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ABSTRACT OF THE DISSERTATION

Prediction Theory and Group Representations
by
William Barmes Arveson
Doctor of Philosophy in Msthematics
University of Califormia, Los Angeles, 19€%

Professor Herry A. Dye, Ckhairman

This study represents an attempt to 1lift some of the ideas and
theorems of prediction theory to & noncommutative algebraicalily
invariant setting. The definition of determinism, taken as funda-
mental in this regard, applies to the faithful weakly continuous
representations of locally compact ordered groups. A decomposition
similar to the Wold theorem for stochastic processes is valid and,
when the underlying group is discrete, the idea of determinism is
used tc characterize the existence of a canonical finite trace on the
von Neumann algebra generated by the image group.

These considerations lead naturally to cperator algebras which
are in many respects noncommmtative analogs of the algebra B, of
btounded apalytic functions in the unit disec {|z| <1}. A factoriza-
tion theorem is valid in this context, arnd this is used to study the
relaticn between arpropriate wversions of Jenser's formula and the

theorem of Szego.



0. Introduction

The prediction theory of a stochastic process may be regarded as
the analysis of a unitary representation of an ordered abelian grcup
with respect to a fixed cyclic vector. For example, taking the
additive abelian group of integers, one studies a sequence
8,2 =0, %1, £2,..., of vectors in a Hilbert space #with the

properties that {gn} is fundamental in ¥ and the inner product

(8 ,§n) is independent of n. These conditions are precisely

n+k

what is needed to make the mapping U§n = §n defined on {§n} extend

+1
uniquely to & unitary operator on A. The formula Un§o = §n asserts
that the original sequence is nothing other than the orbit of the
cyclic vector §o with respect to the representation n -U" of the
integers. It is an essential feature that, from the point of view of
prediction theory, properties of this representaticn have no interest
aside from the relation that they bear to the given sequence.

On the other hand, in the study of group representations per se,
one is interested in global properties of the representation itself,
i.e., algebraic or unitary invariants. In this study, we have
attempted to 1ift to this context algebraically invariant analogs of
some of the ideas and theorems of prediction theory. Among these,
the idea of determinism we have taken as fundamental.

Section 1 contains a discussion of a related idea, called
degeneracy, pertaining to the action of unitary groups in Hilbert space.
When the group G is abelian, this property is used to characterize

*
the condition that the spectrum of the ¢ - algebra generated by G



be homeomorphic in a natural way to the character group of the
discrete group G.

The definition of determinism, as given in Section 2, applies to
a faithful weakly continuous unitary representation of a locally
compact group which, we emphasize, need not be gbelian. Every such
representation decomposes into the direct sum of a deterministic
and a regular part, the regular part being in a sense maximally
nondeterministic. A good deal more cen be said if the underlying
group is discrete and left - linear, where by definition a group G
is left - linear if it admits a linear order % such that x S y
implies zx < zy for all x,y,z €G. Here determinism relates in an
essential way to the existence of a canonical finite trace on the
von Neumann algebra generated by the image group of the representation:
the trace exists if, and ohly 1, tke representation is not determin-
istic. This trace can be used to prove that in the above decomposi-
tion, the regular part is algebraically equivalent to the left
regular representation of G in LZ(G). Many questions remain open
rega.rding the situation where G is left-linear and merely locally
compact ard unimodular.

In section 6, we begin a study of a class of operator algebras
which seems to provide & natural noncammutative generalization of
the algebra H, of functions bounded and analytic in the unit disc
{|z| <1). The setting is this: given a von Neumann algebra O
with a distinguished faithful normal finite trace ¢, one considers

an ultraweakly closed Banach subalgebra (1. of ® with the properties



(1) e

(i1) o is multiplicative onCL/

(111) O+ A contains a weakly dense self-adjoint

subalgebra of @ .

Prototypes for these algebras can be constructed using the left regular
representation of any left-linear discrete group. Though cast in a
noncommutative situation, these conditions are not unlike the axioms
for a Dirichlet function algebra, the principal difference being the
preeminence of weak operator topologies in place of the uniform
topology. For example, it is shown that every self-adjoint operator
in @ is the strong limit of a sequence An + A:, where Anéa. We are
concerned primarily with the validity of an appropriate version of
the Jensen formula for the trace @ and with the theorem of Szegld. It
is proved that every positive invertible operator in @ admits a
factorization AA* where both A and .Z.l belong to & , and this fact is
used to deduce that Szegd's theorem and Jensen's formula are
equivalent. It is emphasized, however, that at this time neither.of
these propositions has been established independently of the other in

any noncommutative setting.



1l. Preliminaries

.'J:he terminology and background material sumarized here is
standard and, for the most part, is drawn from the texts (2). (8) and
(13).

It is to be understood in the following that subspaces of
Hilbert spaces are always taken to be closed in the norm topology,
and the term projection means self-adjoint projection.

By a _g*-a":gebm we mean a uniformly closed subalgebra of the
ring £(#) of all bounded linear operators on the Hilbert space %,
containing the identity ard closed under the adjoint operation. A
bounded linear functional p on the C*- algebra U.is called positive
if p('I‘*T) Z 0 for every TE(l. The coilection I(() of all positive
linear functionals of norm 1 is convex and compact in the relative
wea.k* - topology, and is called the state space of O ; the elements
of Z() are states. Functionals of the form w;(T) = (78,8) where &
is a unit vector in M are called canonical states. Every state p

*
satisfies the Schwarz inequality in the sense that |p(T S)|°

% *
< p(T.T) p(S'8) for all s,Teq..
*
A mapping of one C - algebra into another preserving the

adjoint and the algebraic operations is called a '*-homomorphism;

such a map is & x-isomorphism if it is in addition 1-1 and onto.

*
Every state p of a C - algebra O gives rise to a canonical
¥*
*-bomomorphism cf A in the following way. Iet 'np = {TeQ: ¢(T T)=0}.
'np is & uniformly closed left ideal in QA , and the quotient space

amp becomes a prehilbert space when endowed with the inner product



(A+M, E+N) = o(BA).

Let _}Jp be the Hilbert space completion of a/'np. For every TE(,
the mapping LT(A +'n_p) = TA +’n,p defined on %p extends uniquely
to an operator i.naf(jlp) , which we denote by the same symbol Lo
Then T - L, is & *-homomorphism of (L intolL (#p) and, though we
*
shall not need this fact, the image of O is a C - subalgebra of
LH).
P
*

If 4 is an abeliian C - algebra, we may form the set o(@) of
all algebra homomorphisms of O into the algebra £ of complex numbers,
vwhich are not identically zero. Every wec(@) is already norm

A% -
continuous and satisfies w(A ) = w(A). o(@Q) is a compact
*
Hausdorff space in the relative weak -topology of the dual space

of 0., and it is called the maximal ideal space or the gspectrum of Q.

The mapping A€( - A, where & is the function taking on the value
o(A) at the point weo((), is an algebraic isomorphism of @ onto
the algebra of all continuous functions on o{&) such that fl.; is the
conjugate of the function A. Th:j.s isomorphism we refer to as the

Gelfand transferm.

*
A von Neumann algebra is a C - algebra closed in the weak

operator topology. In addition to the usual weak and strong operator
topologies on von Neumann algebras, we shall make frequent use of the
ultraweak (UW) and ultrastrong (US) topologies. The reason for this

is, of course, that it is these topologies, and not the former, that

are preserved under ¥-isomorphisms. Recall thet the UW - topology

(resp. US - topology) on the von Neumann algebra A-is the topology



having as a subbase (resp. base) at O all sets of the form

{méa:lZ(T;k,Tg:)I $1) (resp. {T€Q: Zlmkllz $1}), where

k=1 k=1
' 2 2
8y TB‘&}(, Z llgkll < =, Z IlleII < ® ., The UW and US - topologies
bhave the same closed convex sets and the same continuous linear

functionals, namely those of the form F(T) = Z (Tgk,ﬂk) , where
k=1
Yl <e Y mIE<e.

let {Ta;aé' A} be a family of positive operators in, J{#) such
that sup "Ta" < ® gnd which is directed ! in the sense that for
every @, B€A there exists y€A such that T Y dominates both T, and
TB (a1l with respect to the usual operator order). Then T = LUB Ta
exists inL(N), and in fact T belongs to the strong closure of {Ty).
In particular, T belongs to any von Neumann algebra which contains
all the Tq.

let 07 denote the set of positive elements in the von Neumann
algebra Q. A linear mapping @ of (_into another vor Neumann algebra
is said to be positive if #(T) 2 0 for every TE®, normal if it is
positive and #(1UB T,) = LUB #(T,) for every bounded directed t
family {Ta}_c.a*'. In order that a state p be normal, it is necessary
and sufficient that it be UW-continuous; if this is the case, then
the canonical x-komomorphism Teé(Q - ITG.f(.Hp) associated with p
is a normal mepping. |

A function @ defined on (U and taking vaiues in [0, +®] is

called a trace if it bas the properties



(1) 9(a+B) = @(a) + 9(B), for all A, BEAT
(i) Q(UAﬁl ) = 9(A) for every AEQ" and every unitary UAQ

(111) @(M) = M(4) for all AtG’, A > o.

The trace § is said to be faithful if A€Q', @(A) = O entails A = O,
normal if for every bounded directed 1 family A € a" one bas
®(LUB A ) = sup P(A,), semifinite if every A€(  such that @A) > O
dominates & Bed: for whick O < (B) < ®, and finite if P(A) < © for
every aed,

If ¢ is a trace on O, putdcp = {Tel: CP(T*T) <=}, J(P is a

two-sided ideal inﬂ., and we may form the second ideal

Tg-d5-{ Jame e neddfs

Jcp is called the ideel of definition of the trace Q. ¢ extends uniquely
to & linear functional on J(p satisfying @(ST) = @(TS)- for every S,tlEdq,:
When normal, ¢ is semifinite if, and only if, Jcp is weakly dense in (L.
For every X&€ Jcp’ the functional p(A) = @(XA) is a bounded linear
functional on . which is positive when X is ; if @ is normal then
p 1is UW-continuous.

A von Neumann algebra A is said to be finite if for every nonzero
A€’ there exists a finite normal trace ¢ on QL such that @(A) > O.

