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Abstract— In this work, we have focused on the development of a spatial 
downscaling model using data from the TRMM (Tropical Rainfall 
Measurement Mission) satellite.  Specifically, the 3B42V6 data, which is 
available at 0.250 X 0.250 (approximately 25 X 25 km) spatial resolution and 
3-hourly temporal resolution, has been considered over the Indian region and 
scaling laws have been developed, which relate the rainfall variability across a 
range of spatial scales (25 km to 100 km). The scaling relations are then used 
to downscale the aggregated (smoothed) satellite fields to smaller scales, 
compare with the original satellite snapshots and demonstrate the validity and 
efficiency of the proposed downscaling scheme in terms of being able to 
reproduce small-scale  variability. 

1. INTRODUCTION 
Over the last few decades, significant progress has been made in forecasting large-scale 
rainfall with weather and climate models. However, simulation of the meso-scale 
variability of rainfall, which is useful and important in accurately predicting hydrologic 
variables such as peak runoff or time of concentration, is still largely beyond the 
capability of global and regional models. These models operate at a scale which is much 
coarser than that needed for hydrologic applications. The need to unify descriptions over 
scales (i.e., rainfall variability over a small area with rainfall variability over a larger 
scale) and to parsimoniously parameterise subgrid-scale (“small scale”) rainfall 
variability, has prompted the introduction of new ideas and tools for analysing and 
modeling space-time rainfall patterns: namely, the concept of scale-invariance. 

Many studies (e.g., Schertzer and Lovejoy 1987, Gupta and Waymire 1990, Lovejoy 
and Schertzer 1991, Kumar and Foufoula-Georgiou 1993a, b) have shown the existence of 
scale-invariance in spatial and temporal rainfall.  Scale-invariance in a process suggests 
that a property of the process (or a related observable) at one (space or time) scale can be 
statistically related to the property at another (space or time) scale by a simple 
renormalisation involving just the ratio of scales. Specifically, if P represents a property of 
the process (e.g., rain-intensity), λ1 and λ2 represent the two scales of interest (space or 
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time), and fP represents the probability density function of P, then the presence of 
statistical scale invariance in the property suggests that fP(λ1) =  (λ1/λ2)H

 fP(λ2), where H, 
the so-called scaling parameter, depends on the process - for instance, convective rainfall 
would have a different H from a stratiform type of rainfall. Moreover, there appears to be 
evidence suggesting that scaling parameters (when scaling is present) are dependent on 
the region under study (for instance, mountainous vs. flat terrain; forest vs. urban areas). 
Scaling relations, if present, can then be used to develop seasonal (i.e., monsoon) 
downscaling models.  The primary goal of statistical downscaling of precipitation fields is 
to provide an easy way of resolving fine-scale variability which can, in turn, be used to 
drive hydrologic models. Over the Indian region, such studies, however, have not been 
done extensively. 

 

In this work, we focus on the downscaling scheme of Perica and Foufoula-Georgiou 
(1996b). In their studies, they analysed standardised spatial fluctuations of rainfall and 
showed that scale-invariance exists over a range of 4 to 32 km. Furthermore, they used 
this aforementioned spatial organisation in developing a spatial downscaling scheme and 
tested it successfully on many single-site radar-observed data sets. In this work, we will 
show that scale-invariance in standardised spatial fluctuations can be extended to larger 
scales, and more importantly, the spatial downscaling scheme can be used to successfully 
resolve the variability of rainfall at scales of importance to hydrologic applications, i.e., 
important statistics such as mean, standard deviation and percentage of rainy-area within 
the observed domain are preserved. Specifically, we utilise satellite observations at 25km 
spatial resolution and demonstrate via a multiresolution wavelet framework that scaling 
relations that have been found between 4km and 32km (e.g., see Perica and Foufoula-
Georgiou 1996, Venugopal et al. 1999) can be extended to larger scales, namely up to and 
beyond climate scales (~200 to 400 km). 
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2. DATA AND METHODOLOGY 
The rainfall observations that have been used in our study are obtained from the TRMM 
(Tropical Rainfall Measurement Mission) data archive (e.g., Adler et al. 2000, 
Kummerow et al. 1998).  These satellite observations are at a nominal spatial resolution of 
25 km and a temporal resolution of 3 hours.  We first convert the 3-hourly snapshots into 
daily accumulations at 25 km resolution and explore for scaling relations of the daily 
accumulations for the summer monsoon period (June through September, hereafter 
denoted as JJAS).  We have analysed the observations for 9 years (1999-2007). In other 
words, we analyse 122 snapshots (corresponding to 122 days of the monsoon season) per 
year for scaling relations. The region that has been taken for our analysis is given by the 
following coordinates: 65-98E, 6N-38N. 

