing maps for =/ such that the
Sunctions F,: X - K defined by

F(x) = U(x) — 4,(U(x))
are norm-continuous and tend to zero uniformly on compact subsets of X as

n— oo.

580/53/1-3
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Proof. Let ¢ > 0 and let K be a compact subset of X. We will construct a
localizing; map 4 for % such that

x > U(x) — A(U(x)) is norm-continuous (3.2)

and

sup [|UG—AUM)I <. (3.3)

Note that the theorem follows from (3.2) and (3.3). Indeed, since X is locally
compact and second countable, we may find an increasing sequence G, of
open sets in X whose closures are compact, such that X={)J, G,. Letting
K,=G,, it follows that every compact subset of X is contained in some K,
and hence if we choose 4, so as to satisfy (3.2) and (3.3) for K=K, and
g¢=1/n, then 4,, 4,,..., is the required localizing sequence.

So fix £> 0 and K. Choose increasing compact sets K, =G, as in the
preceding paragraph, so that K, contains K. By the lemma on p. 322 of [7]
we can {ind a decreasing sequence of positive numbers J, > 8, > --- with the
property that if 4, F are two operators in the unit ball of < (#°) which
satisfy }'> 0 and ||FA — AF| < 9,, then

”Fl/ZA _AFI/Z “ <€/2"+l.

Applying Theorem 1 to the ideal of all finite rank operators in the C*-
algebra & +.%, we may obtain a sequence F, { F, < --- of positive finite
rank opcrators such that F;— 1 strongly and

lim sup ||F;U(x)— Ulx)F;||=0;
j xeK,

J= 0

for every n=1,2,... By passing to a subsequence if necessary we can
assume that

sup || F;Ulx) — Ulx) Fll < 8, /2

X€K, 4

for all j < n. It follows that

|F,U(x) — Ulx) F,|| <9,
for all ;- € K, and, for n > 2, we have

f:l[? ”(Fn—Fn—l) U(x) - U(X)(F" —Fn—l)” < %5'1 + %611—1
n <6

n-1°
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Define E, = F}’* and E,= (F,— F,_,)"/* for n > 2. By the choice of §, we

have
sup ||E,U(x)—Ux)E,| <¢/2" (3.4)
xek,

Clearly E, is a positive finite rank operator and we have

[o.0] ¢ 0]
1 Ei=F|+ Z (F,—F,_)=1,

n=1 n=2

the sums converging in the strong operator topology. Thus we can define a
completely positive linear map A of Z(-#) into itself by

i
n=

AMA)= Y E,AE,.
1

We can write 4 — A(4) as follows:

A—AA)= Z (AE,—E,A)E,,
n=1
where the right side is interpreted as a strongly convergent infinite series.
Thus for each n we have

V)~ AUE) = S (Ux) E, — E,UR)E,

k=1

+ 2 (Ux)E,— E, U(x)) E,.
k=n+1

Note that when x belongs to K,, the second term is a small compact
operator; indeed, each operator (U(x) E, — E, U(x)) E, is of finite rank and

we have

[e¢] [e o]
Y sup |UX)E,~E U< Y ¢/2*<e/2m

i
k=n+1 X€K, k=n+1

Moreover, since x +— U(x) is *-strongly continuous, the function
"
Lu)= > (Ux)E,— E U(x)) E,
k=1 .

is a norm-continuous function from X into the Banach spaces .7 of all
compact operators. The above estimate implies that

sup [ U(x) = AU)) — /o)l < /2"
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for all m < n, and hence f,(x) converges to U(x)—A(U(x)) uniformly on
compact subsets of X. This proves that x — U(x) — A(U(x)) is a continuous
function from X to . 7.

Finally, since K< K, for every n, we may use (3.4) to estimate
U(x) — . (U(x)) directly for x € K to obtain

sup [UG) = AU L Y sup |U(x) Ex — E, Ux)|
X n=1 XxXe
<N g/2" =g,

and the proof is complete. 1

Here, as in [7], the significance of localizing maps is that they can be
dilated to block diagonal maps with convenient properties relative to the
represer tation U. A block diagonal map of a unital C*-algebra 4 is a unital
completzly positive linear map d: 4 —+ Z°( #) which is (unitarily equivalent
to) a countable direct sum of maps J;: 4 —» ¥(#) where each .#; is finite
dimensional. Let U be a representation of a *-semigroup X, let =7 be the C*-
algebra generated by the range of U, and let

A = L)

be a urital completely positive map. A projection P € #( #) will be called
essenticlly reducing for p(+") if Pp(U(x)) —p(U(x))P is compact for every
x€ X ind

x — Pp(U(x)) — p(U(x))P

is a norm-continuous function. We remark that this is a considerably
stronge* notion than the corresponding one in |7, p. 334).

The following result asserts that every representation of X is approx-
imately a direct summand of an appropriate block diagonal operator-valued
function on X.

COROLLARY. Let U and 7 be as in Theorem 2. Then there is a normal

block ciagonal map 6: £ (#,) > £ (A#) and an isometry W: 4, — # such
that WW* is an essentially reducing projection for 6(s/) and

x> WU(x) — 8(U(x)) W

is a ncrm continuous function from X to the Banach space ¥ (#;, #) of all
compact operators from %y, to A
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Moreover, if K is a compact set in X and € > 0, we can arrange that
sup || WU(x) — (U)Wl < e.
Ry
Proof. Let L be a compact subset of X which contains K, K*, and

K*K ={y*x:x,y € K}. We can find a localizing map A for .« satisfying the
condition of Theorem 2, and

sup 1UGx) = AU < €%/3.
Write

o
Ad)= N E,AE,,
n=1

where the E,, are positive finite rank operators with )" E2 = 1. Let .#, be the
range of E, and let

0,(A)=P 4 A| .
be the compression map of ¥ (#7,) onto ¥ (A). Define
M= DMD -,
5=51@52@ e,
and define an isometry W: 7> _# by
Wé=(E,E E,éE...).

Since E,6,(4) E,=E,AE, for every operator A, we have

W*SA)W =\ E,8,(4)E, = A(A). (3.5)

n

To prove that P= WW* is essentially reducing for §(/), it is enough to
show that the function

Sx)=(1—P)oUx))P (3.6)

is a norm-continuous function from X to the compact operators on .#
(indeed, &(U(x))P — P6(U(x)) =f(x) —f(x*)*). In order to do this we make
use of the following elementary fact: if J is a closed ideal in a C*-algebra B
and f€ B is an element such that f*f is dominated by a positive element of
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J, then f €J [17, 1.5.2, p. 15}. Let B be the C*-algebra of all bounded *-
strongly continuous functions g: X — & () relative to the norm

| gll = sup || g(x)ll
xeX .

Let J denote the subalgebra of B consisting of all functions g which take on
compact operator values and which are norm-continuous,

lim | g(x) — g(xo)| = .

J is a clysed two-sided ideal in B (see the proof of the lemma of Section 2).
The function f defined in (3.6) clearly belongs to B. Thus it suffices to show
that /*f is dominated by a positive element of J. We have

Sx)* f(x) =Po(U(x))* (1 — P) 6(U(x))P
= Po(U(x))* d(U(x))P — PO(U(x*)) Po(U(x))P.
By the Schwarz inequality for completely positive maps, the first term on the

right is lominated by PS(U(x)* U(x))P = PS(U(x*x))P. Since PO(U(y))P =
WA(U(y)) W* by (3.5), we have

S&x)* f(x) < WAUKx*x)) — MUx*)) A(U(x))) W,
and the term on the right is clearly in J because

y=AUWG) - U®p)

is a ncrm-continuous function from X to the compacts and U is a *-

homomorphism of X into ¥ (#]).
Now from (3.5) we have WA(U(x)) = Po(U(x))W, and hence

WU x) — 8(Ux))W = WAU(x)) — S(Ux)W + W(U(x) — A(U(x)))
= PS(UE)W — S(UG)W + W(U(x)) — A(U(x)))
= (PO(U(x)) — S(UNPIW + W(U(x)) — AU(x))),

and the right side is a sum of two norm-continuous functions from X to
A (H#y, A).
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Finally, the inequality established above implies

ILEN® = [1£Ge)* ) < AU *x)) ~ AU () * AU))|
1AUx*x)) — UGe*x)|| + [ U(x)* Ulx) — A(Ux))* AU))
AU(x*x)) — UG*x)|| + 2| Ulx) — AUX))|

N

VAN

™
~

for every xe K. 1

4. THE ABSORPTION PRINCIPLE

Let X be a *-semigroup in the sense of the preceding section and let U, V'
be two representations of X, acting perhaps on different separable Hilbert
spaces -#;, and #;,. We will say that U and V are approximately equivalent
(written U ~ V) if, for every compact subset K € X and every positive real
number ¢, there is a unitary operator W:#], - -#, such that

sup | WU(x) — V(x)W| <&
xek

We will see presently that this relation actually implies a stronger version of
itself (at least in the cases of interest to us), and the latter is precisely a
generalization of Voiculescu’s notion of approximate equivalence |7, 18].