Iet G be & locally compact Hausdorff topological group, and denote
by @oo (G) the family of continuous functions on G baving compact
support. Iet I(f) = ff(x)dx be a left Haar integral on @oo (@) in the

sense of (8), normalized in the customary way when G is compact or



discrete. By the convolution of £ with g we mean the usual

(£xg) (x) = Jrf(t) g(Erx)as. (ZOO(G) is an algebra with respect

tc additiorn ard convolution; and if A is the modular furction

of the group defined by the cordition If(x)dx = ff(il)jl(x)dx for
2ef (G), then ¢_(C) adnits the matural involution £ (x) = F(XV)3l(x).

By a unitary representation of G we mean a homomerphism

x€G - U, of G into tke unitary group on some Hilbert space A
Restricting tre topologies cf Al to the unitary group leads

to various nctions of continuity for representations, and most
of these coalesce since the weak, strong, ultraweak, and ultra-
strong topclogies all coircide on the unitary group. If

x —»Ux is a weakly continuous representation of G and féeoo(g)
then there exisis a uniquely determined operator T, in tkte

£
von Neumann algebra a generated by {Ux} satisfying

(78, = [ £(x) (U,§,Max

for every §, NEA. We will sometimes write T, = Jrf(x) U, dx.
An appiicaticn of the dominated convergence theorem leads to

the corclusion that

o(Ty) = [E(x) a(uax
for every fe¢ (@) and every UW-continuous linear functicnal
[e<]
(T) = ) (25,,10), Sg B < ZnfP<e
P =) = G k’nk s K nl( )

on (.. The mapping fé@oo (6) » Tf is a homomorpnaism of Z’oo (&)



‘ *
into Q, preserving involution Tf* = Tf . Not only 15 the image of
Zoo (G) weakly dense, but so is the x-subalgebra consisting of the
operators

n |
Z T Ty vhere £,,8.€ 2,,(G).
k=1 £

A unitary representation x - Ux is said to be faithful if Ux #1I
vhenever x # e. For £€ Cc'so (G) and x£G, define Exfé¢oo(G) by
(2.8) (t) = £(x"t), tEG. £ extends uniquely to a unitary
operator in L, (G,dx), and the map x — !'x is a weakly continuous

faithful unitary representation of G called the left regular

representation.




2. Action Characteristics of Abelian Unitary Groups

Let # be a Tilbert spare and let U be a unitary operator
on N , generating an infinite cyclic group. Tke spectrum
of U car be identified with a compact subset of the unit cirele
{|z] = 1}. Under wkat conditions on U will its spectrum £ill ou%
the unit cirecle?

We are going +to consider this problem in the foillcwing more
general setting. Given an abelian unitary group G on the Hiibert
space N , let A be the c*- algebra generated by G and let o(d)
dencte the maximal ideal space of this algebra. Iet [ be the
compact character grouvp of the discrete group G. There is a
natural mapping @ of o{Q) into I's @ merely restricts the complex
homomerpkism w¢E o(Q) to the group G. & is automatically
continuous by definiticn of the topologles involved, and it is
1-1 because a continucus lirnear functional on & is completely
determined by Its values on G, tke latier being a furndamental
set in Q. Our question beccmes, what conditions oz G will ensure
that @ map o(@) onto I'? In theorem 1, this contingency is
characterized in terms of the actiorn of the group G.

Versions of this problem have been considered tefore. Some
time ago, Kodira and Kakutani (12) showed essentially that & is
onto I' when G is the discrete unitary group determined by tae
regular representation of a locally compact abelian group ir its
owr I2 space. Their proof invclves_the Plancherel tieorem ard is
not available in thkis context. Recently, A. Ionescu Tulcea (10)

kas proved that if U is ths unitary operator induced in 1-2 of a

10



o-finite measure space by & nonperiodic measure preserving
transformation, then the spectrum of U is the entire unit circle.
Now let G be an arbitrary unitary group in the Hilbert space

A. We say the action of G is nondegenerate if for every finite

subset F of G, there exists a nonzero vector §€A such that

UE | VE for every U #V in F. Using the facts that G is a group
and 'tha.t unitary operators preserve orthogonality, it is easily
seen that this condition is equivalent to the following: for every
finite subset F of G such that I¢ F, there exists a nonzero vector
g§EM such that § | UE for every UEF.

It can be seen that the unitary group in L2 determined by the
left regular representation of a locally compact group is nondeg-
enerate. This situation is really a special case of the more
general example from ergodic theory. As 1t is not our intention
to enter a lengthy discussion of measure theoretic details for
this example, we shall merely sketch results, all of which are
known in one form or another. Let X be a locally compact

Hausdorff space and let m be a regular Borel measure on the

o-algebra @ of Borel sets in X (8). By a measure preserving

transformation (MPT) we mean & mapping o: X — X such that
él(B) = {x€X: o(X)€ B}e® and m(alB) = m(B) for every Be®.
The set of all MPT's of X form a semigroup S with identity
under the multiplication (oT)(%) = ¢(TX), 0, TES, x€X. Let G

be a subgroup of S whose identity is the identity of S. For



c€G, define the operator U, on Lz(x,g,m) by (Ucf)(x) = f(&lx),
€ Lz. Then © —>Ua is a faithful unitary representation of G in

Lz(x,@,m). The group G is said to be freely-acting if, for every

o0& G different from the identity and every FE®B such that

n(F) > 0, there exists a Borel subset. E of F such that 0.< m(E)< =
and m(EN GJ'E) = O. This definition is essentially von Neumann's,
and a discussion of it can be found in (4). If G is a freely-
acting group of MPT's, then by taking intersections in the obvious
way, we conclude tha.‘? for every finite subset ol, ees ,on in G 811
different from the icientity, and 'every Borel set F such that

0 < m(F) < ®, there exists a nonnull Borel subset E of F such that
m(E) < © and m(BN& E) =0, 15k sn. By considering the
characteristic function of E as an element of LZ(X,X , m) it
follows that the unitary group {Uo: 0 £G} is nondegenerate.

Applying this to the above example, we need note merely
that, with respect to left Haar measure on a locally compact
group, the group of left translations constitutes a freely-
acting group of MPT's.

As a second example, let (X, J , m) be a g-finite measure
space, and let T be an invertible MPT which is nonperiodic in the
sense that {x: ™x # x} is not a null set, for everyn 21. It
is not difficult to show that for every n 2 1, there exists a
set Bne-J such that 0 <m(B_) < ® and m(B_/) = B) = O for

k =1,2,...,n (10). As in the last example, it follows that

12
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the cyclic unitary group induced in I"Z(X’ j , m) by T is
nondegenerate.

We turn now to the main result of this section.

Theorem 2.1: Let G be an abelian unitary group on/f, generating
the C - algebra Q. In order that the image of o(2) under the
natural mapping @ be all of I', it is necessary and sufficient that
the action of G be nondegenerate.

In this event, of course, @ will be a homeomorphism. First,

we prove sufficiency.

Lemma 2.1l: Let G be any subset of the unitary group in an abelian
¥*
C - algebra 4, and let y be any complex-valued function defined on G.
In order that there exist an w€c(Q) whose restriction to G is v, it
is necessary and sufficient that
n
inf Z o, § - v(u )8 || = o,
lell-x 2

for every finite subset Ul, ...,Un of G.

Proof: (Necessity) Igt w eo@), U)s...,U €G: Clearly it
sufficés to show that infz "ng - 'c:.S(Uk)gll2 =0, &l = 1.

n k=1
Let A = Z (Uk - aS(Uk)I)*(Uk - aS(Uk)I). Then A is a positive
k=1
operator in4. If "ix'zlf (AE,&) = € > 0, then A - ¢I 2 O which
gl=1

implies that A is regular. But by construction, the Gelfand transform

of A has a zero at weéo(@), a contradiction.



1

For sufficiency, note first that [y(U)| = 1 for all U&G.
Indeed if ||€| = 1, then
fug - v(wdel= [l uzll - Iv(W)]-lgll I= {1 - Iy(U){l; and by
taking the infimum over [|§]| =1, we get | 1 - [y(uW)| | = o.

For every U€G, define K = ®eo(@) : o(U) = v(U)}. We have
to show tha.tﬂ{KU: UEG} # §. Since each KU is a compact subset
of o(4), it suffices to show that these sets have the finite

intersection property. Fix Uj,...,U €G and let T = nl 2 (0 ) 4.

Then for every S€A,

la-Dgl = 12 ) (o, - D8l =

k=1
sz ) (v o, & - &l = %f lu,§ - r(u el
k=1 k=1

So by hypothesis"?if [(A-1)&]|=0, implying that A-I is not regular.
=1
There exists, therefore, an element &€ ¢(4) such that

n
S oD - wa) =2 ) R
1=o(I) =w(a) =3 ) 7(UJe(T,).
k=1
Since each summand has unit modulus and 1 is an extreme point of

the unit disc, we have f(Uk)us(Uk) =1 for kX = 1,2,...,n.

Therefore Ob‘é-ka_ K, » completing the proof of lemma 1.
8 k

The author is indebted to Brofessor B. A. Dye for suggesting
the following line of argument, thereby simplifying considerably

the proof of sufficiency. The neat proof given for lemma 2.2 is his.
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We shall write |E| for the number of elements in the. set E,
and E\F for the set-theoretic difference consisting of those

elements of E not in F.

Lemma 2.2: ILet F be a finite subset of an abelian group H. Then
for every € > O there exists & finite subset S of H such that
IPS\s| s ¢ |s].

Proof: Say F = {:LJ_, xz,...,xn]. For every r 2 1, let
: T, T, T, o
1?r = {xl Xy yeee,X 3 lE T S r}. The sequence F_1is increasing

and FF_CF_ We claim |P

+1 °

Otherwise, lFr«t—l |

-] - -1
7| > (1+6)™™" |F, | = (146)""%. This means that (1+¢)™™ < @

r+1| s (1+6) lFrl for some r.

> (1+€) lFrl for all r 2 1 and hence

for every r 2 1 since by comstruction IFrI s rn, which is absurd.

