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The main result of this paper is a theorem which allows one to determine 
when a finitely generated left ideal in certain reflexive operator algebras is 
trivial (i.e., contains the identity). This is based on a formula which expresses 
the distance from such an algebra to an arbitrary operator on the underlying 
Hilbert space. As an application, we are able to deduce an operator-theoretic 
variant of the Corona theorem. Some applications of the distance formula to 
quasitriangular operators are given, and we present some new “inner-outer” 
factorization theorems along the way to the main result. 

1. THE DISTANCE FORMULA 

Let a be a (perhaps non-self-adjoint) algebra of operators on a 
Hilbert space Z’, and let T be an arbitrary bounded operator on &. 
If P is a (self-adjoint) projection whose range is invariant under GZ, 
then for each A E 62 one has (1 - P) AP = 0, hence 11 T - A 11 > 
I/( 1 - P)( T - A)P 11 = /I(1 - P) TP 11. It follows that 

where d( T, GY) is the distance from T to 6Z and where the supremum is 
taken over the lattice lat 02 of all a-invariant projections. The purpose 
of this section is to prove that equality holds for a certain class of 
reflexive operator algebras. This distance formula is essential for the 
results of Section 4, and appears to be useful in other contexts as well; 
for instance, some applications to quasitriangular operators and 
algebras are presented in the following section. 

Every set 2 of projections in 5?(s) determines an algebra alg 9, 
consisting of all operators A satisfying (1 - P) AP = 0 for every 
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P E 2, and as usual an algebra G! is called rejIexive if it arises in this 
way; equivalently, QZ = alg lat 02 [9]. We begin with two general 
lemmas. 

LEMMA 1. Let GZ C 2?(x) b e a reflexive algebra and let T E S?(S&‘). 
Then 

d( T, a) = s;p d( T, alg S), 

where 9 ranges over all $nite subsets of lat Q!. 

Proof. If 3 is any finite subset of lat a, then alg g contains 
alg lat 02 = 02, so that d( T, Q!) > d( T, alg 3Q proving the inequality 3. 

For the opposite inequality, let 01 denote the right-hand side of the 
asserted formula and choose E > 0. For each finite subset 9 C lat CZ 
choose A, E alg 9 such that j/ T - A,- 11 < 01 + E. The -4*‘s are 
bounded in norm (because /I A9 /I < /j T - A, j( + jj T ji < cy. - 
E + /j T 11) so that the sets of operators Z& = {As: ‘3 2 F}-weak are 
compact in the weak operator topology. Moreover, these sets have the 
finite intersection property because the finite subsets of lat fl form an 
increasing directed set relative to the usual set inclusion. Hence we 
may find an operator A, in the intersection nS: LY$ . 

Now since the norm is lower semicontinuous in the weak operator 
topology it follows that 11 T - X 11 < cz + E for every X E Sp, , for 
each 9, and in particular /I T - A, 11 < 01 + E. Finally, we claim 
that A, E 91 (since E is arbitrary, this will complete the proof). Because 
(2 is reflexive, this is the same as proving A, E alg lat G!. But for every 
P E lat G’, we have A, E Yip) C alg(P}; hence (1 -- P) A,P = 0, as 
required. 1 

We shall write E2 @ A? for the Hilbert space direct sum 
2-i? @Af @ *** of denumerably many copies of %, and for each 
operator T E .S(&?), 1 @ T will denote the operator T @ T @ *** G 
Z(Z2 @ Z). It is well known that the map X +-+ 1 @ X is an ultra- 
weakly continuous *-isomorphism of L?(x) into .Z(Z” @ Z). More- 
over, every ultraweakly continuous linear functional p on LY(*%) can 
be expressed in the form p(T) = ((1 @ T).$, T), where $ and 7 are 
vectors in l2 @ Z of norm /j p 1l1/2 (see [7]). 

We shall also make use of the following bit of lore from the elemen- 
tary theory of Banach spaces, which we merely state for the reader’s 
convenience. If M is a weak*-closed linear subspace of the dual E’ of a 
Banach space E, then for every f E E’ one has 

;$llf-gll = sup{lf(x)l:xEE,xlM,I/xi/ 5s 1;. 

SS=‘b/3-3 
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LEMMA 2. Let G! be an arbitrary ultraweakly closed subalgebra of 
.9(Z) containing 1, and let T E S?(Z). Then 

d(T, GZ) = sup{ll(l - P)(l 0 T)Pll: PE lat(1 @ a)>. 

Proof. The inequality > is trivial, and follows from the argument 
given at the beginning of this section, provided one observes that 
d(T, GZ) = d(1 @ T, 1 @ a). 

For the opposite inequality, we make use of the fact that Y”(Z) is 
the dual of the Banach space Z(s).+ of all ultraweakly continuous 
linear functionals on Y(Z), via the duality Ip, T] = p(T). Since Q! 
is ultraweakly closed, the inequality < will follow from the remarks 
preceding the lemma provided we can prove that, for every p E 9(Z)* 
satisfying I] p 11 < 1 and p _L Ol, one has 

I p(T)1 d sup{ll(l - P)(l 0 Wll: PE lat(l 0 a)>. 

For that, choose such a p. As we have already observed, there exist 
vectors 5, 77 E Z2 @ 8, ]I 511 < 1, II 17 (1 < 1, such that p(X) = 

((1 0 X)65 7) f or every X E Z(x). The condition p(a) = 0 becomes 
the condition 7 1 [(l @ a).$]; so if P denotes the projection onto 
[(l @ 0@], then clearly P E lat(1 @ Q!) and 71 E range(1 - P). More- 
over, since GY must contain the identity it follows that 5 E range(P). 
Hence, 

I p(V = I((1 0 05 41 = I((1 0 T) PC!, (1 - Ph)l 

G IIU - fw 0 w II * II !t II * II rl II 

G SUPW - Q)U 0 T)Q II: Q E 141 0 @NY 

as required. m 

The preceding result indicates that, in order to compute d(T, 6Z), 
one should examine the structure of lat(1 @ 6Y). This program was 
carried out in detail for a broad class of operator algebras in [4], and 
in fact one may give a proof of Theorem 1.1 below based on the results 
of [4]. However, for the algebras of interest in this paper (i.e., nest 
algebras), Lemma 1 provides enough of a reduction that an elementary 
analysis of the structure of lat(1 @ Q?) can be made. This is the 
content of the following two results. 

LEMMA 3. Let G?! be a re@xive subalgebra of 9(Z) such that lat a 
contains an element P # 1 which dominates every projection in lat a 
other than 1. 



INTERPOLATION PROBLEMS IN NEST ALGEBRAS 211 

Then every projection E E lat(1 Q a) has a decomposition 
E = R + EO, where R commutes with 1 @ Y(Z), E, < 1 @ P, and 

R I%- 

Proof. Assume first that the largest subprojection of E which 
reduces 1 @ P’(Z’) is 0. We will prove that E < 1 @ P. 

First, note that X(1 - P) E 02 for every X E Z(P). Indeed, if 
Q E lat 02, Q # 1, then Q < P so that (1 - Q) X( 1 - P)Q = 0. 
Hence, X(1 - P) E alg lat @ = GZ, as asserted. 

In particular, (1 - P), and therefore P itself, belongs to 6Y. There- 
fore E is invariant under 1 @ P, and we conclude that E commutes 
with 1 GJ P. 

Let F = (1 @ (1 - P))E. S ince S?(S)( 1 - P) _C 0? and E is 
invariant under 1 @ a, it follows that (1 - E)(l @ DLp(.Z’))F = 0; 
i.e., the closed span of the ranges of all operators of the form (1 @ X)F, 
X E Z(Z), is contained in E. The latter subspace clearly reduces 
1 @ 3(S), so by the assumption on E we conclude that (1 @ X)F = 0 
for every X E Z(x). In particular, F = (1 - 1 @ P)E -y 0, giving 
the desired conclusion E < 1 @ P. 