We will also say that a representation V is absorbed by a representation U
if U® V ~ U, where the direct sum U® V of two representations has its
traditional meaning. This is clearly related to the concept of a neutral
element in the theory of C*-algebraic extensions. But here there is no singie
underlying C*-algebra in evidence, and the various C*-algebras that do
appear (for example, the C*-algebra generated by the operators in the range
of a given representation) are inseparable. Another difference from extension
theory is that this relation makes no reference to compact operators.

The purpose of this section is to give a characterization of the relation
U@V ~U in terms of criteria that can be checked; these criteria will be
used to solve specific problems in later sections.

We begin by collecting a few immediate consequences of the definitions.
Since ~ is obviously an equivalence relation, we see by a simple induction
that U® V' ~ U implies U@ n - V ~ U for every n > 1, where n - V denotes
the direct sum of n copies of V.

Let M, denote the C*-algebra of all n X n complex matrices, which we
consider to be the operator algebra <(C"). For each n, we choose a finite
subgroup G, of the unitary group of M, which spans M, linearly. G, will be
fixed throughout the remainder of this paper. We may regard G, as a
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(discrete) *-semigroup, and so for any *-semigroup X we can form the
Cartesian product of *-semigroups

X, =G, XX, n=1,2,..

Every regresentation U of X on a Hilbert space -# gives rise to a represen-
tation U, of G, X X on the Hilbert space C" ® -# in a natural way

U,(u,x)=u® U(x),

ueG,, ::€ X. It follows that for any two representations U, V' of X, we
have
U~ W implies U, ~ W, for every n > 1, 4.1)

and therefore
U®V~Uimplies U,®V,~ U, for every n > 1, 4.2)

because 1/, @ V, is unitarily equivalent to (U® V),,,
We now want to derive a consequence of the relation U @ V' ~ U which is
somewhat less obvious. It is convenient to introduce some terminology.

DEerFIN TION 4.3. V is said to be subordinate to U if, for every normal
state p oI’ & (#), there is a sequence &, of unit vectors in -7, such that

(i) ¢,— 0 in the weak topology of -#7, and
(ii) for every compact set K < X,

ilelg [{Ux) &ps &) — p(V (X))

tends to zero as n— .

Remarks. Condition (i) asserts that the vectors &, are going to infinity,
while of course (ii) asserts that the sequence of functions

Sux) = (Ux) &, &)
converges to f(x) = p(V(x)) uniformly on compact subsets of X.

_ It is significant that if V' is subordinate to U, then so is the direct sum
V=V@&V® --- of a countably infinite number of copies of V. Indeed, if p is
a normal state of ¥(-#;), then we may define a normal state p, of & (#;) by

Po(A)=pADAD--);

since we can approximate the function x — p(V(x)) in the sense of (i) and
(ii), the same is true of p(V(x)) = po(V(x)).
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ProrosiTION 4.4. Let U and V be representations of X. f U® V ~ U,
then V, is subordinate to U, for every n=1,2....

Proof. By (4.2), it suffices to prove this proposition for the special case
n=1. Let p be a normal state of & (#},), choose € > 0 and a compact set
K c X. It suffices to show that for every finite-dimensional projection P in
£ (#,), there is a unit vector & € #, satisfying

IPEl<e (4.51)

and

sup (U(x)e, & —p(Vx)l < 2. (4.5ii)

Choose N large enough that Ne? exceeds the dimension of P. We claim
that it is enough to exhibit ¥ mutually orthogonal unit vectors &, ,..., &, in #7,
such that

sup [(U(x) &, &) —p(V (X))l < 2e,

for every j=1,2,..,N. Indeed, assuming that such vectors &,,..., &, exist,
notice that some one of them must satisfy || P&|| <. For if ||P&]l > ¢ for
every j, then

Lt

N
dimP> Y (P&, &)=\ ||PE|P > Ne?,
j 1

~
-

contradicting the choice of N. Any &; with [P/ <¢e has the required
properties.
&, ..., & are constructed as follows: We can express p in the form

pA)=N (Auy, uy), A € £ (#),

k=1
where the vector u, satisfy 3 [|u,|> = 1 and where u, # 0. So if we put
n -1 n
pa)= (S Iull) X (g
k=1 k=1

then we can choose n large enough that ||p —p, || < €. Let n - #;, be the direct
sum of n copies of -#; and, for every A € &(#;), write

nA=A® - ®AEL(n-F).
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Then w:: can express g, as a vector state as follows:
Pu(A)=(n - Av,v),

where v is the unit vector in n - #, defined by

n -1/2
o= (Sul)  1@no - ou,
1
We consider & =2 ®N - n-#, to be the direct sum of #, with N
compies of n - #,,
F=H,on-H,®On - HK® - On- &,
Define .V mutually orthogonal unit vectors {, ..., {y in & by

L=00v®0®- @0,
L=0000v® @O,

L=0@000® - ®v.

Now since U® V' ~ U implies U®N -n -V~ U, there is a unitary operator
W:# -+ #7 such that

sup [[(Ux)@n- V)@ - @n- VX))~ W)W <e.

Let &= W{(;, 1 <j<N. The &’s are mutually orthogonal unit vectors in 7,
and for each j and each x € K we have

KUG) &, &) — p(V ()
= KW*U(x) WL, &) — p(V ()
e+ KU @n- Vx)@ -+ @n- V)G, &) —p(V ()
=6+ 0, (VX)) —p(VD < 26 N

The principal result of this section asserts that the necessary condition of
Propos tion 4.4. is also sufficient, and in fact we have

THEOREM 3. For any two representations U, V of X, the following three
conditions are equivalent:
() UsV~U,
(i) V, is subordinate to U, for every n > 1,
(iit) for every compact set K < X and € > 0, there is a unitary operator
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W:#,— &, ® &, such that the function x — WU(x) — (U(x) @ V(x))W is
compact operator valued, is operator norm continuous, and satisfies

sup | WU(x) — (U(x) ® V()W <e.

Proof. The assertion (iii) = (i) is trivial, and (i) = (ii} is the content of
Proposition 4.4. We preface the proof of (ii) = (iii) with some remarks.

Notice that the hypothesis (ii) is also valid for the inflated representation
V=V®V®---. Indeed, for each n, the inflation (V,)” of ¥, is unitarily
equivalent to (¥), , the remarks following Definition 4.3 imply that (V,)" is
subordinate to U, for each n, and hence (¥), is subordinate to U, for every
n.

Note also that, in order to prove that (ii) implies (iii), it suffices to show
that (ii) implies the following assertion. Let K < X be compact and let ¢ > 0.
Then there is an operator valued function

F: X LA
and a unitary operator W:#], - 4" @ #, such that the function
XEX WU(x)— (F(x) ® V(x)W € L (H#., 4 DH#,) (4.6)

is compact operator-valued, norm-continuous, and has operator norm at
most € for x in K. This implies (iii), because if we apply the above to the
inflation ¥ of V (by the preceding remarks) and observe that the operator
valued function

x—F(x) ® V(x)
is unitarily equivalent to its direct sum with V,
x— F(x)® V(x) ® V(x).
we obtain (iii).

