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Abstract. We give a constructive proof of the well-known result that every derivation on

Mn(C) is inner, taking an approach based on fixed point theory. The proof yields an explicit

formula for the matrix implementing the inner derivation (modulo translation by scalar ma-

trices) by employing a standard averaging technique over the unitary group of Mn(C). As a

corollary, it follows that the matrix may be chosen with norm less than or equal to the norm

of the derivation.
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1. Introduction

For a positive integer n, let Mn(C) denote the set of n × n complex matrices. A derivation

δ : Mn(C)→Mn(C) is a C-linear transformation on Mn(C) satisfying the Leibnitz rule, that is,

δ(AB) = Aδ(B)+δ(A)B for all A,B ∈Mn(C). The study of derivations is motivated by the fact

that they are infinitesimal generators of (continuous) one-parameter groups of automorphisms,

which arise in the study of time evolution of physical systems. Since the motivation on our

part is one of mathematical curiosity and pedagogy, we limit our scope to the case of matrix

algebras. For a fixed matrix Z ∈ Mn(C), it is easy to verify that the linear transformation on

Mn(C) given by A 7→ ZA − AZ =: [Z,A] is a derivation. Such derivations are called inner

derivations and we say that the matrix Z implements the inner derivation. An automorphism

Φ : Mn(C)→ Mn(C) is said to be an inner automorphism if there is an invertible matrix P in

Mn(C) such that Φ(A) = PAP−1 for all A ∈ Mn(C), that is, the automorphism is ‘spatially’

implemented. An inner derivation generates a one-parameter group of inner automorphisms.

In this note, we present a constructive proof of the fact that all derivations on Mn(C) are

inner (henceforth called the Derivation Theorem). For a derivation δ, we find an explicit formula

for a matrix implementing δ as an inner derivation. As an application, we use the formula to

show that it is possible to choose such a matrix with norm less than or equal to the norm of

the derivation. We note that the strategy also works for a proof of the Derivation Theorem for

Mn(R).

2. Preliminaries

Definition 2.1. For a locally compact topological group G, let Σ denote a σ-algebra of subsets

of G containing the Borel subsets. A Radon measure µ : Σ → R is said to be a left-invariant

Haar measure on G if µ(gS) = µ(S) for all g ∈ G and µ-measurable subsets S of G.

It was first shown by Haar that a left-invariant Radon measure exists on any locally compact

topological group and is unique upto multiplication by a positive constant. This generalizes the

notion of Lebesgue measure on the Euclidean spaces Rn. Our interest in the Haar measure stems

from the averaging procedure it allows via integration over the group which, loosely speaking,

results in functions or other mathematical objects that are invariant under action of the group.

Since the Haar measure is finite for a compact group, we may normalize it to a probability

measure. On an n-dimensional Lie group, the measure induced by a left-invariant n-form is a
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Haar measure. For our discussion, the pertinent groups are the unitary group U (n) of Mn(C),

and the orthogonal group O(n) of Mn(R), both of which are compact Lie groups.

Lemma 2.2. Every matrix in Mn(C) can be written as a C-linear combination of four unitary

matrices in Mn(C).

Proof. For a matrix A, without loss of generality we may assume that ‖A‖ ≤ 1 as A = ‖A‖( A
‖A‖).

Let <(A) := A+A∗

2 ,=(A) := A−A∗

2i , denote the real and imaginary parts, respectively, of A, so

that A = <(A) + i=(A). The matrices <(A) and =(A) are Hermitian, and have matrix norm

less than or equal to 1. Using the spectral theorem and the continuous functional calculus

for a Hermitian matrix H with ‖H‖ ≤ 1 (and thus, −I ≤ H ≤ I), we note that φ1(H) :=

H + i
√
I −H2, and φ2(H) := H − i

√
I −H2, are unitary matrices. Thus the decomposition,

A =
1

2
φ1(<(A)) +

1

2
φ2(<(A)) +

i

2
φ1(=(A)) +

i

2
φ2(=(A)),

shows that A can be written as a C-linear combination of four unitary matrices. �

Lemma 2.3. Every matrix in Mn(R) can be written as an R-linear combination of finitely

many orthogonal matrices in Mn(R).