In the case of a general E E lat(1 @ a), let R be the largest sub- 
projection of E which reduces 1 @ 9(Z), and put E, = E - R. 
Clearly E0 E lat( 1 @ a), and E, satisfies the assumption at the 
beginning of the proof. We conclude from the above that 
E, < 1 @ P. 1 

In the following lemma, we shall realize Z2 @ 3 (defined as a direct 
sum of copies of ~6) as the Hilbert space tensor product of Z2 with ~4. 
Thus for each bounded operator A on l2 and each B E Z(Z), we 
may form the operator A @ B on l2 @ SP in the usual sense of tensor 
products; and of course the two definitions of 1 @ B agree under the 
natural identification. 

LEMMA 4. Let Q? C 2’(Z) be a re$exive algebra such that lat 0? 
is a jinite chain (0 = P,, < PI < .*a < P, = l}. Then every element 
of lat( 1 @ GZ) admits an expression 

E=A,@P,+...+A,@P,, 

where A, ,..., A, are mutually orthogonal projections in Z(Z2) having 
sum 1. 

Proof. We use induction on n 3 1. The case n = 1 is trivial, 
For then, r5Z = 9?(Z), and the expression above follows from the 
familiar fact that the commuting projections for 1 @ 9(S) are all 
of the form A, @ 1, where A, is a projection acting on Z2. 
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Assume now that the lemma is true for k < n, and suppose 
lat 6Y = (0 = P,, < P1 < *** < P,+l = l}. The projection P, satis- 
fies the hypothesis of the preceding lemma, and thus E decomposes 
to the form E = R + E, , where R reduces 1 @9(Z) and 
E,, < 1 @ P, . Since every operator commuting with 1 @ Z(P) 
must have the form X @ 1, it follows that R must have the form 
A,+1 @ 1 = A,+1 @ P,+1 , where A,+1 is a projection acting on la. 

Consider now the algebra G&, = GZ 1 range P, . It is easy to see that 
lat Q!s = (0 = PO < --* < P, = l}, and G&, is reflexive because 6Y is. 
Moreover, if we consider the Hilbert space Z = (1 - A,,,) Z2, 
then the range of E,, is contained in 3? @ range P, (because 

Es -L A,+1 0 1 and E, < 1 0 P,), and is invariant under the algebra 
1% @ A, . So by the induction hypothesis we conclude that there are 
mutually orthogonal subprojections A, ,..., A, of 1 - A,+1 = Ix , 
having sum 1 - A,+l, such that E,=A,@P,,+---+A,@P, 
(strictly speaking, we have only stated the induction hypothesis for 
the case where 3? g la is infinite dimensional; however, the arguments 
given apply to arbitrary Hilbert spaces). The required formula 
E = A,, @ P,, + *.a + A,+1 @ P,+l is now immediate. 1 

We come now to the main result of this section, which applies to 
nest algebras [l l] ( i.e., reflexive algebras 6Z such that lat GZ is totally 
ordered). 

THEOREM 1.1. Let rY be a nest algebra on a Hilbert space 2 , and 
let T E S?(Z). Then 

d(T, GZ) = sup(ll(l - P) TPII: Pe lat GY}. 

Proof. As we have already pointed out, we need only prove the 
inequality <. 

Suppose first that the theorem has been proved for the special case 
where lat 0Z is finite. Then for every finite chain 9 of projections we 
have d( T, alg 9) < sup{ll( 1 - E) TE I): E E Fj (here we have used 
the fact that lat alg 9 = ZF u (0, 11, which can easily be proved 
directly, or found in [4] or [Ill). The theorem now follows from an 
application of Lemma 1. 

To deal with the case where lat a = (0 = P,, < PI < --* < P, = 1) 
is finite, we see by Lemma 2 that it suffices to prove that, for every 
E E lat(1 @ GJ), one has I[(1 - E)(l @ T)E 11 < supn ]I(1 - P,) TP, 11. 
So choose such an E. By Lemma 4, there exist mutually orthogonal 
projections A, ,..., A, E 5?(P) with z A, = 1 and E = Ck A, @ Pk . 
Noting that 1 - E = Ck A, @ (1 - Pk) (the easiest way to see this 
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is to check that the projection F = x.k A, @ (1 - Px.) satisfies the 
conditions EF = 0 and E + F = I), we have 

(1 - E)(l @ T)E = C ALA, @ (1 - Pk) TPj 
k,j 

= c A, 0 (1 - PTJ TPI, , 

using the fact that Ai J- A, if i # j. Thus, (1 - E)( 1 @ T)E is a 
direct sum of the operators A, @ (1 - P,)TP,, ,..., A, @ (1 - P,)TP, , 
and we conclude that 

IIU - W 0 T)Eli = sy~ll& 0 (1 - Pk> TP,l/ < S;P IIU - PJ TP,I/, 

as required. 1 

Remarks. It is instructive to examine the content of this theorem 
in the finite-dimensional case. Let e, ,..., e, be an orthonormal base 
for a Hilbert space S, let Pr, be the projection on [e, ,..., e,], 
1 < k < n, and let CY = alg{P, ,..., P,}. Relative to the basis (e,), 
GF!! becomes the algebra of all upper triangular n x n matrices (aij), 
ati = 0 for i > j. If T = (tij) is an arbitrary n x n matrix, then 
(1 - P/J TP, h as a matrix of the form 

0 0 

--• (k$-l,k) , 

i i 

tij 0 

and the theorem asserts that the distance from T to the upper 
triangular matrices is the largest of the norms of these block lower 
triangular submatrices. One might expect that a more likely measure 
for d(T, a) would be (j TV I/, w h ere T- = (sij) is the lower triangular 
part of T, defined by sij = tij if i > j and sii = 0 if i < j. However, 
this conjecture fails in an extreme way; it is not very hard to show 
that if r12 is the linear mapping of n x n matrices given by n, : T w  T- , 
then I/ v,? /I tends to + 00 as n -+ co. 

2. APPLICATIONS TO QUASITRIANGULAR OPERATORS AND ALGEBRAS 

Let S& be a separable Hilbert space. An operator A E 2?(X) is 
called quasitriangular [8] (resp. quasidiagonal) if there is an increasing 
sequence P, of finite dimensional projections, such that P, T I, and 
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IIU - f’n) AP, II -+ 0 (resp. Ij P,A - AP, 11 + 0). In this section we 
want to consider the algebra of all operators which are quasitriangular 
or quasidiagonal relative to a fixed sequence P, . More specifically, 
we are interested in the four sets of operators 

29 = {A E U(&‘): [I(1 - I’,) AP, Ij + 0}, 

d.9 = {A E Z(S): 11 P,A - AP, II+ 0}, 

where, throughout this section, it will be understood that the sequence 
{Pm} is fixed. 

Obviously 9 is a weakly closed algebra containing 1, and 
9 = F n F* is its diagonal. Similarly, it is easy to see that Z?Y is a 
norm closed algebra containing 1, and A!9 = (Z!Y) n (A?F)* is a 
C*-algebra (the proof that AF is a Banach algebra is contained 
in the proof of the main result of [12]). Moreover, since 
lim, I[(1 - P,) KP, Ij = 0 f or every compact operator K, we see that 
both /W and ?&Y8 contain the C*-algebra %7(Z) of all compact 
operators on 3. 

It follows from these remarks that the algebra F + %(&) of all 
compact perturbations of operators in F is contained in ZW; and the 
first nontrivial fact that we shall require is that this perturbed algebra 
is closed in the norm topology. 