Now choose such an r, and let S = Fr' Then

|#s\s|

A

IF‘r+l\ Iar' = !Fr-i—ll - lFrl

18

(1+6) lrrl - lFrI = €|S|, proving lemma 2.2.
Now let F be a finite subset of G, and let y€I . By lemma 2.1,
it suffices to show that for every € > O, there exists §€AX,
lEll = 1, such that
max |[U§ - r(0E] = maxllf(U)vE - €l = 26.
UeF UeF ‘
Let F’ = (¥(U)U: UEF)} and let G’ be the group {7 (U)U: UEG}. Tt is

clear that G’ is a rnondegenerate subgroup of the unitary group ind.



By lemma 2.2, there exists a finite subset SSG’ such that
[F‘s\s| s ¢|S|. By nondegeneracy, choose & nonzero (& such that
Ve LW for all W # V in SUF’s.
let & =Z vC. Clearly [E]Z = |s]-[gI® > 0. If WEG’ then
Ves

" WE-E = 2 vg - ZVC = z Ve - Z VE, since the summends
WS ] WS\s S\WS
cancel over SNWS. Now

Is\ws| = [|s]| - |snws| = |ws| - |snws| = |ws\ s|;

80 that if WEF’, then by orthogonality

Iwg - 817 = (lwsns| + Is\gs)) ligI?
= 2[wa\s| [IClls 2|7*S\s|- |ig|]?
s 2¢ls]-[lc]? = z¢[g]?.

The desired conclusion follows by normalizing §.

It remains to prove that the condition is necessary. let F be a
finite subset of G such that Ié F. Assume first that F contains
both self-adjoint and non self-adjoint elements, the distinct
self-adjoint unitaries being Ul seeesUpe ‘For each of the remaining
elements V, V and \.Il are distincv: we discard one of them from F
when (and only when) both are present. ILet the distinct elements
remaining be Vl
and {w'ri,...,\'rlll} ere disjoint, and if F_ = {U),..., Uy, Vq,...,V )

1
then § | F§ <> §__|_Fo €, for every §€A.

seeesV . Clearly the sets {Ul,...,Um}, {vl,...,vn}

16
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Now suppose § | P § fails for every § # O inA. ILet 7be the
real vectorspace of all bounded self-adjoint (p(T*) = p(T)
for all TEQ) linear functionals on &, and let Q be the subset of ¥
consisting of all canonical states cn;(T) = (T§,8) with & =
Observe that Q in convex. For let &,M€A, |&] = |M|| = 1 and take
6€[0,1]. Conmsider the functional p(T) = Qe (T) + (1-8)ap(T)
defined on the von Neumann algebra(@= a',w. As p is weakly continuous
and £ is abelian, p already has the form p = @ for some (EM(see (2) s
p.233). We have llCII2 = o(1) = o|E[% + (1-9) [M)Z= 1 and hence the

restriction of p to £ is in Q.
Consider the linear mapping

p€U~(0(Uy), - .,000,), o(V,), - 0(V,))
of U into the m+2n-dimensional real vectorspace

m

R" ef = (xyeennmy, 20500002): x£R, 2£C). The image X of Q
is & convex subset of/’('m x¢n, and by our assumption on Fo, K does
not contain the origin. By a standard separation theorem, there
exists a nontriviel real linear functional f on7Z™ x &® such that
£(X) =

It 1s easily seen that £ has the form f(xl,...,xm,zl,...,zn)=:

n
Zakxk Zb + Z'Sk;.k, where a8 €77, bEP . Define the

k=1 k=1

operator T = Za’kUk + Zb 7.+ Z'B €d. For every &4, €| = 1
we bhave mg(T) = Zakmg(Uk) +Z kmk(vk) + 25@??;)'
= f(mg(Ul),...,m;(Um), mg(vl),"':“’g(vn)) z O.
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Therefore T is positive. By hypothesis, we may identify o(@) with
A

I’ by virtue of the mapping @, the Gelfand transform A&Z — AEC(T)

taking G isomorphically into the character group of I'. The

continuous function

A A ~ - N2
=z
T & U + 2D, Vy + 2B, Vo

is nonnegative everywhere and its Haar integral is zero because the
1

characters Gk’ Qk’ V; are all different from the function 1. FHence
T vanishes identically. But by construction the characters on the
right are distinct and therefore linearly independent, so that

a':i = .. =8 = bl = eee=b = 0, contradicting our original

choice of f.

A parallel argument applies if the original set P consists
entirely of self-adjoint or non self-adjoint elements. One merely
replaces " e{'n with Qm or - depending on which case occurs. This
completes the proof of theorem 1.

We conclude this discussion with the remark that if G is any
nondegenerate unitary group and QA is the generated C*-algebm, then
there exists a state @ of Q. such that ®(U) = 0 for every UL G
different from the identity. That is, the sets Ku = {p€Z(A): p(U)=0}
are vea.k* compact subsets of the state space of @, and for U # I
every finite intersection conteains a canonical state. Thus /N K; £ @.
Of course the state @ is uniquely determined by this cond.itiof.[

If G is abelian then @ may be identified with the Haar integral over



I = o(@), and it is therefore a faithful state. In general,
a simple continuity argument shows that ®(AB) = 9(BA) for every
A,BEQ.

19



3. A Decomposition for Certain Unitary Representations

Iet G be a locally compact Hausdorff topological group, and let
XEG _'Ux be a falthful unitary representation of G on the Hilbert

space 4. For every ££€_ (G), we may form
00
T, = J.f(x) U, dx,

dx aenoting left-iavariant Hasar measure. One has

T, T =T, end
T =7
e = Tex

- ¥* -yl =
where (£28)(x) = [2(t)a(E'x)at. and £7(x) = 2(Z1)ZH(x), A being
the modular function defined by ff(x)dx = If(il) Zl(x)dx for
te€ (G).
Let J, be the intersection of all subspaces of the form ﬂgw ’

where

e = {Jexu, ax: g€, (6), 2(€) = (0},

C ranging over the family £ of all compact subsets of G.

Proposition 3.1: J, is an UW-closed two-sided ideal in @.

Proof: Clearly JQ is an UW-closed subspace, and it suffices to
show that J.& J, and BT, = T

let T€J,, and let C&C. Now G- is compact, and since T&J,,
we can find a net fnécoo (G) such that fn(él) =0 and °

3 *
Tfn = ffn(x) de.x — T ultraweakly. Then ng = Tfn - T UW, and

20
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f:(x) =‘?ﬁ'(il)231(x) = O whenever x€ C. This proves T*G{Tf:f(c)=0}'uw,
and hence T€& J o Since C is arbitrary.

The setd = {Te®: 1J_<J_} is an UW;closed subspace because
Jo is; and sincebds= g%&’n {Ux: x€G), it suffices to show that J
contains every U, x£G. Let x€g, cel, e I 2l 1s compact,
and there exists a net f_€ @oo(G) such that fn(:'clc) = 0 and

Tfn-> T UW. Then Ufon —eUxT UW. But

U, Tfn = U, ffn(t) U, at = ffn(ilt) U, dt, and fn(ilt) =0
whenever t£€C. Because C is arbitrary, we have UxTéJo, completing
the proof.

The ideal J_ consists of those operators of & which are in a
sense at . We shall henceforth refer to J as the tail ideal.

We say the representation is deterministic or regular according as

the extreme case J, =@ or J_ = 0 occurs. As we shall see, the idea
of determinism seems to be a fruitful one only when the underlying
group G is linearly ordered. Nevertheless, it will be convenient
to have the definition at our disposal now. We will see also that
this notion of determinism (for linear groups) is closely related to
the idea bearing the same name in the prediction theory of stochastic
processes indexed by the integers or the reals.

It is well known that every UW-closed two-sided ideal in a
von Neumann algebra is principal; indeed, there exists a unique
projection Pwéﬁn@‘ such that J= P, ®=8@P, (2). Of course, P_

reduces the representation, and ® splits into the direct sum
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Jo®R(I - P). It is significant that the summands are pure types.

That is:

Theorem 3.1: The subrepresentation x -»U_P,on P H is deterministic,
and the subrepresentation x —»Ux(I - Py) on (I - P )M is regular.
Qyp = I - P, is characterized as the largest central projection Qe@ﬂ@‘
such that the subrepresentation x - U,Q on QA is regular.

Proof: Consider first the subrepresentation x — Ux P,in
P, K, and letJ, be the tail ideal. P, is the identity here, and it
suffices to'show that Py édw. let CEC, and choose a net
fnétoo(s) such that fn(c) = 0 and Tfn = an(x)dex - P,
ultraweekly on. Then T, B, = an(x) (U 2g)- dx - P2 = P, UW on H
and therefore on the subrslpa.ce PoA. Hence P_€J_.

Now consider x - U (I - Py) on (I - P, )¥ , and let be the tail
ideal. Suppose Q is a nonnull projection in A. Let CEC,

and take a net fné GOO(G) such that fn(c) = 0 and

Q = J-fn(x) Ux(I - P.)dx » Q UW. Considered as an operator on ¥,

we have Q = Ifn(x) U, ax - .[fn(x) U, B, dx =
= ffn(x) U, ax - (an(x) U, dx) Py

- UW
vou ([e_(x) U ax)P,€],, < ([e(x)u,ax: g(c) = oI,
P
so that Q , and finally Q itself, is in {Jg(x)Ux ax; g(c) = O]UW'
Because C is arbitrary, Q€J,. Hence P, + Q€J_. But since Q =< I-P,
P, + Q 1s a projection, and P, < P, + Q because Q # O. This

contradicts the fact that P, is the largest projection in Jw.
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To prove the last statement, let Q be any central projection
such that x - U Q is regular. Fix C€C, and take fnéeoo(G)
such that £ (C) = O, ffn(x) U, dx - P, UK. Then an(x) (U, Q)ax =
( ffn(x) U, dx) @ - P_Q UW. Again, since C is arbitrary, P_Q belongs
to the tail ideal of {UxQ: x€ G}. We conclude P.Q =0, or Q €I - P,
as asserted.

