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Abstract. It is well known that a square matrix over a field is a commutator if and only if it

has trace zero. We give a conceptual proof of this result for square matrices over algebraically

closed fields.
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1. Introduction

Let K be a field. For a natural number n, let Mn(K) denote the K-algebra of n× n matrices

with entries from K. The commutator of two matrices P,Q ∈ Mn(K) is defined as [P,Q] :=

PQ−QP . A trace τ on Mn(K) is a K-valued linear map on Mn(K) such that τ(PQ) = τ(QP )

for all P,Q ∈ Mn(K). In other words, a trace on Mn(K) is a K-valued linear map on Mn(K)

that vanishes on the set of commutators in Mn(K). There is a K-valued trace (unique up to

scalar multiplication) on Mn(K), which is given by the sum of the diagonal entries for a given

matrix.

In [2], Shoda showed that an element of Mn(K) with trace zero is necessarily a commutator

when K has characteristic zero. The result for arbitrary fields was shown by Albert and Muck-

enhoupt in [1]. The present author is of the opinion that the proofs available in the literature

lean more towards the technical side and do not throw as much light on why we should expect

such a result to hold. In this note, we provide a conceptual proof of the fact that trace zero

matrices over an algebraically closed field are commutators.

2. Trace zero matrices and commutators

In this section, K denotes an algebraically closed field. For X,Y ∈Mn(K), we say that X is

similar to Y if there is an invertible matrix S ∈Mn(K) such that X = SY S−1. It is easy to see

that the relation, similarity, is an equivalence relation on Mn(K). The equivalence class of an

element X ∈Mn(K) is said to be the similarity orbit of X.

Let the matrix X ∈Mn(K) be a commutator, so that there are matrices P,Q ∈Mn(K) such

that X = [P,Q]. Note that [P,Q] = [P − αI,Q] for every α ∈ K. Since K has infinitely many

elements (by virtue of being algebraically closed), there exists an α ∈ K such that P − αI is

invertible and hence without loss of generality, we may assume that P is invertible. Let us

rewrite X as P (QP )P−1 −QP and define T := QP . Thus PTP−1 = T +X or in other words,

T and T + X are similar. Conversely, it is easy to see by retracing our steps that if there is

a matrix T ∈ Mn(K) such that T and T + X are similar, then X is a commutator. Also note

that if X = [P,Q], then SXS−1 = [SPS−1, SQS−1] for every invertible matrix S ∈ GLn(K).

We summarize the preceding discussion in the following lemma.

Lemma 2.1. For a matrix X ∈Mn(K), the following are equivalent:

(i) X is a commutator;

(ii) There is a matrix in the similarity orbit of X which is a commutator;

(iii) There is a matrix T ∈Mn(K) such that T and T +X are similar.
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In view of Lemma 2.1 and recalling that K is assumed to be algebraically closed, we will take

the liberty of viewing X in its Jordan canonical form. In this note, our main goal is to show

the following result, which combined with Lemma 2.1, shows that trace zero matrices over an

algebraically closed field are commutators.

Theorem 2.2. Let X be a matrix in Mn(K). Then there is a matrix T ∈Mn(K) such that T

and T +X are similar if and only if X has trace zero.

If T and T + X are similar, they must have the same trace and hence it easily follows that

X must have trace zero. A key element of our proof of the other direction is the following basic

linear algebra result.

Proposition 2.3. Let K be an algebraically closed field. If every eigenvalue of a matrix A ∈
Mn(K) has multiplicity 1, then A is diagonalizable. Consequently, if two matrices A,B ∈Mn(K)

have the same set of eigenvalues with each eigenvalue having multiplicity 1, then A and B are

similar.

Note that nilpotent matrices in Mn(K) have trace zero. We discuss Theorem 2.2 for the

special case of nilpotent matrices before proceeding to the general case. Let X ∈ Mn(K) be a

nilpotent matrix in Jordan canonical form so that it is an upper triangular matrix with zeroes

on the principal diagonal. Since the field K has infinitely many elements, we may choose distinct

elements λ1, λ2, . . . , λn from K. Let D := diag(λ1, λ2, . . . , λn). Note that D and D + X have

the same set of eigenvalues. By Proposition 2.3, D and D +X are similar. By Lemma 2.1, X

is a commutator. We conclude that every nilpotent matrix in Mn(K) is a commutator.

The proof of the main theorem (Theorem 2.2) involves use of the following combinatorial

lemma. For the sake of brevity, we use the notation [n] := {1, 2, . . . , n} in the lemma. We

denote the group of permutations of [n] by Σn.

Lemma 2.4. Let G be an abelian group with infinitely many elements and n be a positive

integer. Let (λ1, λ2, . . . , λn) be an n-tuple of elements from G satisfying

n∑
i=1

λi = 0.