Assuming now that V, is subordinate to U,, for each n, we have

LEMMA 1. Let M be a (finite-dimensional Hilbert space and let
p: L(H#,) » L (A) be a normal completely positive unital map. Then there is
a sequence of isometries W # — & such that

(i) W,— 0 weakly as j—+ o, and
(i) sup,ex || WFUX) W, —p(V(x))l - O
as j— oo, for every compact set K < X.

Proof. Let n be the dimension of .# and let e,,e,,..,e, be an
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orthonormal base for .#. Define a linear functional ¢ on the C*-algebra
M, ® 2’(#y) by

n
o(d)= S p(d;)e; e
ig=1
where .| denotes the n X n matrix (4;) of operators 4, € £(#7). 0 is a
positive linear functional because

id® p: M, ® L(#) > M, ® L(A)

is a pcsitive linear map. Moreover, for every n X n matrix of complex
number: a=(a;), a® V(x) is the nX n operator matrix (a;¥(x)), and
hence

d@a@ V)= ¥ ap(Vx)e;e).

i.j=1

Since ¥, is subordinate to U,, there is a sequence ¢, &, ,... of vectors in

C"® 47, satisfying ||«‘,‘j||2 = ¢(1) = n, such that £, » 0 weakly and such that,
for every unitary a € G, the sequence of functions

wi(x) = (@ ® U(x) &, &)

tmem Ao Py o N V4 £V L THETTU ST pauvvy P VP sy and ~AF VT on
ienas W\.&} = U\u X} Vir)) uuuuumy Ull bUlllPdLl. DUUDC Ul Aa. 11 wg

express C" ® #7, as a direct sum of # copies of #7, and write out each vector
&, in ccmponents

&= ®&2)® - D& (n),
then (a ® U(x)¢,, £,) becomes

,: aij<U(x) E(J)s E())-
iJ
We 1ow define a sequence W, W,.,..., of linear operators from .# to 47,
by

Wie;=&(J), I<jgn

The W,’s are not necessarily isometries, but since the vectors £, tend weakly
to zero in C” ® -#, the sequence of operators W, tends to zero in the weak
operator topology of ¥(A#,#,). Now since G, spans M, linearly, the
precedig assertions persist if we replace a € G, by an arbitrary element
a € M,. Taking a to be a matrix unit, we conclude that for every i, j between
1 and ¢,

(WEU(x) We;,s e;) = (U(x) §(0), &)
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tends uniformly on compact subsets of X to the limit function

(V(x)) e €).

Since e, ..., e, spans .# and since the weak operator topology agrees with the
norm topology of ¥ (#), we may assert that

lim | WEUGe) W, = p(V () =0

uniformly on compact subsets of X.

The W,.’s may be made into isometries with the same properties. Indeed,
taking x=e (the unit of X) in the preceding statement, we see that
|WEW,—1||-0. So for k sufficiently large we can define isometries
Wk:ulag?z, by

W= W WiEW)~ "
The sequence W, has both required properties (i) and (ii). 0l

We remark that if .#” is a given finite-dimensional subspace of -#],, then
the sequence of isometries W,: # — # can all be chosen so as to have
range orthogonal to .#". Indeed, letting P be the orthogonal projection of %,
onto .#", we have (for the sequence W, constructed in Lemma 1)

PW, -0

in the weak operator topology of ¥(#,.#"). Since .# and .#" are both finite
dimensional this entails

I1PW, -0,

and hence for k sufficiently large we can define new isometries W, from .#
to 4™ by

W,=(1—-P)W,(1 - WkPW,)" V2

This new sequence has all of the properties of the original sequence W,
because

klim W, — Wl =0.

We can now improve Lemma 1 to cover the case of block diagonal maps
(see Section 3), under the same hypothesis on U and V.

LEMMA 2. Let p be a normal unital completely positive map of £ (#,)
into £ (.#), which is block diagonal.
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Then there is an isometry W: # — ¥, such that W*U(x)W — p(V(x)) is
compaci for all x € X and is a norm-continuous operator valued function on

X.
Morever, if K is a given compact subset of X and ¢ > 0, we can arrange

that
W*U)W —p(V(x))lI < &

Jor eacl x€K.

Proof This argument runs parallel to the proof of Theorem 4 in [7]. By
hypothesis, we have a decomposition
of # irto finite-dimensional subspaces .#; which induces a decomposition

p:p]®p2®...

of p into finite-dimensional normal unital maps p;.

Let i{,€K,< .- be compact sets such that K* =K, K, contains the
given sct K, and the interiors of the sets K; cover X. We will construct a
sequencz of isometries

Wy My~ Ay
such that
(a ran W, lran W, forall l<m<n
(b [|WE U)W, [ <e/2m*" for all xEK,
andall 1<m<n

(. 12.(V(x)) = WrU(x) W, || < &/2" for all n > 1.

The argument is by induction. By Lemma 1, we obtain an isometry
W:.._#,-+# such that (c) is satisfied. Assume that W ,..., W,_, have been
defined. and consider the set of vectors .#; < #(, defined by

N, ={Ux)W,E:xEK,, EE M, ||E < 1},

1 <j<n—1. For each j, the image of the unit ball of .4 under W, is a
(norm) compact subset of -#,; and since by strong continuity of x +— U(x),
the set of operators {U(x):x € K,} is compact in the strong operator
topology, .#; is a norm-compact subset of #7,.
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Now if 4,,4,,..., is any sequence of operators from .#, to -#7, which
converges weakly to zero, then 4} converges strongly to zero and moreover
the strong convergence to zero is uniform over norm-compact subsets of -#7,.
Thus we may conclude that

sup [[AFUx) Wyl = sup [43C]|—0
x€Ky {ed;

as k- oo, for every j=1,2,..,n-— 1. Lemma 1, together with the preceding
remarks, implies that there is an isometry W,: #, — -, satisfying

sup | WEUX) W, —p (V) < &/27,

and such that

sup || WrUG) Wl < e/2",
xXeK,

for every j=1, 2,..., n — 1. By the remarks following Lemma 1, we may also
assume that the range of W, is orthogonal to the finite-dimensional subspace

W\h+Woly+ -+ W, M,

and the induction is complete.

Thus we can define an isometry W from .# into -#7, by requiring that W
should agree with W, on .#, for every n=1,2,....

Now for each x € X we have a formal decomposition of the operator
p(V(x)) — W*U(x)W:

p(V(x)) — W*U(x)W = ; (pi(V(x)) — WEUX) W)

=N WHUX)W,— > WrUx)W,.

k<! k>1

But if x € K, then

w w0
Y llo(Vx) — WEUGe) W || <Y e/2* < e/27,
k=n n

> WU WIS X g/28 <efam ),
k>1on k>lon

and

Y WU W= ¥

n<k<l n<k<t

IWFU*) Wl <e/d"
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These :stimates show that the function x € X — p(V(x)) — W*U(x)W has
the forin

<)
N F)
p=1

where, for each p, F, is a norm-continuous function into the finite rank
operatcrs on 4, for which the series of norms

S IF

=1

A~ ]

is uniformly convergent on compact subsets of X. Thus x i p(V(x))—
W*U(x)W is a norm-continuous function from X to the compact operators
on .#. Moreover, the same estimates imply that

lp(V(x)) — WXUX)W| <e+e+¢e=3e

when x belongs to K< K,. 1

We turn now to the proof of the required relation (4.6). Let K< X be a
compact set and choose ¢ > 0. Let L be a compact set which contains K,
K*, ard K*K. By the corollary of Theorem 2 there is a normal block
diagon:l map

0: L(H#,) > L(A)
and an isometry W,: .# — #, such that the function
XEX— W, Ux)—o(V(x) W,
is norm -continuous and compact operator valued, which satisfies
W, V(x)—o(V(x)) W[ < e/6
for x € L. The same assertions are valid for the function
XE X — V(x)— W*S(V(x))W = WX(WV(x) — o(V(x))W).
By l.emma 2 above, there is an isometry W,: # — #7, such that
x> WU(x) W, —6(V(x))
is a norm-continuous compact operator-valued function, which satisfies

IWFUE) W, — s(V(x)I < €/6,
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for x€ L. Put W= W,W,. Then W is an isometry from -#; into #7, and
the function