In the remainder of this section, we discuss a relation between
the tail ideal and a distinguished trace on @, assuming that the
latter exists.

let @ be the x~subalgebra of operators T, If(x) U, dx,
fE@ (G) , and let @2 be the *-suba.lgebra consisting of all

operators of the form 2‘1’ T , where fi,g, €2 _(G). It is
L £, & 00

well-known that ®§ is weakly dense in@.
Now suppose there is given a trace ¢ on @' satisfying
. *
= f £(x) |? ax for every f6¢_ (G). IetJ= (TeR:@(T T) < =}

and let J= [ AkBk Ak’ B GJ_] be the ideal of definition of @.

Since every element of@ is a linear combination of operators of

= ¥* =
the form Tf T, = T X, (viz., f*g

* * * *
= 1/4[(£+8) x (£+g)-(£-g) "x(f-g)- i(f+ig) »(f+ig) + i(£-ig) x(2-ig)l),
we have Gi €7J; hence J is weakly dense in@, so that if ¢ is noxmal

to begin with it is necessarily also semifinite. Now
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Wlpe ) = WTT) = [l 12 ax = [l % 2(x) ax=

* - %
- J ) 23 ax = (2R (o).
Again, since the operators Tf**f spa.n@i, it follows that for

every h of the form h = Tl £y 8E eoo(G), one has
k=1
s‘p(‘i"h) = h(e). Thus we may evaluate ¢ on the dense subalgebra @g.

Note here that such a group is already unimodular. Indeed

since ¢ is a trace, we have

]

l2(x) 1% ax =(£"x£)(e) = ®(T 7.) = (T, T7) =
£ £7¢

(ex2™) (e) = [le(x) Pa(x) ax.

Because this holds for every fé@oo (G), we have A= 1.

Theorem 3.2: Iet @ be a normal trace on B+ satisfying

k.3
®(T, Tp) = flf(x) |2ax for every £€C_ (G). Then

¥*
Jo&{T€8:9(T T) = 0}. Equality obtains if G is discrete.

First, we establish a lemma,

Lemma 3.1: Iet AEJ_ and let h = ifk* g T gkéaoo(c). Then

(aT,) = O. k=1
Proof: Note first that Th, and therefore ATh belong to the ideal
of definition of ¢, so that it is legitimate to consider cP(ATh).

Let Ch be a compact set such that h = 0 off Ch. If £ is any

function in Z’bo(G) .such that f(('%) = 0, then f(x)h(il) =0 on G;

consequently, (fxh)(e) = J.f(x)h(il)dx = 0. Hence CP(Tf‘I‘h) = (P(Tf*h)

= (fxh)(e) = O for every such f. This says that the functional
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o(T) = <P(‘.‘L'.T.’h) vanishes on the subspace ,X: {Tf:féeoo(G),

f((-Il) = 0}. As T,€J and ¢ is normal, ® is bounded and UW-continuous.
Hence o vanishes onJ . But ('% is compact, and AéJa,EX-UW. We
conclude cP(AEh) = o(A) = 0, as asserted.

Turning now to the proof of the theorem, fix TEJ_, and let J
be the ideal of definition of ¢, as above. Jis a weakly dense
two-sided ideal in@, since 9 1s normal and semifinite. Hence,
there exists a family An,éf, directed ] under the usual operator
order such that LUB A, = T (see (2), p.45). Now 0 = A, = f:*'r-, and
TP belongs to the weakly closed ideal J_. Hence A€, for
every Q.

Fix @, and define ¥(X) = 9(AX), for X¢B. Because ALT, ¥ is
a bcunded UW-continuous linear functional on & . Since Adéj )
the lemma tells us that § vanishes on @i; and by UW-continuity,
¥ =0on (52)-W =B. m particular, CP(AQ,) = ¥(I) = 0. Finally,
we have @ (T*T) = sup CP(AQ) = 0, by normality.

If G is discrete, c oo(G) censists of the complex functions
having finite support, and J_ =N §ggn {Ux: X¢/F}, F ranging over
the finite subsets of G. Also, 9(I) = CP(Ue) = gi,U: Ue) =1, so
that ¢ is in fact a normal state.

%*
Iet Te®, ®(T T) = 0. Choocse a net £, €C_(G) such that

% ¥*
Tfn= z fn(x) U~ T US. Then T, T, -»T T UW. Since ¢ is UW-

- * n n
continuous, 2|fn(x)| = cp(Tf T, ) >@(TT) =0, asn » =,
n n -
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Iet F be a finite set, and define gn(x) = fn(x) for fo,
gn(x) = 0 for x€F. Iet ¥ be any UN-continuous linear functional
on® . Then

1¥(T) - ¥(_ )| = | ¥(T-T, )| + |¥(T, -T_)].

& n Th &

n

| Z(fno:) - g (¥ |=

But  |¥(T, - Tsn)l
n

l;fn(x) V)| s ;Ifn(x)l ¥l =

1/2 . 1/2

2 2

< (121 e, G 1B el = (171 Yie 0 1B lsll
F G

where |F| denotes the number of elements in F. It follows that

1im l¥(T) - #(Tgn)l = O for every such ¥, and hence

TE signw {U,; x¢F}, As F is arbitrary, T€J_, completing the proof
of the theorem.

It seems reasonable to expect that J_ = {TQB:CP(T*T)= 0} for an
arbitrary locally compact unimodular group G. We have not yet studied
this coajecture suffi:iently.

In any case, one has the following corollary.

Corollary: Let x —>Ux be a Palthful weakly continuous representa-
tion of the locally compact unimodular group G. If the representa-
tion is deterministic » then there is no normal trace on@+ such
that (T, T.)= flf(x) |ax, for every £EC (c).

Proof: For such a ¢, we have {Té@:q:(T*T)= 0}2J, =8.
Thus @ is identically O, which is absurd.

In section 4 we consider the problem of the existence of such a

trace, for the case wkere G belongs to a class of discrete groups.



4. Existence of the Canonical Trace

In this section we consider the faithful representations of a
fairly extensive family of torsion-free discrete groups. The idea
ol determinism will be used to characterize the existence of a
canonical trace on the generated von Neumann algebra; implicit
in this is an algebraic characterization of the left regular
representation. These algebras contain prototypes for the theory
discussed in Section 6.

By a left-linear group we mean & pair (G,S) consisting of a
group G endowed with a linear order S satisfying the left invariance
rule x S y implies zx S zy, for 81l x, ¥y, 2€G. Right-linear
groups are defined similarly, the order relation being invariant
under right multiplication. For such a group, x < y will mean
X Syand x #y.

The most elementary properties of left-linear groups are these.

(a) Every subgroup of a left-linear group is left-linear

in the inherited order.

(b) 1f (G,S) is left-linear, then the order = defined by x X y

if and only if :}1 S %' makes G into a right-linear group.

(¢) If (G,S) is left-linear and S = {x€ G: x 2 e}, then S is

a subsemigroup of G satisfying SNE* = {el, Su§' = G,
and x < y<=>ilyé S. G is simultaneocusly left- and
right-linear with respect to S if and only if xSk &S,

for every x€G. Conversely, if S is a subsemigroup of G

a7



such that SNE" = {e} and SUS' = G, then the relation
x5y ilyés mekes G into a left-linear group.

(a) 1 {G,: @€A} 1s a family of left-linear groups, then the
direct product I[Ga, @€ A, can be made into a left-linear
group.

The statement (a) is obvious, and the proof of (b) and (c) is

a routine verification. We indicate the proof of (). Iet G = N3,
@EA. Well-order A. For every x # e in G, write x > e or x < e
according as the first €A such that X, # e, (ea being the identity

of Ga) satisfies Xy > e or Xy < 2+ 1t is easily seen that the

o
set S consisting of the identity of G together with-all x€ G such
that x > e is a semigroup such that sns‘;l = {e} and Su§l = G.
According to (c), an abstrsct group can be made into a left-
linear group if, and only if, it contains a certain kind of
subsemigroup. We now give another simple charscterization of this
property. Given a group G, letT| be the family of all normal
subgroups N of G such that G/N can be made into a left-linear

group. Clearly GETI.

Proposition 4.1: G/MMlcan be made into a left-linear group.

Proof: N, =(Ylis a normal subgroup and, by (a) and (d), it
suffices to show that G/No can be mapped isomorphically into a
direct product of left-linear groups.

let G be the direct product of the groups G/N, N¢J|. For x£G,

let X be the function on7Ll whose value at N is the coset XNEG/N.

28
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Then x - X is & homomorphism of G into ’@, and the kernel of this
homomorphism is precisely NY.= No. The induced isomorphism of
the quotient group G/No is of the desired kind, and the proof is
complete.

By a left-linear homomorphism of a group G, we mean a
homomorphism of G into & left-linear group. The following corollary
asserts that the left-linear groups are precisely those possessing

sufficiently many left-linear homomorphisms.

Corollary: Ilet G be an abstract group. In order that there exist
at least one left-linear ordering on G, it is necessary and
sufficient that for every x # e in G, there exists a left-

linear homomorphism h of G such that h(x) is not the identity in
h(G).

Proof: Necessity is obvious: the identity mapping taken
for b works simultaneously for every x # e in G. Conversely, if
h is any homomorphism of G and if N is the kernel of h, then
clearly NETLif and orly if h is left-linear. Every N&T appears
in tkis way, ard h(x) # identity in h(3) if and only if x¢N.

Thus the hypothesis implies that NM.= {e}, and by the preceding
theorem, G = G/NVlcan be made into & left-linear group. QED.

Observe that a left-linear group G is torsion-free. Indeed,
suppose e < x. Thene < x =xe S x2 = xze = x3 ... which gives
e < x" for every n 2 1. Similarly if x < e, we have ' < e for

every n 2 1. Conversely, every abelian torsion-free group can be
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made into a left-linear group (1). Following are some examples of

nonabelian left-linear groups.

1. G is the proper affine group consisting of the multiplicative
group of matrices ( b'e Yy

with x and y real, x > O,
0 1
/x y x! oy’
s means X < x/, or x = x’and y = y’.
\o 2/ lo 1

{G,%) is both left- and right-linear.

2. G is the group of matrices 1 xz
0 1 vy
0O ¢ 1
with x, y, z real.
(l X 2 1 x' 2’
c 1 ¥ < 0 1 y' means x<x',
\0 0 1 0 0 1

orx=x'a.ndy<y', orx=x',y=y'a.ndz$z'.
Again, (G,S) is both left- and right-linear.

