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INTRODUCTION. This paper is an expanded version of a lecture given
by the author at the AMS summer institute on operator algebras in
Kingston, 1980. The basic objects of study are derivations and the
one-parameter automorphism groups they generate. But we have made
no attempt to cover these two subjects in an even-handed way. We
concentrate on the "harmonic analysis" of automorphism groups, at
the cost of neglecting basic aspects of the subject which are essen-
tial for a balanced perspective. For instance, we have not intro-
duced the cohomology theory of Johnson and of Kadison and Ringrose,
and we have not addressed the significant problem of "integrating"
an unbounded derivation to obtain a flow (for example, see Sakai's
forthcoming book). What we have attempted is to delineate the role
of harmonic analysis in the subject and to indicate what we regard
as milestones in the development of these ideas. The latter, espe-
cially, involves my own judgment and personal taste.

Section 1 contains an exposition of harmonic analysis in
L”(R) . We have organized the development so that §1 can be
omitted without loss of technical content. §82-5 are partly ex-
pository and partly new. We have given complete proofs of all

significant results.

lThis material is based upon work supported by the National
Science Foundation under Grant MCS 78-07740.
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In preparing the manuscript I have had the benefit of valuable
conversations with Henry Helson about harmonic analysis, with Wolf-
gang Arendt about mapping properties of sp(U) , and with Jean de
Canni@re and Jonathan Block about reconstruction problems associ-
ated with spectral subspaces. To these people, and to the members
of a fall quarter 1980 seminar at Berkeley who allowed me to in-
flict some of this material on them, I am pleased to record my
thanks.

1. THE HARMONIC ANALYSIS OF BOUNDED FUNCTIONS. Let {at: t € R}
be an ultraweakly continuous one-parameter group of *-automorphisms
of a von Neumann algebra M . Each pair of elements x € M ,

p € M, gives rise to a bounded continuous function f t:R->C ,
defined by

£, o (8) = plag(x) .

The harmonic analysis of the automorphism group {at} can be re-
duced to an analysis of the frequency distribution of the family of
functions {fx,p} . The purpose of this section is to review the
classical spectral theory of such families of functions in a form
convenient for our purposes. We have taken some care to formulate
the basic concepts and to give complete proofs (modulo technical
results on the existence of "sufficiently many" Fourier transforms
of integrable fucntions). In some ways our approach differs from
that in, say, Rudin's book [ 23]; these differences are pointed out
in context.

Finally, though we will speak only of the additive group R
of real numbers and its dual (which we distinguish from IR by
writing I& ) , everything in this section is valid with essential-
ly no change for the general case of a locally compact abelian
group in place of R .

The most natural domain for harmonic analysis on the real line
is the space Ll = Ll(im) , not L” = L(R) . That is simply be-
cause integrable functions have Fourier transforms while bounded
functions do not. For instance, if f 1is an integrable function
then one can define the spectrum of f to be the closed support of
the Fourier transform f :

+OO
1.1. Ty = J e~ e (ryae .

- 00
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If the transform f happens to be integrable over IR then the

Fourier inversion theorem ([23], p. 22) asserts that

[oo]

+
1.2. £(£) = o= f e Enan

hence f 1is expressed as a continuous superposition of the pure
frequencies occurring in the spectrum of f . If f is not inte-
grable then of course 1.2. is meaningless, but as we will see pres-
ently it is still appropriate to regard the spectrum of f as the
set of pure frequencies "occurring" in f .

If f is merely a bounded function then the first integral
1.1 is meaningless as it stands. It is possible to make sense out
of 1.1 if one considers E to be a tempered distribution, and in
this case one may define the spectrum of f to be the closed sup-
port of the distribution f . But this procedure does not work
well for more general groups, and it is necessary to proceed along
different lines.

Suppose we are given a bounded function f which has the par-

ticular form

4 00
1.3 f(t) = J elktdu(k) ,

- 00

where 1y 1is a complex-valued measure on R having finite total
variation. The formula 1.3 itself implies that frequencies outside
the closed support of u are clearly absent from the function £ .
More generally, the variation of 1 on a set E E}& measures the
relative abundance of the frequencies of E which are present in
the behavior of f . While there is no effective way of calculating
u(E) (or |u|(E)) from f , one can determine the closed support
of u from f 1in the following way.

Let U Eiﬁ be an open set. Then every continuous complex-
valued function of Zﬁ , Wwhich vanishes at *® and on I&f\U , can
be uniformly approximated by a sequence of Fourier transforms @n ’
where oy € Ll and $n has compact support in U (this is a con-
sequence of the Stone-Weierstrass theorem and lemma B below). We
conclude that |p|(U) = 0 if, and only if,

+OO
f $(A)du(r) = 0

- 00
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A

for every ¢ € Ll such that ¢ 1lives in U . By the Fubini theo-

rem, this integral can be written

400
Jf eI (hyay )y at = J £(-t)4 (t)dt .

It will be convenient to consider the following pairing between

functions f € L and ¢ € Ll :

+ o0
CE, o) = J f(-t)¢(t)at .

-0

The minus sign in the integrand here will allow us to avoid more
unpleasant minus signs later. This pairing identifies L” with the

dual space of Ll , and, denoting the function t v el>‘t by

ide
e , we have

SO0 = (e, o .

In any event, the above assertion is that lul(u) = 0 iff (£, ¢

= 0 for every ¢ € Ll

such that ¢ 1lives in U . Equivalently,
we have the following description of the closed support of y (de-
fined as the set of all points A€R for which lul (W) > 0 for
every neighborhood U of ) ) :

A belongs to support(u) iff for every neighborhood U

of X , there exists ¢ € 1! such that $ 1lives in
U and (f, ¢) #0 .
This shows how the closed set support(u) can be determined

from the function £ . In order to see how this set enterz into

the harmonic analysis of f , let us consider the weak*-closed

linear subspace S of L” spanned by the translates of f . We
have

PROPOSITION 1.4. (i) For every A e;& , the character eix.
belongs to S iff ) belongs to support (u) .

(ii) S 1is spanned by et a € support (u) .

Statement (i) identifies the pure harmonic constituents of £
precisely with the points of support(u) , while (ii) asserts that
S contains enough of these pure frequencies to reconstitute f .

SKETCH OF PROOF. We will show that for every ¢ € Ll , one

has ¢ L S 1iff
- 00

J e_itx¢(t)dt =0

-0



THE HARMONIC ANALYSIS OF AUTOMORPHISM GROUPS 203

for every A 1in support(y) . Notice that both statement (i) and
(ii) follow directly from this assertion and an elementary separa-
tion theorem.

1

Indeed, assume ¢ € L satisfies ¢L1S . Then for every

s €IR we have

+ oo
J £(s - t)¢(t)dt = 0

- 00
and, using 1.3, we may rewrite this as

+00
[ 15 3 maun =0, ser.

A

Since ¢dy 1is a finite measure on R and such a measure is deter-
mined by its Fourier transform ([23], p. 29), we conclude that
$du = 0 . Thus $ vanishes on the closed support of u , as
asserted. This argument is clearly reversible W

We turn now to the general case. Let S be any nonvoid sub-
set of L .

DEFINITION 1.5. A point A €R is said to be an essential

point of S if for every neighborhood U of A there is a func-

tion ¢ € Ll such that $ lives in U and
(s, ¢ # {0} .

The set of all essential points of S 1is called the spectrum
of S and is written sp(S) . For a singleton S = {f} we will
simply write sp(f) .

Let ¢ € Ll and let ¢x denote the translate of ¢ by x :

¢ () = o(t - x) .
Then $X is the product of $ with an appropriate character of
IR , and in particular the support sets of ¢ and $x are identi-
cal. It follows that for any subset S C L” , the spectrum of S
is identical with the spectrum of the weak*-closed translation in-
variant subspace of L” generated by S .

It is also easy to see that sp(S) 1is a closed set in R .
Indeed, if X & sp(S) then there is an open set U containing A
such that (s, ¢> = {0} for any ¢ € Lt whose transform lives in
U . Clearly no point of U can be an essential point of S , and
hence the complement of sp(S) is open.

This definition of sp(S) (for the case where S 1is a weak*-
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closed translation invariant subspace of L” ) differs from the
definition one frequently sees in harmonic analysis. For example,

in [ 23], sp(S) 1is defined as the set of all characters contained

in S . Assuming S # {0} , it is not obvious that sp(S) # § ;
and it is even less obvious that S must contain a character (in-
deed the latter assertion is more or less equivalent to Wiener's
Tauberian theorem, see corollary 2 of theorem 1.7). Nevertheless,
the definition we have given has turned out to be better for our
purposes here; and since it does differ from that of [23] we have
endeavored to give complete proofs of the main general assertions
of the subject.

It is convenient to divide the harmonic analysis of a set S
of bounded functions into two parts. The first, the problem of

spectral analysis, asks roughly if the functions S can be decom-

posed into their pure frequencies by means of linear combinations
of translation operators.: More precisely:

Does each character in sp(S) belong to the weak*-closed

translation invariant subspace generated by S ?

The second, the problem of spectral synthesis, asks if it is pos-

sible in principle to reconstruct each function in S as some kind
of infinite linear combination (or integral) of these pure
frequencies. That is

Is every function of S contained in the weak*-closed

linear span of the characters in sp(S) ?

We will see that analysis is always possible but that synthesis may
fail. We also want to point out that these properties are dual to
significant assertions about closed ideals in the convolution alge-
bra Ll ; this dual formulation was first formulated and exploited
by Beurling [3].

In order to proceed further we need two basic results about
Fourier transforms of integrable functions, both of which are non-
trivial and are valid for arbitrary locally compact abelian groups.
Proofs can be found in ([23], pp. 49-51).

LEMMA A. Let ¢ € Ll + € >0 . Then there is a function

A E—

Y € L1 such that y has compact support and

16 = oul, <& .

LEMMA B, Let K CR be compact and let U be an open set in

A

R containing K . Then there is a function ¢ €L such that
0<¢<1, ¢$=1 on K, and $=0 off U .
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In addition, we will make repeated use of the fact that the Banach
algebra Ll is semisimple:

¢ € Ll ’ $ =0=>¢=0 .

(see [23], p. 17 and p. 29).

We will say that a property is satisfied near a set E 1in a
topological space if it is true for all points in some open set
containing E .

(o o]

THEOREM 1.6. Let S be a nonvoid set in L and let ¢ € Ll

be such that $ vanishes near sp(S) . Then ¢ L S .

REMARK. In the degenerate case where sp(S) = § , we under-
stand the assertion of the theorem to be that every fucntion in Ll
is orthogonal to S : i.e., S = {0} .

PROOF. By the above remarks, we may assume that S 1is a
weak® closed translation invariant linear subspace of L’ . Con-

sider first the case where

E={) €ER: $(A) # 0}

is compact. We will construct a function V¢ € Ll

such that (s, V)
= {0} and ¢ = ¢y . The conclusion follows easily from this;

for the space

s = {u e 1, (s, W = {0}}

is a translation invariant linear subspace of Ll , hence it is

an ideal relative to convolution ([ 23], p. 157), hence ¢ = ¢xV¥
belongs to Sl .

¥ 1is constructed as follows. By hypothesis, E is disjoint
from sp(S) . Thus for every point A in E there is an open .
set V, such that (S, u) = {0} for every u € Lt such that u
lives in VA . Lemma B allows us to find, for each X € E , a

function uA € Ll such that

ﬁx =1 near A , and

U.}\ At

Since E 1is compact we may find Al, asey An in E so that the

lives in V

sets VA ; eeey VA cover E . Notice that
1

Nhco s

E C

interior{¢: GA (g) = 11 .
5 .

1 j

Define a polynomial p in the n complex variables =z
by

ce., Z
1’ "' “n
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n
p(Zl, * ey zn) = l - ._I (l - Zj) .
Jj=1
Since p vanishes at the origin, it operates on n-tuples drawn
from any commutative ring, and thus we may define a function y 1in

the convolution algebra Ll by

Y = P(ux roeeer Uy ) .

1 n
Since each u,y annihilates S and S, 1is an algebra (in fact,
]
an ideal) under convolution, we have V¥ 1 S . Moreover,
n A
lP(E)=l— II (l-ux_(i)) ’ EER ,
j=1 J
and thus ¢ = 1 whenever some one of the wu, 's equals 1 . Thus
J
@ = 1 near E and hence $@ = $ . Since Ll is semisimple we

conclude that ¢*y = ¢ , as required.

If E 1is not compact one may argue as follows. Choose a se-
quence u € Ll such that Gn has compact support and ¢*un con-
verges to ¢ in the Ll norm (Lemma A). The preceding paragraph
implies that ¢*un S for every n , and hence ¢ 1 S because
S 1is norm-closed B

COROLLARY. (i) If s C L® contains a nonzero function then
sp(S) # 0 .

(ii) sp(S) 1is the smallest closed set F g]ﬁ having the

property:

¢ € Ll ’ $ =0 near F = ¢ 1L S .

PROOF. (i) is immediate. For (ii), let F Dbe any closed set
with the stated property and let A be an essential point of S .
We can show that X € F as follows. If A € F , choose a neigh-
borhood V of XA whose closure is disjoint from F . Since A
1 for which ¢ 1lives in V

and (S, ¢> # {0} . But since ¢ vanishes on the open set R\ V

is essential there is a function ¢ € L

containing F , we also have (S, ¢) = {0} , a contradiction B
We now take up the question of the validity of spectral
analysis. The critical information is contained in the following
result, which identifies sp(S) with the set of common zeros of a

certain set of Fourier transforms.
THEOREM 1.7. Let S be any nonvoid subset of L” » and let

S denote the weak”-closed translation invariant subspace generated




THE HARMONIC ANALYSIS OF AUTOMORPHISM GROUPS 207

by S . Then

sp(S) = {2 € R: $(A) = 0 for every ¢ € Ll, 6 1L S} .

Before giving the proof, we require another result about
Fourier transforms. Wiener's Tauberian theorem for the additive
group Z 1is equivalent to the assertion that if f 1is a complex-
valued continuous function on the unit circle whose Fourier series
is absolutely convergent, and which has no zeros on the unit circle,
then the reciprocal of f has an absolutely convergent Fourier
series. Wiener's proof of this was classical and difficult [27].
One of the earliest achievements of Gelfand's theory of commutative
Banach algebras was a strikingly elegant conceptual approach to the
proof of this assertion, and that proof now appears near the begin~
ning of most elementary courses on commutative Banach algebras.

The following result (for general ICA groups in place of TR )

can be regarded as one generalization of Wiener's theorem to gen-
eral groups; we will encounter another more familiar generalization
below (Corollary 2 of theorem 1.7).

LEMMA. Let K gﬁﬁ. be a compact set and let ¢ € Ll be such

$ has no zeros on K . Then there is a function ¢ € Ll

that no
such that $$ =1 on K .
PROOF. Let

g={ver: V=0 on &I}.

J 1is a closed ideal in Ll (relative to convolution) and we may

form the commutative Banach algebra

a=1t/ .

Let u € Ll » 1 € A be the natural projection of Ll on A .

Note first that A has a unit. 1Indeed, by lemma B there is a

1

function e € L such that € =1 on K . So if u € Ll is ar-

bitrary then the Fourier trnasform of wuxe - u vanishes on K ,
hence ué =1 .

Now let ¢ € Ll be as stated in the lemma. We want to show
that there is a function VY € Ll such that ¢xy - e =0 (mod J) ;
i.e., ¢ is invertible in A . By the standard facts about com-
mutative Banach algebras with unit, it suffices to show that for
every complex homomorphism w # 0 of A , we have w(é) 0 .

Fix © . Then uw @(u) is a nontrivial continuous homomor-
phism of Ll into the complex numbers. Hence ([23], p. 7) there

is a point A € R such that
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w(d) = a(n) , u€rnt.

If u(K) = {0} then u € J and hence U(A) = w(d) = w(0) = 0 .
It follows that X € K (by the separation property expressed in
lemma B). Thus w(d) = $(A) # 0 , as required B

PROOF OF 1.7. We first prove the more elementary inclusion
Let ) be a common zero of {$: ¢ € S1} . Then for each

S 1y

1l S8 we have
(eix'

I¢)=$()\)=0I

and hence by a standard separation theorem (and the fact that §
i>\. ~
€ s .

Assume A € sp(S) . We have observed that sp(S) = sp(S) ,

. * . o
is a weak -closed linear subspace of L ) , we have e

so there is a neighborhood V of A having the property that
(s, v = {0} for every Uy € 1’ such that ) lives in V . By
lemma B there is a Y € Ll such that @ lives in V and
Y(A) # 0 . Hence

e, =m0 #o0,
and since elk. € § , this is a contradiction.