Vix)— W*Ux)W =V(x)— Wo(V(x)) W,
+ WEO(V(x)) — WHUKx) W,) W,
is norm-continuous, compact operator valued, and satisfies
IV(x) = WHUW] < 6%/3
for x € L. Let P= WW™* be the range projection of W. We claim that P is

essentially reducing for U in the sense that PU(x) — U(x)P is compact for all
X € X and moves continuously in the operator norm. Indeed, putting

Sx)=(1—P)U(x)P,
we see that the function
Sf(x)* f(x) = PU(x*x)P — PU(x)* PU(x)P
= W(W*U(x*x)W — V(x*x)) W*
+ WV (x)* (V(x) — WXU(x)W) W*
+ W(V(x) — W*U(x)W)* W*U(x)P

is compact operator valued and norm-continuous, so we can employ the
ideal-theoretic device used in the proof of the corollary of Theorem 2 to
conclude that f(X)< #°(#,) and f is norm-continuous. If x € K, we see
from the preceding formula that

7GN? = 70 S < 3 sup | U)W = V(»)i <™
and hence ||U(x)P — PU(x)|| < ¢ for x EK.
Let .# = (1 — P) %, and define an operator function F: X - &(.#") by
Flx)=(1-P)Ux)|

We have to show that F @ V is “approximately” unitarily equivalent to U.
But the direct sum of operators

1O W: WV DH# >N ®PH, =H
is unitary, and we have
(1@ W)(F(x)® V(x)) — Ux)1 @ W)
=((1=-P)Ux)1 —P)—Ux)(1 - P))+ WV(x)—Ux)W
= P(U(x)P — PU(x)) — (WV(x) — U(x)W).

5805371 4
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The right side is clearly a norm-continuous map of X into compact operators
whose ncrm over K is at most 2¢, and the proof is complete.

In ord:r to illustrate how one applies Theorem 3, we use it to deduce the
result from which Theorem 3 has itself evolved.

Coro1 LARY (Voiculescu’s theorem [18]). Let . be a unital separable
C*-algekra of operators and let m be a nondegenerate representation of s/
which annihilates all compact operators in 7.

Then there is a sequence of unitary operators U, such that
U4 ®:1(4)) — AU, is compact for every n and

lim || U,(4 ® n(4)) ~ AU, [ =0,

Jor every A € o7

Proof. By replacing & with & +.%7" and noting the isomorphism of
A N with (o + %)%, we may assume that = contains all
compact operators. Let X be a countable norm-dense subgroup of the unitary
group of 7, considered as a discrete *-semigroup. For x € X, define

Ulx)=x, V(x) = n(x).

We have to show that U ® V' ~ U. By Theorem 3, it is enough to show that
V, is susordinate to U, for every n> 1.

Fix n2>1 and let p be a normal state of ¥(C" ®#,). Considering
M,®~ as a C*-algebra of operators on C"®#,, we have a
nondege 1erate C *-algebraic representation

id,®n: M@ - LC"RH,),
such thet
Via®x)=id, ® n(a ® x)

whenevir a € G, and x € X. id, ® 7 annihilates all compact operators in
LLC" ¢ #,,), and therefore

a(b) =p(id, ® n(b))

is a state of M, ® s which is null on compact operators. A theorem of
Glimm [10, 11.2.1] (plus separability) implies that there is a sequence &, of
unit vectors in C* ® -, such that the associated vector states w ;, converge
to o ir the weak *-topology of (M, ® ). The &,’s must necessarily
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converge weakly to zero because ¢ annihilates every one-dimensional
projection. In particular,

’!1_51010 (@ ® x¢,, ¢, = pla ® n(x))

for every (a,x) € G, X X, and this proves that V, is subordinate to U,.

5. PERTURBATIONS OF GROUP REPRESENTATIONS

A familiar theorem of Weyl and von Neumann implies that if 4 and B are
separably acting bounded self-adjoint operators having the same spectrum
and no eigenvalues of finite multiplicity, then there is a sequence of unitary
operators W, such that W, ,4 — BW,, is compact for all n and

lim ||W,d —BW,|=0.
n—-oo

If A and B are unbounded self-adjoint operators, then one can make sense
out of these considerations by regarding a self-adjoint operator 4 as the
generator of a one-parameter unitary group

U,=e", tER.

The spectrum of A can then be defined as the spectrum of the group U [5,
Definition 2.2] that is, sp(U) is the hull of the ideal of all functions
S€ LY(R) such that

q:flﬂgmm:u

Similarly, the essential spectrum sp(U) of U is the hull of the ideal of all
f€ LYR) for which U, is compact. To say that 4 has no eigenvalues of
finite multiplicity is equivalent to the condition sp(U)=sp.(U). If V is
another one-parameter group satisfying sp(V) = sp(V) = sp(U), then by a
consequence of Voiculescu’s theorem (see [7, Theorem 5]) there is a
sequence of unitary operators W, such that W, U,— VW, is compact for all
fin LY(R) and

n-—o0
for all £. These conditions do not imply that the operators W, U, —V, W,

are compact or small in norm for x € R. Indeed, if we choose a sequence f;
of integrable functions which approximates the delta function at the point



50 WILLIAM ARVESON

x € R, then the operators W, U, — V, W, converge to W,U,— V W, in the
strong ¢ perator topology as k — oo, but they do not converge in norm and
there is no reason to expect | W, U, — V, W,|| to be small.

Neveitheless, natural situations do occur in which one requires infor-
mation ibout the groups U,, V, and not the smeared operators Uy, V. For
example, one might want to relate the *-automorphism group
a(S)=USU} of £ (#]) to the corresponding *-automorphism group
B(S)=V SV} of L(#,) The preceding assertions about the smeared
operator s give no information that is useful in relating a to f.

Suppose, however, that we know that there is a sequence W, of unitaries
such that

sup ” WnUx_ Van”_'O

IxI<M
as n— 0, for every M > 0. Then it is easy to deduce that the sequence of *-
isomory hisms

8,: TE L(F,)~» W,TW* € L(F¥,)

is an “zpproximate” conjugacy of two groups a and f in the following rather
strong :ense:

lim “lBt ° 9:1 - en ° at“ =0

uniformr ly on compact ¢-subsets of .

The purpose of this section is to present a consequence of Theorem 3
which provides a basis for approaching problems like the above concerning
perturb ations of automorphism groups.

Let 7 be a second countable locally compact group and let U be a
strongl continuous unitary representation of G. Let Prim(G) denote the
primitive ideal space of C*(G). For every closed ideal J in C*(G), the hull
of J is a closed subset of Prim(G). Let U be a strongly continuous unitary
represe:itation of G (always on a separable Hilbert space). We define the
spectrun sp(U) of U and the essential spectrum sp.(U) of U to be the
respect ve hulls of the ideals

ta € C*(G): n(a) =0},
and
{a € C*(G): n(a) is compact},

where 7 is the unique extension to C*(G) of the representation
SELYG)— U, of L'(G) associated with U.
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THEOREM 4. Let U and V be two unitary representations of G such that

sp(U) = spe(U) = sp(V) = sp(V).
Then U and V are approximately equivalent in the sense of Section 4.
We require the following bit of lore from the theory of functions of

positive type [10, Théoréme 13.5.2].

LEMMA. Let w,, v,,..., be a sequence of continuous functions of positive
type on G such that

lim y,(e) = wfe)

and

lim | 70 wy()de = | 70x) palx) di,

Jor every f€ L'(G). Then w, converges to w, uniformly on compact subsets
of G.

Proof of Theorem 4. We need only prove that U® V ~ U, for by
symmetry we will also have V@® U~ V,and hence U~ UDV~VOU~V.
By Theorem 3, it is enough to show that ¥, is subordinate to U, for every
n> Ll

Fix n, and let p be a normal state of ¥(C" ®#). Let /4, be the C*-
algebra generated by the set of operators

L@=jf@ﬂ&d& feLYG).

The hypothesis sp(U) = sp.(U) is equivalent to the asseration that .%¢, should
contain no compact operators. Similarly, sp(U) = sp(V) is the condition that
the representations of C*(G) determined by U and V should have the same
kernel. Therefore we must have

MU =1Vl for all f€ L' (G).