3. G is the same group as in (2), but with the order

/ 4 4
x ¥y X ¥y
s
(O 1) ko 1 )
meaning y < y; or y = y' and x S x'.

Ther (G, <) is left-linear but not right-linear.



Examples 1 and 2 are standard (see (1)). We indicate the

verification of 3. Iet S be the subset of G consisting of all

'(x satisfying y > 0, or y = O and x 2 1. Tt is easily seen

0 ¢ ?

that SUS = G and SNE&= {identity). Iet (x “), (x ¥ )es.
1/ \o 1

X ¥ x! ¥ xx’ xy'+y ,
Then o 1 o 11\ o 1 . But xy +y is positive

unlessy:y':O.Ify:y':Othenlea.ndx'zl,sothat

xx’ 21, Hence S is a semigroup, and by property (c) above,

(G,<) is a left-linear group.
a 0
0 1

CACDE T e

By property (c) again, = is not a right-linear ordering, and

let &> 1. Then ( }S. But for every y > O, we have

example 3 is verified.

Examples 1 and 3 i{llustrate that among the linear orderings
a.l given group admits, some may be both right and left-invariant
while others are merely left invariant.

We proceed now to the main result of this section. Throughout,
G will be a fixed left-linear discrete group. If x —>Ux is a
unitary representation of G on§, we say a subspace 77)of 1/ is
wandering when Ux‘m _]_ Uym for every x ;é Y in G. The notation
¢§Q:G'E-A] will denote the subspace generated by the set of vectors

{8y :ea} inH.
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Ilemma 4.1: Iet x — U, be any unitary representation of G on the
Hilbert space A, and let §€ X be such that §¢[Ux§: x > e)]. Then
[ng:x 2 e] contains a nontrivial wandering subspace.

Proof: Ietm= [nglx > e]. Then 7 is a proper subspace of
[ngzx 2 e]. Choose a unit *_rector e [Ux§:x 2elOM. For t >e,
UtC E[Utxgzx Ze]em, since e <t S tx for every x Z e, by left-
linearity. Hencg (‘UtC,C) =0 foreveryt>e. If t<e, then
(UtC,‘g) = -(U{.‘_lc,_fy = 0. So Ut[C] I [€] for every t # e, and it is

clear from this that [{] is a wandering subspace.

Lemma 4.2: Let® be a ¥on Neumann algebra, let J be any convex
subset. of , and take for ° the collection of all normal states of .
In order that an element T of 8 lie in the UW-closure of J , it is
necessary and sufficient that inf’! ®((T-5)*(T-S)) = 0 for every
Pcf. o

Proof; (Necessity) Because J is convex, the ultrawesk and
ultrastrong closures of J are the same (see (2), p. 41). Choose
a net Tne.g such that T-I_ -0 US. Then (T-Th)*(T-T.n) -0 UW,

and for every cpeP s we have
1im ((p-z ) (T-7.)) = 0
1 ¢ - - = 0.

(Sufficiency) Suppose T satisfies the stated condition, and choose
n arbitrary UW-continuous linear functionals SERRE ,pn:onka. We
have to show that max lpk(T-S)I can be made arbitrarily small,

with Sé€ .g



Because each pk is a linear combination of elements of P

(by polarization), there exist Pyeee ,CPNGP and ck36£ ,

J

1K Sn, 1=<jS<N, such that P = Z ck,jch’ foi- every k = 1,...,n.

Now for every k and every AEB,

2 2
o @)1 = (5yle, | loy(a) 117 <

2 2 2 . ®
sz s NI z A
5 logs | ARAC] chle @6 A%,

*
the lastiidequality by the Schwarz inequality for states ina C -
algebra. Summing the right side on k, we obtain n%xipk(A) |2
lz

sTy (A*A), vhere T = N%s,;] le and ¥ =% Qj. Since P is

kJ
: j=1

convex, ¥¢f’. Hence
125 mx o (r-9)| < T2 e 4((2-8)"(2-s)1¥/% o,
which was to be proved.

Iet x - U be a faithful unitary representation of G on W , and
let @ be the von Neumann algebra generated by {U,: x6G}. Note
first that a normal trace on B' such that cp(T: Tf) = Z|f(x) |2 for
all f& coo(G) is nothing other than a normal state satisfying
qD(Ux) = 0 for all x # e. Indeed if @ is such a trace, let 5{x) = O
for x #eand 8(e) =1. ThenI=U =U U =T T, so that

e e e 5 %
?(I) = Za(x) ]2 = 1. Therefore ¢ is finite, the ideal of definition
of @ is all of ®, and the extension of § to B is in fact a normal
state. As in the previous section, (p(Tng) = (p(Tf*g) = (fxg)(e)

for every f, ge-@oo((}), so that for every such f we have
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qa(Tf) = cp(Tf*a) = (£%5)(e) = £(e). From this

it is clear that Q(Tx) = 8(x). Conversely, if @ is a normsl state

satisfying cp(Ux) = 5(x) for every x€ G, then cp(rf) = Zf(x)q;(ux) = f(e)

for every f€ ¢°°(G), and hence cp('l'; Tf) = GP(TP**f)

= Z|£(x) |2. Being a normsl state, 9 is UW-continuous, and we
have @(T,T ) = ®(T, ) = (£x)(e) = (&xf)(e) = 9(T,T,), for
f,8¢ eoo(c). By an obvious continuity argument, it follows that
®(AB) = ®(BA) for all A, BER, showing that ¢ is indeed a trace.
Theorem 4.1: Iet x - U, be & faithful unitary representation of
the left-linear discrete gmup G on the Hilbert space#. Then the
following are equivalent:
(a) There exists a normal state ¢ on ® such that ®(U) = 8(x)
for all x&G.
() Jg #B:(x >U, is not deterministic).
(e) I¢ agw {Ux:x > e}.
If G is abelian, then (a) through (c) are equivalent to:
(d) There exists a nontrivial wandering subspace.
Proof: (a) = (b): By theorem 3.2 and the rreceding remarks,
for such a ¢ one has J,, = {Téﬁ:q}(T*T) = 0}. Hence I#JO.
(b) = (c): Suppose Ié'éf_ta.nm {U: x>e}. We will show that
I€J,, contradicting (b). Let F be any finite subset of G, and
let P = {xl,xz,...,xn] be the nonnegative elements of F,

e = x1< x2<...<xn. It suffices to show I€ span {Ux:x 2 e,xéP}.

34
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Note that ifJ is any subset of@e.nd T is any operator in@,
then T(}W)f (TX)'W, this being an immediate consequence of the
fact th:h the mapping BER—» TB is UW-continuous. So by hypothesis,
we have for every x, U &U_ w (U :t > el& 871'21‘@‘ (Uy: t>e)

= spoa (U.: © >x}, the last inequslity Teflecting.left~iinearity of

the. group G.
g s > . =
Now ane | {U.it™> x_ ). Hence, ] (U ©x_,)
= Spea (U t>x ., t#x). But the left side contains U
so that 525 (U:t>x )= s_pgg {T:t>x ., t #x, xn_l].
Continuing this in the obvious way, we obtain s_pgg {Ut:t Ze} =

= s—pgg {Ut:t¢ P}, from which the conclusion follows.

(¢) = (a): Let Mdenote the subspace of all finite linear
combinations of the U, X > e. By hypothesis and lemma A,2;ithere
exists a normal state p of (b and € > O such that p((I-T)*(I-T))z ¢
for every TEM. let Kp = {xé(ﬁ:p(X*X) = 0}. We pass to the
canonical %-representation of{ associated with the state p. That
is, define the bilinear form (-, -) on the vectorspace S/Kp by

(A + K, B+ Kp) = p(B*A). This converts 6/1{p into a prehilbert
space, whose completion we denote by ﬂp. Kp is a left ideal in®,
and for every TES the mapping LT(X + Kp) = TX + Kp in@/Kp extends
uniquely to a bounded operator on }Jp. The mapping Téﬁ—» L‘l‘

is a *-homamorphism of & intooC(ij) , and in fact it is a normal

homomorphism because the state p is normal.



Letm denote the closure in ﬂ'ri of the set {T + K Tem)< 6/xp,
and let § = I + Kp, considered as a unit vector in /-Jp. Clearly -
x —»I.Ux is a unitary representation of G on ﬂb » and we have
m= [1’..U §:x>e]. Moreover, by our choice of the state p, it
followsxtha.t (§-M,5-M) 2 ¢ > 0 for every NE€M. Applying lemms 1.1
there exists a unit vector Cé}fp such that (LU €,0) = 5(x),
for every x£G. To complete the proof, set Q(:Tc) = (I.TC, ), Te8.
Normality of @ is iasured by the corresponding property of the
homomorphism T — I"l‘

If G is abelian then so isf, and it is known that every
normel state of @ has the form ®(T) = (T {,§) for some unit vector
L€ M (see (2), p. 233). Obviously [{] is wondering if § satisfies
condition (a). On the other hand, if { is a unit vector contained
in some wandering subspace, them ®(T) = (T {,{) is a state
satisfying (a). This completes the proof of theorem L.1.

According to this theorem, the representation x — Ux is
deterministic if, and only if, I Egg [Ux:x > el.

Nt;w take for G the additive group of integers in the usual
ordering, ard let U be any unitary operator on the Hilbert space A
such that U® # I for every n. Then n€G — U 1s a faithful
representation of G which, by lemma k.1 &nd:hbheorexh.b.(]i(d))’jss
deterministic if and only if § €[U&:n 2 1] for every §EA.

This example makes clear the relation between our definition of

determinism and the classical meaning of the word in prediction
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theory: in the latter, one studies a cyclic unitary representation
of G with respect to a distinguished cyclic vector Eo, calling

the sequence §n = U’ngo deterministic when §°€ [§_1, 5_2, g ]=

IEYRLE
= [Un§°: n % -1] ((3),p.564). Of course the reversal of order
here is insignificant.