PROPOSITION 2.1. 9 + V(P) is norm-closed, and moreover the 
natural isomorphism of F/Y n q(Z) onto F + %(2)/U(X) is 
isometric. 

Proof. Let q be the natural projection of 5?(P) onto the Calkin 
algebra A?(X)@?(Z). S ince .F + V(X) is a subalgebra of P(s), 
we may regard q(F + U(X)) = Y + ‘%(&Y)/%?(Z) as a subalgebra 
of the Calkin algebra. 

There is a natural homomorphism a of S/Y n U(Z) onto 
Y + Q(X)/%(X), defined on cosets as ol: A + Fn %?(A?) --f 
A + %‘(Z), A E F. Clearly the map is norm-decreasing, and we 
claim now that it is isometric. Indeed, if A is any operator on A?, 
then the norm of q(A) is given by lim, [I(1 - P,) A(1 - P,)j) 
(see [3, Lemma 1, p. 2921). So that if A E F then each operator 
(1 - p?J A(1 - Pn) can be written A + K, , where each K, = 
-P,A - AP, + P,AP, is a finite rank operator in F. This implies 
that (1 q(A)/] > inf{ll A + K 11: K E Y n %?‘(Z)}, and the claim follows. 
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Now since Y/Y n g(X) is a quotient of a Banach algebra by a 
closed ideal, it is complete as a Banach space. Since cy. is isometric, 

LfT + ~vwwf) is also complete, and therefore closed in the Calkin 
algebra. It follows that Y + V(Z) = Q-~(.Y + V(Z)/%(Z)) is 
closed. 1 

We remark that the corresponding properties for 8 $ w(Z) are 
also valid, and are well known in the theory of C*-algebras (see 
[l, 1.8.41). 

It is known that if A is an operator which is quasitriangular 
relative to the sequence P, , then there is an infinite subsequence 

pn, 9 pn, 7.e. which is left invariant under some compact perturbation 
of A (see [9]; there, the subsequence is chosen to be sparse enough 
that the corresponding series of norms Ck li(l - P,,) APn, /I is 
convergent). We will prove here that it is always possible to find a 
compact perturbation of A which leaves the entire sequence PI , P, ,... 
invariant. This is a consequence of the following variation on the 
distance formula of the preceding section. 

THEOREM 2.2. Let B E 3(X’). Then 

d(B, Y + g(Z)) = limnsup j/(1 - P,) BP, I/. 

Proof. For the inequality 2, choose A G Y and K E V(X). Since 
(1 - P,) AP, = 0 for every n and \I(1 - P,) KP, )I -+ 0, we have 

lim sup 11(1 - P,) BP, /I = lim2up /I(1 - P,)(B + A + K) P, 1, 
n 

< II B + A + K Il. 

The inequality follows by taking the inf over A and K. 
For the opposite inequality, let I denote lim sup% \I(1 - P,) BP, 11, 

and choose E > 0. Now find n, such that \I(1 - P,) BP, 1) < I + E 
for every n 3 n, . The distance formula implies that there is an 
operator A in alg{PnO , P,O+l , Pn,+z ,...I such that /[ B - A // < I + 2~. 
Since one can write A in the form A, + F, where A, E 7 and F is 
finite rank (for example, one may take A, = A(1 - P,,)), we con- 
clude that d(B, Y + U(X)) < I + 2~. The theorem follows because E 
was arbitrary. fl 

COROLLARY. 27 = r + q2-q. 

Proof. If A E AY, then 

d(A, .Y + V(*)) = limnsup \I(1 - P,) AP, (/ = 0, 
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and the required conclusion A E 9 + q(s) follows because 
Y + U(&) is norm-closed. 1 

Remarks. As we have already pointed out, this theorem can be 
regarded as a strengthening of the result which asserts that every 
quasitriangular operator is a compact perturbation of a triangular 
operator. Since there is an analogous decomposition for quasidiagonal 
operators, one might expect the corresponding result to be true for 
99, namely, 99 = 9 + U(p). It is interesting that this fails: 
Joan Plastiras has shown that 99 is always larger than 9 + V(Z). 
Thus, while every operator A E LZB can be written simultaneously 
in the form A = B + K = C* + L, where B, C E Y and K, L are 
compact, it may not be possible to choose B E Y fl 9*. At this point, 
the structure of the class of C*-algebras Z?Q seems quite mysterious. 

Finally, we remark that the lim sup appearing in the preceding 
theorem cannot be replaced with lim; the reader can easily find 
unilateral weighted shifts B for which lim, //(I - P,) BP, /I fails 
to exist. 

3. FACTORIZATION THEOREMS 

It is known that every nonzero bounded analytic function in the 
open unit disc has a factorization f = uF, where u and F are, respec- 
tively, inner and outer functions. A closely related theorem asserts 
that every real-valued bounded measurable function on the unit 
circle is the boundary value (almost everywhere) of a function of the 
form log / f 1, where f and its reciprocal are bounded analytic functions 
in the open unit disc. We shall require analogous factorization 
theorems relative to nest algebras, and the present section is devoted 
to this discussion. 

We consider only nest algebras of the simplest type, namely, 
algebras of the form GY = alg(&~}, where &Yn , n E 2, is a doubly 
infinite sequence of closed subspaces of a fixed Hilbert space Z, 
satisfying An _C dn+r , 0, &!n = 0, and [(J, Mn] = &? (it will be 
convenient in this section to deal with subspaces rather than 
projections). Thus we allow the possibility that A, = 0 for n < 0, 
or A, = Z’ for n > 0, and &, @ &‘Z+r may be 0-, finite-, or 
infinite-dimensional. All of this structure is tixed throughout the 
section. P, will denote the projection on A, , and for an arbitrary 
operator A E .9(S), RA will denote the projection on the closed 
subspace [AS]. 
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DEFINITION 3.1. (i) A n o era or p t A E a is called outer if R,, 
commutes with every P, , and A&‘, is dense in [A%] n J&T, for 
every n E Z. 

(ii) An operator U E 02 is called inner if U is a partial isometry 
whose initial projection lJ*U commutes with every P, , n E Z. 

We will be mainly concerned with outer operators, and it seems 
appropriate to illustrate the scope of the definition with a few examples. 
Note first that if A is an operator in GF? which is invertible in 9(R), 
then A is outer if, and only if, AJ&‘% = An for every n E Z, which 
asserts simply that A-l belongs to IX. In particular, every operator in 
oi! n &i is outer. Similarly, it is easy to see that every operator in the 
diagonal GY n a* of CI is outer, regardless of its invertibility properties. 

Consider now the Hardy space Hz, let e, , ei ,... be the usual 
orthonormal base e, = x”, n 3 0, and let 6Y be the nest algebra 
ak{[e, , en+, ,...I: n 3 01. Thus, Q/! consists of all operators on 2 
whose matrix relative to {e,> is lower triangular (to fit CPI into the format 
of the preceding discussion, just notice that Q? = alg{&,: n E Z}, 
where ArL = Hz for n > 0 and A, = [e_, , ePnil ,... ] for n < 0). 
Now each function f E H” gives rise to an analytic Toeplitz operator 
Tj , and clearly T, belongs to @. We claim: T, is an outer operator if 
and only if f is an outer function in the traditional sense of the word 
[lo]. Indeed, if f is an outer function, then f. Hz is dense in HZ, 
hence f * 2% * Hz is dense in zn * Hz for every n > 0, and this implies 
the conditions 3.1(i) and (ii). Conversely, suppose Tf is an outer 
operator and let f = u . F be the factorization off into its inner part u 
and outer part F [lo]. Th en the closed range of Ti is simply u . H”, 
and the only way the projections on u * Hz and X* . H* (n > 0) can all 
commute is for u to be a monomial in x: u = XY, Y = 0, l,..., X E C, 
/ X 1 = 1. This implies that T, maps [e, , e,,, ,... ] into [entr , e,,+,+, ,... 1, 
which cannot be dense in [e, , e,,, ,...I unless I = 0. We conclude 
that u is a constant, and hence f is an outer function. 