In general, o7, will not contain an identity. However, since ./, has trivial nuil
space its unital extension

o =sly+C- 1

also contains no nontrivial compact operators.
We consider M, ® & to be an operator algebra on C" ®# in the
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obvious way, and this C*-algebra contains no nontrivial compact operators.
Thus we can define a *-representation

MR +F ->LC"®HA)
by
TMu®U;+K)=u® Vy,

for f€ L'(G), ue M,, K€ %. Composing n with p, we obtain a state
g =po 1 of the separable C*-algebra M, ® .« +.%" which annihilates the
compac: operators. By Glimm’s lemma [10, 11.2.1] there is a sequence of
unit vectors & € C" ® -, such that

o(n(B))= }Lngo (B&s &)

forevay BEM, ® & +.7.

Since ¢ annihilates every rank one operator, we see that the sequence &,
must converge weakly to 0. Moreover, we claim that for every a € M, we
have

klf.rg) @® Ui =p@®V,) (5.1

uniforn ly on compact subsets of G. Note that this implies that V, is subor-
dinate 0 U,. Since M, is spanned by its positive elements, it suffices to
prove (5.1) for a > 0. Put

WO = p(a ® V_x)’
v (x)=@@® U, &),  k=1,2,..

We, W, 18 @ sequence of continuous functions of positive type on G (v, is
contint ous because p is normal), and since & contdins the identity we have

vi(e) =@ ® 16, &)~ pla ® 1) = yle),

as k — oo. Moreover, for each f€ L'(G)

J 760 walx) dx = (@ @ Uy &, &0

which converges to

P ® Up)=p@® V)= |_10x) yifx) dx

as k- oo. The required conclusion (5.1) now follows from the lemma. [§
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6. CoNTINUOUS MEASURES AND COMPACT LATTICES

We turn now to perturbation theory for commutative subspace lattices. In
the last section we were able to make use of a lemma on functions of positive
type in showing that a certain representation was subordinate to a second
one. In the context of Theorem 7, there was nothing known that was
analogous to that lemma, and it has been necessary to develop some new
material about these lattices which will allow us to apply Theorem 3. We feel
that this material has some interest on its own.

The purpose of this section is to show that many commutative subspace
lattices are compact in their relative strong (or weak) operator topology. In
the next section we will generalize Andersen’s theorem [3, 3.5.5] to these
lattices.

Throughout this section and the next, (G,2) will denote an ordered
abelian group. That is, G is a second countable locally compact abelian
group and X is a cone in G, that is, a subset of G satisfying

(i) ZNn—-x={0},
(i) Z4+2c2,
(iii) Z is the closure of its interior.

Two significant examples are
(a) G=R",
Z={xeR"x >0,.,x,>0}

and the “light cone” in R"*!

(b) G=R"XR,
Z={0e0:]x| <1}

|x| denoting the Euclidean norm of a vector x € R".

We may define a partial order € in G by x y iff y — x € Z. A Borel set
E c G is called increasing if, for every x EE and y € G, y > x implies y € E.
L(X) will denote the o-lattice of all increasing Borel sets. Equivalently, L(X)
consists of all Borel sets in G which are invariant under translations by
elements of X.

Let m be a o-finite measure on G. Each Borel set £ = G gives rise to a
projection operator P on the Hilbert space L?*(G, M), namely, multiplication
by the characteristic function of E, and we define

L(E, m)=|Pg: E€ L)}

L(X,m) is clearly a lattice of mutually commuting projections which
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contains 0 and 1, and it was shown in [19, 1.2.1] that &(Z, m) is closed in
the strong operator topology.

The w:2ak and strong operator topologies coincide on ¥(Z, m), and make
£(Z,m) into a topological lattice in the sense that both lattice operations
xVy and x Ay are jointly continuous. We are interested in determining
when & 2, m) is compact. Of course this depends on the behavior of the
measure m relative to Z. For example, take G = R? and X to be the positive
quadrant. Let m be a nonatomic measure concentrated on any straight line of
slope —1. Then &(Z, m) turns out to be a nonatomic Boolean algebra and
such lattices are never compact. On the other hand, if m is a nonatomic
measure concentrated on a straight line of slope +1 (or, for that matter, is
two-dime¢ nsional Lebesgue measure), then Theorem 5 implies that ¥ (Z, m) is
compact We now introduce the relevant class of measures.

DEFINITION 6.1. A finite positive measure m on G is said to be X-
continuous if, for every increasing Borel set E,

XEGH u(E +x)

is continuous.

Rema.ks. Since every translate of an increasing set is increasing, it is
enough to have continuity of x +— u(E + x) at x =0 (for every E € L(Z)).

By th: following result, the continuity of a measure depends only on its
equivalence class under mutual absolute continuity. Thus we can define X-
continuily for infinite measures in terms of the finite measures mutually
absolute y continuous with them.

We also remark that much (if not all) of the sequel can be generalized to
the case of cones X' in noncommutative locally compact groups G. In order
to avoic irrelevant technicalities, we have limited our discussion to the
abelian rcase.

We will use the usual symbol JE to denote the topological boundary of a
subset E of G. The following result gives a useful criterion for Z-continuity.
For exainple, when G=R and X = [0, +o0), it tells us that a measure is X-
continuc us iff it is nonatomic.

PROPOSITION 6.2. A finite measure m is X-continuous if and only if
m(@E)=0

Jor ever; closed increasing set E.

Proof Assume first that m is continuous and let £ be an increasing
Borel set. We will show that m(0E) = 0.
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Indeed, if x belongs to the interior of Z, then E + x is a subset of the open
increasing set E + int 2 which, in turn, is contained in E. Hence

OF = E\int E € E\(E + x),
and so
m(0E) < m(E\(E + x)) = m(E) — m(E + x).

Since O belongs to the closure of the interior of 2, we can let x tend to 0 in
the right side of the above inequality to obtain m(6E) < 0.

Conversely, assume m(0E) = 0 for every closed increasing set E. Let E be
an arbitrary increasing Borel set. Note that the closure E of E is increasing,
simply because the closure of a set which is invariant under all translations
xXt—=x+0, 0 €L, has the same property. Let x, be a sequence in G
converging to 0. We will show that for every E € L(X),

lim sup m(E + x,) < m(E) (6.3)
n—o0
and
lim inf m(E + x,) > m(int E). (6.4)
n—oo

Since m(E) — m(int E) = m(6E) = 0, we may conclude that
lim m(E + x,) = m(E) = m(int E).

Note that this also proves that
m(E) = m(E)

for every increasing Borel set E.

Fix E € L(X). To prove (6.3), let U, be a sequence of open neighborhoods
of 0 such that x,€ U,, U,2U,,,, and (), U, = {0}. Then the sequence of
open sets E + U, is a decreasing sequence of sets and their intersection is E.
Thus

lim sup m(E + x,) < lim m(E + U,) = m(E).
n—-oo n—oo
To prove (6.4), we claim first that there is a sequence o¢,,0,,..., in the

interior of ¥ such that ¢,>0,>:--, and lim,  0,=0. Indeed let
U,2 U, 2 --- be open neighborhoods of 0 such that (), U, = {0}. Choose o,
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arbitrar ly in (int £) N U,. Assuming that g,,..., 6, have been defined so that
6,20,2> 20, and 0; € U;Nint Z, note that

Uy N, —int )N --- N (o, —int Z)

is an open neighborhood of 0 which must therefore intersect int X, and so we
can chcose g, to be any point in the common intersection.
Now the sets int £ + o, are open, they satisfy

intE+o0,SintE+go

n+1

because int E is invariant under translation by ¢,—0,,, €2, and their
union it. the interior of E. Hence

m(int E) = lim m(int E + o,).