Rext, we characterize regularity. If x - Ux and x —>Vx
are two unitary representations of the discrete group G on the
Hilbert spaces M and «, repectively,we say the representations

are algebraically-equivalent if there exists a x-isomorphism #

of the ¥on Neumann algebra generated by {Ux} onto that generated by
{Vx] such that §(Ux) =V, for all x€G.
Corol_.l._a.ﬂ‘ : let G‘be a left-linear discrete gmup. In order that
a faithful unitary representation of G be regular, it is necessary
and sufficient that it be algebraically equivalent to the left
regular representation of G on ZZ(G).

Proof: Let x - ‘x be the left-regular representation of G
in £,(G). Tmat is, (£L£)(t) = £(z't), for £€ £,(6), x,t€G. Tt
is easy to see that x — ‘x bas no tail ideal. For example, if
® is the von Neumann algebra generated by the !hx, then the
functional ?(&‘(x)lx) = £(e), for féﬁoo((}), extends uniquely
to a faithful normal finite trace such that cp(l'x) = 5(x)
((12), p.301)/ EHence J, = {TEB:GP(T*T) = 0} = 0. Moreover, J,

is defined in terms of the representatives of group elements,

vectorspace operations, and the UW-topology, aIl of which are



preserved under an algebraic equivalence. Hence any representation
algebraically equivalent to the left regular representation will
have a trivial tall ideal.

Conversely, suppose X — Ux is a faithful representation of G
such that J, = O. By theorems 3.2 and 4.1, there exists a
faithful normal finite trace @ on (® such that ®(U ) = 5(x).

Now form the canonical Hilbert algebra. That is, endowed with
the bilinear form (A,B) = cp(AB*), ® bvecomes a prehilbert space,
whose completion we denote by ¥ ¢ For T&@B, the mapping

Lp A =T, extends to a bounded linear transformation maﬁ(ﬂcp),
and T - Ly, is & *-isomorphism of B in*‘co,f(ﬁ‘P) .(2). Let L denote
the image of ® . Now define W: K - £,(G) as follows; for x€G,
let WU be the characteristic function of the singleton {x}, in
laa(G). It is easily seen that W extends uniquely to a unitary
mapping Of#Q onto -Gz(G) » such that W L = Lx. The conclusion
follows. *

We close this section with a few remarks about a distinguished
subalgebra of @ . Let x —;Ux be a regular faithful repfesenta.tion
of the left-linear group G. Let X denote the linear span of the Ux

for x 2 e. That is,
S = {Tf: f€-¢oo(G), £(x) = O for all x < e}.

By left-linearity 4 , and therefore A= SUW, is an algebra. Further-

more, if @ is the canonical trace and Tf, Tgé] , then we have
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P(TT,) = P(Tp,) = (£xe)(e) = £(e) gle) = H(TL)H(T,).

Since Q.is UH-continuous, we can make an obvious continuity argument
in each variable to conclude that @(AB) = @(A)9(B) for all A,BEQ.
The fact that @ is multiplicative on (L suggests that same of the
theory of function algebras (i.e., Dirichlet or logmodular
algebras) may generalize to this noncommutative cc;ntext. Section

6 contains:a discussion of this problem..



5. les

In the preceding section, we have seen that for a faithful
representation of a left-linear discrete group, J@ = 0 implies
the existence of a canonical trace. It is reasonable to inquire
whether or not the theorem remains true if one deletes the
hypothesis that the group be left-linear. Our first example
shows that this conjecture fails, even when the group is
abelian.

Example 5.1: Let M be a Hilbert space having as an orthonormal

base the vectors e,n=0, £1, £2,..... Let U be the unitary

operator defined on A by Ue = ,a=0,%1, £2,..., . let

en+1
Z be the additive group of integers, and let A be a finite
nontrivial multiplicative subgroup of the unit circle. Iet
G=AXZ, and for x = (\,n)€G, put V_ = W=, It is clear
that x »V_is a faithful unitary representation of G on M.

Let @ be the von Neumann algebra generated by Wx:xc= G},
Then of course, & is just the weak closure of span (U :né&Z}.
First, we claim J_ = O.

Iet F be any finite subset of G, and put E_ = (n& Z:Axn <& F).

F
Let x = (A,n)€G. If x¢F then ngEp, so that NJ'€ A span{U¥:ké Ep)
= span {Uk:kéEF}. Hence span {Vx:xﬂ"} < span {Uk:kﬁEF]. As F
ranges over the finite subsets of G, EF ranges over the finite
subsets of Z; and we have J_S/) ﬁgg {Uk:ké E}, the intersection
extended over all finite subsets E of Z. But the set on the right

is just the tail ideal J_ of the representation n€Z - U" of the

Lo
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linear group Z in A/ . It is clear by construction of U that this
representation is unitarily equivalent to the left 'regula.r
representation of Z in ZZ(Z) . We conclude that J_, and therefore
Jo, is the null ideal.

We show now that there is no normal state ¢ on@ such that
®(¥,) = 8(x) for all x€G. Since B is abelian, such a state
would have the form @(T) = (T,L) where { is a unit vector in
((2), p.233). Let x = (\,0)€G, A # 1. Then x # identity, and
we have A = (A§,§) = (VxC,C) = cp(Vx) = 0, an absurdity. This
completes the discussion of example 1.

Let G be a discrete abelian linear group x€G ->Ux a
faithful unitary representation. Suppose that the representation
is nondeterministic (i.e., J, #8). Then by theorem 4.1 there exists
a nonzero vector { such that { | UxC for every x # e. So clearly
the action <;f ‘{Ux:xé G} is nondegenerate. It is not very surprising
that the action of the image group may be nondegenerate when the
representation itself is deterministic. We will indicate two
different ways this can come about.

Example 5.2: Let R be the ordered group of real numbers in
the usual Euclidean topology, and let t€® - ‘t be the left regular
representation of ® in L,(P).

As we have seen in section 2, the group {lt:té-z] is

nondegenerate. However, regarded as a representation of the

discrete group %, this representation is deterministic. Indeed,
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as n - %, Zl /o 7 lo = I ultraweakly. Hence

I€ SpRA (£,:t > 0).
Exarple 3: Let K be the discrete circle group and letAN-= IZ(K).
For £/ , define (U£)(A) = M(A), MK. We will show that n — U°
is a faithful deterministic representation of the integers Z and
that the action of the image group {U")} is nondegenerate.

It is clear that U is a unitary operator in ¥ . To show
that the repredentation is faithful and nondegenerate 5, 1t suffices
to show that for every prime integer n 22, -there‘exists fn #0
in X such that £ 1 qkfh, k =1,2,...,n-1. Let § be a primitive
nth root of 1, and let f be the characteristic function of
(1,6,6%,...,8 ). Then (v¥)(¢%) = ¢F for at1 x 21,

0 £J fn.i, and we have

o e acl
(We,2) = ) (Fe)(ehz(ed) = ) ¢,
| J=o J=0

Now if 1 Sk $n-], Ck is an n®® root of unity, and it is # 1
because n is prime. Therefore it satisfies the cyclotggic

equation 1 + x + o+ ..+, Hence (Ukt,t) = Z (Ck)‘j= G,

as asserted. J=o

Now suppose @ iz a normal state of the von Neumann algebra
generated by {U°}, such that ®(U%) = O for n # 0. As in example 1,
P bas the form @(A).= (Af;f) .for zome £& 4. This form persists, -

of course, if we restrict @ to the C*-algebra.a. generated by {Un].



As the group ‘{Un] is nondegenerate, we .may take Q-as the algebra
¢(T) of continuous functions on the compact circle group T with
the usual topology. In this correspondence, " becomes

g(z) = z%, and the condition ®(U%) = 0 for n #0@(I) =1
identifies ¢ as the Haar integral over T. On the other hand, since
fe zz(x), the measure determined by the state cnf(A) = (af,f)

on C(T) can be easily seen to have the form 2 If(%)vlzax
AeK

where B)\ is the unit point mass concentrated at the point A.
But clearly this measure is singular with respect to Haar

measure, and in particular this contradicts ¢ = mf.
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6. Analyticity in Operator Algebras

In this section, we begin a study of a class of operator
algebras closely related to the Dirichlet and logmodular function
algebras. In particular, we will discuss the possibility of
generalizing to this noncommmtative context the Jensen inequality
and the classical theorem of Szegd, for analytic functions in
the unit disec.

In the following, the concept of the determinant of an
operator will play a central role. PFuglede and Kadison (5)
have defined the determinant for operators in a IIl factor.
However, an examination of this paper shows immediately that
their results (save those relating to uniqueness) are valid in
the following more general situation. ILet® be 2 von Neumann
algebra, and let @ be a finite trace on  such that @(I) = 1.
Note first that log H is a self-adjoint operator in ® whenever
H is both positive and regular in B.. If TER. is regula.r;. so is
] = (T*T)l/z and the determinant of T is defined as

&(T) = exp ®(log|T|). If T is singular, define
a(T) = ?exp 9(log (|T] + € 1) ).
€/0

4 has the following properties:
1. A(AD)

[A] & (T), for all Te@and all complex A.

2. A(ST) = A(S)A(T) for 211 S, TEE..

3. A(eT) = qu’(T)l = exp ep(%(m-'r*) ), for all T€6 .

Ly
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A(T) = A(TY) = (A(T"1))Y2, for a11 TEB.

A(H__L) < A(Hz) when 0O snl ES E,.

. AT S 1 PR

=

4 is uniformly continuous on regular elements.

ifOSHS H end H - H uniformly then A(Hn) - A(H).

O OO N O W

In general, 1lim A(Tn) = A(T), when T, - T uniformly.
n—»

Recall first the well-known inequality of the arithmetic-
geometric mean. Ilet (X,g , m) be a probability space , ha
nonnegative integrable function. Then

exp J.log h(x) dm (x) < f h(x) dm (x), the

X X
left side taken as O when I log h(x) dm(x) = — =. Moreover, equality

obtains if, and omly if, h = Jh(x) dm(x) almost everywhere.