As a final example, consider the algebra G? = alg{[e, , e, ,..., e,]: 
n 3 0}, where e, , e, ,... is the orthonormal base for H2 of the preceding 
paragraph. While this algebra is simply the adjoint of the preceding 
example, its outer operators behave rather differently. While a 
complete discussion of the situation would take us too far afield, 
we feel it is worthwhile to state at least some of the facts without proof, 
for the interested reader (we remark that none of this makes essential 
contact with the rest of the paper). Let A be an operator in U and let 
(uij) be the matrix of A relative to the base {e,}. Then of course (qj) 
is upper triangular, and it can be shown that A is outer if and only if 
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this matrix has the following property: whenever a diagonal term of 
(aij) is zero (say a - kk - 0), then the entire row through that entry is 
zero (i.e., ski = 0 for j = k + 1, K + 2 ,... ). In particular, every upper 
triangular A N (aij) whose diagonal terms a& are all nonzero is 
necessarily an outer operator. a also contains the coanalytic Toeplitz 
operators T,* = T7, f E H”; and in contrast with the preceding 
example, we see that, for a nonzero function f E H”, T,* is an outer 
operator if and only if f (0) # 0. 

Returning to the main discussion, we begin with a lemma which 
exhibits the most useful technical feature of outer operators. 

LEMMA. Let A E a be outer and let V be an arbitrary operator in 
S?(X) such that VA E GI and V = 0 on [AXJJ-. Then V belongs to a. 

Proof. We have to show that Vdn C 4, for every n E Z. 
Fix n, and decompose A%?‘~ as an orthogonal sum J&‘~ = [A&‘J @ 

(A, 0 w&J)* N ow since the projections on the two spaces An 
and [A&] commute and since [ASS?] n A%‘% = [A&J, it follows 
that A%‘~ @ [A&,] is orthogonal to [AS@] as well as [AA,]. This 
implies that V = 0 on A’, 0 [A&J, so that VMn is contained in 
V[A&‘J = [VA&,] C A%‘% , as asserted. 1 

The following result asserts that outer operators, like outer 
functions, are essentially uniquely determined by their “modulus.” 

THEOREM 3.2. Let A, B be outer operators in GY such that 
A*A = B*B. Then there is a partial isometry V in a n GF such that 
V*V = R, , VV* = RB , VA = B. 

Proof. The hypothesis on A and B implies that I/ Ax 11 = 11 Bx /I 
for every x E 2. Thus we may define a partial isometry V as the 
closure of the operator V,: Ax t+ Bx, x E X, where of course V,, is 
defined as 0 on [A&?] I. Clearly V satisfies VA = B, and has the 
right initial and final spaces. 

The equation VA = B, together with the preceding lemma, implies 
that V E a; and since V*B = V*VA = A, the same reasoning 
shows that V* E GY. Hence, V belongs to the diagonal a n CT*. 1 

Let T be an arbitrary operator on X. We shall be concerned with 
the possibility of expressing T in the form T = UA, where A is an 
outer operator in a and U is a partial isometry satisfying lJ* U = R, . 
Note that a necessary condition for such a factorization is 
0, [T&J = 0. T o see this, note that TJYm = UAA, C Uk’, , 
n E Z, so that n,[T&,] C &[UA’,]. But if x belongs to 0, [VA’,], 
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then for every n we have U*x E U*U&, C din because VU = R, 
commutes with the projections {P,}, and hence U*x E n,, “fin = 0. 
It follows that x = UU*x = 0, as asserted. 

The main factorization result of this section asserts that this necessary 
condition is also sufficient. Before stating this formally, we collect 
an elementary fact, for which we have been unable to find a convenient 
reference. 

LEMMA. Let M be a closed subspace of a Banach space E, and let T 
be a bounded operator from E into a Banach space F such that TE is 
dense in F. Then 

codim[TM] < codim M. 

PYOOf. To prove that the dimension of the Banach space F/[TM] 
does not exceed that of E/M, it suffices to exhibit a bounded operator r 
from E/M into F/[TM], which has dense range. For that, define 

T-(X + M) = TX + [TM], x E E. 

It is clear that -r is well defined and linear, and a simple estimate 
(which we leave for the reader) shows that jj T I/ < /I T 11. That the 
range of r is dense follows from the corresponding property of T. 1 

THEOREM 3.3. Let T be an operator on 2 such that n, [TAnI = 0. 
Then T admits a factorization T = UA, where A E Q! is outer and U is 
a partial isometry such that U*U = R, . 

If UA = VB are two such factorizations of T, then there is a partial 

isometry Win UI n 0l* such that W* W = R, , WW* = R, , B = WA, 
and V = UW*. 

Proof. We first dispose of the uniqueness assertion. Suppose that 
UA = VB satisfy the above conditions. Then A*A = B*B, SO by 
the preceding theorem there is a partial isometry W in LX n GY* such 
that W*W= RA, WW* = RB , and WA = B. We have VB = 
VWA = UA, so that VW = U on [AX]; and since both 
W and U vanish on [AX]I, this implies VW = U. Thus, 
v = vww* = uw*. 

Turning now to existence of the factorization, let 3?‘n denote the 
subspace [T&J, n E 2. CIearly, G%?n C W,+i , (J, &??n is dense in [TS?], 
and by the hypothesis on T we have n, ~3’~ = 0. 

Note first that dim(W, 0 a,,) < dim(A, @ A?,-r) for every n; 
this is immediate from the lemma by considering T 1 J&‘~ as an 
operator from An. into [T&J. Thus th ere exists a partial isometry V 
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on 2 which maps sin 0 99,-r isometrically into Mn @ &?+i for 
every n E 2, and which vanishes on the orthocomplement of 
cm PG 0 ~?%-I). 

Note that the range projection VV* of V must commute with 
each P,, and moreover we claim that VZ2n = VZ n An , n E Z. 
After the preceding observation, this follows immediately from the 
obvious formula V(&‘, 0 gik-r) = VZ n (Jk 0 J&‘& by summing 
over all k < n, noting that CkGn. (9, 0 9,-r) = 9% . 

Now define the operator A = VT. Since the initial space of V is 
C, (94?‘n @ 9’,-J = [TZ], it follows that [AX] = VZ, and in 
particular RA = VV* commutes with {Pm: n E Z}. By the preceding 
paragraph we see that [A&J = F’S??, = VZ n M, = [AS?] n ~2’~ . 
Hence, A is an outer operator in @. 

Finally, the required formula T = UA follows by taking U = V* 
and noting that T = V*VT = V*A. 1 

COROLLARY 1. Every operator T in OL? has a factorization T = UA, 
where U is inner and A is outer. 

Proof. Note first that every operator T E Q? satisfies n, [ TJln] = 0 
(an immediate consequence of the fact that T&, C An and 
n, An = 0). So the theorem implies that T has a factorization 
T = UA where A E @’ is outer and U is a partial isometry with 
U*U = R, . RA commutes with each P, , by definition of outer 
operators, and the lemma preceding Theorem 3.2 implies that U E Q?. 
Hence, U is inner. 1 

Remarks. It is well known [lo] that H” is a logmodular algebra of 
functions on the unit circle. Equivalently, every positive measurable 
function on the unit circle which is bounded above and away from 0 is 
the boundary value of a function of the form 1 f 12, where f and l/f 
are analytic and bounded in the open unit disc. The following 
corollary is an exact analog of this theorem for certain nest algebras. 
First, we need a lemma which asserts that every outer operator in QL 
which is left-invertible is related in a very simple way to an operator 
which is invertible in GY. 