For the other inclusion choose A 1in sp(S) and ¢ € Ll ’
¢ L S . Weclaim: (A) = 0 . But if ¢(A\) #0C then ¢ # 0 on
some compact neighborhood of A and the preceding lemma provides

1
(S
a wo L

such that $wo = 1 on an open set V containing ) .
Now choose any Y € Ll such that @ lives in V . Then

&130@ = { everywhere in R,

and hence ¢*w0*w =y . Since the annihilator of S is a closed
translation invariant subspace of Ll , 1t is an ideal relative to
convolution ([23], p. 157), hence ¢y 1 S . This show that no point
of V can be an essential point of S (or of S ) , and we have
arrived at a contradiction W

COROLLARY 1. Every weak*-closed translation invariant sub-

space S of I,  admits analysis: indeed,

elx. €s iff X € sp(s) .

PROOF. 1.7 identifies sp(S) with the set of all A € R
such that
ite

~N

, 02 = 46(0) =0

(e

for every ¢ € 1! which is orthogonal to S . Since S 1is a

weak*-closed linear subspace of the dual of Ll , this assertion

follows from an application of a separation theorem u
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COROLLARY 2 (WIENER'S TAUBERIAN THEOREM [27]). Let ¢ be an

integrable function whose Fourier transform never vanishes. Then

the translates of ¢ span Ll .
PROOF. Let ¢ be the closed linear span of the translates of

¢ , and put
S = @l = {£ € L”: (£, o) = {0}} .

By the Hahn-Banach theorem it is enough to show that s = {0} .
If S * {0} then we can find a point X € sp(S) , by the
‘3.
corollary of 1.6. By Corollary 1 above we have et € s, and
hence
~ '}\a
6(n) = (e, ¢ =0
because ¢ € & , a contradiction B
REMARK. The same proof shows that if ¢ is a closed ideal in

Ll whose set of Fourier transforms has no common zero, then neces-

sarily ¢ = Ll . This somewhat more general statement is also

called the Wiener Tauberian theorem.

We turn now to the problem of spectral synthesis, and for this
it is convenient to shift attention from a given weak®*-closed trans-
lation invariant subspace S C L to its spectrum.

Let F be a closed subset of IR . We associate two weak™-

closed translation invariant subspaces with F as follows:

*
Wi

- 1As, S
Spin (F) span {e : A €EF},

Spax (F) = {f € 1L”: sp(f) CF} .

. C .
It is clear that Smin(F) - Smax(f) , and we leave it to the
reader to verify that both spaces have spectrum F .
DEFINITION 1.8. F 1is called a set of spectral synthesis if

Smin(F) = Smax(F) -

We will see presently that not every closed set in R admits
synthesis. The relevance of this property to the problems we have
been discussing is apparent. For if S is any (closed translation
invariant) linear subspace of L* having spectrum F , then

clearly S C Sh X(F) . Moreover, since S must admit analysis we

a
have in fact

Smin(F) csc Smax(F) -

So if F = sp(S) 1is a set of synthesis, then necessarily the

linear space S = Smin(F) admits systhesis.
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Conversely, if F 1is not a set of systhesis then there is
such a linear space S having spectrum F for which systhesis
fails ( S = Smax(F) provides one example; in general there are
infinitely many such spaces lying between Smin(F) and Smax(F)
[33]).

The first and simplest example of a closed set failing spec-
tral synthesis was given by L. Schwartz [26]. This example is for
the group ]R3 rather than IR , and will be described presently.
Subsequently, Malliavan [21] constructed examples in the dual of
any noncompact LCA group.

The following result gives a criterion for synthesis that is
somewhat more tractable than the definition itself.

PROPOSITION 1.9. A closed set F CIR 1is a set of sepctral

systhesis if, and only if, for every function ¢ € Ll whose

1

Fourier transform vanishes on F , there is a sequence ¢n €L

satisfying

(i) ¢n vanishes near F , and

(11i) "(b— cbn“l—->0 as n—-> .
PROOF. Define two subspaces ®0 , ®l , of Ll as follows:
®O = {¢ € Ll ¢ vanishes on F}
9, = {¢ € Lt ¢ vanishes near F}
the bar denoting norm closure in Ll . Clearly @0 contains @l
and, by the Hahn-Banach theorem, it suffices to show that
1
Smin(F) 70
s __(F) = o
max I

The first assertion is immediate; for if ¢ € L then

and hence $=0 on F iff ¢l s . (F)
For the second assertion, let f be a bounded function orthog-

A

onal to @l . Then for every ¢ € Ll satisfying ¢ = 0 near F
we have ¢ € & by definition of ¢ and hence (f, ¢ =0 . By
statement (ii) of the corollary of theorem 1.6, we have sp(f) E F .

= 1
Conversely, suppose f Smax(F)

. Then for every ¢ € L
such that $ = 0 near F , we have $ = 0 near sp(f) CF,
hence theorem 1.6 implies (f, ¢) = 0 . Since such functions ¢
are dense in @l we conclude that f L ¢; H

Now let @ be a closed ideal of Ll and let S be its anni-

(o]

hilator in L
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By theorem 1.7, sp(S) 1is the set of all common zeros of the Four-
ier transforms of the functions in & . Thus, one can restate Wien-

er's Tauberian theorem in an irritatingly vacuous way: the empty set

is a set of spectral synthesis.

The assertion that finite sets admit synthesis has the follow-
ing interpretation. Let S be a weak*-closed translation invari-
ant subspace of L” having spectrum {Al, ceay An} . Then every

element f of S is a linear combination of the form
n i).t
f(t) = )] a.e ] ,
j=1

where s «e.y @, are scalars. Using Lemma B, it is easy to re-
duce the proof of this assertion about finite sets to the case of
singletons, and the latter follows from 1.9 and the following non-
trivial fact about Fourier transforms ([23], p. 51).

LEMMA C. Let ¢ € Ll + € >0, and suppose ¢ vanishes at
» € R . Then there is a function u € .l such that ||u||1 <3,

vanishes near A , and |¢ - cb*ulll < E .

Notice the connection between Lemmas A and C: Lemma A is the
analogue of Lemma C for the point at infinity.
We conclude this section with a brief description of Schwartz's

3

example [26] of a compact set in R which fails spectral synthe-

sis. The set is simply the 2-sphere

1= DER: ] =11,
. denoting the Euclidean norm in :m3 . Let @0 and ¢, be the
two associated subspaces in Ll(ZR3) ;
0y = {¢ € LlUR3): ® vanishes on 1} ,
¢, = {¢ € Li(®3): ¢ vanishes near 1} .

To prove that synthesis fails for I it is equivalent to prove that
®0 #* ¢l ;

tion f on IR3 whose associated linear functional

and-for that it is sufficient to exhibit a bounded func-

0(¢) = (£, ¢ , ¢ €L @) ,
1 but not @O .

Initially, p is defined as a linear functional on the space

annihilates ¢

CgUR3) of all compactly supported infinitely differentiable func-

tions as follows:



212 WILLIAM ARVESON

o (¢) =f3:§do
z
where o 1is normalized area measure on I and g% denotes par-
tial differentiation relative to the first coordinate variable in
]ﬁ3 . Notice that the derivative in the integrand exists and is
continuous for functions ¢ € Cg(IR3) .
It is obvious that if ¢ € C:(IR3

~

) 1is such that ¢ = 0 near
L, then p(¢) = 0 . And it is almost equally obvious that there
exist functions ¢ € C:(]R)3 for which $ vanishes on I but

p(¢) #0 .

It is less obvious that © 1is bounded relative to the L
3

1

norm on Cg(ZR ) , but in fact we have

lo(d) | < (2v)‘3n¢nl .

Indeed, one can exhibit a bounded function f (explicitly in terms

of the inverse Fourier transform of the measure o ) such that
p(‘b) = <fl ¢’) ’

and from this it follows quite easily that 2 #:®l . For the
details see ( 23 , pp. 165-166) 8

In the next section we will discuss the application of these
ideas to automorphism groups of von Neumann algebras. We also want
to point out that there are significant and very close parallels in
the theory of reflexive (non self-adjoint) operator algebras.
These are discussed in [29], and we will have no more to say about

that subject here.

2. THE SPECTRUM OF A GROUP OF ISOMETRIES. Let G be a locally
compact abelian group, fixed throughout this section and the next.

Let t» Ul be a representation of G as isometries of a complex

Banach space X . Thus, each Ut is an invertible linear isometry

on X and we have US+t = UsUt y, s, t € G. For the moment, we

will assume the strong continuity condition

2.0 limlu,x - xl = 0 , for every x € X .
t>0
Let X, denote the dual space of X (the star appears as a

subscript rather than a superscript in order to accommodate a more

general situation we will encounter presently). In order to define
the spectrum of U we make use of the associated representation of
the convolution group algebra Ll = Ll(G) , defined as follows.

1

For each ¢ € L there is a unique bounded operator Uy on X
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satisfying
-1
o(U¢X) = f ¢ (t)p (U "x)dt ,

G
for every x € X , p €X, . This will also be written as an oper-
ator-valued integral

-1
U¢ = j q>(t)Ut at .

G
We have HU¢H < lgl , Upay = UpUy and for any bounded approxi-
mate identity ¢n for nl , U¢ + 1 1in the strong operator

n

topology.
A character A € G is said to be an essential point of U if

for every neighborhood V of )X , there is a ¢ in L1 such
that
(i) ¢ lives in V
2.1
(11) U, 0 .
DEFINITION 2.2, The spectrum of U 1is the set of all essential
points of U . This subset of G is denoted sp(U) . It is clear
that sp(U) 1is closed; for if X € G is not essential, then there
is a neighborhood V of ) such that for every ¢ € Ll whose
Fourier transform lives in V , we have U¢ = 0 . Thus no point
of V can be in sp(U) , and so the complement of sp(U) is
open,
For our purposes, the main examples are where X 1is a Hilbert
space and {Ut} is a group of unitary operators, or where X is
a C*—algebra and U 1is a group of *-automorphisms. In order to
discuss weakly continuous *-automorphism groups of von Neumann
algebras, one has to broaden the above setting somewhat.
Specifically, one is given along with a Banach space X , a

norm closed linear subspace X, of the dual of X , satisfying

: P € Xg, ol <13} = Ixl

sup{|p (x)

for every x € X , and which satisfies the following "completeness"
axioms:

the X,-closed convex hull of any X,-compact subset of

X 1is Xi-compact,
and the dual condition obtained by exchanging X and X, . We

refer somewhat abusively to the X,-topology on X as the weak

topology. 1In the case where X 1is a Hilbert space or a C*—algebra,
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X, will normally be the full dual of X ; if X 1is a von Neumann
algebra then X, will be the predual of X .
For a group {Ut} of isometries on X to be admissible, it

is necessary that each U be weakly continuous, and that one of

t
the following two continuity conditions should be satisfied:

(1) lig"Utx - xl =0, for every x € X,
t->
or its dual
(1ii) limllpo Ut - pl =0, for every op € X ,
t>0

When U 1is a weakly continuous group of x—automorphisms of a von
Neumann algebra X , it is not hard to show that (ii) is satisfied
even though (i) normally fails. For the proof of this, as well as
for technical details about vector integrals omitted from the dis-
cussion to follow, we refer the reader to [1].

The point is that in this more general setting one can smear
the group representation U to a representation of Ll exactly
as if {Ut} were strongly continuous,

u = J p()utat , ¢ €L

¢
G

More generally, for a complex measure u 1in the convolution alge-

1

bra M(G) of all regular Borel measures of G having finite total
variation, we define an operator Uu as follows. FoEleach X € X

and p € X, , we can integrate the function t v D(Ut X) against

U  to obtain a bounded bilinear form in © and x . Then (see

[1] , section 1) there is a unique operator Uu on X satisfying

_ -1
o(qu) = f p(U "x)du(t) ,
G
for all Pp € X, , X € X . U11 is not only bounded but weakly con-
tinuous on X . This integration procedure will be expressed in

the usual notation

U, = f uZtauce)
G

for every v in M(G) . u b Uu is a unital homomorphism of
Banach algebras satisfying HUUH < lul  for every u € M(G)

Now ¢ v» U is, in particular, a bona fide representation of
Ll . Thus we may define essential points and sp(U) exactly as we
did in 2.1 and 2.2, and the argument given above shows that sp (U)
is closed. We will make frequent use of the following assertion,

which is a straightforward application of a separation theorem:



THE HARMONIC ANALYSIS OF AUTOMORPHISM GROUPS 215

X 1is the weakly closed linear
2.4 span of the ranges of all oper-
ators {U¢: o €Ly .

The kernel of the map y » U is a closed ideal in M(G) .
The following result shows that this ideal is nested between two
natural ideals associated with the set sp(U) , and has several
significant consequences.

THEOREM 2.5. For every u € M(G) we have:

(i) If 1 =0 near sp(U) , then Uu =0 .

(ii) If Uu = 0 , then ﬁ =0 on sp(U) .

We remark that if sp(U) = g , (i) should be interpreted as the

assertion U, = 0 for every u € M(G)

PROOF OF 2,5. (i) is a small variation of theorem 1.6. In-
deed, assume that ﬁ = 0 near sp(U) . Since the ranges of the
operators U , f € Ll(G) , span X , it suffices to show that
UU.=U ..=0 for every f € LY(G) .

uf uxf

But ¢ = u*f belongs to Ll(G) and its transform vanishes
near sp(U) . The proof can now be completed exactly as in 1.6.
That is, one first assumes that $ has compact support, and con-
structs a function ¥ € L'(G) such that Uy =0 and ¢ = ¢ .
The general case can be reduced to this by an application of
lemma A as in the end of the proof of 1.6.

For (ii), let u € M(G) be such that Uu = 0 . Notice that
we can assume U € Ll(G) . Indeed, to prove that ﬁ = 0 on sp(U)
it clearly suffices to prove that ﬂ% = 0 on sp(U) for each
f € 11(G) ; and since p+f € L1(G) satisfies U g = U0z =0,
the reduction is apparent.

We claim that if ¢ € Lt , U¢ =0, and A € & is such
that ¢(A) # 0 , then A 1is not essential for U . For by the
lemma preceding the proof of 1.7, we may find a function ¢y € Ll
satisfying $$ =1 near A . So any functions u € Ll whose

transform lives in the A-neighborhood
{y € G: ¢ (M)v(y) = 1}

must staisfy u = ﬁ$$ , hence u = ux¢*p , hence U, = UuU¢U¢==O.
This clearly implies that A is inessential B

The special case of 2.5(i) in which sp(U) = @ is especially
significant, for we have

COROLLARY 1. sp(U) # @ whenever X # {0} .

PROOF . lIf sp(U) = # , then (i) implies that U¢ = 0 for

every ¢ € L . Since X 1is spanned by vectors of the form
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Ux, ¢E€ Ll , X € X , we conclude that X = {0}

The following result shows that the definition of sp(U)
given in [1], in terms of hulls and kernels of ideals, is equiv-
alent to the one we have given here. Putting ker U = {¢ € Ll:
U, = 0} , we have

0
COROLLARY 2.
sp(U) = {xezé: $(A) = 0 for every ¢ € ker U}

PROOF. If A € sp(U) , then for every ¢ € ker U we have
$(A\) = 0 by 2.5(ii).

Conversely, if X 1is not an essential point of U then
there is a neighborhood V of A such that U¢ = 0 for every
o €Lt
may find such a ¢ satisfying 6(A\) =1 . This shows that A is

such that ¢ 1lives in V . By lemma B of sections 1 we

not a common zero for the set of Fourier transforms of ker U B

COROLLARY 3. If F is any closed set in é having the prop-
l A~

erty (i) in the sense that for every ¢ € L~ , ¢ = 0 near
F = U¢ = 0, then F contains sp(U) .
PROOF. Suppose A € sp(U) and A € F . By lemma B, we can
l A

find ¢ € L such that $(K) =1 and ¢ = 0 outside a closed
neighborhood of A which misses F . Then $ vanishes near F ,
hence U¢ = 0 by hypothesis, and by 2.5(ii) we obtain a contradic-
tion ¢(x) = 0 M

Corollary 3 allows us to get rough estimates on the spectra
of subrepresentations and quotient representations of U . Specif-
ically, let M be a closed subspace of X invariant under
{Ut:
on M by

t € G} . Then we may define a subrepresentation V of G

v, = U

t tIMlteGl

and a quotient representation W of G on X/M by

Wt(x + M) = th + M, t€G6, x €X.