Proposition 6.1: Let & ve a %'(on Neumasnn =2lgebra and let @ be a

finite trace such that @(I) = 1. Then for every T€8,

A(T) < o(|T]).
If T is invertible and @ faithful, the inequality is strict unless
T is proportional to a unitary operator.
Proof: Let  be the von Neumann algebra generated by |T|.
By spectral theory, there is an extremally disconnected compact
Hausdorff space X and a *-isomorphism AGQ - fAé 2 (X) of 60
onto the algebra £(X) of all complex-valued continuous functions

on X, mapping the projections in 60 onto the set of all
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characteristic functions of clopen sets in X.
let 'm be the unique regular Borel probability messure
on X éatisfying
IfA(x) dm(x) = @(A), for all A66°.
X

If T is invertible, then we have

A(T) = exp 9(10g]T]) = exp Jo, 1) () ax(x) =
X

= exp [log £ (x) am(x) & [t (x) an(x) = o l2]),
X X
by the ordinh.ry arithmetic-geometric inequality. The conclusion

follows in general by letting ¢€lO in the inequality
A(T) = a(lTl) = a(|Tl+ eT) s @(|T]) + €.

If ¢ is faithful, then for every nonzero projection PE&O,

0 < @(P) = pr(x) dm(x), so that.m(C) > O for every nonnull
X
clopen set C &£ X. Becasuse the clopen sets are a base m is

supported everywhere on X, and consequently, a continuous function
which is constant a.e. (dm) is identically constant. If in addition

T is invertible, then A(T) = exp flog rITl(x) dm(x). So by the
X
ordinary arithmetic-geometric mean inequality, A(T) = @(|T|)

implies fITI(x) = JfITldm = ¢(|T|) for all xe X. Thus (T*T)l/2=

= || = ®(|T])T so that ('Pl( |T])T 48 a partial isometry in B .
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0f course B is a finite von Neumann algebra, and we conclude
that ( |?])T 18 actuslly unitary. This completes the proof.

Additioral properties of the determinant can be deduced from'
the following. Ilet @; be a von Neumann algebra, ¢ a finite trace
on & such that @(I) = 1.

Proposition 6.2: If HE® is positive, then A(EH) = inf @(Ee"),

the infimum extendedover all self-adjoint A€/@ such that ®(A) = O.

Proof: If A is self-adjoint and ¥(A) = O, then
aEe) = amace®) - ame® ) am).

Hence A(H) = A(HeA) s cp(HeA) , by the arithmetic-geometric mean
inequality. This proves A(H) < inf SP(neA).
On the other hand, for every ¢ > 0, inf ‘P(HeA) < inf?((H-b-cI)eA).

H + €I is positive and regular, so that

A = 9(log (E + €I))I-1log (E + €I) is a bounded self-adjoint

operator in®, having zero trace. Moreover,

P = A(H + €I) (B + eI)'l, sc that

®((E + eI)e®) = AE + eI)Q(I) = A(E + sI).
We have then inf CP(HeA) £ A(HE + €I), and the opposite inequality
follows by letting €3 0, using continuity of 4 under uniform
decreasing limits on positive operators.
Corollary: Iet 67 denote the set of positive elements of B. Then
for all X, Y € @, A(X+Y) = A(X)+ A(Y) and in addition, A is upper

semicontinuous on @f with respect to the ultraweak topology. 4 is



upper semicontinuous on & with respect to the ultrastrong topology.
Proof: The first statement follows from inf[tp(XeA)-i— CP(YeA)]

2 inf Q(XeA) + inf CP(YeA). The second statement comes from the

fact that the infimum over a Pfamily of continuous functions

uniformly bounded below is upper semicontinuous.

The last assertion follows similarly, using

Am) = (AT < tne [o(T'1eb) 12,

and the fact that for every self-adjoint AEB the mapping
T8~ Q(T*TeA) is ultrastrongl y continuous.

Of course, the corollary implies that A is a concave function
on @’f', since A(AT) = AA(T) for every A 20, e@.

The setting for the remainder of this paper will be this:
we are given a von Neumann algebra ® ,» an UW-closed subalgebra
@ of B, and a faithful normal finite trace ¢ on®, satisfying

(1) 1ea

(11) a-l-O..* contains a weakly dense *-subalgebra of &

(III) ¢ is multiplicative on (.

Examples are obtained by taking a left-linear discrete group G
and a faithful regular unitary representation x€G —U . ILet @ ve
the vor Neumann algebra generated by {Ux:xéG}, a= _pgtsx {Ux:xze},
and take for ¢ the canonical trace satisfying cp(ux) = 8(x).

When G is the group of integers, @ will be (isomorphic to) Ly of

<

the unit circle, and Q. will consist of Hy, the algebra of functions
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bounded and analytic in the interior of the disec.
We collect first the most elementary properties of the algebra &Z.

Define @ = {Ted:9(T) = 0}. Clearly 4, is an UW-closed subalgebra
of L.

Proposition 6.3:

(a) (1) = 1.

(b) @ is antisymmetric; that is,2NZ consists solely of

scalar multiples of the identity.

(e) a={18:9(T) = {0} }.

(3) 1 AEBis self-adjoint, there exists a sequence Tnéa

such that Tn+T:—> A strongly.

Proof: (a): 1is a trivial consequence of the fact that
%%(1) = ®(1%) = @(1).

(b): Let AEQ", and put B = A+A -@(A+A )I. Then B is self-
adjoint, ina/lat < Q, and has zero trace. Therefore §(Bzi) = ¢2(B)=0,
giving B = O since @ is faithful. Similarly, one shows that
(A-A*)/i =( (A.-A*)/i)x. Tt Pollows that 2A=(A%A" )+i(A-A )/i 229(A)I

(c): 1Iet X= (M:GP(T%) = {0}}. Clearlya<3, since @ is multi-
piicative on Z4. Now by von Neumann's density theorem, ﬂ+z is
Strongly dense in #, and it is well-known that the strong topology on
5 coincides with the norm topology defined by the positive definite
inner preduct (A,B) = CP(AB*), (see (2), p. 288).

Ilet TEX and choose sequences An’ Bﬁ.‘&t such that

¥* ¥*
Iz - (a, + Bn)llqP - 0. By putting B/ =B - ®(B,)I, A/ = A + ®(B)I,
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Ve can even assume the Bn's are inao We have
*

(A,B) = 9(AR) = ®(A )9(B) = 0; and by definition of §,

4 * *

‘\T,Bn) = cp(TBn) =0. SoT- A is orthogonal to B, for all n.
Taerefore

2 * 2 *, 2
llT-AnIIcp + I -Bylig = IT - (8,48 ) llg - 0,
and in particular, An — L. By the above remarks on the strong
topology and the fact that strong and ultrastrong ccavergence is
the same for sequences, we conclude that T&Z > = Q70" = Q.
(d): Suppose AG® is self-adjoint. By the proof of (c), there

xist S ,T €(Lsuch that [A - (S + T)|._ -0 ®
exist sequences n TS suc A - n+n ‘P—’ as n - %,

Because @ is a trace,

o - (z+ S)llg = Il 14 - (8¢ TDTVI,

= la - (s,+ T, >0

Hence -;—'(Sn-i- Tn) + %(Sn+ Tn)* = %‘-(Sn+ T:) + %‘(Tn+ S:) tends to A
}n the L2 trace norm, and therefore strongly. This completes the
proof of the proposition.

Now of courseﬂ.:aa + {AI: Aé€}. So by (c) we have immediately
that

@ = (T€6: 9(T2) = (0} }.

If J is a subset of®, &1 will denote the set of all inverses

of the regular elements of;g . Our interest centers on the following

two statements:
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1. A(T) = |9(T)| for a11 TeQAd >
2. For every positive HER
A(E) = inf ®(E|I-B|%), the inf taken over all BEG.
We shall refer to 1 and Z as Jensen's formula and Szegd's
theorem; respectively.

Helson and Lowdenslager (6) have given a measure-theoretic
proof of Szegd's theorem which is valid in the case where 6 is
abelian. The writer has been unable to generalize this proof to
the noncommutative setting. Nevertheless, their key lemma
carries over verbatim, and we digress now to establish this result.

Theorem 6.1: Let 9 be a finite trace on a von Neumann algebra &

such that ®(I) = 1, and let 60 be a weakly dense x-subalgebra

of 6 . Then for every positive Héﬁ, one has

inr p(Eet) = A(E),

the infimum extended over all self-adjoint A€’6° with ¢(A) = O.

Proof: A(H) S inf CP(HeA) follows from proposition 6.2. For
the opposite inequality, suppose first that H is regular. The
operator Q = -~ log H + 9(log H)I is bounded and self-adjoint.
By Kaplansky's density theorem (11), there exists a net Qnééo
such that Q = Q:, sup HQnH <o, and Q - Q strongly. Since ¢
is strongly continuous on bounded sets, w(Qn) ->9(Q) =0,
and we may even assume CP(Qn) = 0 for every n.

Iet h(t), tE(- =, + ®»), be any real-valued continuous

function vanishing at * ® and coinciding with e for t = SgP“inlﬂ.
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Another lemma of Kaplansky (11) asserts that the mapping

T - h(T) is strongly continuous on the selr-adjoint operators
=1

in @ . Hence eQn = h(Qn) tends strongly to h(Q)= e%g A(H).

Now suple “|| % jibllo < @ , so that
%

The desired inequality follows for regular H.

-1
1im ?(Be ©) = A(H)P(E B ) = A(H).
If E is now an arbitrary positive element in &, then
H + 6I is regular, for every ¢ > 0,and ﬁP(HeA) < o((H + GI)eA)

for every A in the prescribed set. Thus

int @(Ee?) & A(E + €I),
and the proof can be completed by letting CJ'O, using continuity of
A under uniform decreasing limits on positive operators.
Fow let &, @, &, and ¢ be as defined above. The generalized

Helson-Lowdenslager lemma reads as follows.

Corollary: For every positive operator Hé& one has

AE) = @B TY).
Tl

Proof: The inequality < follows, as before » from the arithmetic-
geometric mean inequality. ILet € be a x-subalgebra of A+ a.*,
veakly dense in 3. Theorem 6.1 asserts that A(H) = inf CP(HeA),
A ranging over the self-adjoint operators in ( with ¢(A) = O.
The opposite inequality will follow if we show that such an A has

¥*
the form T + T, for some TéQo.



NowA=R+S, RSEC. Since A self-adjoint, R+ S =R + 5,
whence R-S = (R-s)* is a self-adjoint operator inana. By
antisymmetry, R-S = AI for some real A. So if we take
T=S+%Iéa,, then A= (S+AI) + S =T+ T . Finally,
putting T =T - qa('r)Ieaé, we obtain the desired form

¥* %* ¥*
T, + T =TT - @(T+T )I = A - 9(A)I = A.