So it suffices to show that

m(int E +0,) < li{n inf m(E + x,)
-0

for every n=1,2,.... Fix n. Then g, ~— int Z is an open neighborhood of 0
and 50 it contains —x, for large enough k, say k> k,. Then 6 —x, —int 2
contain; 0 for k> k, and so for each x € E,

x+0,—x,—intX

contains x for k > k,. Since the latter set is open and since x belongs to the
closure of E, it must contain a point y, in E. Hence

x+an_xk>ykEE

for all i: > k,, which implies that x + 0, — x, € E for k > k, because E is an
increasing set. Thus

E+0,SE +x,

for large enough &, and the latter clearly implies (6.5). B

Remarks. A Z-continuous measure is necessarily nonatomic, since every
singletcn {x} is contained in the boundary of a closed increasing set (namely,
x + X; note that here we have used the condition X N —X = {0}).

The oroof shows that if m is a Z-continuous measure, then m(E) = m(E)
for evey increasing Borel set.
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Any finite measure on G which is absolutely continuous with respect to
Haar measure is Z-continuous. Indeed, if

m(E)= [ fx)dx,
E
where f€ L'(G), then for every Borel set E we have

|m(E + x) — mE) <|If(- + %) =Sllne

which tends to zero as x — 0. There are, however, many singular measures
which are Z-continuous. For example, let G=R? and let £ be the positive
quadrant. Let L, L,,.., be a sequence of disjoint straight lines in R? all
having slope +1. For every j > 1 let m; be a nonatomic probability measure
which is concentrated on L;, and let

A few moments’ thought shows that if E is a closed increasing set in R?,
then OF meets each line L, in at most one point. Thus m(9E) =0 for all j
and so m(dE)=0.

We come now to the main result of this section.

THEOREM 5. Let m be a X-continuous measure on X. Then the lattice
Z(Z, m) is compact.

Proof. £(Z,m) is a bounded family of self-adjoint operators which is
closed in the strong operator topology ([19], 1.2.1). Thus it is a Polish space
in its relative strong topology. So it suffices to establish the following
assertion: if E,, E,.,..., is a sequence of increasing Borel sets then there is a
subsequence E,, , E, ..., such that the limit

S =lim x, (x)
-0 k
exists almost everywhere (dm). For this we require
LEmMMA, Let E,,E,,.., be sets in L(X) such that the characteristic
JSunctions xg (x), Xg,(X)..... converge for all x in a dense subgroup D of G.
Then there is a closed increasing set E such that

lim xp (x) = xg(x),
n—-oc

Jor all x & OE.
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Proof of the Lemma. Let f be the limit function

f)=lim y, (x), x€D.
R0

Clearly f{x) is O or 1 for every x € D so there is a subset £, = D such that
S=1Xg,- Let E be the closure of E, in G.

We c aim first that in E is increasing. Because D is dense in G, DNint 2
is dense in Z. So to prove that the closed set E is invariant under translations
by Z, it suffices to show that E is invariant under translations by element of
DNint . Finally, since E, is dense in E and translations are continuous, it
suffices to show that

E,+DNintXcE,.
For tha, choose x € E,, 6 € DM int X. Since

lim g, (%) = 2,6) = |,

we must have y (x)=1for all n>n,. Thus x € E, for large n and since E,
is increesing we have x + ¢ € E, for large n. Since x + ¢ € D (D is a group)
we have

Xg,x +0)= lim yp (x+0)=1.

and thu: x + o € E,, proving the assertion.
Next we show that

lim x, (x)= 1
n-oo "

for ever’ x in the interior of E. Choose such an x. Note that x — int 2 must
intersect E,; for x —int Z' is an open set and therefore (x —int XYM E, is
dense in (x —int Z) N E, = (x — int £) N E, and the latter set cannot be void
since it contains a sequence converging to x (for example, x — g, will do,
where ¢, is any sequence converging to x). Thus we can find ¢ € int 2 such
that x--oc € E. Therefore x; (x —0)— 1 as n— oo and, since E, is an
increasing set in G and x;f—o, we must have x, (x)—1 as n— oo, as
asserted.
It remr ains to show that

lim xp (x)=0,
n—cC

for all x in the complement of E. Note that x + int £ must intersect D\E,.
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Indeed, since D is dense in G and (x +int Z)N(G\E) is an open set
containing x in its closure, x must be in the closure of

(x+int YN (G\E)ND S (x + int )N (D\E,).
So choose ¢ € int 2’ such that x + 6 € D\E,. Then

lim yp (x +0)=0,
n-00

and hence x + o € E, for all large values of n. Since x < x + 0 and each E,
is an increasing set, x € E, for all large n, and hence

lim x. (x)=0. 1
n-o

To prove Theorem 5, let D be any countable dense subgroup of G, and let
E,,E,,.., be a sequence of increasing Borel sets. By the Cantor
diagonalization procedure, we can find a subsequence E, ,E,,,..., whose
sequence of characteristic functions converges at every point of D. The
lemma implies that there is a closed set E € L(X) such that

Xe, = Xe

on the complement of JE. Because m is Z-continuous, JF is a set of measure
zero, and we are done. 1

Note that Theorem 5 (and its proof) are closely related to and in some
sense generalize the Helley compactness theorem for monotonic functions of
a real variable.

7. PERTURBATION THEORY FOR LATTICES

Let (G, Z) be as in the preceding section. In this section we will classify
perturbations of lattices of the form <(Z,m), where m is a finite X-
continuous measure on G. We will make essential use of the following result,
which plays a role analogous so that of the lemma on functions of positive
type used in Section 5. Theorem 6 is related to (and improves substantially
on) certain results about weak* convergence that are quite useful in
probability theory [20, pp. 247-249]. In the simplest case, the latter asserts
that if 4, u,, u,...., are probability measures on the real line such that

lim [ £ duy)= [ 1) dut)
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for every continuous function f vanishing at infinity, then the sequence of
distribution functions

F,(x) = y((—00, x])

converg:s pointwise and uniformly to the distribution function
F(x) =p:((—o0, x]), whenever F is continuous.

C,(G will denote the Banach space of all real-valued continuous functions
on G wiich vanish at infinity.

THEOREM 6. Let u, y,, l,,... be a sequence of finite positive measures on
G such that

(i) 4,(G)- u(G), and
(i) [ofduy— fofdu for every f€ Ci(G).

If u is ii-continuous, then

sup |u,(E) —w(E) -0  as n- oo,
E

where the supremum is taken over all increasing Borel sets E.

We rzquire some preliminaries.

LEMMA 1. Let y be a finite positive X-continuous measure on G. Then
Jor every € > 0, there is a neighborhood U of 0 such that

|#(E +x)—u(E) <&

Jfor every x € U and every increasing Borel set E.

Prog,” As in the proof of Proposition 6.2, we may find a sequence of
elements o, in the interior of X' such that

0,20, for all n
and
lim o¢,=0.
-0
Let

U,=(@,—-int )N ({int X —o,).
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U, is a neighborhood of 0. We claim that for each x€ U, and each
increasing Borel set E,

|W(E + x) — w(E)| < sup u(F) ~ u(F +0,), (7.1)

where the supremum is taken over all increasing Borel sets F. Indeed, if
x€U,, then —0, < x <0, and so for each increasing set E we have

E+0,CE+xcE-—o,.
Thus

—W(E) —u(E +0,)) SUE + x) — p(E) S p(E — 0,,) — u(E),

from which the assertion is evident. Thus it suffices to show that the right
side of (7.1) can be made small by choosing n large enough. This we will do
by an application of Dini’s theorem.

Consider the finite measure

[o.o]

m(S)=p(S)+ Y 27"u(S +0,).

A

Note that m is Z-continuous. For if E is a closed increasing set, then E + g,
is a closed increasing set whose boundary is ¢F + a,,, hence

M@E) = @) + S 2-"u(d(E +0,)) =0,

and the claim follows from (6.2).

By Theorem 5, the subspace lattice £ (X, m) is a compact HausdorfT space
in its strong operator topology. For each n> 1, define a function
P L (X, m)- R by

8,(Pg) = u(E) — H(E + 0,,),

where E is an increasing Borel set and P, is its corresponding projection in
£(X, m). We claim that ¢, is continuous (and well defined). For that, note
that since the two finite measures # and S — u(S +0,) are absolutely
continuous with respect to m, there are nonnegative functions & &, in
L*(G, m) such that

u(S)= [ &y dmx),  w(S+0,)=] &) dmi)
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These formulas show that ¢, has the form

¢n(P) = <Péa c> - <Pén’ én)

for eve 'y projection P € (X, m) (where (-, -) denotes the inner product of
L*(G, r1)), and hence ¢, is strongly continuous.