For each ¢ in Ll such that U¢ = 0 , we clearly have V¢ =0

and W¢ =0 . Thus, if ¢ vanishes near sp(U) , we conclude
from 2.5(ii) that V¢ = W¢ = 0 . So Corollary 3 implies

sp(v) C sp(U) , and

sp (W) C sp(U) .

It is known that if the Fourier transform of a function ¢
in Ll(G) never vanishes, then the translates of ¢ span Ll(G)

For the case G =1R this is equivalent to Wiener's Tauberian
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theorem. Now if we take U to be the regular representation of G

1 .
on L, i.e.,

Utf(X) = f(x + t) ’

then the closure of the range of the operator U¢ is easily seen
to be identical with the closed linear span of the translates of
¢ . Thus the following is a generalization of Wiener's theorem to

the context of arbitrary representations of G :

COROLLARY 4 (TAUBERIAN THEOREM). Let u € M(G) . 1If ﬁ has
no zeros on sp(U) , then UP has dense range and trivial null-
space.

PROOF. Let M Dbe the kernel of Uu . M is invariant under

the action of U and so it determines a subrepresentation V .
Clearly V = UU|M
sp(V) . By 2.6, sp(V) C sp(U) and thus sp(V) must be void.
By corollary 1 above, we conclude that M = {0} .

= 0 , and so by 2.5(ii), ﬁ vanishes on

Similarly, let W be the quotient representation of U on
X/ﬁ;f . Again, we have Wu = 0 and hence 1 = 0 on sp (W) ;
since sp(W) C sp(U) we can argue in the same way to conclude that
X/ﬁ;f = {0} , and hence U,X is dense in X n

We turn now to a discussion of the mapping properties of
sp(U) . For each ¢ € Ll ’ U¢ is a bounded linear operator on
the Banach space X and therefore has an operator-theoretic
spectrum 0(U¢) . The basic assertion connecting these two spectra

is the following:

O(U¢) = ¢ (sp(U)) , or
2.7 .
o (U,) = ¢ (sp(v)) V {0},
according as sp(U) is compact or noncompact. So in general

0(U¢) is the closure of the range of $ on sp(U) .,
We will prove 2.7 presently. Note first that 2.7 suggests a
more general conjecture, namely that for every measure u in

M(G) ,
2.8 o(u) = {(H(A\): A € sp(U)} .

We will prove the inclusion 2 below; but in general ﬁ(sp(U)) is
not dense in O(Uu) . The precise nature of O(Uu) is not very
well understood, and the mystery is connected with the fact that G
fails to be dense in the maximal ideal space of M(G) whenever G
is nondiscrete. For example, taking U to be translation by x

. 1 X

in L (IR) , we have
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PROPOSITION 2.9. For every uyu € M(R) , Q(UU) is the range
of the Gelfand transform of u on the maximal ideal space of
M(IR) .

PROOF. The map

y EM(R) » U, € L(LY

is an isometric isomorphism of M(IR) onto a maximal abelian alge-
bra Jb of operators on Ll ( 23 , pp. 74-75). Therefore the
operator theoretic spectrum of UU is the same as the spectrum of
Uu relative to the Banach algebra Ol which contains it, and the
assertion follows B
Since the real line is not dense in the maximal ideal space of
M(R) ([23], pp. 107-108), it follows that there are measures u
such that ﬁ(:ﬁ) is not dense in G(Uu) . The failure of 2.7 for
measures U was first pointed out in this context by D'Antoni,
Longo, and Zsido [31].
The best thing one can say in general is the following
PROPOSITION 2.10. For every u € M(G) ,

u(sp(U)) € o(U) .

For the proof, we require
LEMMA, Let o Dbelong to M(G) , take A € é and € > 0 .
Then there is a function ¢ € Ll such that ¢ = 1 near A and

luxod - u(x)¢ﬂl < E .

PROOF. Choose any u 1in Ll such that G = 1 near A
(lemma B), and define v = uxu - ﬁ(x)u . Vv belongs to Ll and
¥ vanishes at A . By lemma C there is a function ¢ € Ll such

A

that | vanishes near A and Iv - V*W"l < g, Put
¢ =u - uxy M

PROOF OF 2.10. Fix A e€ G . It is enough to show that the
operator Uu - ﬁ(x)l is a topological divisor of zero (for no such
operator can be invertible). For this, fix € > 0 . We will con-

struct a nonzero operator T = Te so that
v - a(TI < elTl .

Choose ¢ € Ll as in the lemma. If V¥ is any integrable
function such that @(X) =1 and ¢ lives in {y € &: 4(y) = 1} ,

A

then UW #0 (by 2.5(ii)) and ¢ = ¢xy (because @ = $$ on G ).

Th = d
us Uw U¢Uw and hence
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— (X
"(Uu w(A))u

v |I(Uu - u(A))U¢UwH

"(UU*¢ - u(A)U¢)UwH

< luxg - U(A)¢H1HUw" < e“UwH .

Thus we can put T = Uw [

Turning now to the opposite inclusion of 2.8, let G and
U: G » L(X) be fixed throughout the remainder of this section.
For any commutative Banach algebra A (with or without unit), we
write o(A) for the space of all nontrivial complex homomorphisms
of A . A 1is said to regular if the Gelfand transforms of the
elements of A separate points from closed sets in o¢(A) ; that
is, for any closed set F € o¢(A) and any point w € F , there
should exist an element a € A satisfying a=0 on F and
w(a) = 1 . The most familiar examples are the group algebras Ll
of a locally compact abelian group. The full measure algebra M(G)
is never regular (when G 1is nondiscrete). Finally, for ¢ € Ll

and o € M(G) , we will write ¢ + o for the measure
du(x) = ¢(x)dx + do(x) ,

and similarly Ll + S will denote the set of all Ll—perturbations
of elements of S , for S any subset of M(G) . Our objective
is to show that if A 1is any regular Banach subalgebra of M(G)
containing 1, then one has a mapping theorem

o(U) = n(sp(u))

for every measure u 1in the closure of Ll + A .

Now with any subalgebra A of M(G) we have an associated

Banach algebra of operators on X :
u@) = (U2 u€ ay— il

Since Ll is an ideal in M(G) , U(A) N U(Ll) is a closed ideal

in U(A) . An element w € o(U(A)) is said to be singular if it
vanishes on U(A) N U(Ll) ; the remaining elements of o(U(A))

are called nonsingular. Of course U(A) N U(Ll) may be zero, in

which case every element of the spectrum of U(A) is singular.

Notice that we have a natural mapping of sp(U) into o(U(A)).
Indeed, if A € sp(U) then by 2.10 we have N()\) € 6(U ) , and
hence [n(M)] < U, . It follows that there is a uniqge Wy, in
o(U(A)) satisfying

wy (V) = a(x) , u€EA.

The map A & wy is continuous but not necessarily one-to-one. We
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will require some information about singular elements.

PROPOSITION 2.11. Assume A 1is a unital regular subalgebra
of M(G) and let w be a singular element of o0(U(A)) . Then for
every compact set K C G , w belongs to the closure in o (U(A))
of {wxz A € sp(U) \ K} . X

PROOF: Contrapositively, let K C G be compact and assume
w 1s not in the closure § of {wxz A€ sp(U)\ K} . We will ex-
hibit a measure ¢ € A for which U, € U(Ll) and w(U;) =1 .

Now the map ¥ € A b Uu € U(A) induces, by composition, a

one-to-one continuous map ¢ of 0(U(A)) into o(A) . Thus ¢(Q)

is compact in o (A) and ¢ (w) € ¢(Q) . Let W Dbe an open set in
o (A) such that

o(Q) €W,
o(w) € W

By regularity of A , there is a o € A whose Gelfand transform
vanishes on W for which w(U) = ¢(w) (o) =1 .

We claim now that the Fourier transform of o vanishes near
sp(U)\ K . Indeed, letting Y: é + o0(A) be the natural map (de-
fined by YA(”) = 1 () , MWeEA) , we see that Y 1is continuous

but again, not necessarily injective. In any case,

W0 = {A € G: Yy € w}
is certainly an open set in G and, since Yy = ¢(wk) for every

A € sp(U) and W contains ¢(wx) for every ) € sp(U) \ K , WO

must contain sp(U) \ K as a subset of 6§ . Thus ¢ vanishes on
W0 , as asserted.
To complete the proof we show that U0 belongs to U(L™) .

For that, let ¢ be any integrable function such that ¢

= 1 near
K (lemma B). Then $8 = 6 near K and of course $8 =6=0
near sp(U) \ K . Thus $8 = 6 near sp(U) . By Theorem 2.5 we
conclude that U¢*o—o = 0 , and hence U = U¢*o . Since ¢*0

belongs to L~ , we are done B
THEOREM 2.12. Let A be a unital regular subalgebra of
M(G) . Then {u,: A €sp(U)} is dense in o(U(L' + A)) , and
consists precisely of the nonsingular elements of G(U(Ll + A)) .
PROOF. Let A € sp(U) . Then there is a function ¢ € !
such that $(A) # 0 , hence w
Conversely, let w € o(U(L™ + A)) be nonsingular. Then

¢ € Lt v w(U¢) is a nontrivial complex homomorphism of Lt so

%(U¢) #0 and w, is nonsingular.
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that there is a A € & such that w(U,) = () ([23]1, p. 7).

Since U vanishes when ¢ = 0 near sp(U) , we have §(2)

= U
w ( 6

w = Wy #0 on U(Ll) , and since U(Ll) is an ideal in U(Ll-+A),

) = 0 for all such ¢'s , and hence X € sp(U) . We have

it follows that w = Wy .

It remains to prove that every singular w in o(U(Ll + A))
can be weak*-approximated by elements Wy o A € sp(U) . Fix such
an W , Since U(Ll + A) 1is spanned by elements {U¢: ¢ € Ll}

and {Uo: 0 €A} , and since ® annihilates each Up it suf-

fices to show that for every € > 0 , ¢ ey ¢n el ’

ll

Olr veer O € A, there is a point ) in sp(U) such that
max|$.(k)| <e , and
. J —
J
- <e .
mgxlw(UO ) cj(k)| €

] ]
By the Riemann-Lebesgue lemma the functions $j all vanish

at infinity, so there is a compact set K in G such that

max|¢j(k)| < e for all ) not in K . Now
j

{y € (UL + A)): m§X|Y(0j) - w(6j)| < e}
J

is a neighborhood of w in o (U(L + A)) which, by 2.8, must in-
tersect {wxz A € sp(U) K} . Any X whose

section will suffice B

2 is in this inter-

Thus we have

COROLLARY 1. If A 1is a regular unital subalgebra of M(G)

14

then
o) = N(sp(u))— ,

for every measure pu in the closure of Ll + A,

PROOF. Fix u and choose a point Z in U(Uu) . Then

Uu — z1 fails to be invertible in U(Ll + A) so there is a com-
plex homomorphism w of U(L' + A) such that w(Uu) -z=0 . By
the preceding result, w 1is a weak*~1limit of a net Wy g

J

Xj € sp(U) , thus

z = w(Uu) = l§m wkj(Uu) = l%m u(lj) /

as required ®

REMARKS. For u 1in Ll , this result was discovered and
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rediscovered by several people (it appears explicitly in [8],
2.3.7, for automorphism groups of von Neumann algebras). For point
masses U it is due to Connes (8], 2.3.8). These results were
generalized significantly by D'Antoni, Longo, and Zsido [31] to the

case where u admits a decomposition

U= 90+ C

where ¢ € Ll

their result from the above, take A to be the algebra of all dis-

and o0 1s a discrete measure on G . To deduce

crete measures on G and notice that regularity of A follows
from the fact that A 1is isomorphic to the group algebra Ll(Gd) ’
where Gd is the "discretized" group obtained from G .

One can obtain other examples by taking a closed subgroup
H < G . The set of all measures which are concentrated on H and
absolutely continuous with resepct to the Haar measure on H gen-

erates, together with the identity 60 € M(G) , another such reg-
ular subalgebra A . If G is not discrete and H # G , these
measures are all singular relative to Haar measure on G .

It seems appropriate to point out that the first theorems of
this general type are due to Beurling [3], [4] and, independently,
to Wiener and Pitt [28]. These papers were published in 1938. 1In
modern terms, Beurling's theorem deals with the measure algebra

1

L™ + Md on the real line (here My stands for the regular algebra
1

of all discrete measures on IR ) , and implies that if U € [ -+Md
satisfies [ﬁ(x)| > § >0 for all X €ER , then the reciprocal of
ﬁ is the Fourier transform of a measure in Ll + Md . The result

of Wiener and Pitt is that if o € M( IR) has a decomposition

u= ¢+ &6+ ©

1 . . .
where ¢ € L™ , § € Md , and O 1is a nonatomic singular measure

for which

A
Iol < inf |&(X) | ,
AER

~

then |u| > 6 >0 on R implies that the reciprocal of U is the
Fourier transform of something in M(IR) . They also constructed a
measure u € M( IR) for which |ﬁ| > 43¢ >0 on I& but the recipro-
cal of ﬁ is not the Fourier transform of a measure in M( IR) .
Notice that this already implies that the real line R is not
dense in the maximal ideal space of M( R) .

Notice that one can obtain Beurling's theorem from the corol-

lary 2.10 by by considering the group U of all translation
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operators acting on Ll(]R) . In this case we have sp(U) = R

and U(Ll + Md) is appropriately isomorphic to Ll + Md
The corollary of 2.10 implies the following Tauberian-like

generalization of Beurling's theorem, Let A be a unital regular

algebra in M(G) , 1let U: G » L(X) be a representation, and let

u € tt +a satisfy |n(A\)| > 6 > 0 for every X in sp(U)

Then there is a sequence v, € Ll + A such that

TR}
n->o n

Of course, the sequence Uv converges in the operator norm to the
inverse of UU . n

It would clearly be of interest to have additional classes of
measures in M(G) for which the mapping property 2.8 holds. In
particular, if u € M(G) 1is such that " vanishes at infinity, is
ﬁ(sp(U)) dense in O(UU) ? The algebra of all such measures
is an ideal in M(G) which has an apparently more tractable maxi-
mal ideal space than does M(G) itself; but the answer is unknown
to us. An elementary example of such a measure on G =ZR3 is the
surface area measure concentrated on the 2-sphere 82 E:R3 ([101,
pp. 201-205).

COROLLARY 2, The map A b Wy establishes a homeomorphism of
sp(U) onto G(U(Ll)) .

PROOF. Let A be the one-dimensional subalgebra of M(G)
consisting of all scalar multiples of the unit point mass 50 .

A 1is of course regular.

By 2.12, ) & wy is a map of sp(U) onto the set of nonsin-
gular elements of U(Ll + A) , and the latter is clearly identifi~
able with o(U(Ll))

Thus it suffices to show that if 2, Aa € sp(U) are such that
in o(U(Ll)) , then Aa - A 1in the topology of 6

1

> W we have

o

! then for every ¢ €L

"~

¢(Aa) = Wy () -~ wk(U ) = 6(A) ,

o ¢ ¢

and the conclusion follows from the fact that G is homeomorphi-
cally identified with o(Ll) n

This result has various formulations for the case G =R . It
can be shown, for example, that Corollary 2 above implies that the
spectrum of a one-parameter group of isometries having infinitesi~

mal generator D , 1i.e.,
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U, = eitD

is identical with the operator-theoretic spectrum of the generator
D . The latter result is due to D.E. Evans [34]. A version of
this (for bounded generators) is proved in 4.7 below.

The following characterization of norm-continuous representa-
tions was discovered by Olesen [22].

THEOREM 2.13. sp(U) is compact if, and only if, 1limlu_- 1l
=0 . x+0 X

PROOF. Assume first that sp(U) 1is compact. Then we may
find a ¢ in Ll for which $ = 1 near sp(U) (lemma B). No-
tice that U¢ =1 ., For if vy € Ll is arbitrary, then $$ = @
near sp(U) so that U¢U¢ = U¢*¢ = Uw . He?ce U¢x = x for every
X 1in the range of any operator Uw ’ Y €L , and these x's
weakly span X .

Thus we have

HUX - 11 = "UxU¢ - U¢H = "U¢x"¢“ < "¢x - ¢“l ,

which tends to zero as x > 0 .
Conversely, assume U 1is norm~continuous. Then if ¢n is an

approximate identity for Ll it follows that "U¢ -1l -0 as
n

n » oo . Thus 1 € U(Ll) and hence o(U(Ll)) is compact. More-
over, every element of O(U(Ll)) is nonsingular. By Corollary 2
of 2.12 we conclude that sp(U) 1is compact B

We want to present two applications of spectral theory which
give useful information about the structure of representations of
G . The first asserts that every representation is uniformly con-
tinuous on large invariant subspaces in X ; the second describes
the harmonic structure of uniformly continuous representations.
Taken together, these provide a partial substitute for Stone's the-
orem for unitary representations in Hilbért space.