LEMMA. Let A E GZ be an outer operator which is bounded below. 
Then there exists an isometry U in G? n 0?* and an operator B E GZ n GP1 
such that A = UB. 

Proof. Because A is bounded below, it induces in the obvious way 
an invertible operator from A, @ An-r onto [A&J @ [A&,-,], 
and in particular the subspaces &, @ &Yn-r and [AJ%‘~] 0 [A&Zn-J 
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have the same dimension, n E 2. Thus we can find an isometry U on .Y 
which takes each space An @ An-i onto [A+++YJ @ [AAC,-J. 
Because 0, [AAn] C n, An = 0, it follows that U maps A!, = 
CkGs (J& 0 JK+-J OntO hn (VJGI 0 W&d = PJGI, and 
in particular UU* = R, . Define B = U*A. The above implies that 

[B~nl = [~,I7 so that B E 0Z, has dense range, and of course B is 
bounded below. Hence B is invertible. The formula [BAnI = A,& 
now implies B-l&, = A, , so that B-l E 6T, 

Multiplication of B = U*A on the left by U gives A = UB, and 
now these two formulas, together with the lemma preceding 
Theorem 3.2, imply that U E 0? n OP. 1 

COROLLARY 2. Every invertible positive operator on 8 can be 
factored in the form A*A, where A belongs to CZ n GT-I. 

Proof. Let H be an invertible positive operator on X. Then the 
same is true of its positive square root H112, so that 0, [H1/2&‘,,] = 0. 
Theorem 3.3 implies that there is an outer operator A E 6Y 
and a partial isometry U with U*U = RA and H1jz = UA. Hence, 
H = (H1/2)2 = A*A. Now A is bounded below because H is 
invertible, so the lemma implies that there is a B in a n 64*-i and an 
isometry I’ such that A = VB. The required factorization H = B*B 
follows. 1 

Remarks. The reader may have noticed that the proofs of 
Theorem 3.3 and its corollaries used the discrete nature of the chain 
&A+%~> in an essential way, and a natural question here is whether 
factorization results like these are valid for more general next algebras. 
In particular, is Corollary 2 valid for the nest algebra GI = alg(A’,: 
0 < t < I> acting on L2[0, I], w h ere ./Zt stands for the closed subspace 
L2[0, t] of L2[0, l] ? This question is closely connected with the 
known problem which asks if the multiplicity of a nest must be 
preserved under simiIarity. Rather than enter a lengthy discussion 
of this relationship, we will merely indicate the connection with a 
very specific question. Let 02 = alg{&,} be the nest algebra onL2[0, I] 
described immediately above, and define a nest algebra SY on the direct 
sum L2[0, l] @L2[0, I] as follows: S9 = alg{A1 @ 4,: 0 < t < I}. 
It is easy to see that CX n @* is a maximal abelian von Neumann 
algebra, while a n S?* is a (noncommutative) von Neumann algebra 
of type I, . Thus GZ and 9 cannot be unitarily equivalent. It is not 
known, however, if G? and 33 can be similar. Equivalently, is there an 
invertible operator X from L2[0, l] to L2[0, l] @L2[0, l] which maps 
the family {J&?~} f o su s b p aces onto the family (& 1 @ &!,I ? 
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We want to point out that if the answer to the latter question is 
yes, then Corollary 2 must fail for the nest algebra GZ. To see this, let 
X be as above, with XGZX-l = 93, and suppose to the contrary that 
Corollary 2 is valid for the positive invertible operator X*X onL2[0, 11. 
Thus we may write X*X = A*A, where A E a A GV. It follows 
that U = XA-l is a unitary operator from L2[0, l] to L2[0, I] @ 
L2[0, 11, and satisfies UGZU-l = 93, a state of affairs which was shown 
to be impossible in the preceding paragraph. 

It seems very likely, of course, that the algebras Q! and S? are not 
similar; but while this latter problem has been circulating for several 
years and makes important contact with other parts of operator theory 
(e.g., the problem of whether every compact operator is hyper- 
intransitive), no one has made significant progress on it. 

4. THE INTERPOLATION THEOREM 

Let A, ,..., A, be operators on a Hilbert space &“. It is an elementary 
exercise to prove that there exist operators B, ,..., BN on 2 satisfying 

44 + *** + BNAN = 1 if, and only if, the set {A, ,..., AN) is 
bounded below in the sense that there exists E > 0 such that 
11 A,x 11 + *** + 11 A,x 11 > E 11 x 11, for every x E 3. For instance, 
if the latter condition is satisfied, then one may choose B, = H-lAk*, 
where H is the positive invertible operator A,*A, + a-* + A,*A, . 

Now if the given operators A, ,..., A, belong to a given Banach 
subalgebra Q? of P(Z), then one often wants to know if it is possible 
to solve the equation B,A, + *es + B,A, = 1 with operators B, 
in GZ. If CS! is a C*-algebra the problem becomes trivial: a few moments’ 
thought shows that the solution is completely described by the 
criterion of the preceding paragraph. Certain commutative algebras 
of normal and essentially normal operators were considered in [6], 
where it was shown that the same criterion (together with a similar 
condition on the adjoints of the A,‘s) is again sufficient. 

In this paper, however, we are concerned with nest algebras, which 
are neither self-adjoint nor commutative. In this case the hypothesis 

II 4~ II + a-- + II 4vx II 3 E II x II is not enough, a phenomenon best 
illustrated by the following simple example. Let e, , e2 ,... be an 
orthonormal base for sP, and let rY be the nest algebra alg{[e, ,..., e,]: 
n = 1,2,...). We consider a pair of operators {A, , A,) in CY, where A, 
is the “backward shift” (defined on (e,} by A,e, = 0 and Alen = en-, 
for n > I), and A, is the projection onto the one-dimensional space 
[e,]. A simple computation shows that ]I A,x II2 + II A,x II2 = 11 x (I2 
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for every x E Z, so that 11 A,x 11 + j[ A,x j( > E I( x [I with E = 2-l/*. 
On the other hand, we claim that there do not exist B, , B, E @I such 
that B,A, + B,A, = 1. For if such Bi did exist then we could apply 
this identity to the basis vector e2 (noting that A,e, = e, and 
A,e, = 0) to obtain B e r r = e2 , contradicting the fact that B, leaves 
[e,] invariant. 

A more stringent necessary condition can be expressed in terms of 
the invariant projections of the algebra 6?. Indeed if A, ,..., A, E Cl 
are operators such that the equation B,A, + **. + B,A, = 1 is 
solvable with B, in et, then since (1 - P)B, = (1 - P) Bk( 1 - P) 
holds for every projection P E lat G!, one may multiply the preceding 
equation on the left by 1 - P to obtain Eli (1 - P) B,( 1 - P) A, = 
1 - P, and hence 

1 li(l - P) &x II 3 E ll(1 - P) x 1; (4.1) 

for every x E 2 and every P E lat GZ, where E may be taken as 
min(lj B, /j-l,..., 1) B, 11-l). It will turn out to be more convenient to 
deal not with this inequality but with the equivalent one, 

(4.2) 

assumed to hold for every x E X, P E lat a. The equivalence of (4.1) 
and (4.2) simply reflects the equivalence of the I1 and Z2 norms on CN; 
and of course one needs to adjust E in passing from one to the other. 
The main result of this section asserts that if oil is a nest algebra of a 
certain type and A, ,..., A, belong to Q! and satisfy (4.2), then 
conversely there exist B, ,..., B, E GZ with x B,A, = 1. As in [6], 
this type of result will be called an interpolation theorem, by virtue 
of the analogy with certain interpolation problems in algebras of 
bounded analytic functions. Indeed, in Section 6 below we will use 
this theorem to deduce an operator-theoretic variant of the corona 
theorem. 