We have to show that the sequence ¢, tends uniformly to zero on
#(Z,n). Now since 0,,,<0,, we have E4+0,SE+0,,, for every
increas ng Borel set E, and therefore ¢,,,(Pr)<¢,(Pg). So by Dini’s
theorem it suffices to show that

lim §,(P)= lim (u(E) - u(E +0,)) =0,

for eve 'y fixed increasing set E. By the remark following Proposition 6.2, we
know t1at u(E) = u(E). So it suffices to show that for every closed increasing
set E,

lim w(E+0,) = (U (E+0,) =u(E)

Now (J,(E +0,) contains every interior point of E; for if x € int E, then
x—o0, Zint E € E for large n, and hence x € E + o,,. Thus

intEc) (E+o0,) CE.

Since 4(9E) = 0 by Z-continuity, we have the desired conclusion. [

LEMvA 2. Let u be a finite positive Z-continuous measure. For every
compact subset K< G and every ¢ >0, there is a norm-compact set of
Sunctio1s .F < Cy(G) with the following property: for every increasing Borel
set E tiere is a pair of functions f, g € F satisfying

() 0<r<g<y,
(i) f<xz<gonk,
(i) fo(g—S)du<e.

Procf. Let V be an open neighborhood of O, to be specified later. Let u
be a nonnegative continuous function having support in ¥’ Mint X and such
that

judy:l.
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For every increasing Borel set E, define
Je0) = ) xele—y) d,

gAﬂ=LMwh&+w@,

dy denoting Haar measure on G. f, and g, are nonnegative continuous
functions because the convolution of an L' function with an L® function is
continuous. Indeed, we claim that both families of functions

{ fg: E increasing} and {gg: E increasing}
are equicontinuous. This follows from the fact that the larger set of functions
{uxh:he L™ |h|. <1}

is equicontinuous, by the estimate

% () xRS | July =0 = ule =0 (@) di

< J lu(—t +y — x) — u(—t)| dt,

and the fact that the last term tends to zero as y — x— 0.
We claim next that

Se<xe <&

for every increasing Borel set E. For if y belongs to X, then since E is
increasing we have

Xe(x —») < xe(x) < xp(x +)

for all x, and the assertion follows by multiplying this string of inequalities
by u(y) and integrating y over the support of u (a subset of X).

Now choose a continuous compactly supported function w such that
0wl and w=1 on K. Then

{w - fg: E increasing} U {w - g E increasing}

is a bounded equicontinuous subset of C,(G), so by Ascoli’s theorem its
norm-closure .# is compact.

580:53/1-5
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It rerr ains only to show that, for an appropriate choice of V and u, we will
have

J, W 8e0) ~ o)) () < 2

for ever:’ E.
This is done as follows: Define a measure v on G by

¥(S) = L w(x) du(x).

Since v is absolutely continuous with respect to u, v is also a XZ-continuous
measure By Lemma 1, we can find a neighborhood U of 0 such that

[V(E) —WE +x)|<¢

for ever’ x € U and every increasing set E. Let V' be an open neighborhood
of 0 such that ¥V + V' C U, and let u be as stipulated above. Then for every
increasing set £ we have

JG w x)(gg(x) — fe(x)) du(x)
= Jx u(y) (JG w(x) xg(x + ») du(x) — JG W(x) 21X — ) dﬂ(x)) i

= | UIOE =) —wE+y)dy
<sup (W(E —y) —WE +1)) <& i

We now prove Theorem 6. Let u, — u weak*, with u,(G) —» u(G). Let U be
an open set with compact closure such that

wU)>1—¢.

Note that u,(U) > 1 — ¢ for large n. For if we find f € Co(G) such that f lives
inU, 0 {f<1, and

Lfdﬂ> 1—¢,

then for large n we will have

ijdun >1—¢,
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and hence

Let K=U. Then by throwing away a finite number of terms we can
arrange that

u(G\K)<e and  u,(G\K)<e¢

for every n=1, 2,....

By Lemma 2, we can find a norm compact subset # < C,(G) having the
properties (i)-(iii) for K and ¢. Because .# is norm-compact and g, is a
uniformly bounded subset of the dual of Cy(G) which converges weak* to ,
we must have

sup de/ln—J‘fd/l{ <e

for all n larger than some given integer N = N,. For each increasing Borel
set E, find f, g €. # such that

Then for each n > N we have

bE) <K NE) +e< [ gau,+6
K
<f gdu,,+e<f gdu+ 2¢
G G

q fdp+3s<j fdu + 4e
G K
SU(KNE)+ 4e L u(E) + Se.

The first inequality is because u,(G\K) < &, the second is because y; < g on
K, the fourth is because

ggg“hdﬂ..—fhdﬂ‘@,
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the fifth is because

[(e-frdu<e,

the sixt1 is because f'< 1 and u(G\K) < ¢, the seventh is because /' y, on
K, and ‘e last is because u(G\K) < ¢. Similarly we have

wE)<HENE)+e<| gdute
“K
<[ gdute<| fau+2e
G G

<[ fdu+3e<| fou,+4e
G K
SUKNE)+ 4e L u (E) + Se.

Thus,
sup lua(E) —u(E)| < 5S¢

whenever n > N. This is, of course, good enough. 1

It is ;onvenient to formulate the main result in terms of projection valued
measurcs. By a projection valued measure on G we mean a countably
additive function P from the Borel sets of G to the projections on a separable
Hilbert space satisfying

P(@)=0 and P(G)=1.
Such a P is said to be Z-continuous if, for each vector { € #;, the measure
my(S) = (P(S), &)

is X-continuous. This is equivalent to the assertion that, for every increasing
Borel sct E,

x+— P(E 4+ x)

is a strongly continuous map from G to the projections in £(#,). One
readily deduces from Proposition 6.2 that P is XZ-continuous iff

P(@E)=0

for every closed increasing set E.
We vill write L(X) for the o-lattice of all increasing Borel set in G.
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PROPOSITION 7.2. Let P be a X-continuous projection valued measure.
Then

F={P(E):E€ LX)}
is a compact commutative subspace lattice.
Progf. Let p be a faithful normal state of £(#,), and let m be the
probability measure on G defined by

m(§) = p(P(S));

m is clearly X-continuous.
For each Borel set S< G, let Q(S) be the corresponding projection
operator in L%(G, m):

Q(S) 6lx) = xs5(x) &(x),

&€ L*(G, m). By a familiar result on abelian von Neumann algebras |9,
Chap I, Sect. 7], there is a unique *-isomorphism & of the multiplication
algebra of L?(G, m) onto the von Neumann algebra generated by {P(S): S
Borel} satisfying

8(Q(S)) = P(S)
for every Borel set S. The restriction of  to the lattice
L(E,m)={QE):E€ LX)}

is a strongly continuous lattice isomorphism with range .%°. By Theorem 5,
we conclude that .# is compact. 1

We will say that two projection valued measures P, Q are X-equivalent
(written P ~ Q) if, for every & > 0, there is a unitary operator W:.#; - #,
such that

(i) {WP(E)— Q(E)YW:E€EL(X)} is a norm-compact set of compact
operators, and

(i) supge, e | WPE) — QEE)W| <.
Let .# and -2 be the subspace lattices determined by .%* and .2
FP=(PE):EELZ), 2={QE)EELEZ)).

It is not hard to see that (i) and (ii) (with & < 1) imply that there is a
topological isomorphism of commutative subspace lattices 8:.7 — .2 such
that

9: P(E) — Q(E)
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for every E € L(X). Moreover, the function
P WP — O(P)W

is a continuous map of the topological space- 4 into the Banach space of
compac. operators % (#;,-#,). We omit these arguments since we do not
require :he results.

The direct sum of P and Q is the projection valued measure P @ Q on
&5 @ Ay given by

P®Q(S)=P(S)® QA(S).

Finally, the support of a projection valued measure P is the (necessarily
closed) set of all points x € G such that P(U)+# 0 for every open set U
containing x.