U will be a fixed representation of G on X as above.

THEOREM 2.14. There is an increasing directed family M, of
hyperinvariant subspaces in X such that Ua Ma is weakly dense

in X and, for each o , Ul has compact spectrum (and is there-

Mo

fore uniformly continuous).

REMARK. The term hyperinvariant means that each M, is weak-

ly closed and invariant under each weakly continuous operator on X
£ t €G} .
PROOF OF 2.14. Let K be the family of all compact subsets

which commutes with {U
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of G , directed upward by inclusion. For each K in K , let
MK denote the weakly closed span of the ranges of all operators
1

U, , where ¢ runs over all L functions whose Fourier trans-

¢
forms live in K . We know that X is weakly spanned by vectors
of the form U, x , ¢ € Ll ;, X € X ; and functions ¢ € Ll

¢

whose transforms have compact support are dense in Ll (Lemma A).
Thus LJKMK is weakly dense in X .
Each MK
1
trum of U|M is contained in K . For if ¢ € L~ 1is such that
K
® =0 near K , then for every y € 1’ such that § 1lives in K

is clearly hyperinvariant, and notice that the spec-

we have $@ =0, hence ¢xy = 0 , hence U U x = 0 for every x

o v
in X . Thus, = 0 as required B

U
¢|MK
Stone's theorem implies that every unitary representation U
of G on a Hilbert space is the Fourier transform of a projection

valued measure P which is supported on sp(U) :

U, = J A(t)dP(A) , t €G
sp (U)

This expresses the representation U as an appropriate superposi-
tion of the pure frequencies in sp(U) . The following result
gives a sense in which something like this is approximately true in
general, at least when sp(U) 1is compact. We remark that 2.14 and
2.15 together imply an "approximate" version of Stone's theorem
even when sp(U) 1is not compact; but of couse the convergence must
be taken relative to a weaker topology. We leave the formulation
of this result for the reader.

Let LW(X) denote the Banach space of all weakly continuous
linear operators on X . If A: G - LW(X) is a (norm) continuous
function on & which vanishes off some compact set K - G , then
we may form the inverse Fourier tramnsform of A as a conventional
Bochner integral:

F(t) = J A(t)a(x)dax ,

N

G

d) denoting Haar measure on € (we choose the version of dA so

that the Fourier inversion theorem

b(t) = f A(E) $(A)ax

A

G

is valid for scalar functions ¢ € Ll whose transforms are
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integrable [ 23], p. 22). F: G ~> LW(X) is norm-continuous, and we
have

suplF(t) I < suplA(A) 1 *A(K) < o .

tEG AEK

THEOREM 2.15. Assume sp(U) is compact and let V be a com-

pact set in G which contains sp(U) in its interior. For every
compact set K C G and € > 0 , there is a norm-continuous func-
tion A: G ~ LW(X) which vanishes off V , such that

(1) HJ At)a(naxlh <1, t €, and
\Y%

(ii) suplu

£ " J AE)a(a)arl < e |
tEK

\4

For the proof, we require the following result for scalar
functions in L .

LEMMA. Let felL , ¢ €L
sp(f) + {A: 6(A) =0 } .

PROOF. Let E = {A € G: $(A) #0)} , and fix ) ¢ sp(f) + E .

By Lemma A, there is a sequence op € Ll such that $n has com-

l 7\
Then ¢f vanishes off

pact support in E and ¢ - ¢n“l +~ 0 . Since the mapping

o - 5?(%) is continuous in the ! norm, it suffices to show that
P

¢nf(A) = 0 for each n .

So fix n , and let K be a compact subset of E such that
N
¢ =0 off K . Because sp(f) + K 1is closed and fails to con-

tain X , we can find an open set W 2 sp(U) so that X §W + K

(i.e., choose a neighborhood W of 0 in G so that \ - W

0 0

misses sp(f) + K, and put W = sp(f) + W0 ) . Now A - W
e

misses K and therefore ¢n(A - w) =0 for all weEe W . So if we
put

o N\

S=1{g €L ¢,9(0) =0},
AN A

then since ¢nw(k) = ¢ (A - w) , we may conclude that w € § for

every w €W . Since S 1is a weak*-closed linear subspace of Lm,
it suffices to show that f 1is contained in the weak*-closed span

of {w: w €W} . For that, choose Uy € ! , V1 {w: vwewl.

Then ﬁ(w) = (w, P> = 0 for each w € W and thus @ = 0 near
sp(f) . By Theorem 1.6, we have the required conclusion (f, ¥)
=00

PROOF OF 2.15, Choose any compact neighborhood W of 0 in
G so that sp(U) + W CV . Now choose ¢ € Ll such that $ is

nonnegative and lives in W (Lemma B). By scaling ¢ 1if
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necessary, we can assume that

f db(N)ax = 1 .

N

G
Notice that if W shrinks to {0} in G , the corresponding
$'s form an approximate identity for the group algebra Ll(@) .
Holding W and ¢ fixed, define A: G » LW(X) by

A(A) = J A(t5¢(t)Utdt .

G
We have IA(A) - A(u)l < J Ix(e) - u(e) |- , and therefore
A 1is norm-continuous.
We claim that A vanishes off V . 1Indeed, if x € X and

o € X, , then

p(A(N)x) = J A(t5¢(t)p(Utx)dt .
G
Now the function p (t) = p(Utx) belongs to Lm(G) and its

spectrum is contalned in sp(U) . So by the lemma, we have
p(A(M)x) = 0 off sp(U) + W CV . The conclusion follows since
P and x are arbitrary. Thus we can form the inverse Fourier

transform of A . Notice that

J AE)A(AN) AL = ¢(t)Ut for all t € G .

A

G

Indeed, for x, as above, we have

el

0
O((J A(E)A(N)dAN)x) = J A(E)p(A(N)x)dA
G é

and, by the Fourier inversion theorem ([23], p. 22) the second
term is simply ¢(t)p(Utx) . The asserted formula follows.
Now as W shrinks to {0} , the 6é.'s are an approximate

N W
unit for Ll(G) , and hence

|¢ (¢)| <1 for all t , and

sup|¢ (¢) - 1] ~0 as w+{o} .
t€EK

It follows that for an appropriate ¢ we will have
"J aeaarl = v <1, tec,

G

and
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supIIUt - f A(E)A(AN) Al = supll - ¢(t) ]| <e ,
teEK / tEK
G

as required W

To conclude this section, we want to reformulate the material
on analysis and synthesis described in section 1 so that it comes
to bear on certain problems concerning the Banach algebras U(Ll) .
Let S be a weak -closed translation invariant subspace of L”
and, as in section 1, we put

1

s ={¢€L: o1 S} .

1
S| is a closed ideal in Lt and hence the group of trnaslation
operators acts naturally on the quotient space

x = nl/s .

Let U be this representation of G on X . It is not harxd to
see that the set sp(S) as defined in section 1 is exactly
sp (U) .

Now Ll/S is also a commutative Banach algebra and it has a
bounded approximate identity (because Ll does). From this it

follows that the mapping

a: 6 + 85 €Li/s »u, € Lwl/s)

¢
defines an isomorphism of the Banach algebra Ll/S onto U(Ll) .
If we identify the dual of Ll/S with S 1in the natural way,
then the transpose o' of o gives an isomorphism of vector
spaces

!

o' s Ul » s

which is a homeomorphism relative to the respective weak® topolo~
gies. Thus we can identify S with the dual space of U(Ll)

Now by the results of section 1 we know that S admits analy-
sis. In terms of U(Ll) , this means that each point ) € sp(U)

gives rise to a complex homomorphism w, € o(U(Ll)) such that

A

wy (Ug) = 9 (1)

¢
for every ¢ € Lt , a fact we have already established in general.
To say that S admits synthesis in this context is to say
that the complex homomorphisms {wA: A € sp(U)} of U(Ll) have
all of the dual of U(Ll) as their weak*-closed linear span.
Generalizing this, we will say that an arbitrary representa-

tion U: G » L(X) admits synthesis if the weak*—closed linear span
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of {wk: A € sp(U)} exhausts the dual space of U(Ll) . We have
the following convenient characterization .

PROPOSITION 2.16., U admits synthesis if, and only if, the
Banach aglebra U(Ll) is semisimple.

REMARK. For our purposes, the assertion that U(Ll) is semi-
simple means that the only quasinilpotent operator is U(Ll) in
o .

PROOF. Assume U admits synthesis and let T € U(Ll) be

quasinilpotent. Then wk(T) = 0 for every X € sp(U) because
|wA(T)| is at most the spectral radius of T . Since the wk's
weak ¥ -span vl , it follows that f(T) = 0 for every

£ €u(Ll)’ , and hence T = 0 by the Hahn-Banach theorem.

If U fails synthesis then by an elementary separation theo-
tem there is a T # 0 1in U(Ll) such that wA(T) = 0 for every
A in sp(U) . By 2.10, w(T) = 0 for every w € o(U(LY)) . By
elementary Gelfand theory, the spectral radius of T 1is zero and
hence T 1is quasinilpotent. Thus U(Ll) is not semisimple B

From section 1 we know that if S is a translation invariant
subspace of L.” such that sp(S) admits synthesis, then S ad-
mits systhesis. This leads us to conjecture that if U 1is a
representation of G on a Banach space X whose spectrum sp (U)
admits synthesis, then the Banach algebra U(Ll) is semisimple.
One can see using 1.9 that no element in U(Ll) of the form U¢ ’
¢ € 1 , can be quasinilpotent and nonzero in this case; but since
these elements are only dense in U(Ll) in general, this line of
argument is inconclusive.

On the other hand, one can say that if F 1is any closed set
in & which fails sythesis, then there is a group U acting on
1 such that sp(U) = F and

U(Ll) is not semisimple. Again, this situation is described by

an appropriate quotient algebra of L

the results of section 1.

Finally, let us consider the case where U is a strongly con-
tinuous unitary representation of G on a Hilbert space H . By
Stone's theoEem, there is a (regular Borel) projection valued meas-

ure P on G such that

Ut - f A(t)dp(t) , t €G .

G

If ¢ eILl , then a routine application of Fubini's theorem shows

that
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Uy = f $(A)dap (1) .

G

By the elementary properties of spectral measures, we see that U¢
= 0 if, and only if, ¢ vanishes on the closed support of P

Therefore, sp(U) is the closed support of P . 1In this case

U(Ll) is a commutative C*-algebra, necessarily semisimple. Thus,
every unitary representation of G admits synthesis.

For additional results relating to semisimplicity, we refer
the reader to ([32], [35]).
3. SPECTRAL SUBSPACES. Let {Ut: t € G} be a group of isometries
of X as in the preceding section. Each vector x € X gives rise

to a translation invariant linear subspace of L”
{fQ,X: P € X*} ’

where fp X(t) = p(Utx) . We define the spectrum of x (written
, SPeECtIUm

spU(x) ) to be the spectrum of this family of functions.
Equivalently, let us say that a character ) € C is a U-es-
sential point for x 1if, for every neighborhood V of A there

is a ¢ € Ll for which

(1) $ lives in V , and
3.1.

(ii) U¢x 0 .
Then the spectrum of x 1is just the set of all U-essential points
of x . Notice that (since each operator Ug is weakly continu-
ous) spU(x) is simply the spectrum of the subrepresentation of U

obtained by restricting each U to the weakly closed U-invariant

t
subspace of X generated by x .
Consider the case where H 1is a Hilbert space and U is a

unitary group on H . By Stone's theorem we have

u, = f A(£)dP(\) , £ €G ,

A

G

~

for an appropriate projection valued measure P on G . Thus each
vector x 1in H gives rise to a vector valued measure PX , de-
fined on the Borel sets in G by PX(S) = P(S)x , and taking
values in H

One can easily see that spU(x) is the closed support of this
vector measure Px . It follows that for every closed set E CG

and every x 1in H , we have P(E)x = x 1iff the measure PX is
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supported in E . Thus we have the following description of the

range of these projections:
range P(E) = {x € X: sp,(x) C E} .

If X 1is not a Hilbert space then there is no analogue of Stone's
theorem and the left side of this expression is meaningless. But
the right side makes sense in general, defines a linear subspace of

X , and thus we may define the spectral subspaces of X as fol-

lows.
DEFINITION 3.2. For every closed set E 1in G , MU(E) will
denote the linear space of all x € X satisfying spU(x) CE .
Corresponding to 2.3 (iii and (iv), we have the characteriza-
tion:
X € MU(E) if, and only if, U¢x = 0 for every ¢ € Ll

whose transform vanishes near E .,

3.3

Since each operator U is weakly continuous, it follows that

¢

spectral subspaces are weakly closed. When there is no chance of

confusion, we will write the spectral subspace MU(E) more concise-
ly as M(E) , and similarly spU(x) will be written sp(x) .
Notice first that M(E) = M(E N sp(U)) , for every closed set

E in G . Indeed,the inclusion 2 is clear from the fact that E

contains E N sp(U) ; and the opposite inclusion follows from the
fact that if sp(x) € E then also sp(x) € sp(U) (by 3.3 and the
fact that U¢ =0 1if $ vanishes near sp(U) ) , hence every U-
essential point of x must belong to ENsp(U) . This observation

shows that there is no loss if we think of the mapping E p» M(E)

as being defined on the relatively closed subsets of sp(U) , and

it is occasionally useful to take this point of view (see prop. 3.4
below). But we will normally consider closed set E as subsets of
G .

The following result shows that the spectral subspace struc-
ture associated with a representation acts as much like a spectral
measure as one could expect in this generality.

THEOREM 3.3. Let U be fixed as above, and let all E's be
closed sets in G . Then

(i) M@ = {0} , MG =X
(ii) M(E) 1is a hyperinvariant subspace for {U,: t € G}

t'
(iii) M(NE ) = NM(E_ ) for arbitrary families {E_}
o o o o
(iv) If F 1is compact and EN F = @ , then
M(E U F) = M(E) + M(F) .

REMARKS. Assertion (ii) means that M(E) is weakly closed
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and invariant under every weakly continuous operator on X which
commutes with {Ut: t €G} . In (iv), the sum on the right repre-
sents a direct sum of Banach spaces.

PROOF. The proofs of (i) through (iii) are left for the read-
er. For (iv), it is apparent that both M(E) and M(F) are con-
tained in M(E U F) . By lemma B, choose ¢ € Ll such that $=Il
near F and $ = 0 near E , and let P be the restriction of
U¢ to M(E UF) . We show that P is an idempotent having range
M(F) and kernel M(E) .

Indeed, since $2 - $ = 0 near E UF we have Ui - U¢ =0
on M(E UF) , and hence P2 =P .

If x € M(F) , then since 8 = 1 near F we have U¢x =x ,
hence M(F) € range P . If ¥ € Ll

then for each x € M(E U F) we have

is such that @ = 0 near F ,

UPx=U _x=20,

since (w*¢)ﬂ= @$ = 0 near sp(x) CE UF ., It follows that
Px € M(F) , establishing the assertion about range P .
The proof that kernel P = M(E) is similar, and we omit it W
None of these results allows us to conclude that any of the
sPectral subspaces of U are nontrivial, that is, different from
{0} or X . Nor do they give any information about the spectra of

the subrepresentations U‘M(E) , defined by

(S
t»Utl t €G .

M(E) '
In general, it is apparent that

sp(UIM(E)) CE,

but the inclusion may be proper, even for one-parameter unitary

groups on Hilbert spaces. 1Indeed, if A 1is any point in the spec-
trum of such a U which is not in the pure point spectrum (that is,
there is no nonzero vector x € X such that Utx = eixtx for all

t ) then, putting E = {A} , we see that M(E) is zero and hence

Nevertheless, we have
PROPOSITION 3.4. If E 1is a subset of sp(U) which is the

closure of its interior relative to sp(U) , then

sp (U] = E

M(E)]
REMARK. The hypothesis means simply that there is an open set
A AN

W C G such that E is the closure in G of W N sp(U)
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PROOF. We discuss only the nontrivial inclusion 2 . For that
‘we claim that if ¢ € !l is such that U¢M(E) = {0} , then 6 =0
on E . This will suffice, for it implies that every point of E
is essential for UlM(E) . Indeed, if X € E 1is not essential
then, choosing a neighbthood V of X for which UwM(E) = {0}
for every ¢ such that ¢ 1lives in V , we obtain a contradic-
tion by choosing such a V¥ for which $(A) 0 .