For an arbitrary operator A E Z(s), the projections onto (ker A)I 
and [AX] will be denoted, respectively, by D, and R, . Suppose now 
that G! is a reflexive algebra and A is a partial isometry in LZ with 
nontrivial kernel. Then A cannot be left-invertible, and the best one 
can hope for is an operator B E drl satisfying BA = D, . Of course 
the operator B = A* satisfies the equation, but usually it fails to 
belong to G!. However, if such a B does exist then the projection D, 
must belong to G? (which, since QZ is reflexive, simply means that 
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DA = DA * commutes with every projection in lat a), and A itself must 
satisfy an inequality analogous to (4.1): 

IIV - 3 Ax II > E ll(l - 3% IL x E D,X, 

for every projection P in in lat GI. Our first result asserts that these 
two conditions are sufficient as well, at least in case LI is a nest algebra. 

THEOREM 4.3. Let A be a partial isometry in a nest algebra 62, 
whose initial projection DA commutes with lat 6Y, and assume a positive 
number E exists such that 

IIU - P> Ax II 2 E IIU - P>x II, 

for every x E D,s? and P E lat GZ. Then there is an operator B E GI 
satisfying BA = D, , and 11 B I/ < 4/G. 

Proof. Clearly, E < 1 except in the trivial case where A = 0. 
We first want to approximate A* as nearly as possible with an operator 
from GZ. For that, we claim ll(1 - P) A*P 11 < (1 - ~~)l/~, for every 
P E lat 172; equivalently, 11 PA(l - P)x II2 < 1 - l 2 for every x E A? 
satisfying II x II < 1. But for each x in DA*, we have 

I\(1 - P) A(1 - P)x II2 3 c2 ll(l - P)x /I2 

by hypothesis, so that 

11 Z’A(1 - P)x iI2 = /I A(1 - P)x II2 - i/(1 - P) A(1 - P)x II2 

< I[ A(1 - P)x II2 - l 2 I](1 - P)x II2 

< (1 - 2)]/(1 - P)x/l2 < (1 - 2)II x//2. 

Since PA(1 - P) vanishes on (DAZ)l, the assertion follows. 
From the distance theorem (1. I), we may conclude that d(A*, a) ,< 

(1 - ~~)l/~. This distance is actually achieved (essentially because of 
weak compactness of the unit ball of UZ, an elementary argument 
which we omit), and thus we may find an operator C E GI such that 
1) A* - C 11 < (1 - •~)l/~. By multiplying on the left by DA if neces- 
sary, we may assume C = DaC, and clearly, 11 C/I < 11 A* Ij + 
)I C - A* II < 1 + (1 - e2)lj2. 

Now recall that if T is an element of any Banach algebra 6Z with 
identity satisfying II 1 - T II < r < 1, then familiar manipulations 
with the Neumann series show that T is invertible in GY and, moreover, 
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// T-l 11 < (1 - r)-l. Applying this to the operator T = 1 - D, + CA 
in Q? and noting that 

I!l--T//=[ID~-CAII=~~A*A-cCAll 

< j( A* - Cl/ < (1 - +/2, 

we conclude that T-l E a and satisfies /j T-l // < (1 - (I - E~)‘/‘)-~. 
Finally, put B = T-X’. Then B belongs to Q? and has norm at most 

I! c [I . [j T-1 /I 6 (1 + (I - E2)1/2)( 1 - (1 - G)ifi)-1 :< 4/G. 

Moreover, BA = ((1 - DA) + CA)-l CA = D, , as required. i 

‘I’HEOREM 4.3 (Interpolation Theorem). Let (~2’~: n E Z} be an 
increasing sequence of subspaces of a Hilbert space .F satisfying 
& k’n = 0 and [u, An] = 2, and let G? be the nest algebra 
alg{P,: n E Z}, where P, is the projection on A, . Let ,4, ,.,,, il,, E !? 
satisfy 

; ll(l - PTJ AkX II2 2 c2 ll(l - Pn)x Ii2 

for every n E Z, x E 2. Then there exist operators B, ,..., B, E OL such 
that B,A, + .*. + B,A, = 1. If the Ak’s are normalized so that 
(1 A, jj < 1 for each k, then the Bk’s may be chosen so that (1 B, (j < ONE-3. 

Proof. By adjusting E if necessary, we may assume I/ A, /j < 1 
Consider first the positive invertible operator & A,*A,< . By 
Corollary 2 of Theorem 3.3, there is an operator C in 6’ n M-l such 
that x1, A,*A, = C*C. Evidently, the operators A,’ = A,&-1 belong 
to Q? and have the property that XI, Ai*A,.’ = 1. 

We claim that the operators {A,‘} satisfy (4.2) with constant 
&-112 Note first that for every P E lat @ and x E X, one has 
\I(1 - P) C-lx /I >, N-1/2 I\(1 - P)x \I. Indeed, we have 1 - P = 
(1 - P) CC-l = (1 - P) C(1 - P) C-l, and since 

we conclude that 

li(l - P)X 11 < ll(l - P)C Ij * ll(l - P) C-Q I/ < N1j2 11(1 - P) C-lx I/, 

as asserted. Now for each n E Z, we can write 

$ ll(l - p,) Ak’x /I2 = $ I](1 - p,> AkC-4 /I2 

3 8 I](1 - P,,) C-lx /I2 >, c2N-l I\(1 - P&c /12. 

5W20/3-4 
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Thus, (4.2) holds for every projection in lat 0L of the form P, , n E Z. 
Since lat 6Y = {P,: n E Z} u (0, l}, and since P, tends strongly to 0 
(resp. 1) as n tends to ---co (resp. + co), the preceding inequality 
yields (4.2) with constant EN-~/~. 

Now consider the algebra 99 = MN @ 6Y of all N x N matrices 
over 0!, regarded as an algebra of operators on the Hilbert 
space direct sum X = % @ *** @ & of N copies of %. Writing 
Qn= Pm@---@Pm, n E Z (alternately, Q, is the N x N matrix 
whose entries are P, along the diagonal and zeros elsewhere), it is a 
simple computation to see that 95’ is a nest algebra whose invariant 
projection lattice is simply {Qn: 1z E Z} u (0, l}. We will consider the 
operator U in 99 defined as 

From the properties of {Ak’) it follows that U*U is the diagonal 
projection 

so that U is a partial isometry in B whose initial projection belongs 
to ~8. Note next that U satisfies [I(1 - P) Ux 1) > (EN-‘/“)[/(~ - P)x 11 
for all x E X and every P E lat 99. A moment’s thought and the 
preceding remarks show that we need only consider P’s of the form 
Qn = I’,@---@P,, and then the above inequality simply becomes 
the inequality proved in the preceding paragraph. 

Thus we may conclude from Theorem 4.3 that there is an operator 
V E ~8 such that VU = D, and 11 V 11 < ~NE-~. If we denote the first 
row of the N x N matrix for V as B, ,..., B, , then in patricular we 
have B,A,’ + *** + BNAN’ = 1 and jl B, 11 < 4Nee2 for K = l,..., N. 
If we define B,’ = C-lB, , then multiplication of the preceding 
formula on the right by C and on the left by C-l yields 
&‘A, + *a’ + B,‘A, = 1. 