Then there is an n-tuple (µ1, µ2, . . . , µn) of elements from G and a permutation σ ∈ Σn such

that µi 6= µj for i 6= j, and λi = µi − µσ(i) for 1 ≤ i ≤ n.

Proof. We proceed inductively. For n = 1, the lemma is obvious. Consider a positive integer

m ≥ 2, and assume that the assertion is true for n = 1, 2, . . . ,m− 1.

Let (λ1, λ2, . . . , λm) be an m-tuple of elements from G satisfying
∑m

i=1 λi = 0. We say that

a subset S of [m] has property P if
∑

i∈S λi = 0 and
∑

i∈S′ λi 6= 0 for any non-empty proper

subset, S′, of S. Let R be a non-empty subset of [m] with smallest cardinality such that∑
i∈R λi = 0. Clearly R has property P.

Case I: R = [m].

For 1 ≤ k ≤ m, we define µk to be the cumulative sum
∑k

i=1 λi. Let σ be the n-cycle defined

by

σ(i) =

{
i− 1 if 2 ≤ i ≤ m
m if i = 1.

From the hypothesis of the lemma, µm =
∑m

i=1 λi = 0. Furthermore, for 1 ≤ k < ` ≤ m, we

have µ`− µk =
∑`

i=k+1 λk 6= 0 (that is, µk 6= µ`). For k = 1, we have µk − µσ(k) = µ1− µσ(1) =

µ1−µm = λ1. For 2 ≤ k ≤ m, we observe that µk−µσ(k) = µk−µk−1 =
∑k

i=1 λi−
∑k−1

i=1 λi = λk.

Thus the m-tuple (µ1, µ2, . . . , µm) satisfies the conditions described in the lemma.
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Case II: R is a proper non-empty subset of [m].

By suitable permutation of the entries of (λ1, λ2, . . . , λm), we may assume that R = [`] for

some 1 ≤ ` ≤ m − 1. Note that (λ1, . . . , λ`) is an `-tuple satisfying the hypothesis of the

lemma. Using the induction hypothesis for n = `, we obtain an `-tuple (µ1, µ2, . . . , µ`) and a

permutation of [`], σ1, such that λi = µi−µσ1(i) for 1 ≤ i ≤ ` and µi 6= µj for distinct i, j ∈ [`].

Note that
m∑

i=`+1

λi =

m∑
i=1

λi −
∑̀
i=1

λi = 0− 0 = 0.

Thus (λ`+1, . . . , λm) is an (m − `)-tuple satisfying the hypothesis of the lemma. Using the

induction hypothesis for n = m−`, we obtain an (m−`)-tuple (µ`+1, . . . , µm) and a permutation

of [m]\[`], σ2, such that λi = µi−µσ2(i) for `+ 1 ≤ i ≤ m and µi 6= µj for distinct i, j ∈ [m]\[`].
Let σ be the permutation of [m] which acts as σ1 on [`] and as σ2 on [m]\[`]. Clearly

λi = µi − µσ(i) for 1 ≤ i ≤ m. The set Λ := {µi − µj |i ∈ [`], j ∈ [m]\[`]} is a finite subset of G.

Since G is infinite, we may choose α ∈ G\Λ. We define an m-tuple (ν1, ν2, . . . , νm) as follows:

νi :=

{
µi − α if i ∈ [`]

µi if `+ 1 ≤ i ≤ m
We observe that λi = νi− νσ(i) for 1 ≤ i ≤ m, and for distinct i, j ∈ [m], we have νi 6= νj . Thus

the m-tuple (ν1, ν2, . . . , νm) satisfies the conditions described in the lemma. �

Proof of Theorem 2.2. As mentioned before, it is straightforward to see that X has trace zero

if there is a matrix T such that T and T +X are similar.

For the converse, without loss of generality, we may assume that X is in Jordan canonical

form. Let (λ1, λ2, . . . , λn) denote the n-tuple of eigenvalues of X such that

X = diag(λ1, λ2, . . . , λn) +N

where N is an upper triangular nilpotent matrix. Since tr(X) =
∑n

i=1 λi = 0, from Lemma 2.4,

we have an n-tuple (µ1, µ2, . . . , µn) of elements of K such that µi 6= µj for distinct i, j ∈ [n] and

a permutation σ ∈ Σn such that λi = µi − µσ(i). Let

Dσ := diag(µσ(1), µσ(2), . . . , µσ(n)), and D := diag(µ1, µ2, . . . , µn).

By Proposition 2.3, Dσ and D + N are similar as they have the same set of eigenvalues and

each of their eigenvalues has multiplicity 1. Since D +N = Dσ +X, we conclude that Dσ and

Dσ +X are similar. Thus T := Dσ satisfies the assertion in the theorem. �

From Lemma 2.1 and Theorem 2.2, we conclude that a square matrix over an algebraically

closed field is a commutator if and only if it has trace zero.
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