%* *

Now suppose we are able to replace eT“JII with eT eT in

corollary.2. Then Szego's theorem follows. Indeed, letting
Ag= I-eT, then clearly ATc—‘-a.. And since ¢(AT) = 1-eq)(T) =0,
we have ATéaa . Thus

inf 9(|T-T[%) s 1nf @(E]1-a, ) = AB).
ea, TEQ,

T
The opposite inequality follows from this one exactly as in the
Helson-Lowdenslager proof, using the relation A(A.A*) = A(A*A).
Although this alteration is trivial when B is abelian, it is
not clear whether or not it can be accomplished in the general
case.

Returning, now, to the main discussion, let (£,9) be
the canonical Hilbert algebra consisting of the prehilbert space
® endowed with the positive definite inner product (A,B) = CP(AB*).
Letof(resp. /) be the collection of all operators Ly (res. RA)
on the completion A, defined by L,T = AT (resp. R,T = TA) for re®.
The mapping A - L, (resp. A —'RA) is a ¥*-isomorphism (resp.

*-antiisomorphism) of & ontosl (resp./é ), and the fundamental
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commtation theorem asserts that &/ = and & =& (2).

Lemma 6.1: Let { be any unit vector in the completion #cp
such that { LL.C for all SEQ,. Then { is bounded: in fact,
¢ is & unitary operator in &.

Proof: For T&f, define AcT = LyC. A. is a linear trans-
formation of the dense subspace 3 ofﬁq, into j"cp’

Fix T, and choose a sequence Anéa such that An+ A: - T*T
strongly (proposition 6.3). Ietting B =4 - ?(A n)I’ then
BEa, and B_+ B: + 9(A_+ A:)I S TT strongly. Since a
L 2 isémorphism preserves strong convergence of sequences, we have

:.Bn+ LB: + (?(An+A:) L; - Ly*p strongly.

Now by hypothesis (LB* Q) = (LBn_C,_CT = O for all n. Thus

n

(AcT, ALT) = (Lpb, Lyb) =(@g*y 6,€) =

e’ *
lin L\LBnC, C)-i-(LB: G0 + e(a+a)]

Lim (A _+ A:) - ¢(T'?) = (T,T).

So AC may be extended to an isometry acting ian(P.

If B, TE€B, then LACT = LBLTC = LBTC = ACBT = A LT.
Hence A,;E.f ' £, so there exists an isometry U in @ such that

AC = RU. Because 2 is a finite von Neumann algebra U is

unitary, and finally

C=LIC=ACI=RMI=U. QED
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Theorem 6.2: let H be a positive regular element of @,

and let d = [%22_ P(E|-T)21/2. men &® =[BTt > o,
and there exists 'TQG.O with the following properties:

(a) I-reQndt

(b) E=ai(z-m)t(z-T)7t.
Proof: Iet K be the regular positive square root of H. Iet
n be the closed subspace of}/q, generated by Q_OK. Because K,
and therefore RK’ is invertible we have /= RK‘n, vhere TLis the
closed subspace generated by o_o.

Now if €€M, then I L &, and

1 [5-Ele IR - RS = IR [K-Re -
Tt follows that a2 = |2 = [B~L.

let 7 be the projection of K on M, and let { = K-T. By the
above remarks, T has the fonﬁ RK§ for some §€ 1, so that
¢ = RK(I-g). First, we show { = dU, for some unitary U in @.
If A€Q, then L,{ = LARK(I-g) = RKLA(I-;) = RK(A-LAg).
Both A and LAg are in 7], hence LACGRKTL=m- But by
definition of {, { 7N . Therefore by the preceding lemma,
there is a unitary operation UE® such that § = [|G|U = 4U.
Now as an element of ¥ @) § is a norm 1imit of a sequence

Aneab. But § = I - Rl-_{lC =1I- d.Uile@. Therefore

o( |§-Ant2_) -0, and this implies that geags - Q.
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Consider the operator D = (I—§)H(I—§*) - dZI. For every TE®,

we have

(0,) = P(LH(I-E)KE(1-87)) - a2 @(T)

= (g 60 - e,

Therefore (D,T) = O for all TEOGQO:U{I]. Hence D = O since
40U (I} 1is fundamental 1n g, and ve bave (I-£)E(*-§7) = a°1.
But in a2 finite von Neumann algebra, a product of operators is
'fegu."l.a-r only vhen all the factors are, so that

(1-8)'e®, and E = a%(z-8)L (1-£%)72.

It remains only to show that (1-;)'150,0, or vhat is the same,
*(2(1-5)7")

1]

0 for all T€A. For such a T, write d*¢(T(I-E))=
&% (n(1-8)"(1-£7) L (1-£)) = @(P(1-8™))
= (BT, R(1-£)) =_(RKT,€) = 0, since RKTGRK‘TL=m.

The theorem is proved.

Corollary: Iet H be a reguler positive operator in@.
Then H has a factorization H = Ti vith TedNL-. T is uniquely
determined up to a pwoportionality constant of modulus 1. The
algebra (L is logmodular in the sense that every self adjoint
A€® has the form
A =log TT

VHeré Te@nTL

Proof: The second statement follows from the first by
taking H = eA, and the existence of such a factorization for H

is contained in the previous theorem.
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1and sS° = TT". Then ¥s = (F)*

Suppose S, Téana
giving T'se@nd. By antisymetry, 'S = AI, for some AEL.
It is clear that |A| = 1, since
A1 = Prss™H* - #er#* - 1 qep.
We turn now to Szegd's theorem and the Jensen formula.
Remark: Let S€Q, TERAC, and suppose SS° & TT . Then
lo(s)| = | o(T)|.
Proof: By the Schwarz inequality for states in a C*-algebra,
we have
[#(5)/@(2) 12 = lo(Ts) |2 = o(ttss* ™) =1,
since Tss” #* - #ss*(r)1 s .

Theorem 6.3: The following propositions are equivalent.
(a) Jensen's formuis om 2NGY.
(b) Jensen's irequality; %.6., |9(T)| = A(T) for all TEA.
(¢) Szegd's theorem. I.
Proof: (c) = (a) : Let T€GAQL. Then for every S€5;, ve
have ,
?((I-5)T) = (1 - ¥(s)) @ (T) = ®(T).
By the Schwarz inequality,
le(z) 12 = Ia(z-5)11? = 9((1-5)7r"(1-5))

for every 5646. By .Szeg'o"s theorem,
¥*
le(z) |2 = 24 o(Tr 1-s[?) = a(rr’) = a%(m).

The same argument applies to ‘I‘l, glving

amfemy 1=8 1 emYoe | -
() 17 = lo(TH) % = a3(TH) = a7%(m).



Therefore |9(T)| = A(T).

(2) => (b): Let TE4 and fix € > 0. Then TT + €I is positive

and regular. By the corollary to theorem 6.2, there exists seand>
such that 'I'I'* + €I = SS*; and by the remark preceding this theorenm,
lo(T) 12 SIQp(s)lz. Applying the Jensen formhla to the right side,
we obtain |o(s)[B= a%(s) = A(sS™) = A(TT+ €1):But A(TT +6I1)JA(TT )=
= 8%(T) as: €40, and Jensen's inequality |(T)| S A{T) follows.

(b) =b(c): Iet H be a positive operator in&, and let

d = [si‘%rdocp(nlx-slz)]l/z. We show first that a° = A(H).

Fix € > 0. Then H + ¢I is positive and regular. Theorem 6.2
asserts that H + €I can be put into the form

E + 6 = a5(1-8)"H(1-8")"Y, vhere

2y/1/2 ! =1
d, = [inf @((B+6I) |1-51%)] / , SEa. and I-S€GNA™.

Taking the determinant of both sides, there results

a(E+eI) = a2 A((1-8)2(1-8") M = a2 A%((1-5)).
Now by Jensen's inequality. '
a((z-s)1) = Je((z-5)™) | = [FH(z-8) | = 1.
Hence A(H+ ¢I) = d2. But clearly a2 = d°, and the desired
inequality follows.

The opposite inequality is simple. Indeed, if Sea.o, then

a(11-51?) = 4%(z-5) = |p(1-9) | - 1,

by Jensen's :!.nequaiity. Hence,
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A(B) s A(R)A(|T-8]%) = A("|I-5]%) s 9(m)|1-5]%),

by the arithmetic-geometric mean inequality. The conclusion
follows by taking the inf over S(-_Gb , and the proof of the theorém
is complete.

Regarding the proof, we note that\the second inequality
A(E) < a% can be deduced from d° = A(E) without invoking
Jensen's inequality a second time. This can be seen in a
number of ways. First, one can mimic the Helson-Lowdenslager
proof of this assertion, using the fact that A(AA*) = A(A*A).
Instead, one can show that Jensen's inequality itself follows
from a° < A(E). Indeed, as in the proof of (c) => (a),
we have

le(m) 2 = le((1-5)1) 2 = @(77" |1-52),
for all T&A, Séﬁs,' thus
lo(T) |? s 1nf (22 |1-5]%) = &% s A(TT) = A%(1),
8620
which is precisely Jensen's inequality.

Of course, theorem 6.3 is not decisive since we have been
unatle to establish any of its three assertions independently of
the others , in any n—oncommuta.tive context. We»conclude with the
following bit of information. Ilet exp((l) denote the set of all
el, TEA.

Proposition 6.4: If the US-closure of exp(Q) containsa/)a-_l, then

Jensen's fomﬂa is valid.



Proof: Since @ is multiplicative onQ, Jensen's formuls
is always valid on exp (). Indeed if T&Z, then

loe®) [ = 1e¥T)] = aeD.

T
Take Téana-.l,', and choose a net e =, T €0, tending to T

ultrastrongly. Then

T T
[2(T) [ = 14m (e ®)| = 14m [a(e ®)| = &(D),
since the determinant is upper semicontinuous in the US-topology.

The same argument applied to Tl yields

l1/e() | = |o(F)| = A(F) = 1/a(T).
Therefore [@(T)] = A(T).
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