Clearly II & II < II C-l II - II 4 IL so the required estimate on /I B,’ II 
follows from the observation that 1) C-1 11 < e-1, a consequence of the 
inequality II Cx II2 = & 11 A,x II2 > e2 II x l12. 1 
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Let PI < Pz < **. be an increasing sequence of finite dimensional 
projections in 9(Z) with P, f 1, and let &F be the associated 
quasitriangular algebra discussed in Section 2: 

Let q be the canonical projection of 9(X’) onto the Calkin algebra 
6;4(%‘)/%?(.%). It follows from Proposition 2.1 that the image of the 
nest algebra 5 = alg{P,} under q is a Banach subalgebra of 
Z(Z)/V(Z), and moreover, the corollary of Theorem 2.2 implies 
that q(F) = &ZF). Now let a, ,..., uN belong to q(7). The inter- 
polation problem here asks for conditions under which there will exist 
b l,.‘., b, E q(F) such that bla, + .** + b,a, = 1, If operators A, E Y(Z) 
are chosen such that q(A,) = uk , then A, E F + G?(Y) = J!~F, and 
what is required is a set of operators B, ,..., B, E AY such that 
1 - CT,. B,A, is compact. This is characterized in the following. 

THEOREM 4.4. Let A, ,..., A, E 229. In order that there exist 
operators B, , . . . , BN E 25 with 1 - & B,;A, compact, it is necessary 
and suficient that there should exist E > 0 and n, 3 1 such that 

for every x E SC? and n >, n,, . 

The proof of necessity is a simple exercise, and sufficiency follows 
from a routine though somewhat tedious variation on what was done in 
proving Theorem 4.3 ( making use of the distance formula Theorem 2.2 
rather than Theorem 1.1). Both are left for the reader. 

5. Two PROJECTION MAPPINGS 

In this section we work in the Hilbert space 3 = L2(T, m), where T 
denotes the unit circle with normalized linear measure m. {e,: n E Z} 
will denote the usual orthonormal base for L2(T, m) (viz e,(z) = xx, 
z ET, n E Z), and P, will denote the projection onto the subspace 
[en , e,+, ,-I, n E 2. Each function + ELM = Lm(T, m) gives rise to a 
multiplication operator on Z, which we denote L, . The associated 
Toeplitz operator T* is defined as the compression of L+ to the subspace 
Hz = [e,, e, ,...I: Td = P,,L, IHa. It is known that the multiplication 
algebra AZ = (L6: 4 EL”} is a maximal abelian von Neumann sub- 
algebra of .9(X), and that the set {T,: $ EL”) of Toeplitz operators 
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is a weakly closed self-adjoint linear space of operators on Hs. Tht 
purpose of this section is to construct projections of 9(s) ant 
.Ep(H”) onto the multiplication algebra and (T,: 4 ELM}, respectively, 
which have certain properties we will make use of in Section 6. We 
deal first with the multiplication algebra. 

Let 33 be a C*-algebra with unit and let +? be a C*-subalgebra such 
that 1 E V. Recall that an expectation of 98 on V is a positive linear maI 
r: 33 -+ V satisfying 7~( 1) = 1, and n(BC) = r(B)C for every B E 27: 
C E %?. There is a known method for constructing expectations oi 
9(s) onto maximal abelian subalgebras such as A: one defines 
n(X) as the “average” of the function U b UXU* (U ranging over 
the unitary group of &!) relative to a Banach mean. Here we make a 
similar construction, but some care must be exercised in order to 
bring out the desired properties. As usual, H” will denote the 
(weak*-closed) b lg b su a e ra of L” consisting of all functions 4 EL” 
with J z+(s) &n(z) = 0, n = 1,2 ,... . 

PROPOSITION 5.1. There exists an expectation nr: S’(Z’) -+ d’ 
having the properties 

(i) 7r(P,) = 1 for every n E Z, 

(ii) r(alg{P,}) _C {Lb: 4 E H”}. 

Remarks. Condition (i) asserts that in a sense the mapping rr is 
supported at + co. Condition (ii) asserts that if A is an operator on & 
whose matrix relative to {e %: n E Z} is lower triangular, then r(A) is a 
multiplication operator having the same property. 

Proof. Let N be the additive semigroup of all positive integers and 
let (1 be a Banach limit on N. Thus rl is a state on the commutative 
C*-algebra Z”(N) ( w ose value at a bounded sequence (u&i is h 
denoted Anan) which has the additional property Anan+l = Anan , 

(4 E YN). 
Let U denote the “bilateral shift,” defined on the basis (e,} by 

Ue, = en+, , n E Z. It is well known that U is a unitary operator 
which generates the multiplication algebra &’ as a von Neumann 
algebra. Fix A E 3’(z). Th en for x, y E %, we may define the form 

[x, Yl = A( U*“A U% Y), and a straightforward application of the 
Schwarz lemma yields a unique operator n(A) E 9(s) such that 
(r(A)x, y) = A,( U*“AU”x, y). 

It is routine to verify that 7r is a positive linear map, and moreover 
a standard separation theorem implies that n(A) belongs to the 
weakly closed convex hull of the set {U*“AlJ”: n = 1, 2,...}, 
A E z(3). An application of translation invariance of II shows that 
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U*7r(A)U = 7(A), i.e., r(A) commutes with U (and therefore with 
U* = U-i) and since JH is the von Neumann algebra generated by U, 
we see that +A) E A’ = A!. The facts that n(l) = 1, and that 
7r(AB) = T(A)B when B E A, are simple consequences of the 
definition. Thus, YT is an expectation of LY(j’e) on M. 

To verify (i), fix m E Z. Then for each n E N we have 
rJ”“P m U” E p nr--n 7 and as n + + co the projections P,,_, increase 
and tend strongly to the identity. So for each x, y E 3 we have 
lim, ( U*aPwt Fx, y) = (x, y). S ince Banach limits must take convergent 
sequences in Z”(N) to their limits, we conclude that (n(P&, y) = 
4 U*np,, U”x, y) = (x7 Y), and hence r(P,) = 1 because x and y 
were arbitrary. 

Finally, to verify (ii), it suffices to show that QT maps alg(P,J into 
itself. But if A E alg(P,}, then so does U*nAUn for every n > I. The 
assertion now follows from the fact that alg{P,} is a weakly closed 
algebra and r(A) E ET{ U*%A Un: n E N}. 1 

Remarks. We see in particular that there is a projection of norm 1 
from the algebra alg{PJ of all 1 ower triangular operators onto the 
subalgebra {Lh: r$ E H”} of all lower triangular multiplication operators, 
having the property r(AL,) = n(L$A) = T(A) L, , A E alg{P,), 4 E H”. 
It is curious that the finite-dimensional analog of this conclusion 
fails. Indeed, if we denote by 6Yfi the algebra of all lower triangular 
n x n matrices (endowed with the operator norm) and by 99, the 
commutative subalgebra of all matrices of the form 

a0 

al 

i- 
0 

a0 
. . 
. . - Y I7 a, *** a, an 

a0 y aI ,..., a, E C, then it is not very hard to show that for any sequence 
of projections rrn: OLm + ~43’~ with the property r,(AB) = n,(A)B, 
A E LJ!, , B E L?J~ , one necessarily has 11 riT, I/ -+ + co as n tends to a. 

Finally, we remark that property 5.1(i) implies the stronger con- 
dition r(P,A) = T(AP,) = r(A), for every A E 5?(X), n E Z. By 
taking adjoints, if necessary, it suffices to show that n(A(1 - P,)) == 
r(A) - n(AP,) = 0. But by the Schwarz inequality for completely 
positive maps (see [2]), we have 

WV1 - Pd*w(l - Pn)) G C(U - pn> A*41 - Pn)) 
< II A 11”6(1 - Pn) = 0, 

as asserted. 
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We turn now to the Hilbert space Hz. For each n 3 0 let P, be the 
projection onto the subspace [e, , e,,, ,...I. We shall require a 
projection CT of norm 1 from the algebra alg{PJ of all lower triangular 
operators to the algebra {T,: 4 E H”} of all analytic Toeplitz operators, 
which satisfies CJ(T,A) = T&A), + E H”, A E alg{P,). This is 
accomplished in the following. 