So choose ¢ € 1l such that U¢M(E) = {0} , and write

E= (WNsp(U))  where W 1is an open set in G . Now for any

Y € Ll such that @ lives in some compact set K in W we have

SP(UIP) CK Nsp(U) €W Nsp(U) CE ,

hence U¢U¢ =0, and by 2.3 (Y)' 3@ must vanish on sp(U) . We
can choose such a ¢ so that ¢ 1is nonzero at any given point of

W N sp(U) and hence $=0 on W N sp(U) . The conclusion ¢ = 0
on E= (W nNnsp(U))  follows H

COROLLARY 1. If E C G is any closed set in ¢ whose interi-
or meets sp(U) , then M(E) # {0} .
PROOF. Let W be the interior of E and let E be the

0
closure of W N sp(U) . By 3.4 we have sp(UlM(E y) =By * 8,
0

hence M(E) 2 M(E;) # {0} ®

Spectral subspaces (for strongly continuous representations on
Banach spaces) were first defined and studied by Godement [13].
His paper points out the connections with harmonic analysis, estab-
lishes the assertions of proposition 3.3, and contains the impor-

tant result that if U 1is not of the trivial form

Ut = A(t)l ’

where ) 1is some fixed character of G , then there is a spectral
subspace M(E) satisfying {0} #M(E) ¥ X . Actually, the latter
result was restricted to the case where G was compact or a vector
group because it was not known in 1947 if one-point sets admit syn-
thesis for general LCA groups. The fact that this was true for
R” had been established (due to earlier work of Beurling [3]) and
it followed for compact groups from the theory of almost periodic
functions.

We digress from the main discussion to present a variation of
this result. While our method is to deduce Godement's result from
proposition 3.4 (which is, so far as we know, a new result), it is
possible to proceed more directly to the proof of corollary 2.

COROLLARY 2., Let U be a representaiton of G on X ,
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dim X 2 2 . Then U has a nontrivial weakly closed invariant sub-
space.

PROOF. We know that sp(U) # @ . So assume first that sp(U)
contains at least two points. Then there are open sets Wl’ W, in
G whose closures are disjoint which satisfy W N sp(U) # @ ,
i=1, 2 . Let E; be the closure of W, N sp(U) . By Corollary
1 we have M(Ei) # {0} and by 3.3(ii), M(El) N M(E,) = M(El N E,)

{0} . Thus M(E;) 1is a nontrivial hyperinvariant subspace.

If sp(U) is a singleton {A} , A € & , then since {)\} is
a set of synthesis it follows from the results of section 1 that

for every p €X, , x € X, we have
p(U x) = A(t)o(x) ,

for all t in G . We conclude that Ut = A(t)1l 1is a scalar for
every t € G , and every weakly closed subspace of X 1is invari-
ant under {Ut} |

Now let U be a unitary representation of G on a Hilbert
space H . U implements an action o of G on L(H) as x-auto-
morphisms

_ -1
ut(A) = UtAUt

and, since o defines a representation of G on X = L(H) , it
has spectral subspaces just as U does. The main results of this
section imply that the spectral subspaces of o can be related to
those of U 1in a subtle but effective way (3.5 and 3.7).

We have departed from the treatment in [1l] in order to give
proofs which are more conceptual. While we have not been entirely
successful in this (the proof of 3.7 is still probably not the
"right" one), we feel that this discussion improves significantly
on the many changes-of-variables in [1].

Let X, Y be Banach spaces as above and let LW(X, Y) denote
the Banach space of all weakly continuous operators from X to Y.
et F: G > LW(X, Y) be a bounded function such that

£ (8) = p(F(t)x)

oF

is measurable in t for each x €X , p €Y, . If E 1is a
closed set in & , we will say that sp(F) c E if sp(fp’x) CE
for every p and x . There is clearly a smallest such set E ,
which will be denoted sp(F) . Of course, sp(F) 1is the spectrum
of the family {f : p €Y, , x €X}C Lm(G) . We will also

P,X
eliminate superfluous definitions by using the notation (F(t)) to
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denote the function t € G » F(t) € LW(X, Y, .

If £f and g are two scalar functions in L”(G) , then the
spectrum of the product is contained in the closure of {)X + yu:
A € sp(f), u € sp(g)} (according to our convention about writing
group operations, X + p denotes the character t » X(t)u(t))
The formal reasons for this conclusion are that the Fourier trans-
form of a pointwise product is the convolution of the respective
transforms, and the closed support of a convolution is contained in
the closed sum of the individual supports. The proof of this asser-
tion about sp(fg) can be based on that formal argument, but it is
nontrivial since neither f nor g need be integrable. We re~

quire the following generalization of this fact.

Let U (resp. V) be a representation of G on X (resp. Y).
THEOREM 3.5. Let A € LW(X, Y) and let E and F be closed
sets in G satisfying E + sp(VtAU;l) C F . Then

a’ () C MY (F) .

PROOF. Applying 2.12 to the restriction of U to MU(E) ’
we see that MU(E) is the weakly closed span of U-invariant sub-

spaces M such that, for each o , sp(Ulu ) 1is a compact sub-
a

set of E . Since A 1is weakly continuous, it therefore suffices
to prove the following assertion: if sp(U) 1is compact, then AX
is contained in

.-l)

M/ (sp (U) + sp(V,AULDY) .

Let ¢ € Ll be such that $ vanishes on an open set W con-

taining sp(U) + sp(VtAU;l) and choose x € X , p €Y, . We have
to show that

I ¢(t)p(V;lAUtx)dt =0 .
G

Choose a compact set V C G , containing sp(U) in its interior,
such that V + sp(VtAU;l) CW. By 2,13, there is a net
Ba: v - LW(X) of norm continuous functions such that the net of

inverse Fourier transforms

B () = f A(£)B_(N)dn
\

is uniformly bounded and converges in operator norm to the function

t b Ut uniformly on compact subsets of G . Thus the net of
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scalar valued functions

= -1z
£,(t) = o (V AU, B (t)x)
_ -1
= J A(t)p(VtAUt Ba(x)x)dx
A\
converges to t » p(VtAx) in the weak” topology of L (G) . So to
prove that
J ¢(t)p(V;le)dt =0,
G
it suffices to prove that
f ¢(t)fa(—t)dt =0

G

for every o . But for fixed we have by Fubini's theorem

o
J o(t) £, (-t)dt = f f )\(t5¢(t)O(V;1AUtBa()\)x)dtd)\
G VG

For A fixed in V , the Fourier transform of A+¢ vanishes on

W - A , which contains sp(VtAU;l) because V + sp(VtAU;%'E W o.

Since the spectrum of the function t © O(VtAU;lBu(K)x) is con-
tained in that of (VtAUEl) , we see that
f A(ES¢(t)p(v;1AUtBa(A)x)dt =0

G
for each A in V , and the desired conclusion

f f A(t)¢(t)O(V;lAUtBa(A)x)dt dx = 0
vV G

follows B

The following result is the principal one of this section, and
provides a converse to 3.5. 1In order to discuss this, consider the
case where U and V are unitary representations of G on Hil-
bert spaces X and Y . Let E and F be closed sets in G
The most optimistic converse to 3.5 would assert that if A is any
operator from X to Y such that AMU(E) < MV(F) , then

_l)
£ CF .

3.6 E + sp(VtAU
This assertion is false of course; if P 1is the projection of Y
onto MV(F) and T: X > Y 1is arbitrary, then A = PT satisfies
the hypothesis AMU(E) C MV(F) . On the other hand, A bears no

particular relation to the representation U and so there is
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nothing to be said about the spectrum of the function (VtAU;l) .
Nevertheless, if the hypothesis is appropriately strengthened then
we are able to draw the desired conclusion in general.

THEOREM 3.7. Let E, F be closed sets in G such that E

is the closure of its interior, and let A € LW(X, Y) satisfy

AM(E + w) CM(F + w)

A

for every w € G . Then
-1
E + sp(VtAUt ) CF

The proof requires the following two elementary lemmas.

LEMMA 1. If V is an open set in G containing A , then
there is a function ¢ € Ll N Lo° such that ¢ 1lives in V and
b(A) #o0 .
) PROOF. Choose ¢l € Ll such that $l lives in V and
¢l(k) # 0 (lemma B), and let ¢2 ?e any compactly supported con-
tinuous function on G such that ¢2(A) # 0 . Then the convolu-
tion ¢l*¢2 has the stated properties B

LEMMA 2, Let u: G x G > € be a bounded uniformly continuous

function and let ¢ € Ll , UV € L” « Then

f(x) = j u(t, t = x)P(t)d(x - t)dt
G

is uniformly continuous.
PROOF. The argument is a routine variation of the proof that
the convolution of a bounded function with an integrable function

is uniformly continuous ([23], p. 4) and is left for the reader B
1

PROOF OF 3.7. Choose any two functions ¢, y in L such
that ¢ lives in E and @ = 0 near F . Then the range of U
is contained in MU(E) and Vw annihilates MV(F) . Thus,

VwAU¢ =0 .
For any w 1in G and u € Ll , the pointwise product weu be~-
l A ~
longs to L~ and we have (w-u) (A) = u(x - w) . Thus the range

of Uw-¢ is contained in MU(E + @) and Vw.w annihilates
MV(F + w) . As above, we conclude that
VieyBUyep = O

for every w 1in G

Fixing p € Y, and x € X , we see that



238 WILLIAM ARVESON

’jﬁ_ums + t)p(V;lAU;lAU;lx)w(t)¢(s)ds dt

GxG

= p(V x) =0 .,

we AUy
By the change of variables r = s + t , t =t , the above be-

comes
fj w(r)o(V;lAUt_rx)W(t)¢(r - t)dr dt = 0 ,
GXG

for every w 1in G . So if we put

1

f(r) = [ O(V; AU, _ x)V(t)d(r - t)dt ,
G

r

then by an elementary application of Fubini's theorem we have
f e Ll , and the preceding equation asserts that £f=0. Hence,
f vanishes almost everywhere on G .

Now if ¢ 1is chosen so that, in addition to the requirement
support $ CE we have ¢ € Ll N L” , then by lemma 2 f is con-

tinuous, and hence f vanishes identically. Thus,

f o (Vi AU X) ¥ () ¢ (~t)dt = £(0) = O .
G

The same argument apples if we replace ¢ with any translate of
itself, so that

-1 _
[ o(V, AU X)$(£) ¢(s - £)dt = 0
G

for every s in G . The Fourier transform of this function of s
is the product of $ with the Fourier transform of the function

t b yt) p(vy
tically.

AUtx) , and this product of transforms vanishes iden-

Now for a fixed w in the interior of E , lemma 1 allows us
to find ¢ € L N 1L° such that ¢ 1lives in E and ¢(w) # 0 .

It follows from the preceding discussion that

3.8 J w(t)w(t)O(VtAU;lx)dt =0
G

for every ®w 1in the interior of E , and hence for all ® in E
by continuity of Fourier transforms of Ll functions. Since w-y
represents the most general Ll function whose transform vanishes
near F - w® , 3.8 makes the following assertion: if w € E and

VY e Ll is such that @ vanishes near F - w , then
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-1
J w(t)o(vt

G

AUtX)dt =0,

for every x € X , 0 €Y, . Thus, the spectrum of the function
(VtAU;l) is contained in F - w for every w in E . Since
N F-w={N€G: E+ A CF},
w€E
we have the desired conclusion R

Taken together, 3.6 and 3.7 constitute a generalization of
theorem 2.3 of [1]l. The latter was originally suggested to me by a
theorem of Frank Forelli ([11], theorem 1), which asserts that a
commutation formula for triples of one-parameter groups on Banach
spaces is equivalent to certain mapping properties of their spec-
tral subspaces associated with semi-infinite intervals in Iﬁ . The
reader should consult [11] for a precise stateemnt of Forelli's re-
sult.

To indicate what it is that 3.7 has to do with commutation
formulas, we present the following discussion. Let X be a Banach
space and let U (resp. V) be a representation of G (resp. é)
as isometries of X . The pair (U, V) 1is said to satisfy the

Weyl commutation relations if

3.9 Uti = w(t)VwUt

for every t € G and w € G . We show that the algebraic relation
3.9 can be completely described by the behavior of the operators
Vw on the spectral subspaces of U .

COROLLARY 1. In order that (U, V) should satisfy 3.9, it is
necessary and sufficient that

vaU(E) - MU(E + w)

for every compact set E C G .

PROOF. If (U, V) satisfies 3.9, then UtV U
and hence the spectrum of the function (UtiU;l)
the singleton {w} . 3.5 implies that Y&MU(E) - MU(E + w) .

Conversely, assume that the Vw's satisfy the stated condi-

-1 _
£ (oU(t)VLU ’

is contained in

tion and let E be a compact neighborhood of 0 in G . Then for

every A € G we have

VM(E+ ) CH(E+ 2+ 0) .

1

So 3.7 implies that the spectrum % of <UtiU; Y satisfies

Y+ ECw+ E
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Since E can be chosen arbitrarily small this implies I C {w} .
Hence

-1 _
UtiUt = w(t)U

-1

V(,UUO = w(t)vw ’

0
as required B

We remind the reader that pairs of unitary representations
satisfying 3.9 occur naturally in quantum mechanics [20], and simi-
lar pairs of automorphism groups of C*-algebras are a basic compo-
nent of the duality theory of crossed products [36].

If U and V are two unitary representations of G on a
Hilbert space which have the same spectral subspaces in the sense
that MU(E) = MV(E) for every closed set E in ¢ , then by an
earlier discussion which identified MU(E) with the range of the
spectral measure for U on the set E , we see that U and V
have the same spectral measure, and a fortiori Ut = Vt for every
t . The following result from [ 1] generalizes this to the context
we have been discussing.

COROLLARY 2: If U and V are two representations of G on
X for which MU(E) c MV(E) for every compact set E in G '
then Ut = Vg for all t € G .

PROOF. Let V be any precompact open set containing 0 in
é and let E be its closure. Then MU(E + w) C MV(E + w) for
every W € G and, taking A to be the identity operator in X we
see from 3.7 that
)

Ty C
E + sp(VtUt CE

for every such E . Again, since E <can be shrunk to {0} we

must have sp(VtU;l) C {0} and hence V vt

. . V .
£Vt 1s constant 1n t

4. AUTOMORPHISM GROUPS AND DERIVATIONS. We now take up the appli-
cation of the preceding theory to automorphism groups of operator
algebras. Let R be a von Neumann algebra acting on a Hilbert

space H and let t w» @ be a representation of G as a group of

t
x—automorphisms of R such that

t » cxt(X)E, n

is continuous for every x € R and &, n € H . It is a fact that
o defines a representation of G on R 1in the sense of section
3, relative to the ultraweak topology on R . This is proved in
[1l] (proposition 3.0) for one-parameter groups, and follows in gen-

eral by similar methods.
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The fact that each map « preserves the *x-operation of R

t
implies that the spectrum of o and the spectral subspaces of o
passes symmetry properties not shared by more general representa-
tions:

sp(a) = -sp(a) , and
4.1 o N o

RY(E)" = R (-E)
for every closed set E in & . We also have the following de-
scription of the way spectral subspaces of automorphism groups be-
have under operator multiplication.

PROPOSITION 4.2. If E, F are closed sets in G , then
R*®)RY(F) CRYE+ ) .

PROOF. Let x € Ra(E) . The operator mapping L. Y v» Xy is

ultraweakly continuous on R and we have

atLXut = Lat(X)

It follows that for every y € R and p € R, , the function

t > p(atLXa;l(y)) = p(at(x)y) has its spectrum in E , and hence

sp o an'l C . By 3.5, we conclude that the operator mapping

t t —
L, carries R%(E) with R%E + F) B

We first present a convenient criterion for determining when a

given unitary group on H implements the action of G on R . By

a cone in G we mean a closed set ¥ C G satisfying

(i) T+zcC:

4.3
(ii) =z n -z = {0} .

If, in addition, ¥ 1is the closure of its interior, then I wilil

be called proper. Both the positive octant in Rr"

T = uxl, oo, xn): X4 Z 0, eoe, X >0}

and the forward light cone in :mp+l

2 2,.1/2
LI = {(Xl, ceer Xy t): t > (xl + ... + xn) / },

provide examples of proper cones in vector groups. We shall re-

quire the following elementary fact.