Proof. For n = 1, the assertion holds trivially and hence we assume that n ≥ 2. Note that

we may represent

[
1 0

0 0

]
as an R-linear combination of five orthogonal matrices in M2(R) as

follows,
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− 1

2
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− 1
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.

Thus the matrix unit E11 in Mn(R), with 1 in the (1, 1)th position and 0’s elsewhere, can be

represented as an R-linear combination of five orthogonal matrices in Mn(R) using the canonical

embedding O(2) ↪→ O(n) given by

[
a11 a12
a21 a22

]
7→

a11 a12
a21 a22

0

0 In−2

 .
Recall that permutation matrices are orthogonal matrices. By multiplying suitable permuta-

tion matrices to E11 (on the left or the right), we conclude that any matrix unit Eij , 1 ≤ i, j ≤ n,

may be represented as a linear combination of five orthogonal matrices in Mn(R). Since the n2

matrix units R-linearly generate Mn(R), we note that every matrix in Mn(R) can be written as

an R-linear combination of 5n2 orthogonal matrices in Mn(R).

�

3. Proof of the Derivation Theorem

Theorem 3.1. Let δ be a derivation on Mn(C). Then there exists a matrix Z ∈Mn(C) such

that δ(A) = ZA− AZ =: [Z,A] for all A ∈Mn(C). Furthermore, Z is unique upto translation

by a scalar matrix. Let U (n) denote the compact group of unitary matrices in Mn(C), with

the left-invariant Haar probability measure on U (n) denoted by dU . We have the following

formula,

Z = αI +

∫
U (n)

δ(U)U−1 dU,

for some α ∈ C.
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Proof. Define a family of affine linear maps on Mn(C), indexed by U (n), in the following

manner:

ψU (X) := UXU−1 + δ(U)U−1, for U ∈ U (n).

For U, V ∈ U (n) and X ∈Mn(C), we observe that

ψU ◦ ψV (X) = UψV (X)U−1 + δ(U)U−1

= U
(
V XV −1 + δ(V )V −1

)
U−1 + δ(U)U−1

= (UV )X(UV )−1 +
(
Uδ(V ) + δ(U)V

)
(UV )−1

= (UV )X(UV )−1 +
(
δ(UV )

)
(UV )−1

= ψUV (X)

Thus for any U, V ∈ U (n), we have ψU ◦ ψV = ψUV .

For a fixed matrix X0 ∈ Mn(C), note that ψU (X0) is a continuous function in U on the

compact group U (n). Let us define

Z :=

∫
U (n)

ψU (X0) dU.

Keeping in mind the affine linearity of ψV and the left-invariance of the Haar probability measure

on U (n), for every unitary matrix V ∈ U (n) we have,

ψV (Z) = ψV

(∫
U (n)

ψU (X0) dU
)

=

∫
U (n)

ψV ◦ ψU (X0) dU

=

∫
U (n)

ψV U (X0) dU =

∫
U (n)

ψU (X0) dU

= Z.

Thus for all U ∈ U (n), we observe that ψU (Z) = UZU−1 + δ(U)U−1 = Z, which implies that

δ(U) = ZU−UZ. Using Lemma 2.2 and the linearity of δ, we conclude that δ(A) = ZA−AZ =

[Z,A] for all A ∈ Mn(C). For an explicit formula for Z in terms of δ, we choose X0 = 0 and

note that

Z =

∫
U (n)

δ(U)U−1 dU.

If matrices Z1, Z2 both implement the inner derivation δ, then [Z1, A] = [Z2, A] for all A ∈
Mn(C), which implies that Z1 − Z2 is in the center of Mn(C). Thus Z1 = αI + Z2 for some

α ∈ C. �

Remark 3.2. Note that for a unitary matrix V ∈ U (n) and X0 ∈Mn(C), we have

V (

∫
U (n)

UX0U
−1 dU)V −1 =

∫
U (n)

(V U)X0(V U)−1 dU

=

∫
U (n)

UX0U
−1 dU.