PROPOSITION 5.2. There is a positive linear projection u of Z(H2) 
onto the space {T,: 4 EL”) of all Toeplitx operators satisfying 

(i) u(l) = 1, II 41 = 1, 
(ii) u( T,A) = u(AT4) = u(A) Tm , for every A E Y(Z), 4 E H”, 

(iii) o(alg{P,}) _C {T,: C$ E H”). 

Proof. Regard H2 as a closed subspace of L2(T, m). Then P, is the 
projection of L2 on H2, and we may compose an operator A on H2 
with P,, to obtain an operator AP, on L2. We define u in terms of the 
expectation 7~ of Proposition 5.1 as follows. 

u(A) = PlF(APo) IH2 , A E s?(W). 

It is clear that u is a positive linear mapping of norm 1, which 
carries 1 to 1. Since the range of n is A?’ and PO-k’ /HZ is contained in 
{T,: c+ EL”}, *t f 11 1 o ows that the range of u is contained in {Tm: + EL”). 
We claim first that u( T6) = Td , for every + EL”. Indeed, since 
TmPo = P&P,, , we see from the remarks following Proposition 5.1 
that n(T,P,,) = n(L,) = L6 , so that u(T,) = P,L, IHa = Td . This 
implies in particular that u(2?(H2)) = {T,: 4 EL”), and u 0 u = CT. 

To verify (ii), choose 4 E H”, A E .Y(H2). Then AT,P, = AP,L,P,, 
so as in the preceding paragraph we have n(AT,P,,) = n(AP,,L,) = 
x(AP,)L, . It follows that u(AT,) = Pgr(AP,) L, lH2 = u(A) T6, 
where in the last equality we use the fact that Td = L, lHa for + E H”. 
Similarly, 

n( T,AP”) = 7r(PoL@4Po) = T(L,AP,) = Lgr(AP(J = 7+4Po) L* ) 

and we conclude that u(T,A) = a(A) T6 . 
The property 5.2(“‘) ui is a simple consequence of its counterpart 

5.l(ii). 1 

6. AN APPLICATION 

The corona theorem asserts that the open unit disc is dense in the 
maximal ideal space of H”. This is equivalent to the assertion that if 
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fi ,..., fN are bounded analytic functions in the open unit disc which 
satisfy 

lfl(4l + ‘*. -t Ifi&)/ 2 E > 09 1xl-c 1, (6.1) 

then there exist similar functions g, ,...,gN such that figI + a.- + 
fhgN = 1. This was proved in 1962 by Carleson [5], who also obtained 
estimates on /I gi (Im in terms of E and /I fi lip . 

The work behind the present paper was begun partly in the hope 
of giving a relatively natural operator-theoretic proof of Carleson’s 
theorem. While this has not been completely successful, the inter- 
polation theorem of Section 4 does lead to the following operator- 
theoretic variant. Suppose that, instead of (6.1), the N functions 
fi ,..., fV satisfy 

where T, is the Toeplitz operator on Hz associated with f. Then 
Theorem 6.3 below asserts that there exist g, ,...,gN E H” such that 

f&l + ... +fNgN = 1. M oreover, the estimate we obtain on // gi 11% 
seems considerably better than that of [5]. 

The relationship between (6.1) and (6.2) deserves a few comments. 
For each h EC, 1 X i < 1, we may form the Hz function q(x) == 
(1 - xa)-l. Now it is easy to see that Tl*x, = f(A) x,, , for each 
f E H”, so by taking x = xA in (6.2) we see immediately that (6.2) 
implies (6.1). Conversely, one can utilize the Corona theorem to 
deduce (6.2) from (6.1) (th e E of (6.2) has to be made smaller than the 
E of (6.1)); however, we do not know if the latter implication can be 
proved directly. Needless to say, such a proof would be very desirable. 

Finally, we want to acknowledge that Theorem 6.3 appears as one 
of the results of [6]. But the proof in [6] makes use of the Corona 
theorem itself, and so is not related to the present discussion. 

THEOREM 6.3. Let fi ,...,fv E H” and E > 0 be such that 

/’ T,*lx II2 + ... + Ij T&x /I2 3 e2 II x ~I2 

for every x E H2. Then there exist functions g, ,..., g, E H” such that 

fiSl + ... + fNgN = 1. If I/ fi Ilrn < 1 for each i, theng, ,...,gN may be 
chosen so that I/ gi 11% < ~NE-~. 

Proof. Let e, , e, ,... be the usual orthonormal base for H2 (i.e., 
e, = xk), and let P, be the projection onto [e, , e, ,..., e,]. Then the 
algebra (T,*: f E H”} f 11 o a coanalytic Toeplitz operators is a commu- 
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tative subalgebra of the nest algebra alg{P,: n > O}. The idea of the 
proof is the following. The hypothesis offi ,..., fN implies (and in fact 
is equivalent to) the fact that there exist bounded operators B, ,..., B, 
on Hz with C B,Tt = 1 (see the opening paragraph of Section 4). 
We first use the interpolation theorem to conclude that the Bk’s can 
be found within alg{P,). By making use of the projection mapping of 
Proposition 5.2, we can then find Bk’s of the form Tc , g, E H”, and 
the required relation 2 fkg, = 1 will follow 

In order to apply Theorem 4.3, we claim that for each n > 0, 

; ll(l - pn) T;x II2 3 c2 ll(l - f’n)x /I> x E H2. 

For that, let S = T, be the unilateral shift. Then 1 - P, = SnS*n, 
n 3 0, and since S* commutes with T,* for each f E H”, we have 

Hence, 

//(I - P,) T,*x 1) = 1) S’L~*~T~*X 1) 

= [I S*nTf*x 11 = I/ Tf*S*%x 11. 

; Ml - pn) T;x II2 = 1 II T.$*“x II2 

3 ,“2 [I s*nx 112 = 2 /I S”S”“x 112 = l 2 l/(1 - P,)x 112, 

as asserted. So by Theorem 4.3 we may find operators B, ,..., B,,, E 
aIg{P,) such that C BkTr*, = 1. Moreover, if (( fi Ilrn < 1 for each i, 
then II Tj! II < 1, and we may even assume 11 Bi I/ < 4Nee3. 

By taking adjoints we obtain Tf,B,* + *a* + TfNBN* = 1, and B,* 
leaves [e, , e,,, ,...I invariant, for every 1 < K < N, n 2 0. So if u 
is the projection mapping of Proposition 5.2, then u(Bk*) must have 
the form TB,, g, E H”, and we have II g, IL = II Tgk II = II +h*)ll < 
11 B, ]I. Applying u to the above formula we obtain 

1 = (r(l) = c u(TfkBk*) 

= i Gh*) Tf, = C T,,T,, = c Tf,T,, . 

The desired conclusion C fkgk = 1 is now immediate from the fact 
that the map f E H” tt T, is an algebra monomorphism. i 

Note added in proof. Since this paper was written, the author has heard from C. F. 
Schubert, and later from William Helton, that the application to Toeplitz operators 
(Theorem 6.3) can also be deduced from results associated with the lifting theorem 
for pairs of commuting contractions. While these methods do lead to a shorter proof 
of Theorem 6.3 itself, they are closely tied to properties of unilateral shifts, and hence 
do not apply to the more general interpolation theorems of Section 4. 
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