~

LEMMA. Let I be a proper cone in G and let L' ©be the

closure of the complement of f in G . Then
(€6 2 +13 C3')= -1

PROOF. Let ) € é and consider the transformation TA of é

w=w+ A . Then TK(Z') =3 iff T transforms the

given by T A

A
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interior of ' into itself, i.e.,
T, (E\I) cé\zI .

since T,(E) CF iff T;l(é\ F) Cc G\ E , for any subsets E, F

of G , the letter is equivalent to the assertion
r-2xCzx

which, since I 1is a semigroup containing 0 , simply means that
- €1 R

THEOREM 4.4, Let U be a unitary representation of G on H
and let I be a proper cone in 6 . Then the following are equiv-
alent:

1

(1) op(x) = U xU; for each x € R, t e€G,

(ii) R%(Z + MP(Zz + W)H CP(Xx + A + pH,

where P 1is the spectral measure of U .

PROOF . (1) = (ii) . Fix X € G and choose x € Ra(Z + A)
For each &, n € H we have (Ut X U;lg, n) = (ut(x)é, n? , hence
the spectrum of the function t b (Ut X U;li, n) is contained in
spy, (X) €L + X . Thus

sp(Ut % U;l) Cz + 2,

and since (X + A) + (Z + u) €T + X +py , it follows from 3.5
that x must map each spectral subspace MU(Z + p) into
MO(Z + A + ) .

(ii) = (i). This argument proceeds somewhat differently. U
B, = Ut'U;l
bra L(H) . Let 1i: R > L(H) be the inclusion map. Then i is

induces an automorphism group of the von Neumann alge-

ultraweakly continuous, and we want to show that the function
t e Btia;l € LW(R, L(H)) is constant. Since I N -x = {0} , it
suffices to establish the two assertions

. =1
sp(Btlut ) €I , and
. o=1
C -
sp(Btlut ) C-x .
For the first, fix A € G and x in R*(Z + A) . Consider-
ing x as an operator on H , the hypothesis (ii) asserts that x

maps MU(Z + u) into MU(Z + A + u) for every u € G . Applying
3.6 to X=Y=H, E=1 , and F =1L + A , we see that

sp(U XU + 2 €3 o+ )

Since 0 € I we conclude that sp(Ut
L + A,
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This means that the inclusion 1 carries RQ(Z + A) into the

corresponding spectral subspace of B :
RO(Z + 1) = (y € L) : spCuyULhH C1 + 2 ).

Since A 1is arbitrary in G, we may apply 3.6 once again to
X=R, Y=1IL(H) , A=1, E=F=73% to conclude that

Sp(Btiat ) + ¢ C1x

Again, since 0 €I , we have the assertion sp(Btia;l) cr .
To show that sp(stia;l) is contained in - , we first
claim that if 1, o € G and K is any compact set in G\I ,

then
4.5. R¥*(-Z + 0)P(K + T)H CP((E\Z)” + 0 + T)H .
Indeed, we know by (ii) that

R¥(Z + M)P(Z + WH CP(Z + A + wH .

If an operator T on H maps a subspace H into H, , then T*

1. 1 _ 1 ~ 1 2
maps H2 into Hl . Since P(E)H = P(G\E)H for every Borel set
E C & and since Ra(Z + l)* = Ra(—Z - A) , we infer from the pre-

ceding inclusion that
R*(-z + VPGV + A + WH CP@E\Z + wH

for every A, u 1in G . Choosing A and u so that A = 0 and
A+ uyu =1 and noting that

P(K+ T)H CP(G\Z + T)H and
P(G\ I +o-+TH1EP(@\Z)_+-0+'UH,

the assertion 4.5 follows.

Now fix o € é and x € R“(—z + 0) . We claim:
-1
4.6 sp(UtxUt ) €= + 0 .

Indeed, taking any open set in G\ 3§ having compact closure K in
G\r , we may apply theorem 3.6 to the formula 4.5, taking U,

= Vt s, X=Y=H, A=x, E=K, and F = (G\I) + o to con-
clude that

sp<U+xU;l) +RKC (G\D) ™ + 0 .

Taking the union of all such K's in é\ L we see that we may re-
place K by G\I in the preceding inclusion and, by taking lim-

its of elements in @\ Y , we even have

spCUXULTY + (G\D)T ¢ G\D)T + 0.
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So if w 1is any element of sp(UtxU;l) , then translation by
w - 0 maps the closure of G\ J into itself. By the lemma we

have
w=-0 € - ,

from which the assertion 4.6 is evident.
Now 4.6 implies that the inclusion i: R - L(H) maps each
spectral subspace Ru(—Z + 0) 1into the corresponding spectral sub-

space for Bt = Ut'U;l

{y € L(H): sp(Bt(y)) C-% + ¢}

Taking X =R, Y=I[(H) , U=0, V=8, A=1i, and E = -I
in 3.6 we conclude that

sp<8tiu;l> -$C -3,

and hence sp(Btia;l) C - because 0 belongs to -I B
REMARKS. We want to point out that there is a natural c*-var-
iant of 4.4, in which R 1is replaced by a C*—subalgebra of L (H)

and the automorphism group o satisfies

lim Hat(x) -xl =0
t->0
x € R . The proof is the same: one need only check that the inclu-

sion map i: R - L(H) is continuous relative to the weak (i.e.,
R'-= ) topology on R and the ultraweak topology on L (H)

Condition 4.4 (ii) appears to differ from the "spectrum condi-
tion" studied extensively by Kraus [19], though it seems likely
that the two are equivalent.

The theory of spectral subspaces was applied to automorphism
groups of operator algebras in [ 1]. It is perhaps worth pointing
out that we were led to this application by a problem concerning
non self-adjoint operator algebras, namely a non-commutative ver-
sion of the classical theorem of F. and M. Riesz. The F. and M.
Riesz theorem asserts that any nonzero complex measure on the unit
circle which annihilates all trigonometric polynomials
16 leie + a2e2ie + ...+ anenie

must be mutually absolutely continuous with respect to Lebesgue

p(e™") = a

measure. The solution to this problem ([1], theorem 5.3) was in-
spired by a generalization of the F. and M. Riesz theorem given by
Forelli [11l], which has as its setting a flow on a compact Haus-
dorff space.
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Forelli's theorem represents the end of a line of development
that was initiated by work of de Leeuw and Glicksberg [9] on the
F. & M. Riesz theorem, and especially by the work of Helson and
Lowdenslager on invariant subspaces [14]. The objective of the
latter was to generalize Beurling's description of the invariant
subspaces of the unilateral shift [5]. This paper of Helson and
Lowdenslager appears to be the first place in which a one-parameter
unitary group is constructed out of a nested one-parameter family
{HA: A €ER} of subspaces of a Hilbert space, where the family
{HA} is defined in terms of an action of IR on a certain algebra
of functions, and where the unitary group is supposed to have cer-
tian "implementation" properties relative to the automorphism group.
The reader should consult [14] for a more explicit description of
the Helson-Lowdenslager program, which involves an intimate rela-
tionship between cocycles and invariant subspaces.

It is also true, of course, that the idea of using methods of
harmonic analysis to study groups of isometries has been in the air
for a long time; it has been a technique known to mathematical
physicists as well as workers in partial differential equations and
semi-groups. After all, Godement's paper [13] appeared in 1947.
But it is a long step from [13] to the Helson-Lowdenslager program
in [14], which made essential use of the idea that one can con-
struct a unitary "implementing" group on a Hilbert space out of the
spectral subspaces of an action of that group on a different Banach
space.

In order to illustrate the use of spectral subspaces in the
theory of operator algebras, we include the proof from [1l] that
every derivation of a von Neumann algebra is inner. This problem
was originally taken up by Kaplansky in [18], where it was settled
affirmatively in the type I case. The general problem remained
open from some time. After considerable preliminary work and en-
couraging results in a series of special cases (due mainly to Kadi-
son, and Ringrose [15], [16]) the problem was settled by Sakai [ 24].
The proof we present was discovered somewhat later (in 1972), but
it has the advantage that one has a constructive procedure for ob-
taining the implementing operator for a skew-adjoint derivation in
a fairly explicit way, in terms of the spectral subspaces of an as-
sociated one-parameter group of automorphisms.

A derivation of a C*—algebra A is a linear map D of A

into itself satisfying
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D(xy) = xD(y) + D(x)y

for all x, y € A . Significantly, every derivation of a C*-alge-
bra is bounded (this is a theorem of Sakai [25]). D is said to be

inner if there is an element b 1in A for which

D(x) = bx - xb, x €A .

A simple argument allows one to decompose an arbitrary derivation

of A into a sum

D = Dl + lD2

where Dl and D, are derivations which are skew-adjoint in the
*
sense that Dj(x*) = —Dj(x) . If both D, and D, are inner

1 2
then of course so is D , and so the following result implies that

every derivation of a von Neumann algebra is inner.

THEOREM 4.7. Let A be a C*—algebra of operators on a Hil-
bert space H , having trivial nullspace, and let D be a bounded
derivation of A satisfying D(x*) = —D(x)* , X €A .

Then there is a self-adjoint operator h in the weak closure

of A satisfying
(i) Inl = L 1pl
2
(ii) D(x) = hx - xh , x €A .

PROOF. For each t € R, itD 1is a bounded self-adjoint

derivation of A and therefore

o, = exp itD

t
defines a uniformly continuous one-parameter group of x-automor-
phisms of A .

A

For each A €R , define a closed subspace H, of H by
Hy = [aE: a € Aa[K, ©) , & € H] ,

the square brackets denoting closed linear space. We have

A Sy = HX E>Hu , and each subspace H, is invariant under the
commutant of A .
We claim: HA =H 1if X < 0 . Indeed, choose £ 1 HA and

let ¢ be a nonnegative continuous function in Ll such that

$(0) > 0 and $ lives in the interval [% A,-—% Al . Then for
every x € A we have '
sp(ay(x"x)) C 5 A -3 A C A, +=) ,

and hence a¢(x*x)£ € Hy . Thus, (d¢(x*x)€, €) = 0 and we have
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f ¢(t)"dt(x)€“2dt = {a (x*x)g, £ =0 .

¢
12 = 0 almost everywhere and so by

We conclude that ¢(t)"at(x)£
continuity and the fact that ¢(0) > 0 we obtain IIXEII2
= Hao(x)gﬂz = 0 . Since x 1is arbitrary in A and A has triv-
ial nullspace, the desired conclusion & = 0 follows.

Before proceeding further, we require the following

LEMMA. sp(a) = o(D) .

PROOF. We know that sp(a) 1is compact (2.13) and, by corol-
lary 2 of 2.12, {wkz A € sp(a)} 1is the maximal ideal space of
u(Ll) . The latter is identified with o(D) by the map

w, © A € 0(D) defined by

A
wx(a¢) = ¢(A) ,

¢ € Ll(ZR) . Thus, sp(a) and o(D) coincide as subsets of R B

Returning to the proof of 4.7, note that H, = 0 if A > lpl .

Indeed, by the lemma we have
sp(e) = o(D) c [-IDI, IDI] ,

and so Aa[k, w) = {0} because [}, +») is disjoint from sp(o) .
Thus, HA = 0 as well.
Thus the one-parameter family of projections P, defined by
t<A

is continuous from the left, decreases as A decreases, and satis-

t

fies P, =1 for X <0 and P, =0 for A > Ipl . Moreover, by
the double commutant theorem, each PA belongs to the weak closure
of A .

Thus there is a projection valued measure P defined on the

Borel sets in IR which is uniquely determined by the condition
P[A, ® =P, , x€ER.

The above conditions imply that P 1is concentrated on the interval

[0, DIl , and thus the self-adjoint operator

ho = J AGP ())

R
is positive, has norm at most |[DI , and belongs to the weak clo-

sure of A .

To complete the proof it suffices to show that
ith0 —ith0
4.8 at(x) = e xe r X EA ;

for this implies after a routine differentiation that
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hox - xh0 ’

and thus we may take h = h0 - % Iph«1 .

To prove 4.8, fix A and 4 in R . Since

D (x) X € A,

Aa[A, °°)Ad[u, ) C Aa[x +y o, ) (proposition 4.2), and hence
A% A, ®)P[u, ©H CP[A+ u, =H .

Taking I = [0, + ) in 4.4 and ngting that P 1is the spectral

measure of the unitary group t H-eltho , we see that the action
o ith,

of o on A is implemented by e |

The technique of the preceding proof can be adapted to a va-
riety of problems involving automorphism groups. The reader may
consult [1], [36] for a "C*" version of the F. and M. Riesz the-
orem and an application to Borcher's theorem in one space dimension.
The latter has been generalized significantly by Kraus [19], after
various partial results in this direction had been obtained by Ole-
sen. Chapter 8 of Pedersen's book [36] contains a more systematic
account of the subject.

We conclude this section with a brief discussion of the spec-
tral invariant T(a) of Connes [8]. Let R be a von Neumann alge-
bra. With every faithful normal state o of R there is an as-
sociated one-parameter automorphism group {OE: t €ER} , called

the modular automorphism group of p . While there is no known
o

direct way of defining the group o in terms of the state o

(for that, one needs the Tomita-Takesaki theory [36]), it is known
that P 4is uniquely determined by the KMS boundary conditions.
More precisely, oP is the unique one-parameter automorphism group
{at} of R with the property that for every pair of elements x,y
in R , there is a continuous function F = Fx,y defined on the
horizontal strip {x + iy: 0 <y < 1} , which is analytic in the

interior of the strip and has boundary values

F(t)

p(yat(x))
F(t + 1) = pla (x)y) .

Different states Pyr P, as above give rise to different modular

automorphism groups ol ’ 02 , but Connes has shown that 01 and

2 . . Y .
o are always exterior equivalent in the sense that there is a

strongly continuous mapping t P-Ut of IR into the unitary group
of R such that

2 _ 1 -1
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and which satisfies an appropriate cocycle condition U
_ 1
= U o (U) [8]. |

Now the spectrum of a one-parameter automorphism group is not

s+t

invariant under exterior equivalence. Nevertheless, this instabil-
ity can be dealt with as follows. Let t € G ¥ Gt € aut R be an
automorphism group of R . If e 1is a nonzero projection in R
which is fixed under the action of o , then there is a compressed

action o of G on the local von Neumann algebra eRe given by
e —
at(exe) = eat(x)e ’

t €EG, x €R . A character X € 6 is said to be stably essen-

tial for o if for every neighborhood V of X and every nonzero
1

ao-fixed projection e in R , there is a ¢ €L whose Fourier
transform lives in V such that

e

¢

I'(a) 1is defined as the set of all stably essential points. It is

o, #0 .

clear that A 1is stably essential if and only if it is an essen-
tial point of every compressed representation a® ; thus

T'(a) = N sp(a®) ,
e

the intersection taken over all nonzero fixed projections e 1in
R .

It is not hard to see that T(a) is a closed subgroup of & .
More significantly, if al and a2 are two actions of G on R

which are exterior equivalent, then ( 8 , théoréme 2.2.4)
4.9 F(al) = F(az) .

Moreover, if R 1is a factor and e # 0 1is any projection fixed
under the action of o , then there is an action g of G on R

which is exterior equivalent to o and which satisfies

4.10 sp(B) C sp(a®) .

Taken together, 4.9 and 4.10 imply that

I'(a) = N SP(B) 7
B~o

where the intersection is taken over all actions g of G on R

which are exterior equivalent to o .

In any case, if one chooses a faithful normal state pop on a
given von Neumann algebra R , then the group T (c°) does not de-

pend on o and therefore it defines an algebraic invariant of R .
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For further results on the computation of this important invariant
and for its role in the classification of type III factors, see
[8].

The invariant T has been extended to C*-dynamical systems by
Olesen; for this and further developments, the reader is referred
to [36].

5. BOUNDED DERIVATIONS AND THE TANGENT ALGEBRA. Let {at} be a
one-parameter group of *-automorphisms of a von Neumann algebra R .
There is always a densely defined closed skew-adjoint derivation D
of R which satisfies the formal condition

DGO = § g a ()| _
is an appropriate sense. Every self-adjoint operator on a Hilbert
space can be approximated in the strong operator topology by a se-
quence of bounded self-adjoint operators. This is a straightforward
consequence of the spectral theorem. Similarly, it is natural to
try to approximate D with bounded derivations. Such a program
calls for the study of bounded derivations from R into L(H) ,

that is, bounded linear mappings §&: R - L(H) satisfying
S(xy) = x6(y) + §(xX)y , X,y €ER .

To see why this is so, we consider a simple example. Let R
be the multiplication algebra acting on H = LZ(IR) , and for each
t €ER let O be the automorphism which transforms the multiplica-

tion operator L. , f € L , to L where
t

ft(x) = f(x -t) , x€ER .