THECREM 7. Let P and Q be two X-continuous projection valued
measures having the same support. Then P and Q are X-equivalent.

Prog). By symmetry, it suffices to show that P@ Q ~ P.

Let . #={P(E):E€L(Z)}. & is a *-semigroup relative to operator
multiplization and the trivial involution x* =x. Since multiplication is
strongly continuous on the unit ball of ¥(#;), 4 is a topological *-
semigroup. By Proposition 7.1, it is compact.

We will show first, that there is a (continuous) representation 8 of &
defined by

O(P(E))=Q(E), E€L()

and second, that 6, is subordinate to id, for every n > 1, where id is the
identity representation of #*. We may then conclude from Theorem 3 that
id @ 8 1s approximately equivalent to id in the sense of Section 4, and this
clearly mplies P® Q ~ P.

For the existence of 8, it suffices to show that if E,, E are increasing Borel
sets for which

P(E,)—- P(E) strongly,

then p((X(E,)) - p(Q(E)) for every ultraweakly continuous linear functional p
on ¥ (5%). Clearly we may assume p is a normal state. For such a p, we will
show tt at there is a continuous function ¢: . —» R such that

¢(P(E)) =p(Q(E)),  EEL()

The assertion follows from this.
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In order to get ¢, consider the commutative C*-algebra
A=C\(G)+C-1,

and let 7, o be the representations of 4 defined by

W)=| f@dPE),  o(f)=] f)dOw)

Note that n(4) contains no nonzero compact operators. For if it did, there
would be a nonzero finite-dimensional minimal projection E in m(4), and
hence there would be a point x, € GU {co} such that

En(f)E =f(xo)E
for every f€ A. This implies that
EP(SE=E+0

for every Borel set S = G U {oo} which contains x,. Since P({c0}) =0, we
must have x, € G, and the preceding implies that P({x,}) +# 0, contradicting
the fact that a Z-continuous measure must be nonatomic.

Since P and Q have the same support S < G, we have

2N =le( = sup | SOl

for every f€ A. Hence there is a unital *-isomorphism a:7n(4)— o(4)
satisfying @ o 7 = 0. Now the composition p o a defines a state of m(4). Since
n(A) N.Z = {0}, we have a natural isomorphism

n(d) > (n(4) + 2)H

and thus 7 o a can be regarded as a state of n(4) + .#” which annihilates %"
Glimm’s lemma [9,11.2.1] plus separability of n(4)+.%" provides a
sequence of unit vectors ¢, in #; such that

lim (K¢, &) =0, K€ and  lim (a(f)&,, &) =ple(f)), (73)

for every f€ A. The first expression implies £, —» O weakly. Consider the
probability measures u, 4, defined on G by

u(S)=p(@(S)),  ux(S)=(P(S)&n> En)-
By (7.3), we have

J fau=lim | rdu,
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for ever:r f€ A. Since u is Z-continuous, Theorem 6 implies that

Sup (P(E) &, &) — p(Q(S)))

tends tc zero as n— co. This shows that the sequence of continuous
function; ¢, € C(#*) defined by

8.(P)= (P, )

is uniformly convergent. The limit function ¢ € C(#) is of course continuous
and satisfies the required condition

¢(P(E)) =p(Q(E)), E€EL(Q)

Thus # is a continuous *-representation of .%° in £ (#;). We now show
that 6, s subordinate to id, for every n> 1. Fix n, and let p be a normal
state of Z(C" ® #7). We will find a sequence ¢, of unit vectors in C" ® 7%,
such that £, —» 0 weakly and

sup [{a ® PC,., &)~ pla ® O(P))| (7.4)

tends tc zero as n— oo, for every & € M,. Let a:n(d)— n{d) be the
represen:ation described above. Considering M, ® n(4) as a subalgebra of
L(C" g #,), we have

M, @ n(4))N.7 = {0}

because n(4) N .# = {0}. Arguing exactly as before, we may apply Glimm’s
lemma t> the state

a@n(f)—pla@acn(f))=pla®a(f))

of M, i n(4) to obtain a sequence of unit vectors &, € C" ® #, tending
weakly 10 zero such that

pla®ao(f)) = kli_frolo @@ n(f) &, &)
Choose a positive a € M,,, and define measures y, 4, on G by

uS)=p@a®Q(S)),  m(S)=(a® P(S) & &)

All thes:: measures are positive because a > 0, and by the preceding we have

[ o=t | s
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for every fEA. u is X-continuous because @ is X-continuous and so
Theorem 6 implies that

Sup Ka @ P(E) &, &) — pla ® Q(E))|

tends to zero as k— co. This implies the required condition (7.4) when
a >0, and the condition for an arbitrary n X #n matrix a follows by taking
finite linear combinations. [

We indicate briefly how one deduces the theorem of Andersen |3, 3.5.5]
from Theorem 7. By a continuous nest we will mean here a strongly
continuous mapping ¢+ P, of the closed unit interval [0, 1] into the
projections on a separable Hilbert space such that

(i) s<t=>P, <P,
(ii) P,=0,P =1
Andersen’s theorem asserts that if P,, Q, are two continuous nests, then there

is a unitary operator U such that

ti— UP,U* — Q, (1.5)

is a norm-continuous function from |0, 1| to the compact operators. He has
also shown that one can choose U so that

sup ” UPt U* — Qt”
01
is arbitrarily small. In order to derive these results, consider the case
G=R, 2 =(—00,0].

Extend the functions P,, Q, to R by requiring them to be zero if ¢ < 0 and 1
if £> 1. Then there are unique projection valued measures P, @ on R such
that

ﬁ((—oo,t]):P,, Q((—OO,I])=Q,,

for —oco <t<+0o0. P and @ are nonatomic, and therefore they are X-
continuous because the boundary of any closed increasing set is, in this case,
a single point. Moreover, the supports of P and ( are both the closed unit
interval. Thus (7.5) and (7.6) follow Theorem 7. We remark, by the way,
that the proofs of the ancillary results to Theorem 7 (6.2, Theorems 5 and 6)
are greatly simplified in the case G=R and X = (—oo, 0], and so the path
from Theorem 3 to Andersen’s theorem is relatively short.
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By | 1, Proposition 2.2), (7.5) implies that the quasitriangular algebras
alg{UP,U*} + .7 and algl{Q,} + 7
are ider tical, and therefore the quasitriangular algebras
alg{P,} +.7 and alg{Q,} + %

are uni arily equivalent. However, the results of [11] depend essentially on
the distance formula for nest algebras [6, Theorem 1.1] and nothing like that
is known for more general operator algebras. This raises a significant
probleni in connection with the above results. Let G, X be as above and let
P, Q be two Z-continuous projection valued measures on G having the same
support. Are the operator algebras

alg. 7 + 7 and alg 2 + %

unitarily equivalent? We remark, that these two operator algebras are norm-
closed ‘essentially by [11, pp. 138-139], or by {16, 5.2 and 7.1}).

A se:ond problem of interest concern norm perturbations. If P, Q are as in
the preceding paragraph and

Sup | P(E) — QE

is smal, then are alg. 7 and alg.Z similar via an operator close to the
identity ? This is also known to be the case for nest algebras [4, 13, 15].

We -onclude with an application of Theorem 7 to order automorphisms.
An oraer automorphism of (G, X) is a homeomorphism y: G— G such that
x <y it w(x) < w(y). If P is a projection valued measure, then we can define
a new >rojection valued measure P, by

P,(S) = P(y(S)),

S € G. Order automorphisms can be quite singular measure-theoretically, a
familar phenomenon in the case G=R, X =(—c0,0]. Nevertheless, the
followiig result implies that for many X-continuous projection valued
measures P, order automorphism induce bicontinuous lattice automorphisms
of the subspace lattice

F={P(E).E€ LX)}
which are approximately unitarily implemented.

COROLLARY. Let P be a Z-continuous prajection valued measure which
is supported everywhere on G. Then P and P, are Z-equivalent for every
order cutomorphism y of G.
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Proof. The support of P, is clearly G. If E is a closed increasing set,

then w(E) is a closed increasing set whose boundary is w(6E). Hence

P,(GE) = P(w(E)) =0,

which implies that P, ~ P by Theorem 7 |
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