The methodology used for our analysis stems from the dyadic multiresolution wavelet 
framework proposed by Mallat et al. (1989) and used by Perica and Foufoula-Georgiou 
(1996) on radar observations. The main idea is to decompose a given 2-dimensional 
snapshot into its mean and three components corresponding to horizontal, vertical and 
diagonal fluctuations. Fig. 1 shows a simple schematic illustrating the procedure. This 
process is repeated at every scale. For instance, if we have an image of size 128 x 128 
pixels, on the first stage of the decomposition/coarsening, we have the mean, and three 
directional fluctuations (see Fig. 1), each of size 64 x 64. In the second stage of 
decomposition, the resulting mean and fluctuations will be of size 32 x 32.  This process if 
repeated until we reach a scale where is a sufficient number of samples for any 
meaningful estimation of the statistics.  It has been found that the fluctuations of rainfall 
are dependent on the local averages, i.e., small fluctuations tend to predominantly 
associate themselves around small intensities while large fluctuations are associated with 
large intensities [e.g., see Perica and Foufoula-Georgiou 1996a, Venugopal et al. 1999]. 
To eliminate this dependency, one can form standardised fluctuations, i.e., the fluctuations 
are normalised by the local averages. In other words, if ξ represents the process of 

standardised fluctuations, then, following Fig. 1, '
1 1 /X Xξ =  etc.  The distributions of 

these normalised/standardised fluctuations are then analysed for the presence of scale-
invariance. 

3. RESULTS AND DISCUSSION 
We illustrate our analysis and downscaling procedure using the daily accumulation of 
August 1, 2003 as seen by the TRMM satellites. Starting from the original spatial 
resolution of 25km, we repeatedly average/smooth the data while retaining the directional 
fluctuations at each scale. In other words, as discussed in the previous section, gradients 
of rainfall intensity in the horizontal, vertical and diagonal directions (X1

’, X2’, X3’ in Fig. 
1) are constructed for a range of scales (50, 100, 200 and 400 km).  These fluctuations are 
then normalised by the local spatial mean to form the standardised fluctuations.  Thus, we 
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have the mean and normalised fluctuations at each scale (λ).  
The statistics of these normalised fluctuations (ξi) are then analysed as a function of 

scale. In addition to the fact that these normalised fluctuations can be well-approximated 
by a Gaussian distribution with zero mean (not shown), we observe that there exists scale-
invariance in the second moment (standard deviation) of ξi (Fig. 2), i.e., the log-log 
linearity evident from Fig. 2. This also means that given the standard deviation at any 
scale, one can estimate the standard deviation of the normalised fluctuations at any other 
scale. Since a Gaussian distribution is completely described by its first two moments, the 
presence of scaling in the second moment implies that there exists scale-invariance in the 
distribution.  Following the work of Perica and Foufoula-Georgiou (1996), these scaling 
relations, coupled with the fact that the normalised fluctuations follow a Gaussian 
distribution, help us develop a spatial downscaling model for the Indian region. The work 
presented here shows the testing of the conceptual idea of Perica and Foufoula-Georgiou 
(1996), shown in Fig. 3. 
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The essence of the downscaling model is the following: The data at some given 
resolution is coarsened (upscaling; Fig. 3 left to right) up to a scale where there are 
enough number of samples to reliably estimate statistics, for the purpose of developing 
scaling relations. If scaling relations exist, then we start from the coarsest scale, say λ 
(right-most panel of Fig. 3), and generate Gaussian-distributed fluctuations at that scale 
(with a standard deviation σλ (ξi)). Then, using a linear combination of these ξi with the 
coarse-grained rainfall (i.e., the spatial rainfall field at λ), one can generate rainfall at a 
scale twice as fine as λ. This process is repeated till we reach the scale of interest. In other 
words, if we started with 200 km, one can successively generate stochastic realisations of 
rainfall at 100, 50, 25 km. 

Fig. 4 shows the result of applying this downscaling model to a daily accumulation 
(August 1, 2003) of satellite snap-shots at a 25km resolution. The “simulated” field at 
each scale is an average of 10 ensemble members (since the proposed method is a 
stochastic approach, an ensemble mean is appropriate than choosing a single “best” 
realisation). This procedure was repeated for the entire month of August 2003.  
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The comparison of the statistics of the resulting simulated fields (mean, standard 
deviation and percentage of rain-covered area) with those of the “observed” fields is 
shown in Fig. 5. Figs. 5a, b show the mean and standard deviation of the simulated and 
observed rainfall fields.  While overall the performance in terms of matching statistics is 
broadly satisfactory, the one striking downside to the proposed methodology is that the 
percentage of rainy area is not captured well (Fig. 5c). Upon further investigation, we find 
that the difference in the simulation of percentage rainy areas comes from the poor 
simulation of the very low intensity rainfall (figure not shown). 

4. SUMMARY 
Using satellite-observed precipitation, we have demonstrated that scale invariance, 
characterising the variability of rainfall, exists over a large range of scales (50-400 km).  
These scaling relations were then used to develop a spatial downscaling model for rainfall. 
Preliminary testing of the spatial downscaling model as a conceptual tool by upscaling 
satellite data and downscaling the coarsened field indicates promise in reproducing the 
finer-scale statistics. 
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