Since R 1is abelian, it admits no nonzero bounded derivations (by

theorem 4.7) and, in particular, the generator of {di} cannot be

approximated by bounded derivations of R into itself.
Nevertheless, we can do almost as well. For if U is the

t
one-parameter unitary group on L2(:R) defined by

ULE(R) = E(x - t) , E€L°(W)
then there is a unique self-adjoint operator X on L2(ZR) such
that
Ut = eitX , te IR .
The Plancherel theorem implies that X 1is unitarily equivalent to

the operator on L2(ZR) given by
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(XE) (A) = cA&(A) ,

g € Lz(Zﬁ) , A Ejﬁ_, where ¢ 1is an appropriate positive con-
stant involving 27 . In any case, we may truncate X at *n to
obtain a sequence Xn of commuting bounded self-adjoint operators
which converges appropriately to X .

In more detail, if we define one-parameter unitary groups u"

by

then the groups g converge to U 1in the sense that

5.1. sup“UEE - Utgﬂ -0 as n > =
t€EK
for every ¢ € L2(ZR) and every compact set K CR . It follows

that the one-parameter family of mappings 02: R > L(H) defined by

of (x) = UL x UL,
converges to the original one-parameter group oL in the sense
that
5.2. sup"az(x)g - at(x)EH >0 as n > © ,
t€K
for every & € H and every compact set K E;m.. In particular,

5.2 gives a sense in which the sequence Dn: R - L(H) defined by
Dn(z) = X,z - zX

converges to the generator D of o .

We conclude that the study of one-parameter automorphism
groups of von Neumann algebras suggests the study of bounded deriva-
tions of R into L(H) .

Another context in which such derivations arise is the pertur-
bation theory of Kadison and Kastler [17]. There is a natural met-
ric on the set of von Neumann algebras acting on H which expresses
the "distance" from one to the other in operator norm. This metric
has the property that if U is a unitary operator on H which is
close to the identity in operator norm, and R is a fixed von Neu-
mann algebra, then R 1is close to URU* . A basic unsolved prob-

lem in the subject asks if the converse is true: if R and R2

1
are close, then is R unitarily equivalent to R via a unitary

1 2
operator U for which |JU - 1 is small? This question turns out
to be equivalent to the question of whether or not every derivation
D of a von Neumann algebra into L(H) is impl=mented by an opera-

tor x € L(H) :
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D(z) = xz - 2zx , 2z € R .
While this latter problem remains unsolved in general, there are
many partial results in the affirmative, the principal ones being
the work of Christensen (l6]1, [7]).
In order to discuss derivations in an appropriate way, it is
necessary to adopt a perspective which is more invariant. Let

A, B be C*—algebras. By a derivation from A to B we shall

mean a pair (w, D) consisting of a *-homomorphism w: A - B and
a linear map D: A »- B such that

5.3. D(xy) = n(x)D(y) + D(x)7(y)

for all x, y € A . The second component D decomposes uniquely

1 2
It is not hard to deduce from 5.3 that D vanishes on the

into a sum D = D, + iD, , where each Dj is self -adjoint

kernel of 1w , and thus there is a unique linear map D: m(aA) -~ B
satisfying Dom =D . If i: m(A) » B denotes the inclusion map,
then clearly (i, D) 1is a derivation of the subalgebra = (A} of
B into B . Thus, in studying a single derivation from A to B ,
one may always reduce to the case where A CB and D: A > B sat-
isfies

D(xy) = xD(y) + D(X)y .

A theorem of Sakai [24] can be adapted so as to imply that the
second component D of any derivation (m, D) 1is a bounded linear
map. It follows that the set ©D(A, B) of.all derivations of A
into B 1is a closed subset of the cartesian product of metric spaces

hom(A, B) x B(A, B) ,
B(A, B) denoting the Banach space of all bounded linear maps of A
into B where, for example, the distance between two homomorphisms
T and ™, is defined by
d(ﬂl, ﬂ2)= .igg "“l(x) - ﬂz(x)ﬂ .
IxI<1
Thus, D(A, B) 1is a complete metric space. The map
p: D(A, B) > hom(A, B) defined by

p('"l D) =T
defines a surjective continuous function with the property that the

fiber p_l(ﬂ) over each point ¢ hom(A, B) 1is a real Banach

space. Thus,
p: D(A, B) - hom(A, B)

defines a family of Banach spaces over the base space hom(A, B)
[2]. It is a fact that if A 1is a nuclear C*—algebra, then this
family is locally trivial, and therefore p: D(A, B) > hom (A, B)
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defines a bundle of Banach spaces on hom(A, B) . We omit the
proof, since this fact is not relevant to our aim here. For each
r =2 0 we can define
D.(a, B) = {(n, D) € D(a, B): IDI <r} .
It is clear that
D(A, B) = U Dr(A, B) .
r>0

We will describe an object, to be naturally associated to any
C*—algebra A , which provides an appropriate vehicle for the
study of bounded derivations of A into arbitrary C*—algebras.
This construction is analogous to the functor which associates to
each compact smooth manifold M 1its tangent space TM . We begin
by discussing briefly a universal property of tangent spaces which
is normally not emphasized in differential geometry.

Let M be smooth compact manifold and let TM be its tangent
bundle. TM 1is an appropriately topological space whose underlying
point set consists of all ordered pairs (p, v) , where p 1is a
point of M and v 1is a (continuous) linear functional on Cw(M)

which satisfies

v(fg) = f£(p)v(g) + v(f)g(p) ,

for all £, g € c”(M) . The set of all such pairs (p, v) where
p is a fixed point of M forms a finite dimensional vector space

TpM , called the tangent space at p . We want to consider not

the manifolds M and TM , but their associated algebras of smooth

(complex-valued) functions

A c®m) , and

TA = C7(TM) .

For any smooth n-dimensional manifold M there is a natural topol-
ogy on the algebra C®(M) which makes it into a topological
(Frechet) algebra. Briefly, a sequence fn € c®(M) converges to
zero iff for every point p of M there is a (coordinatized)
neighborhood U of p such that fn and all partial derivatives
of fn converge uniformly to zero on U .

Vector fields on M are identified with (continuous) deriva-
tions of the algebra c”(M) into itself. Let N be another

smooth manifold By a derivation of Cm(M) to Cw(N) we mean a

pair (m, X) consisting of a continuous algebra homomcrphsim

T Cm(M) > Cw(N) and a continuous linear map X of C*(M) to
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Cm(N) , satisfying
X(fg) = m(x)X(g) + X(x)7T(g) .

The homomorphism T corresponds to a smooth map ¢: N > M , and
X corresponds to a function & from N to the tangent space ™

which satisfies

8@ € Ty »

for every g € N . Thus, derivations of c”(M) to Cm(N)
correspond to "vector fields™ (¢, &) from N to M .

Now there is a distinguished derivation from Cm(M) to
C®(TM) which is defined as follows. For each f € CGYM) , define
i(f) and d(f) in C (TM) by

i(£) (p, V)

a(f) (p, v)

f(p)

v(f) .

i 1is a monomorphism of the algebra structure and d 1is a linear
map satisfying d(fg) = i(f)d(g) + d(f)i(g) . d(f) 1is, of course,
the differential of f . The linear space of all functions on T™

having the form
‘ n

PREICRLICE

is a module over Cm(M) which is naturally identified with the
space of l-forms. We write this module as dA , A = C (M) . The

linear space of functions
i(a) + da

separates points of TM and determines its topology in a natural
way. The algebra of functions on T generated by i(A) + dA 1is
dense in C%(TM) .
Now it is a fact that the distinguished derivation

(i, @): c®M) > c*(TM) has the following universal property: for
every derivation (m, X) of Cc”(M) to CY(N) , there is a unique
homomorphism ¢: Cm(TM) > Cm(N) satisfying

celi=m , and
5.4

0o d =X
(to see this, let (¢, &) be the vector field from N to M cor-
responding to (T, X) , define y: N - TM by

v(a) = (¢(a), &(q)) ,

g EN, and put o(h) = hoy , h € c®(M™)) . This universal
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property, or rather its analogue for C*-algebras, is basic to what
follows.

As a final note, observe that the tangent space of T™ 1is
never compact, but merely o-compact, even if M 1is compact. Simi-
larly, we will see that the tangent algebra of a C*-algebra is not
a C*—algebra but merely a "O—C*—algebra".

In order to define 0-C*-algebras we first consider the com-
mutative case. Let X be a Hausdorff topological space which is
o-compact in the sense that there is a sequence Kl’ K2, ... of

compact subspaces of X such that
(e o]
X= U K_ .
n=1 "

We may obviously assume that Kn c Kn for eveery n . By en-

larging the given topology 1if necessa:;, we may assume that the
topology of X is inductive in the sense that a set U C X 1is
closed (resp. open) iff U N K 1is closed (resp. open in K ) for
every compact subset K C X . Since every compact subset of X 1is
contained in some Kn , we may confine attention to K's of the
form Kn , n=1, 2, ... . It can be seen that if the original
topology on X 1is metrizable or locally compact, then it coincides
with the inductive topology. In general, however, the inductive
topology can be strictly stronger.

A complex function f: X » € 1is continuous in this topology
iff f[Kn is continuous on K = for every n > 1. Let C(X) de-
note the commutative algebra of all continuous complex functions on
X . C(X) has a unit and a natural involution. ©Notice that C(X)
contains unbounded functions if X is not compact, and hence there

is no natural norm in sight. But for each n =21 we have a semi-

norm "."n on C(X) , defined by
£l = sup |f(p) | .
n
peK
. * .

Each "'"n is a C" -seminorm and we have Hf"n < “f"n+l for all
f . Moreover, we have a natural translation invariant metric de-
fined by

1) “f—g I

- n
a(f, 9) = | 2

TLE e 7
niq THIE=ql

which makes C(X) into a complete metric space. A sequence fn
converges in this metric iff fn converges uniformly cn every com-
pact subset of X .

More generally, a g—gi—algebra is a complex x-algebra A ,
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* :
together with a sequence [I-1I, , “'"2 , ... of C -seminorms on

A , satisfying the conditions

(1) Hx“n =0 for all n=21=x=20
5.5
(ii) A 1is complete relative to the metric
o Ix=yl
d(x, y) = Z 27" ————17lL—.
n=1 1+)x Y"n

Though it is not necessary to do so, it will be convenient to as-

.sume that all g—C*algebras have units. We remark that if (i) and

(ii) are not satisfied for thé given sequence of seminorms, then
one can always arrange (i) by passing from A to an appropriate
quotient algebra, and one may then arrange (ii) by passing to an
appropriate completion of this quotient. Second, by replacing
“."n with

Hx“é = max (Ixl,, ..., Hx"n) ,

we may assume that Hx“n < ||x||n+l for all n >1 and all x € A .

Now if Il is any continuous C*-seminorm on A , then by
the general properties of countably normed spaces [12], there is an
n>1 and a c >0 so that Ixl < clxl ~ for every x € A . Be-
cause x-homomorphisms of C*—algebras must have norm 1, we may even
take ¢ =1, and thus Ixl < Hx“n , X €A . In any case, this
observation implies that the completeness property 5.5(ii) depends
not on the particular choice of seminorms “'“n , Or even on the
metric d of 4.5(ii), but only on the topology of A . This is to
say that if two sequences of seminorms {“-Hn} and {H-";} deter-
mine the same topology, and d, d' are the associated metrics,
then 5.5(ii) is valid for d iff it is valid for 4’ .

It is a fact that O-C*—algebras enjoy many of the properties
of o—C*—algebras. Of course, they form a substantially larger
category. For instance, using 5.7 below, it can be shown that the
most general commutative o-C*-algebra is topologically *-isomorphic
to the algebra C(X) of a o-compact Hausdorff space X , endowed
- with its inductive topology as above.

In general, o-C*-algebras are projective limits of inverse se-

quences of C*—algebras. More precisely, a projective system of

C*—algebras is a sequence Al' Ayy «nn of C*-algebras together

with a sequence of surjective x-homomorphisms

m_: A - A .
n

Every o—C*—algebra A gives rise to a projective system
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. N . .
ﬂn. An+l An in the following way. Choose a sequence

"'"n < "'"n+l of seminorms on A as in 5.5, let An be the com-

pletion of A in the norm ﬂ-ﬂn , and let

P, A ~> An
be the natural *-homomorphism. Each A is clearly a unital c*-
< ! . .
algebra. Because Hx"n \.“xﬂn+l and since p_ (A) is dense in A

(actually, the following discussion implies that pn(A) = An) ’

there is a unique surjection *-homomorphism :An+l > A satisfy-

n n

ing
"™ ®Pn+t1 T Pp -
Thus, we have a projective system LN An+l > An , as well as a
system of maps P A -~ An connecting A to {An} . A sequence
of elements a_ € A is said to be coherent if 7_(a ) = a for
n n - n ' n+l n

each n . An example of a coherent sequence is obtained by choos-
ing a = pn(x) , n=1, for a fixed element x € A . Signifi-

cantly, we have
PROPOSITION 5.6. Every coherent sequence a, € An has the
form a = pn(x) for a unique element x € A .

PROOF. For each n = 1 , we may choose x € A so that

"pn(xn) - an“ <1l/n . For m, n >k we have
IIxm - x Iy = Ilpk(xm - x )|
= | ﬂk(pm(xm) - am) - ﬂk(pn(xn) - an)ll
clil,
m n
and thus
lim me - Xn“k =0, k=1, 2, ... .
m,n-»o

It follows that {xn} is a Cauchy sequence relative to the metric
of 5.5(ii), and hence there is an x € A such that

1lim "Xn - ka =0, k=1, 2, ... .

n->o

It follows that a = lim pn(xm) = pn(x) .

m-oo
The uniqueness of x follows from 5.5(i); we omit this argu-
ment B
The following result describes a universal property which
characterizes A as the projective limit
1lim An

f i uenc : A A .
of the inverse sequence T n+tl = “n
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PROPOSITION 5.7. Let B be any o-C*-algebra and let
q,: B ~> An be a sequence of continuous x-homomorphisms satisfying
ﬂno dpe1; =9, ¢+ D = 1 . Then there i1s a unique x-homomorphism

0: B > A such that

9, =pP,°0 , n=1,2, ....

PROOF. For each b € B , we obtain a coherent sequence
qn(b) € An . By the preceding proposition, there is a unique ele-
ment o(b) € A satisfying pn(O(b)) = qn(b) for all n . This de-
fines a x*-homomorphism o: B > A .

If bk - 0 in B , then for every n =1 , qn(bk) > 0 as

k - « , hence

Ilo(bk)lln = “qn(o(bk))ﬂ = an(bk)ﬂ - 0
as k > ® ., Thus O(bk) -~ 0 Dbecause the seminorms {“'“n} deter-
mine the topology of A . That proves o is continuous.

The uniqueness of ¢ follows from the uniqueness assertion of
5.6 &

*
Thus, every o-C -algebra is a projective limit 1lim An . We
——

now want to point out that every projective system of Cc*-algebras

m_: A > A arises in this way from a o-C*-algebra
n n+1l n

A, = lim A .

«— I

To sketch this construction briefly, let A_ be the *-subalgebra

of the infinite Cartesian product of *-algebras A, X A2 X ... con-

sisting of all sequences

(al, a, ., ve.) E Al X A2 X 4

= > . e e i
n+l) a, for each n 1 Al X A2 x is a

o—C*—algebra relative to the product topology, and A is a closed

satisfying nn(a

x-subalgebra. Thus A_ 1is a G—C*—algebra. Defining p_: A~ An
by

pn(al, a,, cel) = a

it is plain that Th° Ppe1 = Py v and one may easily check that the
sequence of continuous *-homomorphisms P, * A, > Al has the univer-

o
sal property described in proposition 5.7.

Returning now to the main discussion, let A be a fixed C*-
algebra. If (m, D) is a derivation of A into another C*-alge-
bra B , then we can generate derivations of A into cther c*-

algebras as follows. Let B' be another C*-algebra and let
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o: B> B be a *x-homomorphism. Then we obtain a derivation

(om, oD) of A to B

" by composition:

o(m(x))

om (x)
5.8

oD (x) o(D(x)) .

It is natural to ask if every derivation (v, D) € D(a, B')
arises in this way from an appropriately chosen 0 € hom(B, B') .
The answer is no; for if (n', D') has the form (om, oD) as
above, then since |g| <1 we have ID'll = lseo Dl < IDI , and
hence no derivation (g', D') for which ID'l > IDI can arise in
this way.

In order to obtain a solution of this universal problem we
have to consider derivations of A into O—C*—algebras; these are
pairs (m, D) where T 1is a (continuous) *-homomorphism of A
into a 0-C*-algebra B and D is a self-adjoint continuous linear
map of A to B satisfying 5.3.