Thus
∫
U (n) UX0U

−1 dU commutes with every unitary matrix and by Lemma 2.2, it must lie

in the center of Mn(C). This explains why different choices of X0 perturb Z only by scalar

matrices.

Let ‖ · ‖ be a norm on Mn(C) which makes it a normed algebra (‖AB‖ ≤ ‖A‖‖B‖ for

A,B ∈Mn(C), ‖I‖ = 1) such that ‖U‖ ≤ 1 for every unitary matrix U ∈Mn(C). Examples of

such a norm include the Frobenius norm,

‖A‖ =

√
1

n
tr(A∗A),
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and the usual matrix norm,

‖A‖ = sup
x∈Cn\{0}

‖Ax‖2
‖x‖2

.

For a derivation δ on Mn(C), let ‖δ‖ denote the usual operator norm of δ relative to the norm

‖ · ‖ (with properties as described above) on Mn(C). If δ(A) = ZA − AZ for all A ∈ Mn(C),

then ‖δ(A)‖ ≤ ‖ZA‖+ ‖AZ‖ ≤ 2‖Z‖‖A‖, and hence

‖δ‖
2
≤ ‖Z‖.

Corollary 3.3. Let δ be a derivation on Mn(C) (n ∈ N). Then we can choose Z ∈ Mn(C)

such that δ(A) = [Z,A] for all A ∈Mn(C) and ‖Z‖ ≤ ‖δ‖.

Proof. From Theorem 3.1, choosing

Z =

∫
U (n)

δ(U)U−1 dU,

we see that

‖Z‖ ≤
∫

U (n)
‖δ(U)U−1‖ dU ≤ ‖δ‖

(∫
U (n)

1 dU
)

= ‖δ‖.

�

Theorem 3.4. Let δ be a derivation on Mn(R). Then there exists a matrix Z ∈Mn(R) such

that δ(A) = ZA− AZ =: [Z,A] for all A ∈Mn(R). Furthermore, Z is unique upto translation

by a scalar matrix. Let O(n) denote the compact group of orthogonal matrices in Mn(R), with

the left-invariant Haar probability measure on O(n) denoted by dO. We have the following

formula,

Z = αI +

∫
O(n)

δ(O)O−1 dO,

for some α ∈ R.

Proof. The proof is almost identical to the one for Theorem 3.1 using the affine R-linear maps

ψO(X) = OXO−1 + δ(O)O−1, indexed by O(n), and using Lemma 2.3. �

4. Concluding Remarks

There are generalizations of the main result discussed in several directions. For instance, the

Kadison-Sakai theorem states that all derivations of a von Neumann algebra are inner (cf. [3],

[4]). Our proof is inspired by Sakai’s approach which uses the Markov-Kakutani fixed point

theorem in an essential way (see [5, Lemma 2.5.1]). The astute reader may have noticed that

the proof of Theorem 3.1 works equally well for Mn1(C) ⊕ · · · ⊕Mnk
(C) (for positive integers

n1, · · · , nk) by considering its unitary group, and for Mn1(R)⊕ · · · ⊕Mnk
(R) by considering its

orthogonal group.

The theory of derivations has been studied extensively in abstract algebraic settings. The

approach by Hochschild (cf. [1], [2]) involves building a cohomology theory for associative al-

gebras in which the first cohomology group corresponds to the space of outer derivations. In

the context of the Derivation Theorem, one studies associative algebras that have trivial first

Hochschild cohomology group. Since all (K-linear) derivations on a field K are trivial and

Morita equivalent rings have isomorphic Hochschild cohomology, all derivations on Mn(K) are

inner. Note that this is a ‘global’ approach studying the space of derivations in contrast with

our ‘local’ approach in which we directly work with the derivation under consideration.

For an account of the Hochschild cohomology of algebras, the reader may refer to [8, Chapter

9]. A survey of the (continuous) Hochschild cohomology theory of von Neumann algebras can be

found in [6], [7]. The reader may also benefit from the exposition on derivations in the context

of operator algebras in [5, Chapter 3-4].
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