DEFINITION 5.9. Let A be a C*-algebra. A triple consisting
of a 0-C*-algebra B and a derivation (m, D) of A into B is
said to be universal if, for every C*—algebra B' and every
(r', D') e D(A, B') , there is a unique continuous x-homomorphism
o0: B - B' which completes both diagrams

il D

A —

N

We will give a construction for universal triples B, (mw, D)

0 <eeeetd
k;j//
m (—-o-tow

-]

as in 5.8.

presently. Clearly B, (mw, D) 1is unique in the sense that if

B', (r', D') 1is another universal triple, then there is a unique

isomorphism of o—C*—algebras o: B ~B' satisfying o°m= 1 and
oD =D" . We will write TA for B, and (i, d) for (m, D)

or (i dA) if it is necessary to indicate A in the notation.

’
Finalli, we will write expressions such as i(a)d(x) + i(b)d(y)
more briefly as adx + bdy , a, b, x, vy € A .

PROPOSITION 5.10. For every unital C*—algebra A , there is
a universal triple TA , (i, 4) .

PROOF. We first construct a Banach space A-bimodule which is
analogous to the module of 1-forms on a smooth n-dimensional mani-
fold.

Let A ®A R®A be the projective tensor product of three
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copies of the complex Banach space A . Every element of

A ® A®A has a representation
(1) &= z *n ® Yy ® Zn v Epr Ypr %y €A,
n=1
where
(i1) ) Han-HynH-Hzn“ < o
n=1

The norm of £ is the infimum of all expressions (ii), where
X r Y

n
by

a’ Zn satisfy (i). Define a bimodule structure on A ® A @A

a(x By ®z)b = ax By ® zb

and an involution & » &* by

* *

* *
xRy ®z) =2z By Bx .
We obviously have
5.11 (atb)* = b*g*a* ,
for a, b€A, £€A®RA®A. Let K be the closed linear sub-
space of A ® A ® A generated by elements of the form
a®xy ®b -ax ®y ®pb - a ®x ®yb .

K 1is stable under the left and right action of A as well as the

*—operation, and therefore the quotient
dA = A ®A ®A/K

is an involutory Banach A-bimodule whose involuiton satisfies 5.11.
By construction and the universal property of the projective

tensor product of Banach spaces, we may conclude that dA has the

following property: if B 1is any C*—algebra and p: A XA XA > B

is a trilinear map satisfying

lo(x, v, 2) I <MIxl.lyl.lzl
o(x, v, 2)* = o(2%, v, x%
p(al XY » b) = p(ax, Yo b,) + p(al Xy Yb) ’

then there is a unique bounded linear mapping R: dA = B satisfy-
ing
R(a ®x ®b + K) = p(a, x, b) .

In addition, one has R(E*) = R(£)* and IRI <M .

Now define a linear map d of A into dA by

d(a) =1 ®x ®1 + K ,
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1 denoting the unit of A . Notice that ldl <1 , dx)*=ax"),

and by definition of K we have

d(xy) = xd(y) + d(x)y .
Moreover, the relation between R and p above becomes
5.12 R(ad(x)b) = p(a, x, b) .

We now construct the tensor algebra over the module dA .
First, if M 1is any Banach A-bimodule over A , then we may de-
fine the n-fold tensor product M" as follows:

M'"=MB®M®... BM .
A A A
More precisely, one first form the n-fold projective tensor product
of Banach spaces M @M ® ,.. ®M . This is a bimodule over A 1in

a natural way

aE, ®E, ® ... WE )b =at, BE, B ... ®E b .

1
Letting K~ denote the closed linear subspace of M ®¥®M ® ... ®M

generated by elements of the form

- ® g ®
E, ®...REa®E B, B -L B, B BaE B B,

1
a€rn, g €M, 1 <k<n-1, then M" is defined as the

quotient

Ml X)Mz

If M has an isometric involution & = &* satisfying 5.11 then we

R ... ®Mn/Kn .

. . . . . . n
may define an isometric involution in M by

*_ R ® ® £
(&4 ... ® En + K_) & gn—l cee El + K .
For each n-tuple El, cees €n €M we can define a "product"
. n
£ ... €M by

. . = ® ®
El... En El €n+Kn.
Finally, this product module M?  has the following universal prop-
erty: if B 1is any C*—algebra and A: M X ,,. XM +* B 1is an n-
variate multilinear mapping satisfying

"}\(Ell o e o g gn) " <M"El" . ---‘"gn"

* *

AEy s weer £ = AEL, —eey £

and
)\(Ell L 4 gkal £k+ll e e o gn) = )\(Ell o7 gkl aEk_*_ll LA 4 En)

for every a € A, gj EM, 1 <k<n-1, then there is a
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unique bounded linear mapping L: M" - B satisfying

5.13 L(gyvEy®-e- &) = A(Ey, ouny E ) &

Moreover, one has ILl <M and L(z*) = L(2)* for every U € M7 .
Now for each n =2 0 , we can define an involutive Banach
A-bimodule da" by

dAO = A , and
da"™ = 4da-dA ... dA, n>1.
n
Let ) da"™ denote the (algebraic) direct sum of vector spaces

7 aa® = A + da + an + ... .

Thus, a generic element of z aa” is a sequence (a, &

where a € A , Ek € dAk , and Ek = 0 for sufficiently large k .

LBy eea)

For each nonnegative real number r = 0 we have a seminorm “'“r
on ) dA" defined by

I(a, &5, &yr <)l = lall + § i LS
Note that H‘Hl restricts to the given norm on each summand aa" ,
and we have HEHrl < Hgllr2 if r, <r, .

Now for each m, n > 0 , we have a bounded bilinear mapping
(€, n) €daa™ x aa™ » gen € @aa™™"

1+ Vp by

(ul-...-um)-(vl-...-vn) = Uptee.tU VLtV

defined on generators & = u; ... U, N=v

This operation extends linearly so as to make ) da” into an as-

sociative complex algebra, and we have
. <
g n"r \~“E“r"n"r

for all r >0, &, n € z dA™ . The unit of A gives rise to a
unit e of ) dA" defined by

e = (l, 0, O' -0') 4

and the map (a, gl, 52, ...) b (a¥, E;, E;, ...) defines an in-
volution of the algebra structure on ) da™ such that “E*Hr
= "E"r for all r, € .

Finally, let i, d: A =~ z dA"™ denote the linear maps

i(a) = (a, 0, 0, ...)
d(a) = (0, d(a), 0, ...) .

Both i and d are self-adjoint linear maps satisfying
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||i(x)||r < Ixl , ||d(x)||r <rlxl , i is multiplicative, and 4

satisfies
d(xy) = i(x)d(y) + d(x)i(y) .

Now if B 1is any C*—algebra and (m, D) € D(A, B) , we claim

that there is a unique *-homomorphism o: Z aa" > B satisfying
o(d(x)) = D(x)
o(i(x)) = n(x) ,

x €A, and lo(g) Il < "EHr for all & , where r = IDl . To

construct o , first consider the trilinear map
(a, x, b) = m(a)D(x)m(b)

of A XA XA into B . Then there is a linear map Ly: dA - B

of norm at most r , satisfying L(£*) = L(£)* and the formula
5.14 Ll(ad(x)b) = g(a)D(x)7w(b) .

Now for each n 2> 2 we can utilize the universal property 5.13 to
obtain a self-adjoint linear map L : aa™ - B such that “Ln(E)H
<r'lgl; , &eda”, and

Ln(gl oo .gn) = Ll(gl) e -Ll(En) ’
El, ey En € dA . Finally, we can defini o by

o(a, Tyr CTor v.) = T(a) + ) Ln(Cn) .

n=1
0 1s a *-homomorphism having all the assorted properties. The
proof of uniqueness of 0 1is left for the reader.
The norms H-Hr on J dA" are not C*-seminorms, but this can

be remedied by a familiar device. For each r =20 , we can define

a C*-seminorm Il on ] aa" by
“C"; = suplo(zg) Il ,

the supremum taken over all *-homomoprhisms o of ) aa™ into the

algebra of all bounded operators on some Hilbert space H satis-

o 4
fying lo(g) 1 < lcl . clearly Izl < Icl’  for every T € ] aa" .
Moreover, it is easy to see that the *-homomorphism O:Z aa™ - B

constructed above from (m, D) actually satisfies
lo() I < HcH; , T € 2 aal ,

for r = IDI . If we choose any sequence of reals r, <r, <...
such that

r, + ©, then we can define the o-C*-algebra TA as
the completion of ) dA" relative to the sequence of C*-seminorms
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“-";l < “.“;2 < ... . The corresponding derivation
(i, d): A >~ TA

plainly has the right universal properties H

This construction of TA from A can be modified so that it
works for any 0~C*—algebra A . Moreover, in this setting, the
natural derivation (i, d) € D(A, TA) has the stronger property
that if (w, D) € D(A, B) 1is any continuous derivation of
o—C*-algebras, then there is a unique homomoprhism of o—C*—alge—
bras o¢: TA B such that h = cei , D= ¢god . Here we merely
sketch the details.

We claim first that the tangent algebra of any C*—algebra A
has the stronger property: if (m, D) 1is a continous self-adjoint
derivation of A into any ¢-C*-algebra B , then there is a unique

*
homomorphism of o-C -algebras o hom(TA, B) such that

ool =17

cod =D .
For this, let “'"n < "'“n+l be C*-seminorms on B which deter-
‘mine its topology, let U Bn+l > Bn be the associated inverse

system of C*—algebras, and let o B ~» Bn be the connecting maps.
For each n we have a derivation (pn° ™, pn° D) € D(a, Bn) and,
since Bn is a C*—algebra there is a unique x-homomorphism

o3 TA - Bn satisfying 6 ,°i=p,°em, O e d = P, ° D . For each
£ €TA , the sequence

(ol(E), 02(«5), ces )

is coherent in the sense that ﬂn0n+l(€) = On(E) , and so by 5.6
there is a unique element o(g) € B for which pno(g) = on(g) .
This defines a *-homomorphism o¢: TA > B for which pno(i(a))
= Oni(a) = pnﬂ(a) , and hence o¢(i(a)) = 7m(a) , a €A . Similar-
ly, O0od =D . Continuity of 0 follows from continuity of each
map p o0 . The proof of uniqueness of 0 1is left for the reader.
Second, we indicate how the construction of TA must be modi-
fied when A is merely a 0-C*-algebra. Again, let |- m} < “'"n+

1

be C*-seminorms on A with associated sequences Tt An+l > An ’

P, A ~ An . For each n we form the tangent algebra TAn and

its universal derivation (i , dh) €0(A,, TA)) . Make ({TA }
into a projective sequence as follows. For eachr n , we have a

derivation

i (S
(1n oTm_, dn °ﬂn) D(An

TA_) .
n n

+1’
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By the preceding paragraph, there is a unique }n € hom(TAn+l, TAn)
satisfying
TTno ntl - *n°® TTn
~ - "T
Trn° dn+l dn° n °
Thus we have an inverse system of o—C*—algebras %h: TAn+1 >~ TA,
and, exactly as we did for C*—algebras, we may construct an inverse
limit
TA = lim TA
— n
and connecting maps L TA -~ TAn , satisfying ﬂno rn+l =r, -

TA 1is a o—C*—algebra. Now define (i, d) in ©D(A, TA) as fol-

lows. For each a € A we have coherent sequences
(i;p, (@), i,p,(a), ...)
(d;pq (a), d,0,(a), ...)

in TAl X TA2 «e. o« Thus there are unique elements i(a) , d(a)

in TA satisfying

rni(a) inpn(a)

rnd(a) = dnpn(a) .

It is easily checked that (i, d) 1is a derivation of A into TA
which has the required universal property for derivations of
*

0-C -algebras.

Every smooth mapping ¢: M - N of manifolds induces a smooth
mapping of their tangent spaces d¢: TM -~ TN . In this setting,

*

the situation is described as follows. Let A, B be o-C -algebras
and let 7 € hom(A, B) be a continuous x-homomorphism. Then the

pair (iBO‘ﬂ, d,o m) 1s a self-adjoint derivation of A into TB ,

B

so by the universal property of (i dA) there is a unique

AI
dm € hom(TA, TB) satisfying

dmeo i

Il
'_l
o
3

5.15 A B
dme d

|
Q
o
3

A B
Naturally, we call dnwn the differential of 1w . Using 5.15, the

reader can check easily that for composable maps Wz € hom(a, B) ,

™€ hom(B, C) we have the chain rule:

d(ﬂlO ﬂ2) = dnlo dnz .

We conclude that
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A - TA
T:
T > d4am

is a covariant functor from o—C*—algebras‘Eg o-C*-algebras. This

functor is in fact continuous for appropriate topologies on the

spaces hom(A, B) (analogous to the point-norm topology) .

If A 1is a separable C*-algebra then one can see from its
construction that TA 1is a separable O—C*—algebra. TA 1is never
commutative, even when A = C€C(X) , except in the trivial case
A = C . The reason for this is clear because, while a commutative
c*-algebra has no nontrivial derivations into itself, it certainly
has nontrivial derivations into other C*—algebras. For instance,
if A C L(H) is any C*—algebra of operators and x 1is any skew-
adjoint operator on H which is not in the commutant of A , then
Dx(a) = xa - ax defines a nontraivial derivation of A into L(H) .

Nevertheless, we will see that in all cases, TA 1is homo-

topically equivalent to A By a homotopy equivalence of o—C*—alge—

bras A, B we mean a pair of maps m € hom(A, B) , o € hom(B, A)
such that both endomorphisms ocem™ and we o can be joined to the
respective identity maps by an arc of *x-endomorphisms; this means

that there is a function
t €[0, 1] » Gt € end (A)

such that t H'Gt(a) is continuous for each a € A , for which
60 = 0o T and 61 = ldA .

Let A be a fixed O—C*—algebra. We show that TA and A
are homotopy equivalent. We already have a map 1 € hom(A, TA)
and we can define a map O € hom(TA, A) by the universal property

0ol = ldA

cgod 0o,

because (idA, 0) 1is a derivation of A into itself. We already
have o0e° i = idA , SO to show that i, 0 1is a homotopy equiv-

alence we need only construct an arc Gt € end (TA) satisfying

eo = 1io 0 and el = ldTA . For each t € [0, 1] , consider the

derivation (i, td) of A into TA . By the (extended) universal

property we have a unique 6, € end(TA) satisfying

t
5.16 bpeil=1
eto d = td .

Notice that A = © and ) = i°0 both satisfy the conditions
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Ao i =1

Aed =0
and hence 60 = 100 by the uniqueness assertion of the universal
property for (i, d) . Similarly, both A = 61 and A = idTA
satisfy

Ao i =1

Aod =4d ,
and hence el = idTA . The fact that t v et(g) is continuous for

every & € TA follows from the derinition 5.16 and some simple
facts from C*-algebra theory (using the resolution of TA into a
projective system of C*-algebras), and is left for the reader.

In conclusion, we want to point out that the tangent algebra
of a C*—algebra A has been introduced in order to deal with
bounded derivations of A whose norms can be arbitrarily large,
but finite. In order to deal with unbounded derivations, more
precisely, with the generators of one-parameter automorphism groups,
one cannot hope to work within the category of o-C*—algebras. The
reason is clear if one considers the commutative situation. A vec-
tor field on a smooth manifold M may be considered as a deriva-
tion of the algebra c”(M) of all complex-valued smooth functions
on M . C° (M) is a commutative "o-Banach" x*-algebra but it is not
a 0-C*-algebra. It does have a sequence “.“n < "'"n of contin-

R +1
uous C" -seminorms

£l = sup |£(p) |
PEK

(Kl, K2, ... Dbeing compact subsets of M such that M = ‘JKn ) .
and the completion of C (M) relative to this sequence {"'"n} is
a commutative o-C*-algebra C(M) . But of course derivations of
C“RM) cannot be extended to derivations of C(M) , and one must
work not directly with the 0-C*-algebra C(M) but with the
0-Banach algebra CQRM) .

Similarly, in order to properly formulate non-commutative dif-
ferential geometry (by this we mean the study of generators of one
parameter groups of *;automorphisms of a givenC* -algebra) one
should work not with a o-C*-algebra but with a o-Banach x-algebra
which has a O—C*—algebra as a natural completion. These develop-
ments are still tentative, but it is clear that some variation of
Grothendieck's notion of nuclear space is fundamental to the sub-

ject.
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For some specific and suggestive results, the reader is re-

ferred to recent work of A. Connes and S. Sakai.
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